THE EQUATIONS $3 x^{2}-2=y^{2}$ AND $8 x^{2}-7=z^{2}$

By A. BAKER and H. DAVENPORT

[Received 6 November 1968]

1. The four numbers $1,3,8,120$ have the property that the product of any two, increased by 1 , is a perfect square. Professor J. H. van Lint, in a lecture at Oberwolfach in March 1968, discussed the problem whether there is any other positive integer that can replace 120. Since then Professor van Lint has been good enough to send us a copy of a report \dagger in which he gives references to the history of the problem, and also gives a proof that there is no such integer up to $100^{1700000}$.
An integer N which can replace 120 while preserving the property must have the form $N=x^{2}-1$, and the conditions are equivalent to the two equations

$$
\begin{equation*}
3 x^{2}-2=y^{2}, \quad 8 x^{2}-7=z^{2} . \tag{1}
\end{equation*}
$$

Thus the question is whether these simultaneous equations have any solution in positive integers, other than the solutions with $x=1$ (corresponding to $N=0$) and $x=11$ (corresponding to $N=120$). The object of the present note is to prove that there is no other solution.
It is well known that two equations of the form (1) can have only finitely many solutions in integers. One way of proving this is to apply a theorem of Siegel \ddagger to the equation

$$
\left(3 x^{2}-2\right)\left(8 x^{2}-7\right)=t^{2} .
$$

Another way is to express the solutions of the separate equations in (1) by powers of quadratic irrationals, as was done by Professor van Lint, and as we shall do in § 2 . This leads to an inequality satisfied by a linear combination of the logarithms of three particular algebraic numbers, and to this we can apply a theorem of Gelfond.§ Both Siegel's theorem and Gelfond's theorem depend ultimately on Thue's theorem and its refinements, and are therefore not effective. That is, they offer no possibility of determining a number X such that there is no solution with $x>X$.
\dagger J. H. van Lint, 'On a set of Diophantine equations', Report 68-WSK-03 of the Technological University Eindhoven, September 1968.
\ddagger C. L. Siegel (under the pseudonym ' X '), 'The integer solutions of the equa. tion $y^{2}=a x^{n}+b x^{2-1}+\ldots+k^{\prime}, J$. London Math. Soc. 1 (1926) 86-8, or Gesammelte Abhandlungen I, 207-8.
\& A. O. Gelfond, Transcendental and algebraic numbers (Dover, New York 1960), p. 34, Theorem IV.

Quart. J. Math, Oxford (2), 20 (1969), 129-37.
8095.8 .20

Some recent work of one of us (A.B.) results in an effective form of Gelfond's theorem, and this makes it possible to compute a number X with the property just stated. The latest paper \dagger establishes a theorem which is completely explicit and is well adapted to the solution of particular problems, such as the present one. It is as follows:

Throrem. Suppose that $k \geqslant 2$, and that $\alpha_{1}, \ldots, \alpha_{k}$ are non-zero algebraic numbers, whose degrees do not exceed d and whose heights do not exceed A, where $d \geqslant 4$ and $A \geqslant 4$. If the rational integers b_{1}, \ldots, b_{k} satisfy

$$
\begin{equation*}
0<\left|b_{1} \log \alpha_{1}+\ldots+b_{k} \log \alpha_{k}\right|<e^{-\delta H} \tag{2}
\end{equation*}
$$

where $0<\delta \leqslant 1$ and

$$
\begin{equation*}
H=\max \left(\left|b_{1}\right|, \ldots,\left|b_{k}\right|\right), \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
H<\left(4^{\mu^{2}} \delta^{-1} d^{2 k} \log A\right)^{(2 \boldsymbol{2}+1)^{2}} \tag{4}
\end{equation*}
$$

In this theorem the logarithms are supposed to have their principal values, but this is of no importance to us here, since we shall be concerned exclusively with positive algebraic numbers.

We apply the theorem to the present problem in § 2 , and deduce that the positive integer m, in terms of which x is expressed by (6) below, satisfies

$$
\begin{equation*}
m<10^{487} \tag{5}
\end{equation*}
$$

There remains the problem of covering this range without a prohibitive amount of computation, and this is the main theme of the present note. We treat the problem in § 3 by means of a simple lemma on Diophantine approximation.

The lemma leaves us with one serious computational problem, and for this we were fortunate in having the co-operation of the Atlas Computer Laboratory of the Science Research Council at Chilton, Berkshire. Mr. S. T. E. Muir, of that Laboratory, used a package originally developed by Mr. W. F. Lunnon, of Manchester University, to carry out multi-length arithmetic to an arbitrary precision. The numerical data found by the Laboratory are given in an appendix. The inequalities needed for the lemma are satisfied with an ample margin. But for the sake of interest, and for possible use in other problems, we explain briefly in § 5 the procedure which could have been followed if they had not been satisfied.
2. The general solution of each separate equation in (1) can be found by arguments that have been known since the eighteenth century.
\dagger A. Baker, 'Linear forms in the logarithms of algebraic numbers', Mathe. matika, 15 (1968) 204-16. This contains references to earlier papers.

The first equation can be written as

$$
\begin{gathered}
(y+x \sqrt{ } 3)(y-x \sqrt{3})=-2 \\
y+x \sqrt{3}=\left(y_{0}+x_{0} \sqrt{3}\right)(2+\sqrt{ } 3)^{m}
\end{gathered}
$$

If we put
where $m \geqslant 0$, it is easily verified (by combining this equation with its conjugate) that x_{0} is always positive but that y_{0} is negative if m is large. Hence we can choose m so that $y_{0}>0$ but that if y_{1} is defined by

$$
y_{0}+x_{0} \sqrt{ } 3=\left(y_{1}+x_{1} \sqrt{ } 3\right)(2+\sqrt{ } 3)
$$

then $y_{1}<0$. Since $y_{1}=2 y_{0}-3 x_{0}$, we have $y_{0}<\frac{8}{2} x_{0}$. Hence

$$
3 x_{0}^{2}-2=y_{0}^{2}<\frac{\theta}{4} x_{0}^{2},
$$

whence $x_{0}=1$ and so $y_{0}=1$. Thus the general solution is given by
and accordingly

$$
\begin{equation*}
(2 \sqrt{ } 3) x=(1+\sqrt{ } 3)(2+\sqrt{ } 3)^{m}-(1-\sqrt{3})(2-\sqrt{ } 3)^{m}, \tag{6}
\end{equation*}
$$

where $m=0,1,2, \ldots$. The value $x=1$ corresponds to $m=0$, and the value $x=11$ to $m=2$.

The second equation can be written as

$$
(z+x \sqrt{ } 8)(z-x \sqrt{ } 8)=-7
$$

Reasoning as before, with

$$
z+x \sqrt{ } 8=\left(z_{0}+x_{0} \sqrt{ } 8\right)(3+\sqrt{ } 8)^{n}
$$

we find that $z_{0}<\frac{8}{3} x_{0}$, whence

$$
8 x_{0}^{2}-7=z_{0}^{2}<\frac{6 f}{\theta} x_{0}^{2}
$$

so that $x_{0}=1$ or 2. If $x_{0}=1$ then $z_{0}=1$, and if $x_{0}=2$ then $z_{0}=5$. There are two classes of solutions, one given by

$$
z+x \sqrt{8}=(1+\sqrt{8})(3+\sqrt{ } 8)^{n}
$$

and the other by

$$
z+x \sqrt{ } 8=(5+2 \sqrt{ } 8)(3+\sqrt{ } 8)^{n}
$$

The last formula can be simplified by noting that

$$
5+2 \sqrt{ } 8=(3+\sqrt{ } 8)(-1+\sqrt{ } 8)
$$

The solutions of the second equation in (1) are therefore given by the alternative formulae

$$
\begin{equation*}
(2 \sqrt{ } 8) x=(1+\sqrt{ } 8)(3+\sqrt{ } 8)^{n}-(1-\sqrt{ } 8)(3-\sqrt{ } 8)^{n} \tag{7a}
\end{equation*}
$$

where $n=0,1,2, \ldots$, and

$$
\begin{equation*}
(2 \sqrt{ } 8) x=(-1+\sqrt{ } 8)(3+\sqrt{ } 8)^{n}-(-1-\sqrt{ } 8)(3-\sqrt{ } 8)^{n} \tag{7b}
\end{equation*}
$$

where $n=1,2, \ldots$. The value $x=1$ corresponds to $n=0$ in (7a), and the value $x=11$ to $n=2$ in (7 b).

We seek the common values of (6) and either (7a) or (7b). Consider first (6) and (7a). Here

$$
\begin{aligned}
2 x & =\frac{1+\sqrt{ } 3}{\sqrt{3}}(2+\sqrt{ } 3)^{m}+\frac{\sqrt{ } 3-1}{\sqrt{3}}(2+\sqrt{ } 3)^{-m} \\
& =\frac{1+\sqrt{ } 8}{\sqrt{8}}(3+\sqrt{ } 8)^{n}+\frac{\sqrt{ } 8-1}{\sqrt{8}}(3+\sqrt{ } 8)^{-n}
\end{aligned}
$$

If we put

$$
\begin{equation*}
P=\frac{1+\sqrt{ } 3}{\sqrt{3}}(2+\sqrt{3})^{m}, \quad Q=\frac{\sqrt{8}+1}{\sqrt{8}}(3+\sqrt{ } 8)^{n} \tag{8}
\end{equation*}
$$

the lest relation gives

$$
P+\frac{g}{8} P^{-1}=Q+\frac{7}{8} Q^{-1}
$$

Since

$$
P-Q>\frac{?}{8} Q^{-1}-\frac{2}{3} P^{-1}=\frac{2}{3}(P-Q) P^{-1} Q^{-1}
$$

and plainly $P>1, Q>1$, we must have $Q<P$. As we may suppose that $m \geqslant 3$, we have

$$
P \geqslant \frac{1+\sqrt{3}}{\sqrt{3}}(2+\sqrt{ } 3)^{3}>80
$$

Also $Q>P-\frac{7}{8} Q^{-1}>P-\frac{7}{8}$. Hence

$$
P-Q=\frac{7}{8} Q^{-1}-\frac{8}{8} P^{-1}<\frac{7}{8}\left(P-\frac{7}{8}\right)^{-1}-\frac{8}{8} P^{-1}<\frac{1}{4} P^{-1}
$$

It follows that

$$
0<\log \frac{P}{Q}=-\log \left(1-\frac{P-Q}{P}\right)<\frac{1}{1} P^{-2}+\left(\frac{1}{1} P^{-2}\right)^{2}<0 \cdot 26 P^{-2}
$$

Substituting from (8), we obtain

$$
\begin{align*}
0<m \log (2+\sqrt{ } 3)-n \log (3+\sqrt{ } 8)+\log & \frac{(1+\sqrt{ } 3) \sqrt{8}}{(1+\sqrt{8}) \sqrt{3}} \\
& <0 \cdot 26 P^{-2}<\frac{0 \cdot 11}{(2+\sqrt{3})^{2 m}} \tag{9}
\end{align*}
$$

We apply the theorem quoted in § 1 with $k=3$ and

$$
\alpha_{1}=2+\sqrt{ } 3, \quad \alpha_{2}=3+\sqrt{ } 8, \quad \alpha_{3}=\frac{(1+\sqrt{ } 3) \sqrt{ } 8}{(1+\sqrt{ } 8) \sqrt{3}}
$$

We can take $\delta=1$ (since $\left.(2+\sqrt{3})^{2}>e\right)$ and $H=m$ since plainly $n<m$. The equations satisfied by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are

$$
\begin{gathered}
\alpha_{1}^{2}-4 \alpha_{1}+1=0, \quad \alpha_{2}^{2}-6 \alpha_{2}+1=0 \\
441 \alpha_{3}^{4}-2016 \alpha_{3}^{3}+2880 \alpha_{3}^{2}-1536 \alpha_{3}+256=0
\end{gathered}
$$

Hence the maximum height of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is $A=2880$. We also have $d=4$. The theorem shows that

$$
m<\left(4^{9} \times 4^{6} \times \log 2880\right)^{48}<\left(4^{15} \times 8\right)^{49}=2^{1617}<10^{487}
$$

If, in the foregoing argument, (7 a) is replaced by (7 b), the only difference is that α_{3} is replaced by

$$
\alpha_{3}^{\prime}=\frac{(1+\sqrt{3}) \sqrt{8}}{(\sqrt{8-1) \sqrt{3}}}
$$

Since this number satisfies the same equation as α_{3} the conclusion remains valid in the second of the alternative cases.

We have now proved (5), and it remains to consider the range

$$
\begin{equation*}
2<m<10^{487} \tag{10}
\end{equation*}
$$

3. The inequality (9) implies, on division by $\log (3+\sqrt{ } 8)$, that
where

$$
\begin{gather*}
|m \theta-n+\beta|<0.07 C^{-m} \tag{11}\\
\theta=\frac{\log (2+\sqrt{ } 3)}{\log (3+\sqrt{ } 8)} \tag{12}\\
C=(2+\sqrt{ } 3)^{2}=13.928 \ldots \tag{13}\\
\beta=\left(\log \frac{(1+\sqrt{ } 3) \sqrt{ } 8}{(1+\sqrt{8}) \sqrt{ } 3}\right) / \log (3+\sqrt{ } 8) \tag{14a}
\end{gather*}
$$

In the alternative case, when (7a) is replaced by (7b), we have to replace β by

$$
\begin{equation*}
\beta^{\prime}=\left(\log \frac{(1+\sqrt{3}) \sqrt{ } 8}{(\sqrt{8}-1) \sqrt{3}}\right) / \log (3+\sqrt{8}) \tag{14b}
\end{equation*}
$$

We prove a simple lemma, which is suggested by arguments that are well known in connection with non-homogeneous Diophantine approximation.

Lemma. Suppose that $K>6$. For any positive integer M, let p and q be integers satisfying

$$
\begin{array}{cc}
& 1 \leqslant q \leqslant K M, \quad|\theta q-p|<2(K M)^{-1} \\
\text { Then, if } \dagger & \|q \beta\| \geqslant 3 K^{-1} \tag{16}
\end{array}
$$

there is no solution of (11) in the range

$$
\frac{\log K^{2} M}{\log C}<m<M
$$

(11) in the range

Remarks. (i) The result is independent of the particular values of
$\dagger\|z\|$ denotes the distance of a real number z from the nearest integer.
θ, β, C; all that is supposed is that θ, β are real and $C>\mathrm{I}$. (ii) The factor 2 has been inserted in the second of the inequalities (15) to allow some margin in the application. The existence of p, q to satisfy (15), without the factor 2, follows from Dirichlet's theorem on Diophantine approximation, or alternatively by taking q to be the largest denominator of a convergent to the continued fraction for θ which does not exceed $K M$.

Proof. Write $q \theta=p+\phi$, where $|\phi|<2(K M)^{-1}$. After multiplication by q, the inequality (ll) implies that

$$
\begin{equation*}
|m(p+\phi)-n q+q \beta|<q C^{-m} . \tag{18}
\end{equation*}
$$

Assuming that m satisfies (17), we have
and

$$
\begin{aligned}
& m|\phi|<2 M(K M)^{-1}=2 K^{-1}, \\
& q C^{-m} \leqslant K M C^{-m}<K^{-1} .
\end{aligned}
$$

Hence (18) implies that $\|q \beta\|<3 K^{-1}$, which contradicts (18). This proves the lemma.

To apply the lemma in our particular case, we take

$$
\begin{equation*}
M=10^{487}, \quad K=10^{33} \tag{10}
\end{equation*}
$$

Let θ_{0} be the value of θ correct to 1040 decimal places, so that

$$
\left|\theta-\theta_{0}\right|<10^{-1040}
$$

Let p / q be the last convergent to the continued fraction for θ_{0} which satisfies $q \leqslant 10^{520}$. Then

$$
\left|q \theta_{0}-p\right|<10^{-520}
$$

We therefore have

$$
|q \theta-p| \leqslant q\left|\theta-\theta_{0}\right|+\left|q \theta_{0}-p\right|<10^{-520}+10^{-520}
$$

Hence the inequalities (15) are satisfied.
It follows from the lemma that provided

$$
\begin{equation*}
\|q \beta\| \geqslant 3 \times 10^{-33} \quad \text { and } \quad\left\|q \beta^{\prime}\right\| \geqslant 3 \times 10^{-33} \tag{20}
\end{equation*}
$$

there is no solution of (11), in either of its alternative forms, in the range

$$
\frac{\log 10^{553}}{\log C}<m<10^{487}
$$

The number on the left is less than 500 .
The values of θ and q computed by the Atlas Computer Laboratory are given in the Appendix, and also the values of β, β^{\prime} to 600 decimals for the verification of (20). In fact,

$$
\|q \beta\|=0.422 \ldots, \quad\left\|q \beta^{\prime}\right\|=0.474 \ldots
$$

and consequently (20) holds with a big margin.

There remains now only the range

$$
\begin{equation*}
2<m<500, \tag{21}
\end{equation*}
$$

and this will be treated in the next section. \dagger
4. We treat the case (21) directly. From the first few decimals of θ_{0} we find that the continued fraction for θ begins:

$$
\theta=\frac{1}{1+} \frac{1}{2+} \frac{1}{1+} \frac{1}{20+} \frac{1}{1+} \frac{1}{5+} \frac{1}{3+} \ldots
$$

The corresponding convergents are

$$
\frac{1}{1}, \frac{2}{3}, \frac{3}{4}, \frac{62}{83}, \frac{65}{87}, \frac{387}{518}, \frac{1226}{1641}
$$

We easily find that

$$
1641 \theta-1226=-0.000072 \ldots
$$

The inequality (11), after multiplication by 1641, gives

$$
\begin{equation*}
|m(1226+\phi)-1641 n+1641 \beta|<(1641)(0 \cdot 07)(13 \cdot 9)^{-m} \tag{22}
\end{equation*}
$$

where $|\phi|<0.000073$. We have

$$
|m \phi|<(500)(0 \cdot 000073)=0.0365
$$

From the first few digits of the computed values of β and β^{\prime} we find that

$$
1641 \beta \equiv 0 \cdot 445 \ldots, \quad 1641 \beta^{\prime} \equiv 0.402 \ldots(\bmod 1)
$$

Hence (22) implies that

$$
(1641)(0.07)(13.9)^{-m}>0.402-0.0365>0.36
$$

This gives $(13.9)^{m}<330$, which contradicts the supposition that $m \geqslant 3$.
5. We add a remark on the situation that would arise if the condition (16) of the lemma were not satisfied, that is, if

$$
\|q \beta\|<3 K^{-1} .
$$

Assuming that m satisfies (17), we could deduce from (18) that

$$
|m p-n q+j|<2 K^{-1}+K^{-1}+3 K^{-1}<1
$$

where j denotes the integer nearest to $q \beta$. Hence $m p-n q+j=0$, whence

$$
m p \equiv-j(\bmod q)
$$

Although we can no longer conclude that there is no value for m in
\dagger Alternatively we could quote Professor van Lint's result, mentioned in § 1 , which amply suffices to exclude the range (21).

A. BAKER AND H. DAVENPORT

the range (17), we cansay that there is at most one value to the modulus q, and this value is determined by the last congruence.

We know that $q \leqslant K M$. If $q>M$ there is at most one possible value for m in the range (17), and this value can be determined. Briefly, we may say that the present method fails only if $\|q \beta\|$ is exceptionally small and also q is exceptionally small relative to its upper bound.

APPENDIX. THE VALUES OF $\theta, q, \beta, \beta^{\prime}$.
$\theta=0.747105379784665200120154370987434298078838030338059879718301$ 352159310165894475587141009083247197702694022042723684447074 124718661461948570471900259494924148163270994948746934792496 917482444767322967587512237578135787312415223973754255086341 284082585232591470710020368677305254983941970292619220422891 438002028628173000212509133330755774032856109126319876470569 724511678594198272615337894148849934745247867230321185310130 860104632029261538116449095474322470360438397563564737570168 285149376433915546518447650745312554773479366846957532373773 985969087205357486327157573346154323915721023128729304794800 334109325462223307719778212679729094292967622084922158132178 265811236725841217681757261976366249841860008857924723832628 322228948691846902990798805903310924841565542284199361377973 672350402557642330308473593059887605557910259952022013485601 510888930373392634415371821337474654291564887154967642945982 142456849789212013394796811799756107308664334382329461159189 143626841565033694020862809575884464764292194378483074831024 40658029117293586428 ...
$q=747665645885928210029290019462741939993288435518342054467033$ 925279901038030143828312815409940794964175823724482029443561 150919755265496098376572570805717810376590201829680482889690 912160903642650745984312605161506011388948311344484363077762 019956951373885705402006508420174534394932542089370873392823 673362827020008547678146864873464642819339455783822750586507 226885773019978425563256944952918358262952538668869768522768 408399640383429924645338646774482586040941197291383948518564 0420726381803396305374225672573313504814
$\beta=0.086803780512726746666917985488620430940027562315741287744784$ 426642875789578981452196519697055742878321749690018266324834 806630524498911193885649159574010893489796813750640599988171 952796514739498280927465290349626782570115528754037410103040 875055439775699607987451112895888736703742711637288619287848 275641961743926147602738741800508788653396430954961409931433 844191719570143717702772387850359387921052022240950752640991 118662076345290138739897388701256508684914626338787881595526 860783333521371611244349921963230975426311308077606704734288 665260815132771139099918693785645423250465508567852942092260

ON THE EQUATIONS $3 x^{2}-2=y^{2}$ AND $8 x^{2}-7=z^{2} \quad 137$
$\beta^{\prime}=0.506034600868222918041494994047616946562861040779558996904661$ 157528976784976125791000581725989145029580769554761707686182 644405185436894640168505673685911864966528670819982034204331 793065557531729034995673143826368355941111827796977793800624 883108866522832699770950781708417872962506854493595962026853 779809596087174070660898640846215652430123635188412017112637 744793412722890927923477467846086103334564568424028974335718 124683995019777782828689454816985500050456067191307271644096 071615142488110400812674854614338626206440038556241385314742 975723730803106561988053274986100383162721012757554613569439 ...

Trinity College
Cambridge

