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Introduction. The theory of shallow shells in its original form was worked out

by Donnell [1], Musthari [2], Marguerre [3] and Vlasov [4], Due to their simple con-

struction, their equations are useful for numerical calculations of definite technical

problems. Their further virtue is that they become the equations of plates when the

curvature of the shell decreases to zero, but the results obtained by means of this theory

are accurate enough only for the case of shallow shells. More exact equations can be

obtained by the introduction of certain small improvements [5]. The difference in the

derivation of the Donnell-Vlasov equations and the new ones is the following, among

others. In deriving the Donnell-Vlasov equations small terms containing principal and

Gaussian curvatures as factors have been neglected. In developing the new equations

we need neglect only some small terms containing the derivatives of the curvatures. The

improved equations are already quite satisfactory for technical purposes. The accuracy

for a shell of positive and slowly varying curvature is of the order of 1 to 2 per cent.

The purpose of the present paper is to introduce into the above equations the effect of

transverse shear deformation and the effect of transverse normal stresses. In this way

we obtain improved simple equations allowing a somewhat more exact analysis of the

behavior of shells under concentrated loads, for example. Papers in which the effects

of both transverse normal stress and shear deformation have been accounted for include

those by Hildebrand, Iieissner and Thomas [6], Green and Zerna [7] and Reissner [8], [9].

Equations of the linear theory of shallow shells which include the effect of transverse

shear deformation have been obtained by Naghdi [10]. A second work by Naghdi [11]

is concerned with the formulation of stress-strain relations and appropriate boundary

conditions in the theory of small deformations of thin shells. Wilkinson and Kalnins

considered in [12] and [13] the case of a spherical shell loaded by a normal concentrated

dynamic force while taking into account the effect of transverse shear deformations.

Improved equations for the spherical shell were obtained in [12],

In what follows we develop the equations of the theory of shells of slowly varying

curvature, taking into account the effect of transverse shear deformation and transverse

normal stress.

1. Geometry and deformation of the shell. Let us consider an isotropic shell of

constant thickness and apply a system of orthogonal curvilinear coordinates (aj , a2)

whose directions follow the directions of the principal curvatures of the shell surface.
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Let us assume the third coordinate a3 = z to be a straight line perpendicular to the

middle surface. In this system of coordinates Lame's coefficients are

tf, = Ax{ 1 + a3/R,), i = 1, 2 H3 = 1, (1)

where At = A,(a.) are the coefficients of the first quadratic form of the middle surface:

ds2 = A J dai + A 2 dal . (2)

Between the parameters A{ and the radii of curvature R, the Codazzi-Gauss conditions

hold:

RiR2

(A,)' = Ai (Aj\° = AX (Ai V
VflJ ' \Aj ^ \aJ

(k - k)a° = (i" w)Ai ~ A'ik)'
(3)

where ( )' = d/dalt ( )° = d/da2.

Let us now consider the deformation of the shell. The displacements of an arbitrary

point M may be defined by three components ux , u2 , u3 . The positive senses of the

displacements u follow the directions of the coordinates. The deformation of the shell

near the point M is characterized by six components e,,- , i = 1, 2, 3, j = 1, 2, 3 repre-

senting the strains. Between the displacements w, and the strains e,-,- exist six equations:

u[ H°u2 , J_ dH_i _ Hi (uj\° . H2 (u2\ _ dus

Hl + H,H2 + Hr dz Us ' 612 ~ H2 \hJ + H~ \h2) ' " ' ' 633 " dz

(4)

Let us assume that Ui , u2 , u3 may be expressed by the formulae

Ui = (1 + z/Ri)u + |Si z, u2 = (1 + z/R2)v + f32z, u3 = w, (5)

where u(a,), v(a.) are the displacements of the middle surface and S, , B2 are the rotation

angles of the lateral sides of the shell element during deformation. The strains eit for i,

j = 1, 2 may also be written in the following way:

e,, = «ii + ZKn ■ (6)

Introducing the displacements from Eqs. (5) into Eqs. (4), we obtain

u' A°v w

611 ~ Ai a7a2 ft,

u' A °v w Al (u\° A2 ( v V

- + — + ^ = tA~aj +t1U/'"'' (7)
and

K i A°P* _ ™ i JL (J_V i JL (_L
A1 AxA2 R\ ^ At \Rj ^ A2 \R,

1= g Ai ft ° ,
lA2 \AJ + A, \A:

Aa / u A2 I v

A2 \aJ ~ A, U2

(8)

f- 1 - - -
2 \Rj R2/

2. Stresses and internal forces. The internal forces and moments are the resultants

of stresses in the sections of the shell element. For an isotropic material, which is assumed

in what follows, we have

E
o-n i t [®11 ^22] "t" ■< <^33 ) T12 (?®12 " ' ' • (9)

1 — v 1 — V
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We assume that the distribution of the shear stresses ri3 and r23 is of the form

_ 3 Q
Ti3 2 hf[l "(!)*](1+ 0' <I0)

which fulfills the conditions r13 = r23 = 0 for z = ±h/2. From analogy to beams the

stress o-33 is approximated by the equation

(ID

When z = +h/2, <t3 — Z and when z = —h/2, a3 = 0.

The stress resultants are obtained by integration of stresses across the thickness.

We have
1 r* + h/ 2 -t s* + h/2

Nit = ~T / a<<Hj dz, Na = ~r / r,,//, dz
-ft] J-h/2 ^ i J-h/2

1 p + h/2 i n + h/ 2

Ma = -j- / <r,<HjZ dz, Ma = -r- / tuH,z dz (12)
i J-h/2 Si i J-h/2

^ p + h/2

Qii = ~T~ / TizH, dz.
A-i J-h/2

Substituting from Eqs. (9) and using Eqs. (4) and (5), we find, on integration,

relations between the internal forces and the moments and the displacements which

have a rather complex form. Neglecting the terms z/Rj., z/R2 as very small in comparison

with unity, we obtain simplified relations. Let us adopt them in the form proposed by

Novoshilov [17]:

Nu = V—2 (eu + M„) + \ Zh
1 — v Z Y — v

M u = D(ku + VKjj) + J _ vYqZ> Mil = (1 ~~ v)Dku

N — ^ I 1 ~ v T) r\ Eh3
" ~ 2(1 + v) e" + R, " ' 12(1 - /)'

The above relations differ from the relations used in the Donnell-Vlasov theory only

by the terms (1 — v) Dku/R, in the expressions for Nu . However, these relations enable

us to satisfy identically the sixth equation of equilibrium (14) which is impossible

assuming N12 = N2l ■ Moreover, Eqs. (13) have a simple form and are analogous to

the corresponding relations in the theory of plates.

Equilibrium of a shell element bounded by the lines = const., a2 = const, requires

the following equations (see Fig. 1):

(A2NU)' - N22A'2 + {A,N2l)° + N12A° + = 0,

~ If + a!h + (^1<2»)°] + z = o,
(14)

(•4,A/2,)° + M12A1 + (A2Mu)' - M22A'2 - AxA2Qn = 0,

N l2 — N 2i + M vi/Ri — M2JR2 = 0.
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-XG?

Fia. 1.

3. Effect of transverse shear deformation. In order to find the relations for the

determination of the angles /?i and /J2 we assume that the displacements u, v, w of the

middle surface are identical to certain average displacements taken over the thickness

of the shell. Reissner made use of Castigliano's principle of least work to introduce the

conditions of compatibility and to find additional equations enabling the determination

of /3i and /?2 . We define these quantities by equating the work of the resultant couples

on the average rotations and the work of the resultant forces on the average displace-

ments u, v, w to the work of the corresponding stresses on the actual displacements Ui,

u2 , u3 in the same section. I.e., we put

^ Ih/2 <IllUlH2 dz = NllU + 181 + if") '

-j- j rl2uiH2 dz = Nl2u + + Jr) , (15)

A

h/2

j /* + h/2

7- / t13u3H2 dz = Qnw,
*2 J-h/2

Introducing ux , u2 , u3 and stress resultants into the above equations, we find that all

except the last two are fulfilled identically. Substituting r,3 and r23 from Eqs. (10) in

conditions (15) we obtain the average magnitude of the deflection of the shell:

w
3_ f+h/2 f _ (
2h J-h/2 MsL v

dz. (16)

Introducing Eqs. (5) in the last two Eqs. (4) and observing Eq. (9), we find on differentia-

tion

*-?(<+!)-it w
Now substituting the shear stresses t13 , r23 from Eqs. (10) in the above equations,

multiplying both sides of Eqs. (17) by (3/2)[l — (2z/h)2](dz/h) and integrating between

the limits z = ±h/z, we obtain

dw /6 27 h2 \ Qu
p* Aidcii \5 140 RJtjJ hG K J
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Since h2/RiRj « 1 it may be neglected in (18). Then the above expressions become

identical with those given for plates by Reissner.

4. Compatibility equations. By using Eqs. (7) and (8) and eliminating the dis-

placements u, v, w, the following compatibility equations between the strains <j# and

curvatures kh may be deduced:

A2K22 "l" A2(k22 *ll) -4lK°2 2AiK12

+ A°e 12 + p- [A^ + A°e12 — A2t'22 — A'2{t22 — eu)]
il2

-1 [i (%)'+-14t (%)"+£ (%)']} (i9)
with a second equation following by a change of indexes and a third equation of the form

*11 j *22 | 1

R2 R\ A^A2

* / O. Alt _ N _ 1 o Ai T
«22 T \^22 ill) 2 €l2 S12J

, [Ai o , Ai ( \ 1 , ii 1°\
+ U,611 + a2 (eu f22) 2612 a, ei2J J

12(1 + y) 1
5 Eh A1 .4 2 _Cl^2 Ql1) + (i!iQ22) ]' (20)

5. Reduction. Now twelve unknown quantities, namely Mn, M22, M12 = M2i,

Q11 , Q22 , Nn , N22, Ni2 , N-2i , w, 0! , (32, are joined by two equations (18), six equations

of equilibrium (14) and finally by three equations of compatibility. In order to transform

this set into a form convenient for analysis we introduce a stress function <J>. If the

forces Nu , N22 , Arl2 , N21 are expressed by means of the equations

m _ 1 (*° V A&L * 1 f n a 1 1 ~ v J J!!L\
_ _ Nn A2 uj A,A2 R,R2 R, J Qn 1 1 R, V22 RJtJ

Ni2 = s + Dki2 ' Nii = s + l~rf Dki2' (21)

where

o _ _J_ L,o _ Ak£ _ AW)s A,A2 V A2 A, ) '

the first two and the last of Eqs. (14) are identically satisfied. On substitution into the

first two equations of equilibrium (14) we have

(.A2Nny - N22A'2 + (AM0 + n12a° + ^ Qn

- - AU+k)' / Q"A'd-+(1-')*©' ■ (e)1- (22)
We see from the above equation that on substitution of Eqs. (21) into the first of Eqs.

(14) all the terms containing first-, second- and third-order derivatives of <t> cancel.
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There remains only the term containing the function <j> multiplied by the first-order

derivative of the Gauss curvature, and minor terms resulting from the effect of the shear

and tangential forces, also multiplied by the derivatives of the radii of curvature. Taking

into consideration the slow variation of the curvatures, we find that these terms are

insignificant and can be neglected. For constant radii Ri , R2 these terms vanish and the

stress function determined by Eqs. (21) exactly satisfies Eqs. (14a, b).

Expressing in Eq. (14c) the forces Nn , N22, N12, N2l by means of Eqs. (21) we obtain

K4.Q..)' + (AtQ22)°] = -Z - A,<i>

— ̂ 2 (/ Qi 1 ̂41 rfa, — (1 — v)Dk11^ — ̂ 2 (f Q22A2 da2 — (1 — v)Dk2^J , (23)

where the differential operator Ak<t> has the following form:

$') + (ia) ]+ nk 0;+ w)*- (24)
Now we shall transform the two equilibrium equations (14d) and (14e), which can be

written in a different form. If the bending moments and torques in (14d) are expressed

by the relations (13) we obtain the following equation for the force Qu :

Qn = + «22)' ~ A&i - )° - A?Klt] + ^yzrv^- (25)

The expressions in (25) contained in square brackets can be simplified by means of the

first two identities (19). Remembering that for u = v = 0, en = w/R1 , «22 = w/R2 ,

e,2 = 0, and making use of Eq. (8) and the Codacci-Gauss conditions (3), we obtain the

following equation:

[(A2K22y — /l2Kn — (^4]K12)° — A ° k 12]

A k<t> =
A,A 2

A,A

W' + + (#)'Qn + /V [^0« - (A,<?„)']
Afi,R2 ' 5 EhA,A2\ \ A2 } \AJ A,A2

We obtain the second equation by a simple change of indexes and derivatives. On the

basis of Eqs. (8) and (18),

«U + *22 = -Aw- Q2 + [(A,QnY + (A^r)

(27)

Aw = ^ +
A,w'

A\A2

where A is the Laplacian operator. The terms in Eqs. (8) containing the derivatives of the

radii of curvatures, such as u/A^l/Ri)', are here neglected.

Through using the equation of equilibrium (23) we have

/ 1 , 1 \ 12(1 + v) r_
K11 + k22 Aw \j^2 R2)^ Eh

+
5(1 - v) R* + Rl) AW (1 y)(fi| + fij)]'

(28)
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As the underlined term of the order h2/R2 is much smaller than the first term on the

right hand-side of Eq. (28) it will be neglected in what follows.

Now, introducing Eq. (26) and Eq. (28) into Eq. (25), we obtain the following equa-

tion for the shearing force Q,, :

Q„ - - jJji [(A°)2 + (AQ2]Q„

2Ai
.4,4

Z)'A,

Q22) (29)

(A + k + W + 4)W] ~ 10(1 - v)A, + (1 +
The second equation for Q22 is similar and may be obtained by an interchange of the

indexes 1 and 2. The three Eqs. (29a, b) and (22) are a set of differential equations

containing four unknown functions w, 4>, Qn and Q22 . In order to have a complete set

of equations one more equation is necessary. This additional relation between the same

functions may be obtained from the third condition of compatibility. Without describing

in detail these manipulations, since they are entirely analogous to those involved in the

deduction of Eqs. (22), (29), etc., the final result may be given in the form

k A{A + iTjt)4, + AtW ~ ih ~a7a2 {i; M~rt ~ it)K"+ (k ~ ~ta)kA

Aj
A,

1 v(2_—j<)\ 2 -, _ ^
ril I I r» ry JK22LVff, 7^2 / " 1 \ /e, r

D 11

Eh AxA2 Ul

1 i/(2 -
+ <30)

1 —

A2

1 + >-

Eh A iA,

2 — V c\ (l v{2 — !/)'.

-r7--rJk" + (» ^|K22
(l_ _ y(2 ~ v

\R2 R,

"2E AZ'

In deriving the above equation certain minor terms of the order h2/R2 resulting from

the effect of transverse shear deformation have been neglected. However, this equation

may be simplified still further. We may neglect the terms including the derivatives of

the Gauss curvature, since for shells for slowly varying curvatures they are of minor

importance. In order to simplify the above equation we may also neglect the terms

proportional to —D/Eh, which are of minor importance. Adding a very small term

<j>/EhR\R\ we obtain the following equation:

ii (A + w) (t, + AkW~~2EAZ■ (31)

The term —vAZ/2E on the right-hand side of Eq. (31) represents the effect of the stress

033 produced by the load perpendicular to the shell surface. Usually it is small and only

in the case of concentrated loads may it be larger. The set of four equations (22), (29a, b),

(31) includes four unknown functions w, <t>, Qn , Qn and enables one to solve the problem

of an arbitrary shell taking into account the effect of transverse shear and normal
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stresses. It is possible to eliminate the shear forces from Eq. (22). Then we obtain a

set of only two equations which includes only two unknown functions w and <t>. Substitut-

ing the shear forces Qn and Q22 from Eqs. (29a, b) into Eq. (22) we get, after some

manipulation:

D{A + A?+ hi) w ~ (* ~ 5(1 - v) A)At0 + (1 ~ ~ r)fe ~ it)

+ 0? + %)»] = To A]z■ (32)

In order to simplify the above equation we neglect the underlined term which is of minor

importance. Then we have the second simple equation relating the functions w and <f>

C(A + h + bh - (' - sorb) A)A-* - [' - a A]z- (33)
Neglecting in Eqs. (31) and (33) the terms which contain the radii Ri and R2 (except Ak)

and introducing the system of Cartesian coordinates, we get the equations for shallow

shells similar to those obtained earlier by Naghdi [10]. The difference between these

equations results only from having here taken into account the effect of the transverse

normal stress c33 . This effect is of the same order as the effect of the transverse shear

deformation.

The equations (29), (31), and (33) are together a twelve-order system. However,

this system should be of the tenth order since at every edge we have only five boundary

conditions. In case of Cartesian coordinates and shallow shells the further reduction may

easily be performed. When Ax — A2 = const., Eqs. (29) imply the second-order equation

-4,Qn - A2Ql2 = ^ A(^,Q,°1 - A2Q'22) (34)

p ^ = 0

where

* = A&1 - A2Q'22 .

Now we have a tenth-order system for the three dependent variables w, <f> and \f/. The

shear forces Qn and Q22 may be expressed as a combination of derivatives of these three:

Qn = ~D Tt (Au,)' ~ 10(1 - C(2 ~ v)z + 2Ai</>]' + To Al' (35)

= ~DJl (Au,)° _ 10(1 - v)A2 C(2 ~ + 2Al^° ~ 10

It is interesting to compare the above Eqs. (31) and (33) with those obtained by other

authors. Setting Rx = R2 = R we have the case of the spherical shell. If we neglect the

effect of transverse shear deformation Eqs. (31) and (33) are equivalent to the equations

for spherical shells obtained by Vlasov [4]. In the case of cylindrical shells, for which
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iii = oo and R2 = R, Eqs. (31) and (33) may be reduced to Morley's equation [14]

(see also [15]).
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