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1. THE four numbers 1, 3, 8, 120 have the property that the product
of any two, increased by 1, is a perfect square. Professor J. H. van Lint,
in a lecture at Oberwolfach in March 1968, discussed the problem whether
there is any other positive integer that can replace 120. Since then
Professor van Lint has been good enough to send us a copy of a reportf
in which he gives references to the history of the problem, and also gives
a proof that there is no such integer up to io1700000.

An integer N which can replace 120 while preserving the property
must have the form N = x

l
—1, and the conditions are equivalent to

the two equations
3a;2—2 = y

i
, 8z 2 -7 = z*. (1)

Thus the question is whether these simultaneous equations have any
solution in positive integers, other than the solutions with x = 1 (corre-
sponding to N = 0)andx = 11 (corresponding to N = 120). The object
of the present note is to prove that there is no other solution.

I t is well known that two equations of the form (1) can have only
finitely many solutions in integers. One way of proving this is to apply
a theorem of Siegelf to the equation

(3z
2
—2)(&e

2
-7) = i

2
.

Another way is to express the solutions of the separate equations in
(1) by powers of quadratic irrationals, as was done by Professor van Lint,
and as we shall do in § 2. This leads to an inequality satisfied by a linear
combination of the logarithms of three particular algebraic numbers, and
to this we can apply a theorem of Gelfond.§ Both Siegel's theorem and
Gelfond's theorem depend ultimately on Time's theorem and its refine-
ments, and are therefore not effective. That is, they offer no possibility
of determining a number X such that there is no solution with x > X.

t J. H. van Lint, 'On a set of Diophantine equations', Report 68-WSK-03
of the Technological University Eindhoven, September 1968.

% C. L. Siegel (under the pseudonym 'X'), 'The integer solutions of the equa-
tion y* = ai?+bx*~

1
+... + k', J. London Math. Soc. 1 (1926) 66-8, or Oesammelte

Abhandlungen I, 207-8.
§ A. O. Gelfond, Transcendental and algebraic numbers (Dover, New York I960),

p. 34, Theorem TV.

Quart. J. Math. Oxford (2), 30 (1969), 129-37.
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130 A. BAKER AND H. DAVENPORT

Some recent work of one of us (A. B.) results in an effeotive form of
Gelfond's theorem, and this makes it possible to compute a number X
with the property just stated. The latest paperf establishes a theorem
which is completely erplicit and is well adapted to the solution of
particular problems, such as the present one. It is as follows:

T H E O R E M . Suppose that k ^ 2, and that <xlt..., ak are non-zero algebraic

numbers, whose degrees do not exceed d and whose heights do not exceed A,

where d > 4 and A ^ 4. / / the rational integers blt..., bk satisfy

0 < |61log«1+...+6ifclogat| < e^H, (2)

where 0 < 8 ^ 1 and
if = max(|61|,...,|6t|), (3)

then H < ( ^ S - ^ l o g ^ + t f . (4)

In this theorem the logarithms are supposed to have their principal
values, but this is of no importance to us here, since we shall be con-
cerned exclusively with positive algebraic numbers.

We apply the theorem to the present problem in § 2, and deduce that
the positive integer m, in terms of which x is expressed by (6) below,
satisfies m < 1Q487 ( 5 )

There remains the problem of covering this range without a prohibitive
amount of computation, and this is the main theme of the present note.
We treat the problem in § 3 by means of a simple lemma on Diophantine
approximation.

The lemma leaves us with one serious computational problem, and
for this we were fortunate in having the co-operation of the Atlas Com-
puter Laboratory of the Science Research Council at Chilton, Berk-
shire. Mr. S. T. E. Muir, of that Laboratory, used a package originally
developed by Mr. W. F. Lunnon, of Manchester University, to carry out
multi-length arithmetic to an arbitrary precision. The numerical data
found by the Laboratory are given in an appendix. The inequalities
needed for the lemma are satisfied with an ample margin. But for the
sake of interest, and for possible use in other problems, we explain
briefly in § 6 the procedure which could have been followed if they had
not been satisfied.

2. The general solution of each separate equation in (1) can be found
by arguments that have been known since the eighteenth century.

t A. Baker, 'Linear forms in the logarithms of algebraio numbers', Mathe-
matika, 16 (1968) 204-16. This contains referenoes to earlier papers.
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ON THE EQUATIONS 3x«-2 = y' AND &r»-7 = z1 131

The first equation can be written as

(i/+W3)(y-xV3) = - 2 .

If we put 2/+W3 = (t/0+x0V3)(2+V3)m,

where TO ̂  0, it is easily verified (by combining this equation with its
conjugate) that x0 is always positive but that y0 is negative if m is large.
Hence we can choose m so that y0 > 0 but that if y1 is denned by

then yx < 0. Since yx = 2y0—3x0, we have y0 < $x0. Hence

3x§-2 = yl < 1*8,

whence z0 = 1 and so y0 = 1. Thus the general solution is given by

y+x-JZ = (1 + V3)(2+V3)"\
and accordingly

(2V3)z = (1 + V3)(2+V3)m—(1-V3)(2-V3)m, (6)

where m = 0, 1, 2,.... The value x = 1 corresponds tom = 0, and the
value z = l l t o T O = 2 .

The second equation can be written as

(z+zV8)(z—zV8) = —7.

Reasoning as before, with

Z+X-V8 = (zo+a;oV8)(3+V8)")

we find that z0 < •§£„, whence

so that x0 = 1 or 2. If x0 = 1 then z0 = 1, and if x0 = 2 then z0 = 5.
There are two classes of solutions, one given by

z+xV8 = (1 + V8)(3+V8)n

and the other by
z+xV8 = (5+2V8)(3+V8)*.

The last formula can be simplified by noting that

5+2V8 = (3 + V8)(— 1 + V8).

The solutions of the second equation in (1) are therefore given by the
alternative formulae

(2V8)x = (1 + V8)(3+V8)n— (1-V8)(3-V8)n, (7a)

where n = 0, 1, 2,..., and

(2V8)x= (— 1 + V8)(3+V8)*—(—1-V8)(3—V8)», (7b)
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132 A. BAKER AND H. DAVENPORT

where n = 1, 2,.... The value x = 1 corresponds to n = 0 in (7 a), and
the value x = 11 to n = 2 in (7 b).

We seek the common values of (6) and either (7 a) or (7 b). Consider
first (6) and (7 a). Here

If we put

P = I+-^(2+V3)'», Q=±jtl(3+</8)», (8)

the last relation gives
P+fP-i

Since P-Q > | Q - i - f p -

and plainly P > 1, Q > 1, we must have Q < P. As we may suppose
that m :> 3, we have

! + ^ V >80.P 5 !
V3

Also Q > P—iQ-
1
 > P—f Hence

It follows that

0 < l o g | = - l o g / l - ^

Substituting from (8), we obtain

0 < m l o g ( 2 + V 3 ) - g ( + V ) + g ^ ^

<

We apply the theorem quoted in § 1 with k = 3 and

We can take 8 = 1 (since (2+V3)* > e) and H = m since plainly n < m.

The equations satisfied by <*x, otj, otj are

a f - 4 a 1 + l = 0, ( 4 - 6 ^ + 1 = 0,

441aJ-2016ai+2880a|—1536O3+256 = 0.
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ON THE EQUATIONS 3x»-2 = y* AND 8x«-7 = z« 133

Hence the maximum height of ccv o^, ctj is A = 2880. We also have

d = 4. The theorem showB that

m < (4»x48xlog2880)4B < (4 1 6x8)« = 2 " 1 ' < 10*87.

If, in the foregoing argument, (7 a) is replaced by (7 b), the only

difference is that 03 is replaced by

, _ (1 + V3)V8

Since t.hia number satisfies the same equation as 03 the conclusion remains

valid in the second of the alternative cases.

We have now proved (5), and it remains to consider the range

2 < m < 1O«87. (10)

3. The inequality (9) implies, on division by log(3+V8), that

|TO0-»+j9| < 0-07O-"1, (11)

where 8 = ***+*), ( 1 2 )

log(3 + V8)'

C = (2+V3)* = 13-928..., (13)

In the alternative case, when (7 a) is replaced by (7 b), we have to replaoe

We prove a simple lemma, which is suggested by arguments tha t are

well known in connection with non-homogeneous Diophantine approxi-

mation.

LEMMA. Suppose thai K > 6. For any positive integer M, lei p and q

be integers satisfying

1 < q < KM, \6q—p\ < 2(KM)~
1
. (15)

Then, iff ||9/3|| > 3K~\ (16)

there is no solution of (11) in the range

logZ23f , .

logC

Remarks, (i) The result is independent of the particular values of

•f \\z\\ denotes the distance of a real number z from the nearest integer.
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134 A. BAKER AND H. DAVENPORT

9, ft, C; all that is supposed is that 6, /? are real and C > 1. (ii) The
factor 2 has been inserted in the second of the inequalities (15) to allow
some margin in the application. The existence of p, q to satisfy (15),
without the factor 2, follows from Dirichlet's theorem on Diophantine
approximation, or alternatively by taking q to be the largest denominator
of a convergent to the continued fraction for 6 which does not exceed KM.

Proof. Write qd = p+<f>, where |<£| < 2{KM)~
1
. After multiplication

by q, the inequality (11) implies that

\mip+<f>)-nq+qp\ < qC~
m
. (18)

Assuming that m satisfies (17), we have

m\<f>\ < 2M(KM)~
1
 = 2K-

1
,

and qC~
m < KMC~

m
 < K-

1
.

Hence (18) implies that \\qjj\\ < 3K-
1
, which contradicts (16). This

proves the lemma.

To apply the lemma in our particular case, we take

M = 1048', K = 1033. (19)

Let 60 be the value of 8 correct to 1040 decimal places, so that

Let pjq be the last convergent to the continued fraction for 80 which
satisfies q < 10M0. Then

\q60-p\ < 10-«°.
We therefore have

\qd-p\ ^q\6-

Hence the inequalities (15) are satisfied.
I t follows from the lemma that provided

||49|| 2S3X10-33 and ||flB'|| ^ 3x 10"33 (20)

there is no solution of (11), in either of its alternative forms, in the range

log C

The number on the left is less than 500.
The values of 6 and q computed by the Atlas Computer Laboratory

are given in the Appendix, and also the values of /?, /?' to 600 decimals
for the verification of (20). In fact,

||09|| = 0-422..., IfeS'll = 0-474...,

and consequently (20) holds with a big margin.
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ON THE EQUATIONS 3a^-2 = y« AND 8x»—7 = z» 135

There remains now only the range

2 < m < 500, (21)

and this will be treated in the next section.!

4. We treat the case (21) directly. From the first few decimals of
60 we find that the continued fraction for 0 begins:

e _ 1 1 1 1 1 1 1

~~ 1+ 2+ T+ 20+ 1+ 5+ 3+""

The corresponding convergent* are

1 2 3 62 65 387 1226
1 ' 3 ' 4 ' 83' 87'518' 1641'

We easily find that

16410—1226 = —0-000072....

The inequality (11), after multiplication by 1641, gives

|ra(1226+<£)-164l7H-1641j9| < (1641)(0-07)(13-9)-m, (22)

where \(f>\ < 0-000073. We have

\m<f>\ < (500)(0-000073) = 0-0365.

From the first few digits of the computed values of /3 and /?' we find that

16410 = 0-445..., 1641/3' = 0-402... (mod 1).

Hence (22) implies that

(1641)(0-07)(13-9)~m > 0-402-0-0365 > 0-36.

This gives (13-9)m < 330, which contradicts the supposition that m ^ 3.

5. We add a remark on the situation that would arise if the condition
(16) of the lemma were not satisfied, that is, if

Assuming that m satisfies (17), we could deduce from (18) that

\mp-nq+j\ < 2K-
l
+K^+3K~

1
 < 1,

where j denotes the integer nearest to qfi. Hence mp—nq-\-j = 0, whence

mp = —j (mod*?).

Although we can no longer conclude that there is no value for m in

t Alternatively we could quote Professor van Lint's result, mentioned in § 1,
which amply suffices to exclude the range (21).
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136 A. BAKER AND H. DAVENPORT

the range (17), we can say that there is at most one value to the modulus q,
and this value is determined by the last congruence.

We know that q < KM. If q > M there is at most one possible value
for m in the range (17), and this value can be determined. Briefly, we
may say that the present method fails only if ||ĝ S|| is exceptionally small
and also q is exceptionally small relative to its upper bound.

APPENDIX. THE VALUES OF 6, q, fi, $'.

6 = 0-74710 53797 84665 20012 01543 70987 43429 80788 38030 33805 98797 18301

36215 93101 65894 47558 71410 09083 24719 77026 94022 04272 36844 47074

12471 86614 61948 57047 19002 59494 92414 81632 70994 94874 69347 92496

91746 24447 67322 96759 75122 37578 13578 73124 15223 97375 42550 86341

28408 25852 32591 47071 00203 68677 30525 49839 41970 29261 92204 22891

43800 20286 28173 00021 25091 33330 75577 40328 56109 12631 96764 70569

72451 16785 94198 27261 53378 94148 84993 47452 47667 23032 11653 10130

86010 46320 29261 53811 64490 95474 32247 03604 38397 56356 47375 70168

28514 93764 33915 54651 84476 50746 31255 47734 79366 84695 75323 73773

98596 90872 05357 48632 71576 73346 15432 39157 21023 12872 93047 94800

33410 93254 62223 30771 97782 12679 72909 42929 67622 08492 21581 32178

26581 12367 25841 21769 17572 61976 36624 98418 60008 85792 47238 32628

32222 89486 91846 90299 07988 05903 31092 48415 65542 28419 93613 77973

67235 04025 57642 33030 84735 93069 68760 55579 10259 95202 20134 85601

51088 89303 73392 63441 63718 21337 47465 42915 64887 15496 76429 45982

14245 68497 89212 01339 47968 11799 75610 73086 64334 38232 94611 59189

14362 68415 65033 69402 08626 09575 88446 47642 92194 37848 30748 31024

40658 02911 72935 86428 ...

q = 74766 56458 85928 21002 92900 19462 74193 99932 88435 51834 20544 67033

92527 99010 36030 14382 83128 15409 94079 49641 75823 72448 20294 43561

15091 97552 65496 09837 65725 70805 71781 03765 90201 82968 04828 89690

91216 09036 42656 74598 43126 05161 50601 13889 48311 34448 43630 77762

01995 69613 73885 70640 20065 08420 17463 43949 32642 08937 08733 92823

67336 28270 20008 54767 81468 64873 46464 28193 39455 78382 27505 86507

22688 57730 19978 42656 32569 44952 91836 82629 52538 66886 97685 22768

40839 96403 83429 92464 53386 46774 48258 60409 41197 29139 39485 18564

04207 26381 80339 63053 74225 67257 33136 04814

P = 008680 37805 12726 74666 69179 85488 62043 09400 27662 31574 12877 44764

42664 28757 89578 98145 21965 19697 05574 28783 21749 69001 82663 24834

80663 05244 98911 19398 56491 59574 01089 34897 96813 76064 05999 88171

95279 65147 39498 28092 74652 90349 62678 25701 15528 75403 74101 0304O

87605 54397 75699 60798 74511 12895 88873 67037 42711 63728 86192 87848

27564 19617 43926 14760 27387 41800 50878 86533 96430 95496 14099 31433

84419 17195 70143 71770 27723 87850 35938 79210 52022 24095 07526 40991

11866 20763 45290 13873 99973 88701 25650 86849 14626 33878 78815 95526

86078 33335 21371 61124 43499 21963 23097 54263 11308 07760 67047 34288

66526 08151 32771 13909 99186 93785 64542 32504 65508 56795 29420 92260
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ON THE EQUATIONS 3s»-2 = y» AND 8x ' -7 = zl 137

/3' = 0-50603 46008 68222 91804 14949 94047 61694 65628 61040 77955 89969 04661

15752 89767 64976 12579 10005 81725 98914 50295 80769 65476 17076 86182

64440 51854 36894 64016 85056 73685 91186 49665 28670 81998 20342 04331

79306 55575 31729 03499 56731 43626 36835 59411 11827 79697 77938 00624

88310 88665 22832 69977 09507 81708 41787 29625 06854 49359 59620 26853

77980 95960 87174 07966 08986 40846 21565 24301 23635 18841 20171 12637

74479 34127 22890 92792 34774 67846 08610 33345 64568 42402 89743 35718

12468 39950 19777 79282 86894 54616 98550 00504 56067 19130 72716 44096

07161 61424 88110 40061 26748 54614 33862 62064 40038 55624 13853 14742

97572 37308 03106 56198 80632 74986 10038 31627 21012 75755 46135 69439

Trinity College

Cambridge
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