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Abstract 

We develop a general approach to study the equilibrium and form-finding of any general tensegrity systems with 

rigid bodies. The equilibrium equations are derived in an explicit form in terms of a nodal coordinate and 

orientation parameter as the minimal coordinate. The nodal vector consists of nodes (either free or pinned) in 

the pure bar-string tensegrity network and nodes on the rigid bodies (those connected to the pure bar-string 

tensegrity network). Based on the Lagrangian method, the nonlinear statics of the general tensegrity system in 

terms of the minimal coordinate is first given. Then, we linearize the statics equation and obtain its equivalent 

form, in terms of the force vector of the compressive and tensile members, for the analysis of structure 

equilibrium configurations and prestress modes. To study the system's stability and have a comprehensive insight 

into the materials and structure members, we present the tangent stiffness matrix as a combination of prestress, 

material, and geometric information of the structure. It is also shown that without rigid bodies, the governing 

equations of the general tensegrity system yields to the classical tensegrity structure (pure string-bar network). 

Form-finding of general tensegrity is implemented based on solving the nonlinear equilibrium equation, where 

the modification of tangent stiffness matrix and line search algorithm is used. Numerical examples are given to 

demonstrate the capability of our developed method in finding the feasible prestress modes, conducting form-

finding and prestress designs, and checking the structural robustness of any tensegrity systems with rigid bodies.  
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1 Introduction 

Tensegrity is a conjunction of two words (tension and integrity) which was first proposed by Buckminster Fuller 

[1] for the art form by Ioganson (1921) and Snelon (1948) [2]. In their work, they never assumed there were no 

rigid bodies in the tensegrity structures. And in fact, the tensegrity sculpture built by Snelson in 1948 is two X-

shape rigid bodies stabilized by several cables. However, it is probably because bars and strings are more 

efficient in taking compression, provide more accurate models (uncertainty is only along with the axially loaded 

members), and it is complicated to model the irregular shape of the rigid bodies, most of the literature focus on 

pure stable bar-strings networks.  

Indeed, after decades of study, the pure bar-string tensegrity structures have shown their many advantages in 

lightweight structure topology design [3-6], engineering structures [7,8,5], soft robotics [9,10], deployable 

structures [11-13], energy absorption [14-16], etc. But for many engineering structures, we must include the 

rigid bodies, i.e., the deck of the bridges, the roof of the shelters, the shell of cable domes, the D-section of the 

airfoils, and the shield of space structures. To deal with these rigid bodies in their tensegrity structure design, 

many researchers have proposed their compromised solutions to the rigid body tensegrities. For example, 

Carpentieri et al. [17] separated the minimal mass design of the tensegrity bridge structure and its deck. Laccone 

et al. [18] analyzed the cable-tensioned dome and its glass shell by the nonlinear finite element analysis software 

Straus7. Levin et al. [19] studied the rigid body spine mechanics based on the tensegrity-truss model. Chen and 

Jiang [20] used parallel mechanism theory to compute the stiffness of a fish, made of a set of rigid ribs stabilized 

by strings. Chen et al. [21] decoupled the force analysis of a tensegrity space habitat and its shield. However, 

none of these approaches started from the fundamental governing equations of the whole system and developed 

a general approach to the analysis of tensegrity systems with rigid bodies. It is also worth mentioning that few 

software packages have the compatibility of simulating tensegrity systems with rigid bodies. For example, Wang 

et al. [22] modeled tensegrity swimmer and rigid bodies in the MuJoCo simulator and studied the data-based 

control methods. Sun et al. [23] studied a tensegrity foot with a rigid board and universal joint in ADAMS. 

Pajunen et al. [16] implemented ABAQUS to analyze the 3D-printable tensegrity lander with rigid joints. 

However, these commercial packages are costly, require much experience, and the insight of the algorithm is 

not clear.  

In the past years, a few attempts have been made to study tensegrity with rigid body models analytically. For 

example, for the static analysis, Hangai and Wu [24] proposed kinematics and equilibrium equations to study 

the behaviors of a hybrid structure that consists of cables and rigid structures. Wang et al. [25] derived the statics 

equilibrium equation of general tensegrity and used the mixed-integer linear programming method for the 

topology design. Chen and Jiang [26] derived the total stiffness of a general tensegrity structure in an explicit 

form and developed a set of sufficient and necessary conditions to guarantee the stability of the tensegrity 

structures. For the dynamics analysis, Nagase and Skelton [27] used non-minimal coordinates to write the 
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dynamics equations of tensegrity by assuming the compression members are rigid bodies. Kan et al. [28,29] 

studied the nonlinear dynamics of clustered tensegrity with rigid bodies by using the configuration of the attached 

rigid bodies as the generalized coordinate. Li et al. [30] studied the kinodynamic planning of cable-driven 

tensegrity manipulators composed of clustered cables and rigid bodies. However, the equilibrium theory in most 

of the work is in a complicated form and limited to structures with small deformations. Moreover, there is an 

increasing interest in using tensegrity structures to build robotics due to the many advantages of tensegrity 

structure, i.e., mass saving, control energy efficiency, abundant equilibrium states, etc. In many of the tensegrity 

robot applications, rigid bodies cannot be avoided. The current equilibrium theories and form-finding methods 

of the tensegrity system with rigid bodies are still limited. It is critical to have an efficient form-finding approach 

to find the configurations of the whole system to enlarge the applications of tensegrity systems. To this end, we 

derived a general approach to the nonlinear equilibrium equations and proposed a corresponding form-finding 

method to the tensegrity system with rigid bodies. In this study, the tensegrity with pure axial form elements is 

referred to as the traditional tensegrity, while the tensegrity with rigid bodies is called the general tensegrity.  

The paper is structured as follows. Section 2 presents the tensegrity and rigid body notations. Section 3 derives 

the kinematics of the system. Section 4 gives the nonlinear and linearized statics equations. Section 5 shows the 

form-finding approach to the tensegrity systems with rigid bodies. Section 6 summarizes the conclusions.  

 

2 Notations of tensegrity systems with rigid bodies 

 

Figure 1   Diagram of tensegrity with rigid bodies, bar (𝑏) and string (𝑠) vectors are marked in black and red. 



 

4 

 

2.1 Nodal coordinates of the system and its components  

The tensegrity system with rigid bodies is composed of bars, strings, and rigid bodies, as shown in Figure 1. The 

rigid bodies in the tensegrity structures are connected by the strings and bars nodes on the rigid bodies. We name 

the nodes on the rigid body as rigid body nodes. The nodes only on the bars and strings are free tensegrity nodes, 

and the other nodes in the fixed point are the pinned tensegrity nodes. The position of all the nodes can be 

expressed in any frame, and we choose to label them in the Cartesian coordinates in an inertially fixed frame by 

a nodal vector. Assume there are 𝑛𝑛  number of nodes, the 𝑋, 𝑌, and 𝑍-coordinates of the 𝑖th node 𝒏𝑖 ∈ ℝ3 in 

the vector form is 𝒏𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]𝑇.  By stacking 𝒏𝑖 for 𝑖 = 1, 2,⋯ , 𝑛𝑛 together, we can get the nodal vector 

𝒏 ∈ ℝ3𝑛𝑛 for the whole structure:  

𝒏 = [𝒏1
𝑇 𝒏2

𝑇 ⋯ 𝒏𝑛𝑛

𝑇 ]
𝑇
, (1) 

and its equivalent matrix form[31] 𝑵 ∈ ℝ3×𝑛𝑛 is: 

𝑵 = [𝒏1 𝒏2 ⋯ 𝒏𝑛𝑛]. (2) 

Note that one can simply obtain the nodal coordinate vector 𝒏 by vectorizing the nodal coordinate matrix 𝑵: 

𝒏 = 𝑣𝑒𝑐(𝑵) = 𝑵(: ), (3) 

where 𝑣𝑒𝑐(𝑵) is an operator that stacks all the columns of matrix 𝑵 into one vector. Normally, the positions of 

some of the nodes in the structure are fixed/pinned in certain directions. Let there be 𝑛𝑎 degree of freedom of 

free tensegrity nodes, 𝑛𝑏 degree of freedom of pinned tensegrity nodes, and 𝑚 rigid bodies with a total number 

of 𝑛𝑞 degree of freedom of the rigid nodes. Suppose there are 𝑧𝑖 number of nodes in the 𝑖th rigid body. To deal 

with the constraints, we distinguish the free tensegrity nodes, pinned tensegrity nodes, and the jth node in the ith 

rigid body by introducing three kinds of vectors 𝒂 ∈ ℝ𝑛𝑎, 𝒃 ∈ ℝ𝑛𝑏, and 𝒒𝑖𝑗 ∈ ℝ𝑛𝑞:   

𝒂 = [𝑎1 𝑎2 ⋯ 𝑎𝑛𝑎]T, (4) 

𝒃 =  [𝑏1 𝑏2 ⋯ 𝑏𝑛𝑏]
T, (5) 

𝒒𝑖𝑗 = [𝑞𝑖𝑗𝑥 𝑞𝑖𝑗𝑦 𝑞𝑖𝑗𝑧]T, (𝑖 = 1, 2,⋯ ,𝑚; 𝑗 = 1,2,⋯ , 𝑧𝑖), (6) 

where the values of 𝑎𝛼 (𝛼 = 1, 2,⋯ , 𝑛𝑎) , 𝑏𝛽 (𝛽 = 1, 2,⋯ , 𝑛𝑏)  and 𝑞𝑖𝑗𝑥 , 𝑞𝑖𝑗𝑦 , 𝑞𝑖𝑗𝑧   (𝑖 = 1, 2,⋯ ,𝑚; 𝑗 =

1,2,⋯ , 𝑧𝑖) are the indices of the entries corresponding to the free tensegrity nodes, pinned tensegrity nodes, and 

the 𝑋, 𝑌, 𝑍 freedom of the jth node in the ith rigid body in the nodal vector 𝒏. We use vectors 𝒏𝑎, 𝒏𝑏, and 𝒏𝑞𝑖𝑗
 

to label the nodal coordinate of the free node, pinned node, and the jth node in the ith rigid body. And 𝑬𝑛𝑎 ∈

 ℝ3𝑛𝑛×𝑛𝑎, 𝑬𝑛𝑏 ∈  ℝ3𝑛𝑛×𝑛𝑏 , and 𝑬𝑛𝑞𝑖𝑗
∈  ℝ3𝑛𝑛×3 are the location matrices to extract vectors 𝒏𝑎, 𝒏𝑏, and 𝒏𝑞𝑖𝑗

 

from the vector 𝒏: 
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𝑬𝑛𝑎(: , 𝑘) =  𝑰3𝑛𝑛
(: , 𝑎𝑘), 𝑬𝑛𝑏(: , 𝑘) = 𝑰3𝑛𝑛

(: , 𝑏𝑘), 𝑬𝑛𝑞𝑖𝑗
= 𝑰3𝑛𝑛

(: , [𝑞𝑖𝑗𝑥 𝑞𝑖𝑗𝑦 𝑞𝑖𝑗𝑧]), (7) 

where 𝑰3𝑛𝑛
 is the identity matrix in 3𝑛𝑛 order. Thus, we have the following: 

𝒏𝒂 = 𝑬𝑛𝑎
𝑻 𝒏, 𝒏𝒃 = 𝑬𝑛𝑏

𝑇 𝒏,𝒏𝑞𝑖𝑗
= 𝑬𝑛𝑞𝑖𝑗

𝑇 𝒏. (8) 

The nodal coordinate of the whole structure is obtained by summing all the free tensegrity nodes, pinned 

tensegrity nodes, and rigid body nodes: 

𝒏 =  𝑬𝑛𝑎𝒏𝑎 + 𝑬𝑛𝑏𝒏𝑏 + ∑∑ 𝑬𝑛𝑞𝑖𝑗
𝒏𝑞𝑖𝑗

𝑧𝑖

𝑘=1

𝑚

𝑗=1

. (9) 

The 𝑖th (𝑖 = 1, 2,⋯ ,𝑚) rigid body nodal coordinate vector is obtained by stacking the nodal coordinate of the 

𝑧𝑖 rigid-body nodes: 

𝒏𝑞𝑖
= 

[
 
 
 
𝒏𝑞𝑖1

𝒏𝑞𝑖2

⋮
𝒏𝑞𝑖𝑧𝑖]

 
 
 
. (10) 

The location matrix corresponding to the 𝑖th (𝑖 = 1, 2,⋯ ,𝑚) rigid body nodes is: 

𝑬𝑛𝑞𝑖
= [𝑬𝑛𝑞𝑖1

𝑬𝑛𝑞𝑖2
⋯ 𝑬𝑛𝑞𝑖𝑧𝑖

]. (11) 

Then, the nodal coordinate vector of the 𝑖th (𝑖 = 1, 2,⋯ ,𝑚) rigid body can be calculated by: 

𝒏𝑞𝑖
= 𝑬𝑛𝑞𝑖

𝑇 𝒏, (12) 

2.1.1 Connectivity matrix 

A connectivity matrix provides the connection pattern of all the nodes in the structure.  Let 𝑪 ∈ ℝ𝑛𝑒×𝑛𝑛 be the 

connectivity matrix of the tensegrity systems with rigid bodies, where 𝑛𝑒 is the total number of axially loaded 

members (bars and strings). The 𝑖th (𝑖 = 1,2,⋯ , 𝑛𝑒) row of 𝑪, denoted as 𝑪𝑖 = [𝑪]
(𝑖,:)

∈ ℝ1×𝑛𝑛 , represents 

connectivity information of the 𝑖th element in the structure. Suppose the 𝑖th member is from the 𝑗th node to the 

𝑘th node. The 𝑟th (𝑖 = 1,2,⋯ , 𝑛𝑛) entry the 𝑖th row of 𝑪 satisfies: 

[𝑪]𝑖𝑟 = {
−1 , 𝑟 = 𝑗
1 , 𝑟 = 𝑘
0 , 𝑟 = 𝑒𝑙𝑠𝑒

. (13) 

2.1.2 The geometry of axial elements 

An axial element vector denotes the start and end nodes of an axial element (bar or string). For example, the 𝑖th 

axial element vector 𝒉𝑖 ∈ ℝ3×1 is: 
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𝒉𝑖 = 𝒏𝑘 − 𝒏𝑗 = 𝑪𝑖⨂𝑰3𝒏. (14) 

where the symbol ⨂ represents the Kronecker product. Stacking all the axial elements into a structure element 

matrix 𝑯 ∈ ℝ3×𝑛𝑒, we get:  

𝑯 = 𝑵𝑪𝑇. (15) 

The present length of the 𝑖th axial element is: 

𝑙𝑖 = ‖𝒉𝑖‖ = (𝒏𝑇(𝑪𝑖
𝑇𝑪𝑖) ⊗ 𝐈3𝒏)

1

2. (16) 

Rest length is the length of an axial element with no tension or compression. We use the subscript 0 to denote 

the rest length of an axial element, i.e., the rest length of the 𝑖th axial element is 𝒍0𝑖. The length and rest length 

vector of all the axial elements are: 

𝒍0 = [𝑙01    𝑙02     ⋯     𝑙0𝑛𝑒]
𝑇, (17) 

𝒍 = [𝑙1    𝑙2     ⋯     𝑙𝑛𝑒]
𝑇. (18) 

2.1.3 Stiffness of axial elements 

Let the cross-sectional area, secant modulus, and tangent modulus of the 𝑖 th element be 𝐴𝑖 , 𝐸𝑖 , and 𝐸𝑡𝑖 , 

respectively. Then, the cross-sectional area, secant modulus, and tangent modulus vector of the structure 

𝑨,𝑬, 𝑬𝑡 ∈ ℝ𝑛𝑒 can be written as: 

𝑨 = [𝐴1    𝐴2     ⋯     𝐴𝑛𝑒]
𝑇, (19) 

𝑬 = [𝐸1    𝐸2     ⋯     𝐸𝑛𝑒]
𝑇, (20) 

𝑬𝑡 = [𝐸𝑡1    𝐸𝑡2     ⋯     𝐸𝑡𝑛𝑒]
𝑇. (21) 

The internal force of the 𝑖th element is 𝑡𝑖 = 𝐴𝑖𝜎𝑖 = 𝐸𝑖𝐴𝑖(𝑙𝑖 − 𝑙0𝑖)/𝑙0𝑖, the internal force vector of the structure 

𝒕 ∈ ℝ𝑛𝑒 can be written as:  

𝒕 = [𝑡1    𝑡2     ⋯     𝑡𝑛𝑒]
𝑇 = �̂��̂��̂�0

−1(𝒍 − 𝒍0), (22) 

where �̂� is an operator that converts vector 𝑬 into a diagonal matrix. 

2.2 Notations of the rigid bodies 

2.2.1 Orientation matrix of rigid bodies 

Unlike the bars and strings in the rigid body tensegrity, one can use the nodal vector to describe the exact attitude 

of these axial elements. To describe the attitude of a rigid body, an orientation matrix must be included to show 

the transition process. There are many approaches to achieve this goal, i.e., Euler angle, Euler principal axis, and 
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quaternion. We chose the Euler angle approach because it is a minimal coordinate method to describe the attitude 

of rigid bodies. In this problem, we implemented a simple (1-2-3) orientation set, which means to rotate α, β, γ 

about the principal axis of 𝒃1, 𝒃2, 𝒃3 in sequence in the body-fixed frame. The attitude parameter 𝝋 is the vector 

composed of Euler angle:  

𝝋 = [

𝛼
𝛽
𝛾
]. (23) 

The attitude matrix is [32]:  

𝑹(𝛼, 𝛽, 𝛾) = 𝑹3(𝛾)𝑹2(𝛽)𝑹1(𝛼) =

 [

cos 𝛾 cos 𝛽 cos 𝛾 sin𝛽 sin 𝛼 + sin 𝛾 cos 𝛼 −cos𝛾 sin𝛽 cos𝛼 + sin 𝛾 sin𝛼
− sin 𝛾 cos 𝛽 − sin 𝛾 sin𝛽 sin 𝛼 + cos 𝛾 cos𝛼 sin 𝛾 sin 𝛽 cos𝛼 + cos 𝛾 sin𝛼

sin 𝛽 −cos𝛽 sin𝛼 cos𝛽 cos𝛼
]. 

(24) 

Even though the Euler angle has kinematic singularities for the value of 𝛽 = 0, this is only a problem in 

calculating the velocity of orientation parameters from angular velocities. For solving the static equilibrium and 

form-finding of general tensegrities, there is no such problem using the Euler angle as the orientation parameter. 

2.2.2 Mass center of rigid body 

Let the mass center of the 𝑖th rigid body be 𝒏𝑐𝑖 ∈ ℝ3×1. Normally, the position of the mass center can be given 

by measuring the mass distribution of the rigid body in an experiment. However, in the static analysis, the 

equilibrium of total force and moment is independent of the choice of the mass center. For simplicity, we can 

directly use the geometry center of the 𝑖th rigid body nodes as the mass center: 

𝒏𝑐𝑖
=

1

𝑧𝑖
𝑰1,𝑧𝑖

⨂𝑰3𝒏𝑞𝑖
, (25) 

where 𝑰1,𝑧𝑖
∈ ℝ1×𝑧𝑖 is an all-ones vector with 𝑧𝑖 columns, and 𝑧𝑖 is the number of rigid body nodes in the ith 

rigid body. Substitute Eq.(12) into Eq. (25), one can compute the mass center from the nodal coordinate vector 

of the structure: 

𝒏𝑐𝑖
= 𝑬𝑛𝑐𝑖

𝑇 𝒏, (26) 

where 𝑬𝑛𝑐𝑖
 is: 

𝑬𝑛𝑐𝑖
=

1

𝑧𝑖
𝑬𝑛𝑞𝑖

𝑰𝑧𝑖,1⨂𝑰3. (27) 

2.2.3 Nodal coordinate of rigid bodies 

If there is translation or rotation of the rigid bodies, the nodal coordinate of the 𝑗th node on the 𝑖th rigid body 

𝒏𝑞𝑖𝑗 is: 
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𝒏𝑞𝑖𝑗 = 𝒏𝑐𝑖 + 𝒓𝑖𝑗, (28) 

𝒓𝑖𝑗 = 𝑹𝑖
𝑇(𝒏𝑞𝑖𝑗0 − 𝒏𝑐𝑖0

) = (𝑬𝑛𝑐𝑖

𝑇 − 𝑬𝑛𝑞𝑖𝑗

𝑇 )𝒏, (29) 

where 𝒓𝑖𝑗 is the vector from the center of mass 𝒏𝑐𝑖 to the 𝑗th node in the 𝑖th rigid body,  𝒏𝑞𝑖𝑗0 and 𝒏𝑐𝑖0
 is the 

nodal coordinate vector of the 𝑗th node and the mass center of the 𝑖th rigid body in the body-fixed frame. 𝑹𝑖 is 

the attitude matrix of the 𝑖th rigid body.  

2.3 Minimal coordinate of the system 

The minimal coordinate 𝑼 ∈ ℝ𝑛𝑈 is used to represent the position of the free tensegrity nodes and the rigid 

bodies: 

U= 

[
 
 
 
 
𝒏𝑎

𝑼1

𝑼2

⋮
𝑼𝑚]

 
 
 
 

, (30) 

where 𝑼𝑖 is the minimal coordinate for the 𝑖th rigid body, including the position of the mass center 𝒏𝑐𝑖 ∈ ℝ3 and 

attitude parameter 𝝋𝑖 ∈ ℝ3: 

𝑼𝑖 = [
𝒏𝑐𝑖

𝝋𝑖
], (31) 

The location matrix is used to locate minimal coordinate of free tensegrity nodes and rigid bodies: 

                            𝑼 = [𝑬𝑈𝑎 [𝑬𝑈𝑐1
𝑬𝑈𝝋1] [𝑬𝑈𝑐2

𝑬𝑈𝝋2] ⋯ [𝑬𝑈𝑐𝑚
𝑬𝑈𝝋𝑚]]

[
 
 
 
 
 
 

𝒏𝑎

[
𝒏𝑐1

𝝋1
]

[
𝒏𝑐2

𝝋2
]

⋮

[
𝒏𝑐𝑚

𝝋𝑚
]]
 
 
 
 
 
 

. (32) 

The nodal coordinate vector of free nodes, mass center, Euler angle, and minimal coordinate of the 𝑖th rigid body 

is: 

𝒏𝑎 = 𝑬𝑈𝑎
𝑇 𝑼, 𝒏𝑐𝑖 = 𝑬𝑈𝑐𝑖

𝑇 𝑼,𝝋𝑖 = 𝑬𝑈𝝋𝑖

𝑇 𝑼,𝑼𝑖 = 𝑬𝑈𝑖

𝑇 𝑼. 
(33) 

𝑬𝑈𝑐
 and 𝑬𝑈𝜑

 is used to extract the mass center and Euler angle information of all rigid bodies: 

 𝑬𝑈𝑐 = [𝑬𝑈𝑐1 𝑬𝑈𝑐2 ⋯ 𝑬𝑈𝑐𝑚], 𝑬𝑈𝝋 = [𝑬𝑈𝝋1
𝑬𝑈𝝋2

⋯ 𝑬𝑈𝝋𝑚]. (34) 

𝑬𝑈𝑖
 is used to extract the minimal coordinate of the 𝑖th rigid body: 
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𝑬𝑈𝑖
= [𝑬𝑈𝑐𝑖

𝑬𝑈𝝋𝑖
]. (35) 

3 Kinematics of the rigid body 

3.1 Attitude kinematics 

The angular velocity vector of the 𝑖th rigid body in the inertial frame is [33]: 

𝝎𝑖 = [

𝜔1

𝜔2

𝜔3

] =  [𝑩𝑖]�̇�𝑖, (36) 

The 𝑩𝑖 matrix for the Euler angle (1-2-3) orientation set is:  

𝑩𝑖 = [

1 0 sin 𝛽
0 cos𝛼 −cos𝛽 sin 𝛼
0 sin𝛼 cos𝛼 cos𝛽

]. (37) 

3.2 Transformation matrix 

The velocity vector of the 𝑗th node on the 𝑖th rigid body is: 

�̇�𝑞𝑖𝑗 = �̇�𝑐𝑖 + 𝝎𝑖 × 𝒓𝑖𝑗 . (38) 

Substitute Eq.(36) into Eq. (38), we will have: 

d𝒏𝑞𝑖𝑗

d𝑡
=  

d𝒏𝑐𝑖

d𝑡
− 𝒓𝑖𝑗

×𝝎𝑖 

= 
d𝒏𝑐𝑖

d𝑡
− 𝒓𝑖𝑗

× 𝑩𝑖

d𝝋𝑖

d𝑡
.  

(39) 

where 𝒓𝑖𝑗
× is the anti-symmetric matrix of the vector 𝒓𝑖𝑗. Eliminate the time derivative part, and the above 

equation can be written as: 

d𝒏𝑞𝑖𝑗 = d𝒏𝑐𝑖 − 𝒓𝑖𝑗
×𝑩𝑖d𝝋𝑖 . (40) 

So, the partial derivative of  𝒏𝑞𝑖𝑗
 to 𝑼𝑖 is:  

�̅�𝑖𝑗 =
𝜕𝒏𝑞𝑖𝑗

𝜕𝑼𝑖
𝑇 = [𝑰3 −𝒓𝑖𝑗

×𝑩𝑖], (41) 

where 
𝜕𝒂

𝜕𝒃𝑇 and 
𝜕𝒃𝑇

𝜕𝒂
 represent the partial derivative of vector 𝒂 to vector 𝒃 in numerator layout, respectively.  The 

partial derivative of  𝒏𝑞𝑖𝑗
 to the minimal coordinate 𝑼 is: 

𝑮𝑖𝑗 =
𝜕𝒏𝑞𝑖𝑗

𝜕𝑼𝑇 = 
𝜕𝒏𝑞𝑖𝑗

𝜕𝑼𝑖
𝑇

𝜕𝑼𝑖

𝜕𝑼𝑇 = �̅�𝑖𝑗𝑬𝑈𝑖

𝑇 . (42) 



 

10 

 

The transformation matrix 𝑮 of the entire structure is: 

𝑮 =  
𝜕𝒏

𝜕𝑼𝑇 = 
𝜕(𝑬𝑛𝑎𝒏𝒂+∑ ∑ 𝑬𝑛𝑞𝑖𝑗

𝒏𝑞𝑖𝑗
𝑧𝑖
𝑗=1

𝑚
𝑖=1 )

𝜕𝑼T = 𝑬𝑛𝑎
𝑬𝑈𝑎

𝑇 + ∑ ∑ 𝑬𝑛𝑞𝑖𝑗
𝑮𝑖𝑗

𝑧𝑖
𝑗=1

𝑚
𝑖=1 , (43) 

which maps the difference of nodal coordinate 𝒏 to the difference of minimal coordinate 𝑼.  

4 Equilibrium equation 

4.1 The Lagrangian method  

The general form of the Lagrangian equation is: 

d

d𝑡

∂𝐿

∂�̇�
−

∂𝐿

∂𝑼
= 𝑸𝑛𝑝, 

(44) 

where 𝐿 = 𝑇 − 𝑉 is the Lagrangian function, 𝑇 and 𝑉 are the kinetic energy and potential energy of the system, 

𝑸𝑛𝑝 is the non-potential force vector of the general tensegrity structures, 𝑼 is the minimal coordinate of the 

system. For the statics problem, the kinetic energy 𝑇 is zero in this study, and we study the potential energy of 

the system. For statics problem, the Lagrangian method degenerates to: 

∂𝑉

∂𝑼
= 𝑸𝑛𝑝. 

(45) 

Note that Eq.(45) is consistent with the principle of stationary total potential energy and the principle of virtual 

work. However, using the Lagrangian method to derive the equilibrium equation will make it easy to extend to 

the future study of the dynamic problem. It is required in the Lagrangian method to use minimal coordinate as 

the variable, which is critical for the derivation. Note that if we use variables with overparameterization like the 

Euler parameter, modified Rodrigues parameters, etc., there will be an issue in violation of the constraints of the 

variables. 

4.2 Energy function 

The total potential energy 𝑉 of the tensegrity system with the rigid body is composed of strain potential energy 

𝑉𝑒 and gravitational potential energy 𝑉𝑔: 

𝑉 = 𝑉𝑒 + 𝑉𝑔. (46) 

4.2.1 Strain potential energy 

There is no deformation in a rigid body, so the strain potential energy for a rigid body is zero. The strain potential 

energy is only stored in the axial members: 
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𝑉𝑒 = ∑ ∫ 𝒕𝑖
𝑙𝑖
𝑙0𝑖

d𝑥
𝑛𝑒
𝑖=1 . (47) 

From the statics equation of traditional tensegrity [34], we can compute the partial derivative of 𝑉𝑒 to 𝑼, 
𝜕𝑉𝑒

𝜕𝒏
:  

𝜕𝑉𝑒
𝜕𝑼

= 
𝜕𝒏𝑇

𝜕𝑼

𝜕𝑉𝑒
𝜕𝒏

= 𝑮𝑻(𝑪𝑇 �̂�−1�̂�𝑪) ⊗ 𝑰3𝒏. (48) 

4.2.2 Gravitational potential energy 

The gravitational potential energy is relative to any member that has mass. In tensegrity with a rigid body, all 

axial members, point mass, and rigid body will contribute to gravitational potential energy: 

𝑉𝑔 = 𝑉𝑔𝑒 + 𝑉𝑔𝑝 + 𝑉𝑔𝑟 . (49) 

The gravitational potential energy corresponding to the axial elements 𝑉𝑔𝑒 is: 

𝑉𝑔𝑒 = ∑
𝑚𝑒𝑖

2
[𝑎𝑥 𝑎𝑦 𝑎𝑧]

𝑛𝑒

𝑖=1

[

𝑥𝑗
𝑖 + 𝑥𝑘

𝑖

𝑦𝑗
𝑖 + 𝑦𝑘

𝑖

𝑧𝑗
𝑖 + 𝑧𝑘

𝑖

] 

       = ∑
𝑚𝑒𝑖

2
[𝑎𝑥 𝑎𝑦 𝑎𝑧]

𝑛𝑒
𝑖=1

|𝑪𝑖| ⊗ 𝑰3𝒏 

= 
1

2
(𝒎𝑒

𝑇|𝑪|) ⊗ [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝒏. 

(50) 

where 𝑚𝑒𝑖 is the mass of the ith axial element, and 𝒎𝑒 is the mass vector of all axial elements. 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 are the 

gravitational acceleration in the 𝑋, 𝑌, and 𝑍-axis, respectively. The gravitational potential energy corresponding 

to point mass 𝑉𝑔𝑝 is:  

𝑉𝑔𝑝 = ∑𝑚𝑝𝑖 ⊗ [𝑎𝑥 𝑎𝑦 𝑎𝑧]

𝑛𝑛

𝑖=1

[

𝑥𝑖

𝑦𝑖

𝑧𝑖

] 

= 𝒎𝑝
𝑇 ⊗ [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝒏. 

(51) 

where 𝑚𝑝𝑖  is the mass of the ith node, and 𝒎𝑝 is the node mass vector. The gravitational potential energy 

corresponding to rigid body 𝑉𝑔𝑟 is: 

𝑉𝑔𝑟 = ∑𝑚𝑞𝑖 ⊗ [𝑎𝑥 𝑎𝑦 𝑎𝑧]

𝑛𝑞

𝑖=1

𝒏𝑐𝑖 

= 𝒎𝑞
𝑇 ⊗ [𝑎𝑥 𝑎𝑦 𝑎𝑧] [

𝒏𝑐1

⋮
𝒏𝑐𝑚

] 

(52) 
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= 𝒎𝑞
𝑇 ⊗ [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑬𝑈𝑐

𝑇 𝑼. 

where 𝑚𝑞𝑖 is the mass of the ith rigid body, and 𝒎𝑞 is the mass vector rigid bodies. The partial derivative of 𝑉𝑔 

to 𝒏 is:  

𝜕𝑉𝑔

𝜕𝑼
= 

𝜕𝒏𝑇

𝜕𝑼
(
𝜕𝑉𝑔𝑒

𝜕𝒏
+

𝜕𝑉𝑔𝑚

𝜕𝒏
) + 

𝜕𝑉𝑔𝑟

𝜕𝑼
 

= {𝑮𝑻 (
1

2
|𝑪|𝑇𝒎𝑒 + 𝒎𝑝) + 𝑬𝑈𝑐𝒎𝑞} ⊗ [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑇 = 𝒈, 

(53) 

where 𝒈 is the gravitational force vector. 

4.3 Nonlinear equilibrium equation 

The statics equation of tensegrity with the rigid body is calculated by the partial derivative of V with respect to 

𝑼: 

 
𝜕𝑉

𝜕𝑼
= 

𝜕𝑉𝑒

𝜕𝑼
+ 

𝜕𝑉𝑔

𝜕𝑼
= 𝑸𝑛𝑝. (54) 

Substitute the Eq.(48) and Eq.(53) into Eq.(54), we will have: 

𝑮𝑻(𝑪𝑇�̂�−1�̂�𝑪) ⊗ 𝑰3𝒏 = 𝑸𝑛𝑝 − 𝒈. (55) 

Eq.(55) is the static equilibrium equation of the general tensegrity system with rigid bodies. The second part 

(𝑪𝑇 �̂�−1�̂�𝑪) ⊗ 𝑰3𝒏  is the collection of inner force of members in nodes, which is identical to 𝑲𝒏 in traditional 

tensegrity structure [34]. Note that (𝑪𝑇 �̂�−1�̂�𝑪) ⊗ 𝑰3 is a nonlinear function of nodal coordinate, so Eq. (55) is 

nonlinear. The first part 𝑮𝑻 transforms the nodal force from the node space to body space, which is identity to 

the generalized force. Eq.(55) can be written into a simple form: 

 𝑲𝑟𝒏 = 𝑸𝑛𝑝 − 𝒈, (56) 

where 𝑲𝑟 is the stiffness matrix of general tensegrity with nodal coordinate vector 𝒏 as the variable: 

𝑲𝑟 = 𝑮𝑻(𝑪𝑇 �̂�−1�̂�𝑪) ⊗ 𝑰3. (57) 

The right part of  Eq. (54) is the generalized force 𝑸𝑛𝑝, which can be calculated by using the transformation 

matrix [32]: 

𝑸𝑛𝑝 =
𝜕𝒏𝑇

𝜕𝑼
𝒇 + ∑

𝜕𝒏𝑐𝑖
𝑇

𝜕𝑼
𝒇𝑐𝑖

𝑛𝑒

𝑖=1

+ ∑
𝜕𝝎𝑖

𝑇

𝜕�̇�
𝒎𝑐𝑖

𝑛𝑒

𝑖=1

 

                       = 𝑮𝑻𝒇 +   ∑ 𝑬𝑈𝑐𝑖𝒇𝑐𝑖
𝑛𝑒
𝑖=1 +  ∑ 𝑬𝑈𝝋𝑖𝑩𝑖

𝑇𝒎𝑐𝑖
𝑛𝑒
𝑖=1  

(58) 
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= 𝑮𝑻𝒇 +   𝑬𝑈𝑐
𝒇𝑐 +  𝑬𝑈𝝋

𝑩𝑇𝒎𝑐, 

where 𝒇 is the non-potential external force vector exerted on the tensegrity node. 𝒇𝑐𝑖 and 𝒎𝑐𝑖  is the total force 

and moment exerted on the 𝑖th rigid body. 𝒇𝑐 and 𝒎𝑐 are the collection of force and moment of all rigid bodies.  

 𝒇𝑐 = [
𝒇𝑐1

⋮
𝒇𝑐𝑚

] ,𝒎𝑐 = [

𝒎𝑐1

⋮
𝒎𝑐𝑚

]. (59) 

𝑩 matrix is defined as: 

 𝑩 = [
𝑩1

⋱
𝑩𝑚

]. (60) 

4.4 Linearized equilibrium equation 

4.4.1  Linearized equilibrium equation with minimal coordinate as the variable 

Using Taylor expansion of Eq. (56) about a configuration 𝒏𝑖 in the ith iteration step, we have the linearized 

equilibrium equation: 

𝑲𝑟|𝒏𝑖𝒏𝑖 + 𝑲𝑇𝑟(𝑼
𝑖+1 − 𝑼𝑖) = 𝑸𝑛𝑝 − 𝒈, (61) 

where 𝑲𝑇𝑟 is the tangent stiffness matrix of the structure, 𝑼𝑖 is the minimal coordinate corresponding to 𝒏𝑖. 

𝑲𝑟|𝒏𝑖 is the stiffness matrix in 𝒏𝑖 configuration. By solving Eq.(61), we can obtain a new configuration 𝑼𝑖+1 in 

the i+1 iteration step, which is closer to the equilibrium configuration. The out-of-balance forces of the system 

is defined as:  

𝑷𝑖 = 𝑸𝑛𝑝 − 𝒈 − 𝑲𝑟|𝒏𝑖𝒏𝑖 . (62) 

The difference of the minimal coordinate can be simply computed by: 

d𝑼𝑖 = 𝑲𝑇𝑟
−1𝑷𝑖. (63) 

The above three equations can be used in solving nonlinear equilibrium equations based on an iteration method.  

4.4.2 Linearized equilibrium equation in terms of the member force 

The Eq.(55) can be written linearly in terms of the member force 𝒕: 

𝑨𝑟𝒕 = 𝑸𝑛𝑝 − 𝒈, (64) 

where  𝑨𝑟 ∈ ℝ𝑛𝑈×𝑛𝑒 is the equilibrium matrix for tensegrity with rigid bodies: 

𝑨𝑟 = 𝑮𝑻𝑨2. (65) 
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where 𝑨2 is the equilibrium equation of traditional tensegrity [34]: 

 𝑨2 = 𝑪𝑇 ⊗ 𝑰3b. d. (𝑯). (66) 

where b. d. (𝑯) is the block diagonal matrix of 𝑯. Note that the equilibrium matrix for tensegrity with rigid 

bodies 𝑨𝑟 is identical to the 𝑪 matrix in Wang et al. [25]. The singular value decomposition of the equilibrium 

matrix 𝑨𝑟 reveals the self-stress mode and mechanism mode of the structure [35]: 

𝑨𝑟 = 𝑾𝚺𝑽𝑇 = [𝑾𝟏 𝑾𝟐] [
𝚺0 𝟎
𝟎 𝟎

] [
𝑽1

𝑇

𝑽2
𝑇], (67) 

where 𝑾 ∈ 𝑹𝑛𝑈×𝑛𝑈 , and 𝑽 ∈ 𝑹𝑛𝑒×𝑛𝑒  are orthogonal matrices. Let 𝑟 = rank(𝑨𝑟)  be the rank of 𝑨𝑟 . 𝑽1 ∈

𝑹𝑛𝑒×r, 𝑽2 ∈ 𝑹𝑛𝑒×(𝑛𝑒−r) is respectively the row space and null space of 𝑨𝑟, and 𝑾1 ∈ 𝑹𝑛𝑈×r, 𝑾2 ∈ 𝑹𝑛𝑈×(𝑛𝑈−r) 

is respectively the column space and left null space of 𝑨𝑟. 𝑨𝑟𝑽2 = 𝟎 and 𝑨𝑟
𝑇𝑾2 = 𝟎, 𝑽2 and 𝑾2 are the self-

stress mode and mechanism mode of the tensegrity structure, respectively. 

4.4.3 Compatibility equation 

The compatibility equation is the relation between d𝑼 and d𝒍 that guarantees the structural deformations are 

physically valid. The compatibility equation of the structure is: 

𝑩𝑟d𝑼 = d𝒍, (68) 

where 𝑩𝒓 ∈ ℝ𝑛𝑒×𝑛𝑈 is the compatibility matrix: 

𝑩𝑟 =
𝜕𝒍

𝜕𝑼𝑇 = 
𝜕𝒍

𝜕𝒏𝑇

𝜕𝒏

𝜕𝑼𝑇 = 𝑨2
𝑇𝑮. (69) 

It can be found that the compatibility matrix is the transpose of the equilibrium matrix: 

 𝑩𝑟 = 𝑨𝑟
𝑇. (70) 

This can also be proved by the principle of virtual work.  

4.5 Tangent stiffness matrix 

Refer to the derivation of tangent stiffness in Chen and Jiang [26], the tangent stiffness matrix of the general 

tensegrity with the rigid body is: 

𝑲𝑇𝑟 = 
𝜕(𝑩𝑟

𝑇𝑡)

𝜕𝑼𝑇 = 𝑩𝑟
𝑇 𝜕𝒕

𝜕𝑼𝑇 +
𝜕𝑩𝑟

𝑇

𝜕𝑼𝑇 𝒕 = 𝑲𝐸 + 𝑲𝐺. (71) 

The first part of Eq.(71) is the material stiffness 𝑲𝐸 caused by the difference of member force: 

𝑲𝐸 = 𝑩𝑟
𝑇 𝜕𝒕

𝜕𝒍𝑇
𝜕𝒍

𝜕𝑼𝑇 = 𝑩𝑟
𝑇�̂�𝑩𝑟 = 𝑨𝑟�̂�𝑨𝑟

𝑇, (72) 
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where 𝒌 = �̂��̂�𝒍0
−1 is the stiffness of the axial members. The second part of Eq.(71) is the geometry stiffness 𝑲𝐺 

caused by the difference of structural shape: 

𝑲𝐺 = 
𝜕𝑩𝑟

𝑇

𝜕𝑼𝑇 𝒕 = 𝛀𝑇𝒕 =  ∑ 𝛀𝑖
𝑇𝒕𝑖

𝑛𝑠
𝑖=1 . (73) 

where the Hessian matrix 𝛀 ∈ ℝ𝑛𝑒×𝑛𝑈×𝑛𝑈 is expressed as: 

𝛀 = 
𝜕𝑩𝑟

𝜕𝑼
= [𝛀1

𝑇 ⋯ 𝛀𝑖
𝑇 ⋯ 𝛀𝑛𝑒

𝑇 ]
𝑇
. (74) 

where 𝛀𝑖 = 
𝜕𝑩𝒓𝑖

𝜕𝑼
∈ ℝ𝑛𝑈×𝑛𝑈    is the 𝑖th member’s Hessian matrix. Note that the explicit formulation of 𝛀 is vital 

to calculate the geometry stiffness matrix. Fortunately, 𝛀𝑖 can be obtained by calculating and comparing two 

equivalent expressions of the ith cable’s acceleration 𝑙�̈�. The Eq. (68) is equivalent to: 

𝑙�̇� = 𝑩𝑟𝑖�̇�, (75) 

Using 
𝜕𝑩𝑟𝑖

𝜕𝑡
= 

𝜕𝑼𝑇

𝜕𝑡

𝜕𝑩𝑟𝑖

𝜕𝑼
= �̇�𝑇𝛀𝑖 , the 𝑖th cable’s acceleration 𝑙�̈� is: 

𝑙�̈� = 𝑩𝑟𝑖�̈� +
𝜕𝑩𝑟𝑖

𝜕𝑡
�̈� = 𝑩𝑟𝑖�̈� + �̇�𝑇𝛀𝑖�̇�. (76) 

From the derivation in Appendix, the ith cable’s acceleration 𝑙�̈� is expressed as: 

𝑙�̈� = 𝑩𝑟𝑖�̈� + �̇�𝑇(𝑮𝑇(𝑪𝑖
𝑇 ⊗ 𝑰3)

𝑷ℎ𝑛𝑖

𝑙𝑖
(𝑪𝑖 ⊗ 𝑰3)𝑮 + 𝑭𝑖)�̇�. (77) 

Comparing Eq. (76) with Eq. (77), the matrix 𝛀𝑖 is written as:  

𝛀𝑖 = 𝑮𝑇(𝑪𝑖
𝑇 ⊗ 𝑰3)

𝑷ℎ𝑛𝑖

𝑙𝑖
(𝑪𝑖 ⊗ 𝑰3)𝑮 + 𝑭𝑖. (78) 

where  𝑷ℎ𝑛𝑖
= 𝑰3 − 𝒉𝑛𝑖

𝒉𝑛𝑖

𝑇 ∈ ℝ3×3 denotes the projector to the plane with the normal vector 𝒉𝑛𝑖
, in which 

𝒉𝑛𝑖
=

𝒉𝑖

𝑙𝑖
 is the ith cable’s unit vector. From the derivation in Appendix, the matrix  𝑭𝑖 ∈ ℝ𝑛𝑈×𝑛𝑈 is written as:  

𝑭𝑖 = ∑ ∑ 𝑬𝑈𝑗 [
𝟎 𝟎
𝟎 𝑩𝑗

𝑇𝒛𝑖𝑗𝑘
× 𝒓𝑗𝑘

× 𝑩𝑗
]𝑬𝑈𝑗

𝑇𝑧𝑖
𝑘=1  𝑚

𝑗=1 . (79) 

in which 𝒛𝑖𝑗𝑘 ∈ ℝ3 is: 

𝒛𝑖𝑗𝑘 = (𝒉𝑛𝑖

𝑇 (𝑪𝑖
𝑇 ⊗ 𝑰3)𝑬𝑛𝑞𝑗𝑘

)
𝑇
. (80) 

Note that the tangent stiffness is a general form of classical tensegrity. That is, if there is no rigid body, the 

tangent stiffness will degenerate to a classical tensegrity [34].  Also, note that the above derivation is generally 

consistent with the formulation in Chen and Jiang [26]. The difference is that the proposed formulation in this 
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paper is capable of considering free and pinned tensegrity nodes in the general tensegrity system, and the use of 

location matrix makes the formulation in Eq.(79) be expressed in a more simple and neat form. 

5 Form-finding of tensegrity systems with rigid bodies 

In this section, we formulate the form-finding method for tensegrity systems with rigid bodies. Three numerical 

examples are carried out to illustrate the accuracy and efficiency of the proposed form-finding method. 

5.1 Form-finding method  

5.1.1 Form-finding procedure 

The form-finding method is basically solving the nonlinear equilibrium equation. However, the self-equilibrated 

tensegrities lacking proper constraints have several problems in solving its equilibrium equation [36].  Firstly, 

the rigid body mode will lead to a singular tangent stiffness matrix. Newton's method is not able to solve the 

equation with a singular Hessian matrix. Secondly, the tangent stiffness matrix may have a negative eigenvalue, 

and the result of solving the nonlinear equilibrium equation will converge to an unstable equilibrium 

configuration. To ensure the result is stable equilibrium, modification of the tangent stiffness matrix to positive 

definite is necessary. Thirdly, an appropriate optimization objective needs to be defined to guarantee that the 

result approaches the equilibrium configuration. The form-finding procedure consists of the following main steps, 

as shown in Figure 2. 

Inputs: 

(1) Specify the basic data of a tensegrity system with rigid bodies, including the minimal coordinate 𝑼0 , 

connectivity matrix 𝑪, axial stiffnesses vector 𝑬, cross-section area vector 𝑨, rest length vector 𝒍0, location 

matrix 𝑬na
, 𝑬𝑛𝑏

, 𝑬𝑛𝑞𝑖𝑗
, 𝑬Ua

, 𝑬𝑈𝑖
, 𝑬𝑈𝜑

, coefficient 𝑢 and ε. Compute the nodal coordinate 𝒏0, stiffness matrix 

𝑲𝑟|𝒏0, out-of-balance forces 𝑷0 in the initial configuration.  

Iteration: 

(2) Compute the tangent stiffness 𝑲𝑇𝑟  for the structure in the current configuration. Compute the minimal 

eigenvalue of the 𝑲𝑇𝑟 as λ. 

(3) Check whether the tangent stiffness matrix is positive definite or not.  Use the method in Section 5.1.2 to 

modify the stiffness matrix such that it is positive definite. 

(4) Solve the difference of minimal coordinate d𝑼𝑖 , employ the line search algorithm in Section 5.1.3 to 

calculate the updated minimal coordinate 𝑼𝑖. 

(5) Calculate the nodal coordinate 𝒏𝑖, stiffness matrix 𝑲𝑟|𝒏𝑖 and out-of-balance forces 𝑷𝑖. Check whether the 

current configuration is in equilibrium or not. If not, set 𝑖 ← 𝑖 + 1 and go to step (2). 
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(6) Terminate the iteration when an equilibrium configuration has been obtained. 

 

Figure 2 Flow chart of the form-finding algorithm. 

 

5.1.2 Modification of tangent stiffness matrix  

To guarantee the form-finding result converges to a stable equilibrium. The positive definiteness of the tangent 

stiffness matrix 𝑲𝑇𝑟  should be examined and modified. For the configuration 𝑼𝑖  at an iteration step, if the 

minimal eigenvalue of the tangent stiffness matrix λ is negative, a sufficiently large identity matrix (|λ| + 𝑢)𝑰 

will be added to 𝑲𝑇𝑟 to obtain the modified tangent stiffness matrix �̃�𝑇𝑟, where 𝑢 is a positive coefficient to 

guarantee the modified tangent stiffness matrix is not seriously ill. Otherwise, 𝑢𝑰 will be added to the tangent 

stiffness matrix:  

�̃�𝑇𝑟
= {

𝑲𝑇𝑟
+ (𝑢 + ‖𝜆‖)𝑰, 𝜆 < 0

𝑲𝑇𝑟
+ 𝑢𝑰, 𝜆 > 0 

. (81) 

From experience, in this paper, we set 𝑢 = 0.1. Using the modified tangent stiffness matrix, the increment of the 

generalized coordinate vector d𝑼 can be obtained from Eq. (63): 
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d𝑼𝑖 = �̃�𝑇𝑟
−1𝑷𝑖. (82) 

5.1.3 Line search algorithm 

To increase the convergence speed of solving the nonlinear equilibrium equation. We use a line search algorithm 

[37,36] in each iteration step to minimize the total potential energy of the system. In the ith step, we update the 

minimal coordinate vector 𝑼𝑖 from that in step 𝑖 − 1 by: 

𝑼𝑖 = 𝑼𝑖−1 + 𝑥d𝑼𝑖. (83) 

where the coefficient 𝑥 is determined by the following optimization problem of single-variable function on the 

fixed interval: 

min𝑉(𝑥) 

s. t. 0 < 𝑥 ≤ 1. 

(84) 

 Given 𝑼𝑖, the nodal coordinate vector 𝒏𝑖 can be calculated by  Eqs.(9), (24), and (28).  And the total potential 

energy can be calculated by Eqs.(46) to (52).  The line search algorithm can be simply implemented by the 

‘fminbnd’ function in MATLAB.  

5.2 Numerical examples 

In this section, four examples are studied to demonstrate the accuracy and efficiency of the proposed form-

finding method for tensegrity with rigid bodies. Different examples are carefully chosen to represent generalized 

tensegrity with one or multiple rigid bodies, with or without free nodes and pinned nodes. In these examples, the 

equilibrium configurations and prestress are tuned by varying the rest length of the strings in the structure. The 

tangent modulus and cross-sectional area of the strings in all the examples are set to be 7.6 × 1010Pa and 

1 × 10−4m2. 

5.2.1 Patio shade cover 

This example presents a structure composed of a rigid triangle piece, five strings, a free node, and four pinned 

nodes. The index of nodes and elements are marked in black numbers and blue numbers in circles, respectively, 

as shown in Figure 3. And Figure 3 is the initial configuration of the generalized tensegrity. To generate the 

prestress of the structure, the rest length of strings is set to be 0.3 times the present length in the initial 

configuration, which is 𝒍0 = 0.3𝒍. Figure 4 gives the equilibrium configuration of the form-finding result.   
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Figure 3. The initial configuration Figure 4. The equilibrium configuration 

The nodal coordinate matrix 𝑵 ∈ ℝ3×8 in the equilibrium configuration in the form of Eq. (3) is given as: 

𝑵 = [
0.8955 −0.8365 0.0310 2.0000 −2.0000 0.0094 1.0000 −1.0000 0.0300
0.3221 0.3204 −1.1787 1.0000 1.0000 −2.3218 −3.0000 −3.0000 −0.1787

0 0 0 0 0 0 0 0 0
]. (85) 

From Eq. (13), the connectivity matrix 𝑪 ∈ ℝ5×8 in initial configuration is: 

𝑪𝑠 =

[
 
 
 
 
−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 0 1 0]

 
 
 
 

. (86) 

From Eq.(15), one can get the structure element matrix 𝑯 ∈ ℝ3×5: 

𝑯 = [
1.1045 −1.1635 −0.0216 0.9906 −1.0094
0.6779 0.6796 −1.1430 −0.6782 −0.6782

0 0 0 0 0
]. (87) 

From Eq. (65), the equilibrium matrix for tensegrity with rigid bodies  𝑨𝑟 ∈ ℝ9×5 can be calculated: 

𝑨𝑟 = 

[
 
 
 
 
 
 
 
 

0 0 −0.0189 −0.8251 0.8300
0 0 −0.9998 0.5649 0.5577
0 0 0 0 1

−0.8523 0.8635 0.0189 0 0
−0.5231 −0.5044 0.9998 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−0.0259 0.0060 0.0199 0 0 ]
 
 
 
 
 
 
 
 

. (88) 

Singular value decomposition of equilibrium matrix reveals the rank of 𝑨𝑟 is 𝑟 = 4. That is to say, the structure 

has s = 5 − r = 1 self-stress mode and m = 9 −  𝑟 = 5 mechanism modes. The null space of the equilibrium 

matrix 𝑨𝑟 gives the self-stress mode 𝑽2 of the system: 
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𝑽2 = [−0.4678 −0.4514 −0.4725 −0.4166 −0.4250]𝑇. (89) 

The left null space of the equilibrium matrix 𝑨𝑟 gives the mechanism modes 𝑾2 of the system: 

𝑾2 = 

[
 
 
 
 
 
 
 
 

0 0 0 0 0
0 0 0 0 0

−0.6024 0 0 0 −0.7982
0.0147 0 0 0 −0.0111
0.0156 0 0 0 −0.0118

0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 1.0000 0

−0.7970 0 0 0 0.6021 ]
 
 
 
 
 
 
 
 

. (90) 

Each column of  𝑾2 represent a mechanism mode. The five mechanism mode shapes are plotted in Figure 5, 

where the dashed line and solid lines are the equilibrium configuration and the deformed shape of the mechanism, 

respectively. The 1st,  3rd, and  4th mechanism modes correspond to the rotation motion of the rigid body about 

the X, 𝑌, 𝑍-axis. The 2nd mechanism mode contains the translation motion of the rigid body in the 𝑍-axis, and 

the 5th mode contains the translation of free node in the 𝑍-axis, translation of mass center in 𝑋, 𝑌-axis, and 

rotation of rigid body by 𝑍-axis.  

 

Figure 5 The five mechanism modes of the structure.  

The mechanism mode is the null space of the material stiffness matrix which means there is no elongation of the 

axial member in the mechanism mode. For tensegrity systems, the mechanism mode can be stiffened by prestress, 

and the stability of the system can be checked by the product force [38,39] or by the positive-definite of tangent 

stiffness matrix [25,40]. The eigenvalue of the tangent stiffness matrix 𝑲𝑇𝑅 is plotted in Figure 6, we can see 

that all the eigenvalues of the tangent stiffness matrix are positive, which means the mechanism mode is stiffened 

by prestress.  
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Figure 6 Eigenvalue of the tangent stiffness matrix.  

The deformed shape corresponding to the first four eigenvalues of the tangent stiffness matrix is plotted in Figure 

7, where the dotted line is the equilibrium configuration, and the solid line is the deformed shape. As we can see, 

the 1st and 4th mode shapes contain out-of-plane deformation, while the 2nd and 3rd mode shapes contain pure 

planer deformation. 

 

Figure 7 Deformed shapes of the modes corresponding to the first four eigenvalues. 

5.2.2 Tensegrity table 

This example presents a self-equilibrated tensegrity table composed of two rigid bodies and four strings. Figure 

8 is the initial configuration. The rest length of strings is set to be 0.3 times of present length, which is 𝒍0 = 0.3𝒍, 

to generate prestress of the structure. Figure 8 shows the equilibrium configuration of the form-finding result.   
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Figure 8 The initial configuration of the tensegrity table. Figure 9 The equilibrium configuration of the tensegrity 

table. 

The prestress mode of the equilibrium matrix is: 

𝑽2 = [0.2887 0.2887 0.2887 0.8660]𝑇. (91) 

The first three values reveal that the forces of the three long strings are the same. And the fourth value indicates 

that the inner force of the short string is three times of the long string at an equilibrium state.  

 

Figure 10 Eigenvalues of the tangent stiffness matrix. 

Figure 10 is the eigenvalue of tangent stiffness. The first six eigenvalues correspond to the rigid body modes of 

the structure. Figure 11 shows the mode shape of the tensegrity table, where mode 6 is a pure rotational mode 

that has zero stiffness. The 7th mode is the most flexible one, which involves the relative rotation of two rigid 

bodies around the Z-axis.  
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Figure 11 The mode shape of the tangent stiffness matrix. 

5.2.3 Spherical tensegrity 

This example presents a spherical tensegrity composed of multiple rigid bodies in which all nodes lie on the 

vertices of a regular polyhedron. Truncated tensegrity is the simplest way to build spherical tensegrities, and 

there are a few studies about this topic [41,36,42,43]. In this example, we propose a novel method to build 

spherical tensegrity with rigid bodies and study the equilibrium condition of the structure. Here we use the 

tetrahedron as an example to illustrate the step-by-step procedure to generate a spherical tensegrity with a rigid 

body, and the equilibrium configuration as well as the member force of all the other regular polyhedrons 

tensegrity with rigid bodies.  

In Figure 12, four rigid bodies are initially placed in the plane of the tetrahedron, and rigid bodies nodes are 

placed in the vertices of the tetrahedron. Each rigid body is rotated by an angle φ about the normal line of the 

plane to generate a new shape with 12 nodes, as shown in Figure 13. 

 
 

Figure 12 A tetrahedron build with rigid bodies. Figure 13 Rotation of the rigid bodies. 

If we connect the nodes of the rigid bodies in the initial configuration, there will be 12 truncating-edge strings 

and 6 vertical strings, as in Figure 14. To prestress the spherical tensegrity, the rest length of the vertical strings 

is set to [0.1,0.8] times its present length while truncating-edge strings are identical to its present length. The 

form-finding result of a truncated tetrahedral generalized tensegrity is shown in Figure 15. The force density of 
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truncating-edge strings and vertical strings are respectively 𝑞𝑡 and 𝑞𝑣. We can observe that the force density of 

both truncating-edge strings and vertical strings increases as the rest length of vertical strings decreases.  

 

 

Figure 14 Initial configuration of a tetrahedron tensegrity 

with rigid bodies 

Figure 15. Form-finding solution of tetrahedron generalized 

tensegrity 

The form-finding result for other regular polyhedron shapes, including hexahedron, octahedral, dodecahedral, 

and icosahedral generalized tensegrities, are shown in Figure 16 to Figure 19. 

  

Figure 16 Form-finding solution of hexahedron generalized 

tensegrities. 

Figure 17 Form-finding solution of octahedral generalized 

tensegrities. 
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Figure 18 Form-finding solution of dodecahedral generalized 

tensegrities. 

Figure 19 Form-finding solution of icosahedral generalized 

tensegrities. 

5.2.4 Tensegrity spine  

As the last example, we study a tensegrity spine [44,45] composed of multiple rigid bodies. Figure 20 is the 

initial configuration of the tensegrity spine. The tensegrity spine is composed of 10 rigid body units, and the 10 

rigid bodies are connected by four groups of vertical side strings and nine groups of diagonal strings.  

 

Figure 20 The initial configuration of the tensegrity spine. 

The rest length of all the diagonal strings is set to 0.9 times the present length.  The rest length of the three groups 

of vertical side strings is set to 0.9 times the present length, while the rest length of the other group of vertical 

side strings is set to 0.6 times the present length.  The equilibrium configuration calculated by the form-finding 

method is shown in Figure 21.  
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The rest length of two groups of vertical side strings in the opposite positions is 0.9 times the length in the initial 

shape, while the rest length of the other two groups of vertical side strings varies from 0.5 to 1.1 times the length 

in the initial shape. The equilibrium configuration calculated by the form-finding method is shown in Figure 22. 

   

Figure 21 C-shape, achieved by changing the rest length 

of the strings on one side linearly. 

Figure 22 S-shape, achieved by changing the 

rest length of the strings on two sides 

sinusoidally but with different phases. 

6 Conclusions 

During the past few decades, pure bar-string network tensegrity has shown its great strength in designing efficient 

structures in many aspects. However, to embrace a much more general problem of system design using the 

tensegrity paradigm, rigid bodies must be included. Aiming at extending the ability to analyze rigid body 

tensegrities with analytical tools, this paper formulates the nonlinear equilibrium equation of the rigid body 

tensegrity in an explicit form in terms of the minimal coordinate. To get the insight of each structure member, 

we derived its equivalent form, which is a linear equation in terms of the force vector. Then, we also provide the 

compatibility equation and tangent stiffness matrix of the system for stability analysis. Finally, based on the 

equilibrium and stiffness equations, an efficient form-finding method of the rigid body tensegrity is given. In the 

proposed form-finding method, modification of tangent stiffness matrix and line search algorithm is used to 

guarantee the result to fast converge to a stable equilibrium configuration. It is also shown that without rigid 

bodies, the nonlinear equilibrium equations of the general tensegrity degenerate to the ones of the traditional 

tensegrity. Four numerical examples are given to prove the accuracy and efficiency of the developed principles. 

Results show that the developed principles are capable of dealing with form-finding from a non-equilibrium 

state, finding the prestress and mechanism modes, and conducting stiffness studies. 
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Appendix 

Derivation of the cable acceleration 

From Eq.(16), the 𝑖th cable’s velocity is: 

𝑙�̇� =
𝒉𝑖

𝑇

𝑙𝑖
�̇�𝑖 = 𝒉𝑛𝑖

𝑇 �̇�𝑖, (92) 

where 𝒉𝑛𝑖
=

𝒉𝑖

𝑙𝑖
  is the 𝑖th cable’s unit vector. The 𝑖th cable’s acceleration is: 

𝑙�̈� = �̇�𝑛𝑖

𝑇
�̇�𝑖 + 𝒉𝑛𝑖

𝑇 �̈�𝑖. (93) 

�̇�𝑛𝑖
 is the time derivative of the 𝑖th cable’s unit vector, which can be derived as: 

�̇�𝑛𝑖
=

�̇�𝑖𝑙𝑖−𝒉𝑛𝑖
𝑇 �̇�𝑖𝒉𝑖

𝑙𝑖
2 = 

(𝑰3−𝒉𝑛𝑖
𝑇 𝒉𝑛𝑖

)

𝑙𝑖
�̇�𝑖 =

𝑷ℎ𝑛𝑖

𝑙𝑖
�̇�𝑖, (94) 

where 𝑷ℎ𝑛𝑖
= 𝑰3 − 𝒉𝑛𝑖

𝒉𝑛𝑖

𝑇 ∈ ℝ3×3  is a symmetric matrix. Therefore, using Eqs.(43), (14), and (94), the first 

term of Eq.(93) can be rewritten as: 

�̇�𝑛𝑖

𝑇 �̇�𝑖 = �̇�𝑖
𝑇

𝑷ℎ𝑛𝑖
𝑇

𝑙𝑖
�̇�𝑖 = �̇�𝑇𝑮𝑇(𝑪𝑖

𝑇 ⊗ 𝑰3)
𝑷ℎ𝑛𝑖

𝑙𝑖
(𝑪𝑖

𝑇 ⊗ 𝑰3)𝑮�̇�. (95) 

The acceleration of the 𝑘th node on the 𝑗th rigid is: 

�̈�𝑞𝑗𝑘 = �̈�𝑐𝑗 + �̇�𝑗 × 𝒓𝑗𝑘 + 𝝎𝑗 × (𝝎𝑗 × 𝒓𝑗𝑘). (96) 

According to Eqs.(9) and (14), the second term of Eq.(93) is:  

𝒉𝑛𝑖

𝑇 �̈�𝑖 = 𝒉𝑛𝑖

𝑇 (𝑪𝑖
𝑇 ⊗ 𝑰3)�̈� = 𝒉𝑛𝑖

𝑇 (𝑪𝑖
𝑇 ⊗ 𝑰3)(𝑬𝑛𝑎

�̈�𝑎 + ∑ ∑ 𝑬𝑛𝑞𝑗𝑘
�̈�𝑞𝑗𝑘

𝑧𝑖
𝑘=1

𝑚
𝑗=1 ). (97) 

Substitute Eq.(96) into the second term of Eq.(97), we have: 

𝒉𝑛𝑖

𝑇 (𝑪𝑖
𝑇 ⊗ 𝑰3)�̈�𝑞𝑗𝑘 = 𝒛𝑖𝑗𝑘

𝑇 [𝑰3 (−𝒓𝑗𝑘)
×
] [

�̈�𝑐𝑗

�̇�𝑗
] + [�̇�𝑐𝑗

𝑇 �̇�𝑗] [
𝟎3×3 𝟎3×3

𝟎3×3 𝒛𝑖𝑗𝑘
× 𝒓𝑗𝑘

× ] [
�̇�𝑐𝑗

𝝎𝑗
] =

𝒛𝑖𝑗𝑘
𝑇 [𝑰3 (−𝒓𝑗𝑘)

×
𝑩𝑗]�̈�𝑗 + �̇�𝑗

𝑇
[
𝟎 𝟎
𝟎 𝑩𝑗

𝑇𝒛𝑖𝑗𝑘
× 𝒓𝑗𝑘

× 𝑩𝑗
] �̇�𝑗 = 𝒉𝑛𝑖

𝑇 (𝑪𝑖
𝑇 ⊗ 𝑰3)𝑬𝑛𝑞𝑗𝑘

�̅�𝑗𝑘𝑬𝑈𝑗
𝑇 �̈� +

�̇�
𝑇
𝑬𝑈𝑗 [

𝟎 𝟎

𝟎 𝑩𝑗
𝑇𝒛𝑖𝑗𝑘

× 𝒓𝑗𝑘
× 𝑩𝑗

]𝑬𝑈𝑗
𝑇 �̇�, 

(98) 
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where 𝒛𝑖𝑗𝑘 is: 

𝒛𝑖𝑗𝑘 = (𝒉𝑛𝑖

𝑇 (𝑪𝑖
𝑇 ⊗ 𝑰3)𝑬𝑛𝑞𝑗𝑘

)
𝑇
. (99) 

Substitute Eq.(98) into Eq.(97),  𝒉𝑛𝑖

𝑇 �̈�𝑖 can be rewritten explicitly with �̇� and �̈�: 

𝒉𝑛𝑖

𝑇 �̈�𝑖 = 𝒉𝑛𝑖

𝑇 (𝑪𝑖
𝑇 ⊗ 𝑰3) (𝑬𝑛𝑎

𝑬𝑈𝑎

𝑇 + ∑ ∑ 𝑬𝑛𝑞𝑗𝑘
�̅�𝑗𝑘𝑬𝑈𝑗

𝑇𝑧𝑖
𝑘=1

𝑚
𝑗=1 ) �̈� +

∑ ∑ �̇�𝑇𝑬𝑈𝑗 [
𝟎 𝟎

𝟎 𝑩𝑗
𝑇𝒛𝑖𝑗𝑘

× 𝒓𝑗𝑘
× 𝑩𝑗

]𝑬𝑈𝑗
𝑇 �̇�

𝑧𝑖
𝑘=1

𝑚
𝑗=1 = 𝑩𝑟𝑖

�̈� + �̇�𝑇𝑭𝑖�̇�, 

(100) 

where  𝑭𝑖 ∈ ℝ𝑛𝑈×𝑛𝑈 is: 

𝑭𝑖 = ∑ ∑ 𝑬𝑈𝑗 [
𝟎 𝟎
𝟎 𝑩𝑗

𝑇𝒛𝑖𝑗𝑘
× 𝒓𝑗𝑘

× 𝑩𝑗
]𝑬𝑈𝑗

𝑇𝑧𝑖
𝑘=1  𝑚

𝑗=1 , (101) 

With the Eqs.(94)-(101), Eq.(93) can be rewritten as: 

𝑙�̈� = 𝑩𝑟𝑖�̈� + �̇�𝑇(𝑮𝑇(𝑪𝑖
𝑇 ⊗ 𝑰3)

𝑷ℎ𝑛𝑖

𝑙𝑖
(𝑪𝑖 ⊗ 𝑰3)𝑮 + 𝑭𝑖)�̇�. (102) 

Compare Eq.(76) with Eq.(102), the matrix 𝛀𝑖 is: 

𝛀𝑖 = 𝑮𝑇(𝑪𝑖
𝑇 ⊗ 𝑰3)

𝑷ℎ𝑛𝑖

𝑙𝑖
(𝑪𝑖 ⊗ 𝑰3)𝑮 + 𝑭𝑖. (103) 
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