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Abstract 

In previous papers, it has been proved that the equilibrium distribution of homogeneous, 

nearest-neighboring random walks on a two-dimensional grid can be constructed expli

citly through a compensation procedure if and only if there are no transitions to the 

North, North-East and East for points in the interior. In the present paper the extension to 

N-dimensional random walks is investigated. It appears that for higher dimensions the 

same condition should be satisfied for each plane in the grid space. 

Since induction with respect to the dimension is applied. the step from dimension 2 

to dimension 3 is worked out in detail. For the proof of the if-part the condition is added 

that the random walk satisfies the so-called projection property on the boundaries. For 

3-dimensional random walks, the eqUilibrium distribution appears to be the sum of six 

alternating series of binary trees of product forms. These analytic results make it possible 

to develop efficient numerical procedures. Such procedures are sketched in the paper. As 

a numerical illustration, the procedures are applied to the model of a 2 x 3 switch. 
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1. Introduction 

Several queueing systems can be modeled as multi-dimensional random walks on an integer 

grid. Therefore, much effort has been put in investigating the equilibrium distribution of such 

random walks. For so-called product-Iorm networks 01 queues (see, for instance, Baskett et 

al. [10]), it has been proved that the equilibrium distribution can be written as a product of 

powers of fixed factors. The random walks representing product-form networks of queues 

may have an arbitrary dimension. There is one other class of random walks which is known 

to provide explicit forms for the equilibrium distributions. This class consists of two

dimensional random walks on the integer grid in the positive quadrant of the plane. Apart 

from the obvious ergodicity requirements, one has to require that from points in the interior 

no transitions can be made to the North, North-East and East in order to obtain explicit 

expressions in the form of infinite series of products of powers of fixed factors (in [8] this has 

been proved for a class of homogeneous, nearest-neighboring random walks). The terms of 

these series may be constructed consecutively with the help of a compensation procedure. 

It is quite natural, therefore, to investigate the possibilities of extending this compensa

tion procedure to random walks with more than two dimensions. This is the topic of the 

present paper. Actually, some random walks with more than two dimensions have been 

solved explicitly. However, in these cases, the state space was only infinite in one direction 

(compare [2] for a treatment of the Ek I Er I c queue, see also Bertsimas [11]; compare [9] for a 

treatment of the shortest queue system with N servers and threshold jockeying). 

The compensation procedure for two-dimensional random walks is a direct approach for 

solving the equilibrium equations without resorting to generating functions. As said before, 

the compensation approach only works in the two-dimensional case if there are no transitions 

to the North, North-East and East. 

There are two indirect approaches via generating functions which work in principle for 

more general two-dimensional random walks on the integer grid in the positive quadrant. 

The oldest of these approaches is the uniJormization technique, which was developed by 

Kingman [27] and Platto and McKean [22] for the symmetric shortest queue system with two 

servers. For the generating function 1 (x,y) for the eqUilibrium distribution of the lengths of 

the two queues, they derive a functional equation with as unknown functions 1 (x,y) on the 

one side and the generating functions 1 (x, 0) and 1 (OS) for the eqUilibrium probabilities on 

the axis on the other side of the equation. The functions 1 (x, 0) and 1 (O,y) and, hence, 

1 (x,y) are shown to be merom orphic and explicit formulae are derived for the poles and their 

residues after having introduced a uniformizing variable. By decomposing the merom orphic 

function 1 (x,y) into partial fractions it follows that the equilibrium probabilities may be writ

ten as infinite linear combinations of product forms. The same technique has been used by 

Hofri [23] for a multiprogramming queueing model (see also [7]) and by Jaffe [26] for the 

2 x 2 clocked buffered switch. All three cases for which the uniformization technique has 

been worked out, have the property that there are no transitions from interior points to the 

North, North-East and East. In all three cases the generating function is meromorphic and 

partial fraction decomposition of this function yields expressions for the equilibrium proba

bilities in the form of infinite linear combinations of product forms, although it appears to be 
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difficult to give explicit fonnulae for the coefficients of the linear combinations. 

The unifonnization technique has also been employed by Flatto and Hahn [21] to 

analyze the fork and join model with two servers. They show that the generating functions 

f (x, 0) and f (O,y) can be extended to multiple-valued algebraic functions. However, partial 

fraction decomposition is not available for multiple-valued functions, so that it is no longer 

possible to derive exact fonnulae for the equilibrium probabilities via this decomposition. 

Recently, Wright [34] analyzed a generalization of the fork and join model by using the uni

fonnization technique. In his analysis he encounters the same difficulties as Flatto and Hahn 

[21], i.e. multiple-valued functions. Until recently, there was no general result for two

dimensional random walks based on a derivation via the unifonnization technique, although it 

seems possible to derive a general result for cases which satisfy the extra condition. 

Nevertheless, the results of [27] and [22] for the symmetric shortest queue problem largely 

inspired the compensation procedure (compare [5]), which indeed gives explicit formulae for 

the coefficients of the linear combination for all cases satisfying the extra condition. 

Extension of the unifonnization technique to random walks with more than two dimen

sions has never succeeded. One reason for this failure might be that the extra condition has 

never appeared as essential in these investigations, whereas the shortest queue problem with 

N servers (N > 2) appears not to satisfy the extension of the extra condition to higher dimen

sions (cf. Section 4). Recently, inspired by [8], Cohen [16] has shown that a technique, which 

is actually a direct generalization of the unifonnization technique, may be used for the same 

class of problems as the class to which the compensation approach is applicable (which has to 

do with the resemblance between both methods described in [13]). Therefore we can con

clude that for a two-dimensional, irreducible, positive recurrent, homogeneous, nearest

neighboring random walk the compensation approach and the unifonnization technique are 

only usable, in the sense that they give explicit expressions for the equilibrium probabilities 

in the fonn of series of products of powers, if there are no transitions from interior points to 

the North, North-East and East. But, if this condition is satisfied, then the latter two methods 

are very suitable. Further, we believe that the compensation approach is preferable to the uni

fonnization technique, since it leads to more explicit results (explicit fonnulae for all equili

brium probabilities, for example) and it avoids complex analysis. 

A newer indirect method for solving the functional equation for the generating function 

of the eqUilibrium distribution, is the boundary value method. This method aims at reducing 

the functional equation to a standard problem of the theory of boundary value problems and 

integral equations for complex functions and has established itself as a powerful method for a 

large class of two-dimensional random walks in the first quadrant; see Cohen and Boxma 

[17]. Queueing problems solved by the boundary value method are the symmetric shortest 

queue model, the M/O!2 queue, a polling model with two queues and I-limited service (see 

[17] for all these examples), the coupled processor model (see [17], the work of FayolIe and 

Iasnogorodski [18,19,24] and also Konheim et al. [28]), the longest queue model with 

nonpreemptive priority (see Cohen [14]; the longest queue model with preemptive priority 

has been treated by Zheng and Zipkin [35], who solve the eqUilibrium equations iteratively, 

and by Flatto [20], who explicitly solves the functional equation for the generating function) 

and the 2 x 2 clocked buffered switch (see Jaffe [25]). For a review of the boundary value 

method for two-dimensional problems, see Cohen [15]. Some examples mentioned show 

already that the boundary value method is not restricted to random walks without transitions 
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from interior points to the North, North-East and East. It seems to be the only really general 

method for two-dimensional random walks on the integer grid in the positive quadrant. How

ever, the compensation method gives more complete results in the cases in which it works. 

About extension of the boundary value method to higher dimensions the review paper [15] 

states that it should be possible in principle, but the mathematical as well as the numerical 

analysis becomes very intricate. 

, 
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Figure 1. The transition rates for a two-dimensional, homogeneous, nearest-neighboring 

random walk on the lattice of the first quadrant; for all states the transitions to themselves 

have been left away. 

As said before, the present paper is devoted to investigating the possibilities of extend

ing the compensation method to higher dimensional random walks. Therefore. we now give a 

short characterization of the method. For simplicity, we only consider two-dimensional ran

dom walks with transitions to the nearest neighbors in the horizontal, vertical or diagonal 

sense as depicted in Figure 1. The first step is to characterize the product forms which satisfy 

the eqUilibrium equations in the interior points (m ~2, n ~2). Subsequently, it is tried to con

struct an infinite series of such solutions which also satisfies the boundary equations. The 

construction starts by taking a product form which satisfies the interior equations as well as 

the equations for one of the boundaries. It is then corrected by adding a product form which 

not only satisfies the interior equations, but also makes the sum satisfy the equations on the 

other boundary. Then a new correction term is added to make the solution again satisfy the 

equations on the first boundary, etc. Requirements for this method to work are: 

1. In each step it should be possible to find a new correction term which satisfies the needs; 

2. The resulting series should converge. 

In [8]. it appeared that these requirements are fulfilled if and only if the random walk is 

irreducible, positive recurrent and 

Ql,O = qO.t = qt,l = O. (1.1) 
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The latter equations say that from interior states there are no transitions to the North, East and 

North-East respectively. 

Condition (1.1) arises from convergence requirements for the infinite linear combina

tions of product forms constructed by the compensation approach, and certainly limits the 

applicability of this method. However, if this condition is satisfied, then the compensation 

approach is very powerful. Application of this method shows that the equilibrium distribu

tion consists of a linear combination of at most four series of product-form solutions and 

explicit formulae are produced for all coefficients and factors. 

There are a number of well-known queueing problems present in the class of random 

walks depicted in Figure 1. For these problems, condition (1.1) is satisfied by the symmetric 

shortest queue problem, Hofri' s multiprogramming queues model and the 2 x 2 clocked buf

fered switch (see [3,5, 13]), while the condition is violated by the coupled processor model, 

the longest queue model and the fork and join model. In [4], it has been shown that the res

triction to nearest-neighbor transitions is not essential, however, it simplifies the arguments 

considerably. Particularly, the finding of good starting solutions becomes much more com

plex. In [6], it has been shown that the compensation approach can also be used for random 

walks in more complex areas. 

Our approach for extending the compensation procedure to higher dimensions is based 

on induction with respect to the dimension of the state space. For the case of dimension N, it 

is the aim to compensate a starting solution on each of the boundary hyperplanes with dimen

sion N -1, consecutively. For finding starting solutions, the solution for (N -I)-dimensional 

problems is needed. 

The main part of the paper will be devoted to a detailed treatment of the case N = 3. 

Finally, it will be sketched how this treatment can be generalized to an induction step for an 

arbitrary value of N. The approach generates, in a natural way, the extension of condition 

(1.1) toN-dimensional random walks: 

Let qt 1, ••. ,tN with ti E {-I, 0, I} denote the transition rates for interior states in a 

similar way as in Figure I for N = 2. Then the condition becomes 

qlj, ... ,IN = 0 if tj+tj > 0 for some i,j E {I, ... ,N}, i ¢ j. (1.2) 

This condition essentially restricts the applicability of the compensation approach for higher 

dimensions, however, when the condition is satisfied, the solution is very explicit and useful 

(see Section 9). 

If one constructs the equilibrium equations for the random walk depicted in Figure 1, 

then each of the boundaries consists of two layers, viz. m = 0 and m = 1 for the vertical boun

dary and n =0 and n = 1 for the horizontal boundary. This feature complicates the analysis. 

Therefore, we will simplify the model by assuming that, for all states (m 1 , ••• ,mN) with 

mj ~ 1 for all i, not only the rates for transitions starting in those states are equal, but also the 

rates for transitions ending in those states. In Figure 1. this would e.g. imply 

hi,l =qi,l for all ie{-1,0.1}. 

Note that also the restriction to nearest-neighbor transitions was made in order to avoid 'fat' 

boundaries. Another simplification. which will be made in the course of the paper is the 
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assumption that the transition rates on the boundaries of the state space satisfy a simple pro

jection condition. 

The organization of the paper is as follows. In Section 2 we give some examples of N

dimensional random walks and we describe the class of three-dimensional random walks to 

which we want to apply the compensation approach. In Section 3 the compensation approach 

itself is described for three-dimensional random walks in the positive octant. The formal 

solutions constructed by the compensation approach are required to be absolutely convergent, 

which leads to a necessary condition, condition (1.2), and to a reformulation of the formal 

solutions; these are the subject of Section 4. Hereafter, we restrict ourselves to random walks 

which also satisfy the projection property described in Section 5. For such a random walk, in 

Section 6, condition (1.2) is shown to be also sufficient for the absolute convergence. Subse

quently, in Section 7, the Main Theorem is presented. In that section it is shown how for a 

random walk with the projection property the equilibrium distribution has to be constructed. 

Next, in Section 8, we present some numerical results for the 2 x 3 switch, which provides an 

example of a three-dimensional random walk satisfying condition (1.2). In Section 9, we 

extend the main results to the N-dimensional case. Finally, in Section to, the conclusions and 

suggestions for future research are given. 

2. The class of three-dimensional random walks and the equilibrium equations 

This section opens with three examples of N-dimensional random walks. The first two exam

ples satisfy the condition (1.1) for N =2. However, only the second one satisfies the condi

tion (1.2) for arbitrary N > 2. 

Example 2.1: The symmetric shortest queue system 

This system consists of N parallel, identical servers, each with exponentially distributed ser

vice times with mean 1. Jobs arrive at the system according to a Poisson stream with inten

sity Np, 0 < P < 1 (this implies the ergodicity of the system), and an arriving job always joins 

the shortest queue (ties are broken with equal probabilities). This system may be modeled by 

a continuous-time Markov chain with states (m 1, ..• , mN), where m 1 denotes the number of 

jobs at the shortest queue and mk denotes the difference between the queue lengths of the k-th 

shortest queue and the (k-l)-th shortest queue (for all queue lengths the jobs in service have 

to be included). For the case N = 2, the positive rates for the interior points are 

ql,-l =2p, q-l,l =qO,-l = 1, 

which shows that condition (1.1) is satisfied. Applying the compensation approach shows 

that the equilibrium distribution for the symmetric shortest queue system with two servers 

may be written as an infinite linear combination (or a series) of product-form solutions (see 

[5]). For N > 2, however, condition (1.2) is not satisfied (as we shall see in Section 4). 
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Example 2.2: The 2 x N switch 

The 2 xN clocked buffered switch is a discrete-time queueing system with N parallel servers 

and two types of arriving jobs. Jobs of type k, k = 1,2, arrive according to a Bernoulli stream 

with rate 'Ic, 0 < 'A; S 1, i.e. every time unit (clock cycle) the number of arriving jobs of type k 

is one with probability rA; and zero with probability 1-,,,. Upon arrival a job of type k joins 

the queue at server 1,1 = 1 •... ,N, with probability rk,J, rk,1 > 0, where r.f=l rk,l = 1 for k = 1.2. 

As a result, every time unit the number of arriving jobs of type k at server 1 is one with proba

bility rk,l=,,,rk,l and zero with probability 1-'1;,1. Jobs are assumed to arrive at the beginning 

of a time unit and they are immediately candidates for service. Each server serves exactly 

one job per time unit, if one present. Since we want to have an ergodic system, it is assumed 

that 'l,z+'Z,1 < 1 for alII. The 2 xN switch is described by a discrete-time Markov chain with 

states (m 1, ••. ,mN), where ml denotes the number of waiting jobs at server I at the beginning 

of a time unit (just before the arrival instant). The 2 x 2 switch also satisfies condition (1.1), 

since for this system the only positive transition rates for the states in the interior are 

ql.-l = '1,1'2.1, qo,o = '1,}'2,2 +'1,2'2,1, q-l,1 = r1,2 r 2,2 , 

q-l,O = (1-r1) r2,2 + (1-r2) '1,2, qO,-l = (l-rd r 2,1 + (1-r2) r1,1 , 

q-l,-l = (1-r1) (1-r2) . 

The 2 x 2 switch appears to belong to the class of two-dimensional, irreducible, positive 

recurrent, homogeneous, nearest-neighboring random walks which also have an extra pro

perty, called the p,ojection property, and therefore its equilibrium distribution is equal to the 

sum of two alternating series of pure product-form distributions, see [13]. This last paper also 

contains a comparison between the compensation approach and the uniformization technique 

and the boundary value method used by Jaffe [25,26]. Especially the resemblance between 

the compensation approach and the uniformization technique is very interesting. Also for 

N > 2, the 2 xN switch satisfies the condition (1.2) as well as the projection property. 

Example 2.3: The fork and join model 

This system consists of N parallel servers, where customers arrive according to a Poisson 

stream with intensity A, A> O. Each customer brings along N subjobs, one subjob for each 

server, and may leave the system if and only if all its subjobs have been served. Each server 

uses a FCPS service discipline and for server k the service times are assumed to be exponen

tially distributed with mean lI~". ~k > A (which implies the ergodicity of the system). This 

system may be described by a continuous-time Markov chain with states (m 1 •••. ,rnN), 

where rn" denotes the number of unfinished subjobs at server k. For the case N = 2, the posi

tive transition rates for the interior points are 

qt.1 = A, q-l,O = ~l. qO,-l = ~2 • 

which shows that the fork and join model with two queues violates condition (1.1). Hence, 

we may conclude that the compensation approach is not applicable. This conclusion could be 

expected, since the asymptotic formula derived by Flatto and Hahn (see [21], Theorem 7.1) 

for the equilibrium probability p(mt.m2) as rnl is fixed and rn2 ~co involves a factor rn~12 

(if ~1 < ~2)' which suggests that p(m 1 ,m2) does not consist of a linear combination of pro

duct forms aml ~m2. Also for N > 2, condition (1.2) is violated. 
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We now fonnulate the class of random walks for the case N =3. Later on the general 

case will be treated. Consider a three-dimensional random walk, i.e. a Markov chain or a 

Markov process, with state space 

M = {(m,n,r) I m,n,re /No} , 

where /No is the set of nonnegative integers. This state space may be divided into a set of 

interior points and various sets of boundary points. Define 

M] = {(mt>m2,m3)EM I mi=O for all tel and mi > 0 for all i El} , leI, 

where 1:= {l,2,3}, then M (ZJ is the interior of M; M (1), M {2) and M {3} are the boundary 

planes; M (1.2), M (1,3) and M {2,3) are the axes and MJ is the origin (the subscript indicates 

which of the variables equals zero); see Figure 2. 

,. '" , 

M(2}1If"-'.' __ _ 

r 

M (1,2) M {l} 

-------------:,." 
,." I 

",' I 

--------~'" 
,M(ZJ 
I 

I '" '" 
, '" , 

I 

I 

1M (l,3) 
n 

M{2,3} 
--------------~' 

m 
M{3} 

Figure 2. Eight states (m,n,r) of eight different subsets M] of the state space M. 

As stipulated in the introduction, we make some assumptions on the transition rates in 

order to obtain similar equilibrium equations for all states belonging to the same set M]. In 

other words, we attempt to avoid 'fat' boundaries. The following assumption does this job. 

Assumption 2.1 

(i) For all states only transitions to nearest neighbors are allowed; 

(ii) Strong homogeneity: all states belonging to the same subset M], leI, have the same 

outgoing transition rates and the same incoming transition rates. 

In technical tenns Assumption 2.1(i) means: for all leI and all states (m,n,r)EM], 

only transitions are allowed to the states (m+t 1 ,n+t2,r+t3) with (t1 ,t2,t3) e T] and 

T] = {(tl ,t2,t3) I tie to, I} for all iel and tie {-l,O, I} for all i El } , leI. 
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Assumption 2.1 (ii) consists of two parts. The first part, concerning the outgoing transition 

rates, means that for all J cl, the rate for a transition from any state (m, n,r) E MJ to any state 

(m+t1>n+t2,r+t3) with (tl.t2,t3)eTJ is equal to the same variable, say q{l,tZ.t3' The second 

part, concerning the incoming transition rates, means that each rate q(tZ.t3 which corres

ponds to a transition from a state in MJ to a state in a higher-dimensional subset (this is the 

case if ti = I for some i E 1), should be identical to the corresponding transition rate in that 

higher-dimensional subset. Hence, for all J cl, J ¢ 0, we have to require that 

J J' 
qt •• t'}..t, =qt

1
,t'}.,t

3 
for all (tl,t2,t3)eTJ, 

where J'=J'(J,(tl,t2,t3» = {ieJ I ti ¢ I} (note that, if tj ¢ 1 for all i eJ, then 1'=J and the 

equality q{l. t Z.13 = q{;,tZ.t3 reduces to an identity). 

There are a number of queueing problems which can be represented by a random walk 

in the class under consideration. This is due to the fact that the assumptions 2.1 (i) and 2.1 (ii) 

are rather natural if the coordinates of the states (m,n,r) of a random walk represent the queue 

lengths of some queueing system. In that case, usually each transition represents an arrival or 

a departure of a customer or a job, by which only transitions to neighboring states occur (cf. 

2.1 (i». Further, states in the same subset MJ have the same set of idle servers, by which one 

may expect that the same events or transitions occur in these states (the same outgoing transi

tion rates, i.e. the first part of (ii». Finally, transitions which lead to an increase in one or 

more coordinates usually represent arrivals. If these arrivals do not depend on the state of the 

system, then also the second part of (ii) (the same incoming transition rates) will be satisfied. 

Queueing systems satisfying (i) and (ii) are the 2 x 3 switch, the fork and join model and the 

coupled processor model. If the coordinates of the states (m,n,r) of a random walk do not 

represent queue lengths (but, for example, differences of queue lengths), then (i) and the first 

part of (ii) still may be satisfied, but the second part of (ii) should be expected to be violated. 

Queueing systems satisfying 0) and the first part of (H), but violating the second part of (H), 

are the symmetric shortest queue system and the symmetric longest queue system. However, 

the main results derived in this paper are still valid for these systems, since the second part of 

(ii), which mainly is introduced to avoid fat boundaries, is not essential for the main results 

and the analysis. 

To simplify the notation, in the remainder of this paper we shall almost always write T 

instead of T" and qt1.lz.t3 instead of q~.t2,t3' Further, we assume that we have discrete-time 

random walks (Markov chains), by which for each state the total rate of outgoing transitions 

adds up to I, i.e. 

L q{l,lz,t3 = I, Jc/. 
(tl,lz,t3)eTJ 

In case of a continuous-time random walk this equation can be satisfied after rescaling time. 

The objective of the analysis in the next few sections is to find out for which part of the 

class of three-dimensional, irreducible, positive recurrent, strongly homogeneous, nearest

neighboring random walks we are able to determine the eqUilibrium distribution {Pm,n,r) with 

the help of the compensation approach. This equilibrium distribution is characterized as the 

unique normalized solution of the equilibrium equations. For the time being, we only need 
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the equilibrium equations for the interior and the three boundary planes: 

Pm,n,r = L qt\,tz,t3 Pm-t\,n-tZ,r-t3 
(t\,t z,t3 )ET 

(m,n,r)eM 0 , 

PO,n,r = L q -l,t2,t3 P l,n-t z,r-t3 + L qb~t)Z,t3 PO,n-tz,r-t3 ' 
(-l,t 2,t3)ET (O,t Z,t3 )ET 

(2.1) 

(O,n,r) EM {1}, (2.2) 

Pm,O,r = L qt h -l,t3 Pm-t\,l,r-t3 + L qJ~b,t3 Pm-t h O,r-t3 ' 
(t\,-l,t 3)ET (t\,O,t 3)ET 

(m,0,r)eM{2), (2.3) 

Pm,n,O = L ql\,IZ,-l Pm-lion-tz,l + L ql;,L,O Pm-t b n-t2,O , 

(t),t z,-I)ET (1),lz,O)ET 

(m,n, 0) eM {3}. (2.4) 

3. The compensation approach. 

When extending the compensation approach to 3 dimensions, one builds a linear combination 

of (possibly complex) product forms am~ni which are solutions of the equilibrium equation 

(2.1) for the interior of the state space. Substituting am~n'Yr in (2.1) and dividing both sides 

of the equation by a
m

-
1 ~n-l'Yr-l leads to the following characterization: 

Lemma 3.1 

The product form am ~ni is a solution of equation (2.1) if and only if (a,~, y) satisfies 

aAy = ~ I-t) A1- t 2 I-t3 
I-' .t.J qt),tz,13 a I-' y (3.1) 

(t io tZ.t 3 )ET 

Any linear combination I:iciar~?Y[ of solutions (ai'~i'Yi) of (3.1) also satisfies (2.1). By 

using compensation arguments, we try to build linear combinations which also satisfy the 

eqUilibrium equations (2.2)-(2.4) for the boundary planes. Product forms with one or more 

factors equal to zero lead to special, non-relevant cases and, since later on the final solution 

has to be normalized, also product forms with one of the factors larger than or equal to 1 in 

modulus are not relevant. Hence, we are only interested in solutions (ai, ~i' 'Yi) that are ele

ments of 

p = {(a,~,y)e([31 (a,~,y)satisfies(3.1), a,~,'Y;tO and lal,I~I,I'Y1 <I}. 

In this section we shall describe the construction of the linear combinations mentioned 

above, which in fact are trees of product forms. These linear combinations will be calledfor

mal solutions, since we do not pay attention to the convergence of these trees. The 
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convergence and the question how and which formal solutions should be combined to get a 

solution of all equilibrium equations, are discussed in the next sections. 

The main idea of the compensation approach is that an error of a solution am(3ny of 

(2.1) on one of the boundary planes (i.e. a violation of one of the equilibrium equations 

(2.2)-(2.4) for the boundary planes by am(3ny,) may be compensated by adding another pro

duct form. The addition of such a product form is called a compensation step. Starting with a 

solution of (2.1) and successively performing compensation steps to compensate errors of 

previous product forms should lead to a solution of (2.1)-(2.4). 

Let us start with describing a compensation step on the boundary plane m =0 (ie. on 

M (I})' Let (a, (3, y) E P, i.e. ern (3ny, is a solution of (2.1), and suppose that this product form 

violates the equilibrium equation (2.2) for the boundary plane m =0. To correct the error of 

am(3ny' on m =0, we try to add a compensation term adm~ny such that am(3ny +adm~ny 

is a solution of (2.1) and (2.2). Substitution of this linear combination in (2.2) leads to the 

equation 

K(a,(3,y) (3n-ly,-l +aK(d,~;y)~n-ly'-l = 0 for alln~l, r~l, (3.2) 

Here, K(a,(3,y) =0 if and only if am(3ny' is a solution of (2.2). Because am(3ny has been 

supposed to violate (2.2), we have to choose ~ = (3 and y= y to satisfy (3.2). 

Now, requiring that am (3n y, +adm(3ny is a solution of (2.1) leads to the condition that 

(d,(3,y) also has to be a solution of equation (3.1), which is a quadratic equation in a for fixed 

(3 and y: 

[ 
~ A1- t 2.J-Z3] rl [A A1-1z 1-13] "- q -1.tz,lJ, ... r - tJy- L q 0,12,13 tJ Y a 

H.tz,(3 )eT (O.t z.13)eT 

+ [ L q 1,1
2
.1

3 
(31-1

2
;-1

3
] = O. 

(l/z. t l)eT 

(3.3) 

Choosing d = a would not lead to compensation and therefore we have to take d equal to the 

companion solution to a of (3.3), i.e. 

d= 
ft «(3,y) 

a 

where 11 «(3, y) is the product of the roots of the quadratic equation (3.3): 

~ A1-12 1-13 
..l.J q 1.t2,l l tJ Y 

11 «(3, y) = 
(l.tz.t3)eT 

(3.4) 

Finally, again substituting am(3ny +adm(3ny' in (2.2) leads to the determination of a (see 

(3.2»: 
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A K(a,~,y) 
a=-

K (a,~,y) 

So, we get Q =0 if and only if am~ni already satisfied (2.2). By using the formula for the 

sum of the roots of the quadratic equation (3.3), the expression for Q may be rewritten to 

gl(~,y)-a 
Q=-

g 1 (~,y)-a 

with 

(3.5) 

The compensation step on the boundary plane m = 0 fails if the denominator of It (~, y) 

vanishes (in that case (3.3) has only one solution). Another special case occurs if the numera

tor of 11 (~,y) is equal to zero, since then a=O. To avoid these special cases, we make 

Assumption 3.1 (i). Naturally, we need the analogous assumptions for the compensation steps 

on the boundary planes n =0 and r =0 (see (ii) and (iii». 

Assumption 3.1 

(I') ~ q > 0 and ~ 1.1 2 .13 

(l.t2. t3)eT 
L q-1h.t3 > 0 

(-1.t2. t3)eT 

(there is alorward and a backward rate component); 

(ii) L qt 1.1.t3 > 0 and 
(t 1.1.t3)eT 

L qt 1 .-1.t3 > 0 
(t 1.-1.13)eT 

(there is a rate component to the east and to the west); 

(iii) L Qt
1
h. 1 > 0 and 

(1 1 .12.1)eT 
L Qllh.-1 > 0 

(1!.1 2.-1)eT 

(there is a rate component to the north and to the south). 

Of course, under this assumption, it may still incidentally happen that the numerator or 

denominator of 11 (~, y) is equal to zero. Further, it may still happen that the denominator of Q 

vanishes (recall that K(a,~,y)=O if and only if am~ni is a solution of (2.2». However, 

these three cases are not likely to occur. Therefore, for the time being we shall neglect them, 

but at the end of Section 4 we shall discuss what to do if these special cases do occur (see 

Remark 4.1). 

For a compensation step on the boundary planes n = 0 and r = 0, similar results can be 

derived as for the compensation step on the boundary plane m = O. These results are summar

ized in the following lemma. 

Lemma 3.2 

(i) Let (lm~n'Y' with (l,~;y¢ 0 satisfy (2.1) and let a E C. Then a(lm~ny' +adm~ny' 

satisfies (2.1) and (2.2), if and only ifa and Q are taken equal to 
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and 

where 11 (~,'Y) and gl (~,'Y) are defined by (3.4) and (3.5); 

(ii) Let am~n'Yr with a,~,'Y;c ° satisfy (2.1) and let be C. Then bam~ny +ba."'~ny 

satisfies (2.1) and (23), if and only if~ and b are taken equal to 

~ = 12 (a,'Y) and b = _ g2(a,'Y)-~ b , 

~ g2(a,'Y)-~ 

where 12(a,'Y) and g2(a,'Y) are defined in the same way as II (~, 'Y) and g 1 (13, 'Y), but with 

the combinations t,t2,t3 replaced by t 1>t,t3 lor all t e {-1,0, I}, the powers ~1-t2 by 
I-tl nd h O} b {2b a a teratesqo,l').,13 yqt!> ,13" 

(iii) Let a."'~ny with a,~, 'Y;c ° satisfy (2.1) and let c e C. Then ca."'~ny +cam~ny satisfies 

(2.1) and (2.4), if and only ifyand c are taken equal to 

y = h(a,~) and c = _ g3(a,~)-y c , 

'Y g3(a,~)-'Y 

where h(a,~) and g3(a,~) are defined in the same way as 11 (~, 'Y) and g 1 (~,'Y), but with 

the combinations t,t2,t3 replaced by tl ,t2,t lor all t e {-1,0, I}, the powers 'Y
1
-

13 
by 

I-t l nd h b1} b (3) 
a ate rates q ,t2,13 Y q'I.12'O· 

The Lemmas 3.1 and 3.2 provide the tools for the compensation approach to construct a 

solution of (2.1)-(2.4). Let (a,~,'Y)eP, i.e. am~ny is a solution of (2.1). Most likely, this 

solution, which we call the starting solution, is not a solution of the equilibrium equations 

(2.2)-(2.4) for the boundary planes. Therefore compensation terms have to be added to 

correct the errors of am ~n'Yr on these boundary planes. To correct the error on the boundary 

plane m =0 for example, we have to add a product fonn a(l)a(h~(I)'Y[l) with ~(l) =~, 'Y(I) ='Y 

and a(l) and a(l) defined according to Lemma 3.2(i). Unfortunately, this compensation tenn 

introduces two new errors on the other two boundary planes. To compensate these new 

errors, which are hoped to be smaller than the initial error of am ~n'Yr on m = 0, two more 

compensation tenns have to be added. To compensate the new error of the tenn 

a(1)a(h~(l)'Y[l) on n =0, we add a product fonn a(1.2)b(1,2)a(1,2)~(I,2)'Yft,2) with Cl(l,2) =a(1), 

'Y(1,2) ='Y(1), a (1,2) =a(l) and ~(l.2) and b(1,2) defined according to Lemma 3.2(ii). To compen

sate the new error on r =0 a product fonn a(1.3)c (l,3)a(1.3)~(l,3)'Y[1.3) is added. 

Continuing the above procedure leads to the generation of a tree or a network of product 

fonns; see Figure 3. The product fonns are labeled as follows. For each vector v out of the 

set 

v = {(VI>"" VI) II e /No, VI el and Vk eI\{vk-d for all k ~2} , 

we get a product fonn llvbvcva~~~'Y:. The empty vector 0, which we get for 1 =0, is used as 

subscript for the starting solution. For all other elements v = (v 1, ... , Vi) e V\ {0} the product 

fonn avbvcva~~~'Y~ is the compensation tenn which compensates an error of 

ap(v)bp(v)cp(v)ap(v)~;(v)'Y;(v), where p(V)=(Vl,"" Vi-I) is the parent of v. The last com

ponent of v denotes on which boundary an error of ap(v)bp(v)cp(v)ap(v)~;(v)'Y;(v) is compen

sated: on m =0 if VI= 1, on n =0 if vl=2 and on r =0 if vJ=3. In Figure 3, the factors a, ~ 
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and 'Y denote which new factor one gets for each compensation step. When compensating on 

m =0 we get a compensation term with a new a-factor, on n =0 we get a new (3-factor and on 

r=O a new 'Y-factor. 

a 
(2,1,2) 

a 

Figure 3. The construction process of a fonnal solution. Node v represents the product 

fonn avbvcva~(3~'Y~. 

The sum of the starting solution (a,~, 'Y) e P and all compensation terms is denoted by 

xm.n.r(a,~,'Y). So, 

Xm,n,r(a,~,'Y) = L avbvcva~~~'Y~ , (3.6) 
veV 

where a.e, = a, ~12l = ~, 'Y12l = 'Y and for all v e V\ {0} we have (see Lemma 3.2 and the previous 

paragraph): 

~v=~p(v), 'Yv='Yp(v) , bv=bp(v), Cv=Cp(v) , 

It «(3p(v), 'Yp(v» gl (~p(V),'Yp(v»-CXv 
CXv = , av = - ap(v) if VI(v) = 1; 

ap(v) g 1 (~p(v),'Yp(v»-ap(v) 

CXv =ap(v) , 'Yv ='Yp(v), av =ap(v), Cv =Cp(v) , 

R _ 12(ap (v),'Yp(v» b -_ g2(ap(v},'Yp(v»-~v b 
.... v - , v - p(v) 

(3p(v) g2(ap (v), 'Yp(v»- ~p(v) 
if Vl(v) =2; 

CXv=cx.p(v), ~v=(3p(v), av=ap(v), bv=bp(v), 

13 (ap (v), ~p (v» g 3 (ap (v), ~p (v» - 'Yv 
'Yv = , Cv = - cp(v) if Vl(v) = 3. 

'Yp(v) g3(ap (v),(3p(v»-'Yp(v) 

Here, I (v) is defined as the length (i.e. the number of components) of a vector v e V and Vl(v) 
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is the last component of v. For the initial factors a"" b", and c" any choice is allowed. To 

get a starting solution a",b"c",a~l3~y~ which is a product-form distribution, we choose 

a", = I-a, b '" = 1-13 and c" = l-y (so, the sum of that solution over all m, n and r is equal to 

I), 

For each (a,l3.y)eP the solution {xm,n.r(a,l3,y)} is well-defined by (3.6) if the sum in 

(3.6) converges absolutely, i.e. if 

1: Illvbvcva~l3~y~ I < 00. (3.7) 
veV 

In principle, this should hold for all states (m, n, r) eM. Since we do not know for which start

ing solutions (a,l3,y), and for which states (m,n,r), condition (3.7) holds, we call each solu

tion {xm,1",(a,I3.y)} a formal solution. If (3.7) holds, then (xm,n,r(a,l3;y)} will be a solution 

of the equilibrium equations (2.1)-(2.4) for the interior and the boundary planes. Since each 

term of the sum in (3.6) is a solution of (2.1), it is obvious that the whole sum also satisfies 

(2.1). By taking connected pairs of product forms in the network pictured in Figure 3, it is 

shown that {xm,n.r( a, 13, y)} is also a solution of the equations for the boundary planes. If (3.7) 

holds, then Xm.n,r (a, 13, y) may be rewritten as a sum of pairs of product forms with the same 13-
and y-factor (Le. pairs of product forms which are connected by an a-edge in Figure 3), 

xm,n,,(a,l3,y) = 1: (ap(v)a;(v)+ava~)bp(v)cp(v)I3;(v)Y;(v), (3.8) 
veV\{",] 

v/(y)=l 

from which it immediately follows that {xm.n.r(a, 13. y)} is a solution of the equilibrium equa

tion (2.2) for the boundary plane m = O. since each pair of product forms in the above sum is a 

solution of (2.2). Taking pairs with the same a-factor and y-factor and pairs with the same 

a-factor and l3-factor shows that (xm•n•r ( a, 13, y)} satisfies the equilibrium equations (2.3) and 

(2.4) for the boundary planes n =0 and r =0. In the next section we shall investigate whether 

condition (3.7) is satisfied. We shall also investigate if for a formal solution it holds that 

I Uv I < 1, Il3v I < 1, I Yv I < 1 for all v e V , (3.9) 

since solutions of all equilibrium equations have to be normalized to produce the eqUilibrium 

distribution. Because each starting solution is required to be an element of P, (3.9) is satisfied 

for v = 0 by definition; for all other v e V this has to be verified yet. 

4. Two necessary conditions 

In this section we show that the requirements (3.7) and (3.9) lead to necessary conditions for 

the transition rates Qt 1h,t3 in the interior of the state space and for the starting solution 

(a, 13, y). As we shall see, the resulting condition for the rates QII,tZ.t3 is rather severe, but it is 

satisfied by the 2 x 3 switch (the other examples of the queueing systems mentioned in Sec

tion 2 violate this condition). The resulting condition for the starting solution (a, 13, y) will 

lead to a small renovation of the definition of the formal solutions. but fortunately does not 

further restrict the applicability of the compensation approach. 
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Under certain circumstances a formal solution {xm,n,r(Cl,~,'Y)} reduces to a finite sum. 

This may happen for example if one has a Jackson network by which it is possible to choose a 

starting solution that is also a solution of the equations for the boundary planes. In that case 

a (1) = b (2) = C (3) = 0 and, due to the recursions that we have for the coefficients av, bv and cv, 

avbvcv=O for all v e V\{0}. In general, however, a formal solution {xm,n,r(Cl,~,'Y)} will have 

an infinite number of nonnull terms and in that case it is required that I avbvcvCl': ~~'Y: I gets 

sufficiently small for vectors v e V with large lengths I (v). 

Define a path as a sequence {v(k)} of vectors of V with v (0) =0 and v(k) e O(v(k-1» for 

all k ~ 1, where 0 (v) is the offspring of a vector v: 

O(v) = {v'eV Ip(v')=v}, veV. 

In Figure 3, the dotted line denotes an example of a path. Requiring (3.7) implies that 

00 

L lav(k)bv(k)Cv(k)Cl~k)~~(k)'Y:(k) I < 00 (4.1) 
k=O 

for all paths {v (k) }. It is interesting to verify this condition for the two paths for which we 

have product forms with alternately new Cl- and ~-factors (Le. the paths with Va~) e {1,2} for 

all k ~ 1, see Figure 3). In general, for at least one of these two paths all terms in the sum of 

(4.1) will be nonnull. Without loss of generality we may assume that this is at least the case 

for the path with v (0) =0 and v(k) =(1,2, ... ,1) if k ~ 1 and k odd, v(k) =(1,2, ... ,1,2) if 

k ~ 1 and k even (which is just the path denoted by the dotted line in Figure 3). For this path 

condition (4.1) reduces to 

00 

L I av(k) bV(k) Cl~k) ~~(k) I < 00, 

k=O 

since 'YV(k) = 'Y and CV(k) = 1-'Y for all k. Because we want this condition to hold for all m and n 

and the coefficients av(k) and bV(k) may not be expected to go to zero as k goes to infinity, it 

seems reasonable to require that 

Clv(k) ~ 0 and ~V(k) ~ 0 as k ~ 00 • (4.2) 

For odd k the factors Clv(k-I) and Clv(k) are the roots of the quadratic equation (3.1) (see also 

(3.3» for fixed ~ = ~v(k-I) and 'Yand therefore 

According to (4.2), for both equations the parts on the left-hand side go to zero as k ~ 00, 

whereas the parts on the right-hand side go to 

and 

respectively. Of course both sides of an equation have to go to the same limit and therefore 

(4.2) results in the condition that QO,1,t3 =Q 1,1,t3 =0 for all t3. In the same way, considering 
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the sum and the product for ~V(H) and ~Vlk) for even k. leads to the condition that 

q 1,0,t3 =q 1,1,13 =0 for all t3. So. summarizing, the requirement in (4.1) for paths {v(k)} with 

Va~) E { 1,2} for all k leads to 

qO,l,t) =q1,O,t3 =ql,1,t
3 
=0 for all t3 e {-I,O,I}. 

Similar conditions are derived by considering paths with v11~) e {1,3} or V~~~) e {2,3} for all 

values of k. Combining these conditions results in: 

Condition 4.1 (necessary condition arising from (3.7)) 

For all (t1,t2,t3) e T, 

qt),t2,t3 = 0 if ti+tj > 0 for some i,j eI, i :j:. j. (4.3) 

Unfortunately, this condition, which is an extension of (1.1), is rather severe: for all 

states in the interior, transitions may only have positive rates, if a positive step in one coordi

nate is always accompanied by negative steps in the other two coordinates, i.e. Qt)h,tl > 0 

and tj = 1 for some i e 1 implies tj = -1 for all j e l\{ i }. In case the coordinates m, n and r 

represent queue lengths, Condition 4.1 implies that for all states (m,n,r) in the interior only 

transitions are possible to themselves or to states with a lower total number of jobs. Although 

Condition 4.1 only has been derived for the class of strongly homogeneous random walks 

described in Section 2, the condition is also necessary for random walks which are only 

homogeneous, i.e. for random walks for which all states belonging to the same subset MJ 

have the same outgoing transition rates but not necessarily also the same incoming transition 

rates. For these random walks the condition may be derived along the same lines. The 2 x 3 

switch satisfies the condition, but the other queueing problems mentioned in the last para

graph of Section 2 violate the condition; below we show this for the three problems described 

as Example 2.1-2.3 in Section 1. As a consequence, we can conclude that the compensation 

approach possibly works for the 2 x 3 switch, whereas this method certainly does not work for 

the other problems. For the 2 x 3 switch and the three-dimensional symmetric shortest queue 

system the same was already concluded in [32] from numerical results. 

Example 2.1: The symmetric shortest queue system (continued) 

For the three-dimensional shortest queue problem the only positive transition rates Qt).tz,t) for 

the interior are: 

Q 1,-1,0 = 3p, Q-I,I,O = QO,-l,l = QO,o,-1 = 1 . 

The first rate is due to an arrival of a job and the other three rates come from departures of 

jobs. Condition 4.1 is obviously violated in this case and therefore we conclude that, contrary 

to the two-dimensional case, the compensation approach will not work for the three

dimensional shortest queue problem. 

Example 2.2: The 2xN switch (continued) 

For the 2 x 3 switch the only positive transition rates Qtl,tZ.t3 for the interior are: 
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q 1,-1,-1 = rI,I r2,1, q-l,l,-I = rl,2 r2,2, q-l,-I,1 = rl,3 r 2,3 , 

q-l,Q,Q = r1,2r2.3 +rl.3 r2,2, qQ,-I.O = r},l r 2,3 +rl,3r 2,1 , 

qQ,Q,-l = r1,1 r2,2 + rl,2 r2,1, q-l,-I,Q = (l-rd r2,3 + (1-r2) rI.3 , 

q-I.O,-1 =(1-rl)r2,2+(1-r2)rl,2, qO,-I,-1 = (1-r})r2,1 +(1-r2)rl,l, 

q-l,-l,-I = (1-rl)(1-r2)· 

As we see, Condition 4.1 is satisfied for this system. This perfectly corresponds with the 

intuitive interpretation described above. If for the 2 x 3 switch at the beginning of a time unit 

all servers have jobs available (Le. we are in a state of the interior), then at the next discrete 

time event three jobs will leave the system while at most two jobs arrive. 

Example 2.3: The fork and join model (continued) 

For the three-dimensional version of the fork and join model we have 

ql,I,1 = A., q-l,O,O = JlI, qO,-I,o = Jl2, qO,o,-1 = Jl3 , 

by which it is concluded that the compensation approach is also unsuitable for this case (as 

we saw in Section 1, the same holds for the two-dimensional fork and join model). 

Condition 4.1, which in the remainder of the analysis is assumed to be satisfied, together 

with Assumption 3.1 implies that 

q 1,-1,-1 > 0 , q -1.1,-1 > 0 , q -1,-1, 1 > O. 

A more important consequence is that assuming (4.3) leads to a considerable simplification of 

the quadratic equation (3.1). Due to this simplification we can prove some useful properties 

for the factors <Xv, ~v and 'Yv with the help of Rouche"s Theorem (cf. Titchmarsh [31]). 

Together with the condition stated in (3.9), this will lead to the second necessary condition. 

To simplify the expressions in the following lemma we introduce the variables 

q~i) = L qSf,S2,S3' te{-l,O,l}, iel. 
(S I ,s2,s3)e T 

Sj=t 

(4.4) 

The rate qP) denotes the sum of the rates of all transitions causing a step t in the m-direction; 

and a similar interpretation holds for the rates qF) and qP). Note that, due to Condition 4.1, 

q\l) =ql,-l,-l, q12) =q-l.l.-l' q}3) =q-l,-l.1 . 

Lemma 4.1 

(i) For fixed ~ and 1. 0< I ~I < 1 andO< I'YI < 1, the quadratic equation (3.1) has exactly 

one root a with 0< lal <Cll~'Y1 and C] =min[l,q)l)/q~(]. The second root (X, 

which only exists if 
r:t1-t2 1-/3 L q -1,/2,/3 tJ 'Y '# 0, 

(-I.t2,/3)e T 

satisfies lal >Cll~'Y1 with C1 =max[1,qp)/qW]. 
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(ii) For fixed a and 1. 0 < 1 a 1 < 1 and 0 < I y I < 1, the quadratic equation (3.1) has exactly 

one root ~ with 0 < 1 ~ 1 < C 21 aYI and C 2 = min [1. q12) /q9(]. The second root ~, which 

only exists if 
I-II I-t3 

L qtl>-l,t3 a Y :F- O. 
(I I ,-1,13)e T 

satisfies I ~ I > C21aYI with C2 =max[l. q)2) /q9(]. 

(iii) For fixed a and ~, 0 < I a I < 1 and 0 < I ~ 1 < 1, the quadratic equation (3.1) has exactly 

one root 'Y with 0 < I 'Y I < C 3 I a~ I and C 3 = min [1, q}3> /q0(]. The second root 1. which 

only exists if 
~ I-I! R1-tZ 
.6..i qt l ,tz,-1 a .... :F- O. 

(tbt2,-l)e T 

satisfies I 'YI > C 31 a~ 1 with C 3 =max[l, q)3) /q0(]. 

Proof. 

We shall only prove part (i); the parts (ii) and (iii) may be proved along the same lines. 

Consider the quadratic equation (3.1) for fixed ~ and 'Y, 0 < I ~ I < 1 and 0 < I 'YI < 1. 

After rewriting (3.1) to (3.3), using (4.3), dividing by ~2f and substituting z =a/(~'Y), we get 

the quadratic equation 

[ L q-l,t
2
,t

3 
~1-t2y-t3l i-

(-i,t2. /3)eT 

- (1- [qo,o,o +qO,-I,O~+qO,O.-I'Y+qO,-I,-l ~'Y])z + q 1,-1,-1 = O. (4.5) 

Let f (z) be the first tenn of the quadratic function in (4.5) and let g (z) be the remaining part. 

Then we have the following bounds for f (z) and g (z) (for z :F- 0): 

If(z)1 S; [ L q_l,t2,t31~1-12'Y1-/3IlIZI2 < q0? Iz1 2 , 
(-i,t2,t3)eT 

Ig(z)1 ~ Izl-l[qo,o.o+qO,-1.0~+qO,O,-1'Y+qO.-l.-l~'Y]llzl-q1.-1,-1 

~ (1 - [qo,o,o +qO,-l,O +qO,O,-1 +qO,-I,-l]) I Z 1 - q 1,-1,-1 

= (l-qh1»lzl-q)l). 

As we see, these bounds only depend on the absolute value of z. For all z on the circle 

C = {z I Iz I=r} with radius r > 0, we have If (z) I-Ig(z) 1< h (r), where 

her) = q0( r 2 -(1-qU»r+q)1). 

Obviously. If (z) I < I g (z) I for all z on C, if r is chosen such that h (r) S; O. Since h (r) is a 

convex quadratic function for which h(O)=qt.-l,-l >0 and h(1)=O, the function her) has 

two positive zeros, namely 1 and r = q)l} /q~V (use the rule for the product of the two roots of 

a quadratic equation), and h (r) S; 0 for all r in the closed interval between these two zeros. 

So, Rouche's theorem may be applied for all r e [C 1,(\], where C 1 =min[I,r] and 

C 1 = max[ I, r]. This theorem tells that the number of solutions of (4.5) in the region I z I < r 
is equal to the number of zeros of g (z) in this region. The linear function g (z) has one zero 
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z 0, which is located in the region I z I <: C 1 • since 

!zo! = ____________ ~q~I~,-~l,~-I~--------~-
11- [qo,o,o +qO,-I,O~+qO,O,-ly+qO,-I,-l ~y] I 

q 1,-1,-1 q)O 
s; = ------ < Cl . 

1 - [qo,o,o +qO,-I,O +qO,O,-l +qO,-l,-tl q)l) + q~lt 

As a result, applying Rouche's theorem for r = C 1 proves that (4.5) has exactly one solution 

with I z I < C I> i.e. ! a 1 < C 1 I ~YI (since q 1,-1,-1 > 0, this solution is ~ nonnull solution, so 

we also know that I a 1 > 0). Next, applying Rouche's theorem for r = C 1 shows that if (4.5) 

has a second root, which is the case if and only if the coefficient of z 2 is not equal to zero, 

then this root must be in the region 1 z I > C 1, i.e. I a I > ell ~YI. 0 

" 
When reading Lemma 4.1, it is important to note that by definition Ci S; 1 and Ci ~ 1 for 

all i eI. So, part (i) of Lemma 4.1 implies that if the quadratic equation (3.1) for fixed ~ and 

y, 0 <: I ~ I <: 1 and 0 <: I yl <: 1, has two roots a, then one root satisfies 0 <: I a I < I ~YI and the 

other root satisfies I a I > I ~y I; and similarly for the parts (ii) and (iii). For later reference in 

this section, we state that at least two of the three constants Cj are smaller than 1, since 

Ci = 1 for some i e I => Cj <: 1 for all j e l\{ i} . (4.6) 

This property is proved by analyzing the transition rates qt I ,t2,t3' For example, C 1 = 1 implies 

that q1l) /q~V ~ 1, and, hence, ql,-l,-l ~ q-l,l,-I +q-l,-l,l and therefore 

(2) 
~ <: q-l,l,-l <: q-l,l,-l 1 

(2) - - <: , 
q-l ql,-I,-l +q-l,-l,l q-l.l,-l +2q-l,-I,] 

i.e. C 2 <: 1; and similarly one shows that C 3 <: 1. Finally, with the help of (4.6) and the fact 
" 

that by definition Ci = 1 or Ci = 1 for all i e I, one can show that 
" A 

Ci > 1 for some i e I => Cj = 1 for all j e l\{ i} , 
A 

by which at most one of the three constants Ci is larger than 1. 

The properties stated in Lemma 4.1 are used to prove Lemma 4.2, which states that for 

each relevant solution of the quadratic equation (3.1), Le. for each (a,~,y)eP, exactly one 

factor is smaller than the product of (some constant Ci S; 1 and) the other two factors. 

Thereafter, with the help of the Lemmas 4.1 and 4.2 and (4.6). we are able to define a path 

that always leads to a vector v for which one of the factors «lv. ~v and Yv is larger than or 

equal to one in absolute value (Le. for which (3.9) is violated). 

Lemma 4.2 

Each solution (a,~, y) e P possesses exactly one of the following three properties: 

(i) I a I < C 1 I ~YI, I ~ I > C 21 ayl and I yl > C 31 a~ I ; 
A A 

(it) 1~I<C2Iay!, lal>Cll~YI and IYI>C3Ia~l; 
A A 

(iii) I y I <: C 3 I a~ I, I a I > C 1 I ~y I and I ~ I > C 2 I ay I . 
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Proof. 

By Lemma 4.1, each solution (a,~, 'Y) e P satisfies 

" 
( I 0.1 < ell ~'Y I or I 0.1 > ell ~'Y I ) 

and (I ~ I < C 21 a'Yl or I ~ I > C 21 a'Yl ) 

and (I 'Y I < C 3 I all I or I 'Y 1 > C 3 I a~ I ). (4.7) 

Since 10.1 < ell 1l'Y1 implies that 10.1 < 1 ~ I and 10.1 < I'YI, and similarly for I P I < C 21 a'Yl 

and I'YI < C3Ia~l, (a,p.'Y) satisfies at most one of the "<"-inequalities in (4.7). Further, 

since (a, p, "() is a solution of (3.1). (a.,~. 'Y) satisfies 

= 1: qt
1
.t2,t3 (I all'Yl - I ai-II ~ l-t2/-1 3 I) 

(1\"Z"3)E T 

= q},-l,-l (lal-IP'YI)+q-I,I.-l (1~1-la'Yl)+q-l,-l,l (I'YI-Iap!) 

+ 1: qt)tt2,t3 (I all'Yl - I aI-I, pl-t2'YI-t3 I) 

t"t2,t3E {-I.O} 

;::: QI.-l.-1 (Ial-IP'YI)+Q-I,I,-l (IPI-l a 'Yi)+Q-l,-l.l (I'YI-Iap\), 

which shows that (a,~,'Y) cannot satisfy all three n>"-inequalities in (4.7). So, (a,p,'Y) has to 

satisfy at least one of the ,,<n-inequalities. This proves that exactly one of the "<"-inequalities 

in (4.7) is satisfied, which completes the proof. 0 

Lemma 4.3 

For each starting solution (a, P, 'Y) e P, there exists a vector v e V such that I <ly I ;::: 1, I ~v I ;::: 1 

or I 'Yv I ;::: 1. 

Proof. 

Let (a, p, "() E P be a starting solution. Due to the properties stated in the Lemmas 4.1 and 4.2, 

we are able to construct a path {v (k)} for which the absolute values of the factors <lyCk) , ~V(k) 

and 'YV(k) are monotonically increasing for increasing k. The path starts with the empty vector 

0, for which the corresponding solution (~, P",. 'Y",) = (a, P. 'Y) e P and thus satisfies exactly 

one of the three property stated in Lemma 4.2. Suppose that property (i) is satisfied, i.e. 
A A 

I ~ I < ell ~",'Y", I, I p", I > C 2 1 ~'Y", 1 and 1 'Y", 1 > C 3 I a", p", I. As we know. the vector (1) 

has the same P- and 'Y-factor as 0, but a new a-factor 00(1), which is the companion solution to 

~ of the quadratic equation (3) for fixed ~=P", and 'Y='Y",. By Lemma 4.1, 00(1) has to be 

the root which satisfies 1 0.1 > ell ~",'Y", I and thus 0.(1) is larger than ~ in absolute value. 
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We find 
A A 

A A C I C 1 
I a(l) I > C 1 I ~(l)Y(1) I = C 1 I ~0Yed > C 1 I ~ I = C I I a I . 

If laCI) 1< 1, then (a(l),~(l),Y(l) is also an element;>f P and therefore also satisfies one of 

the properties stated in Lemma 4.2. Since I <XcI) I > C I 1 ~(1)Y(1) I, it satisfies property (ii) or 

property (iii). Suppose that (ii) is satisfied, then it is useful to consider the vector (1,2). This 

vector has the same cx- and 'tfactor as (1)t but a new and larger ~-factor: 
A 

A A C2 
I ~(1,2) 1 > C 2 1 <Xcl,2)Y(l,2) 1 = C 2 1 <Xcl)Y(l) 1 > C2 1 ~(l) 1 • 

When comparing the factors of vector (1,2) with the factors of the starting solution, we find 
A 

Cl 
1 a(l,2) I = 1 CX(1) 1 > C 1 I CX I ; 

I Y(1,2) 1 = 1 Y(1) 1 = 1 yl . 

If 1 ~(1,2) 1 < I, then (a(l,2).~(l,2).Y(l,2»EP and again the construction process may be contin

ued. 

In general we construct a path {v(k)} with v CO) = 0 and for all k = 1,2, ... the vector v(k) 

is an element of the offspring of v(k-l), i.e. p(v(k»=v(k-l), and the last element V~~~(k» of 

v(k) is taken equal to 

.[ 1 if 1 <Xy(k-Il 1 < I ~v(k-l)Yv(H) 1 ; 

V~1~(k» = 23 if I ~v(k-l) I < 1 <Xy(H)YV(H) 1 ; 

if I Yv(H) I < 1 <Xy(k-l) ~v(k-l) I. 

Here, the construction process is stopped as soon as 

I <Xy(k) 1 ;;::: 1, I ~V(k) I ;;::: 1 or I YV(k) 1 ;;::: 1 (4.8) 

for some k;;::: 1. In that case (<Xy(k),~v(k)'YV(k» is not an element of P, by which the essential 

properties of Lemma 4.2 cannot be used anymore. To complete the proof of Lemma 4.3, it 

suffices to prove that (4.8) always occurs for some k. 

For each vector v (k). k;;::: 1, two of the factors <Xy(!) , ~V(k) and YV(k) are equal to the 

corresponding factors for v(k-I), whereas the third factor is new and may be proved to be 

larger in absolute value (by using the Lemmas 4.1 and 4.2): 

A 

C3 
I <Xy(!) I = I <Xy(k-l) I, 1 ~v(k) 1 = 1 ~v(k-l) I, 1 YV(k) I > -I YV(H) 1 if Va~(k» = 3. 

C3 

Let niCk) denote the number of i-s in the sequence Vm(l), ... , V~1~(k», i.e. in the vector v(k): 
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ni(k) = 1{llle{l .... ,k}andv~k)=i}l. ieI,k~O. 

Then, by induction, it is easily proved that 

I <x.,'" I ~ [ ~: rkJ 
I tt I. I ~,,,, I ~ [ ~: ]",(kJ I ~ I. 1"(,'" I ~ [ ~: r(k

J 
111 (4.9) 

for all k :2:0. Since at least two of the three constants Ci are smaller than 1 (see (4.6», we 

have 
A 

Ci 1 
- > - > 1 
Ci Ci 

for at least two i eI, say for il and i2' Further, since by definition for all vectors v(k) two 

succeeding coordinates are always different, at least one of the powers ni I (k) and ni
2 
(k) is 

increased by 1 if k is increased by 2. So, the sequence nil (k)+ni
2 
(k), k =0.2,4, ... , is 

strictly increasing. As a result, at least one of the right-hand sides in (4.9) has to become 

larger than or equal to 1 for some k, which proves that (4.8) always occurs for some k. 0 

Lemma 4.3 shows that (3.9) is never satisfied. However, (3.9) should only be satisfied 

for those vectors v for which aybycy :f:: O. So, if for some vector v one of the factors av, ~y 
and 1y is not smaller than one in absolute value, then we want aybycv to be equal to zero. 

This implies that there has to be a vector v' on the path from 0 to v for which a~ ~~'1~' also 

satisfies the equilibrium equations for one of the boundary planes. After renumbering the 

terms this is equivalent with the requirement that the starting solution (a,~, '1) also satisfies 

the equations for one of the boundary planes, i.e. with the requirement that a (1) = 0, b (2) = 0 or 

C (3) = O. The proof of Lemma 4.3 shows that we have to require a (l) = 0 if I al < I ~'1 I, 
b(2) =0 if I ~ 1 < I a'1l and c(3) =0 if 1 '11 < I a~ I (if I al < 1 ~'11 for example. then there is a 

path via (1) that leads to a vector v for which I <X.v' ~ 1, I ~y 1:2: 1 or '1y I ~ 1). This results in 

the second necessary condition for a formal solution. Under the assumption of Condition 4.1, 

this condition is also sufficient to meet (3.9) for all vectors v with aybycy :f:: O. 

Condition 4.2 (necessary condition arising from (3.7) and (3.9)) 

A starting solution (a,~. 1) e P also has to be a solution of the equilibrium equations for one 

of the boundary planes. It has to satisfy: 

equilibrium equation (2.2) for the boundary plane m = 0 if 1 al < '~'1'; 

equilibrium equation (2.3) for the boundary plane n = 0 if , ~ 1 < 1 a'1 I; 

equilibrium equation (2.4) for the boundary plane r = 0 if 1 '11 < 1 a~ I. 

From now on we are only interested in formal solutions {xm,n, r( a, ~, 1)} for which the 

starting solution (a,~,1) satisfies Condition 4.2. All these starting solutions belong to one of 

the sets Pi, i e I, where P I is defined as the set of appropriate starting solutions on the boun

dary plane m = 0, i.e. 

PI = {( a,~, 1) e P 1 am ~n'1r is also a solution of (2.2) and I al < I ~'1 I } , 

and P 2 and P 3 are defined as the sets of appropriate starting solutions on n = 0 and r = 0, 
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respectively. For each starting solution (a,~. y) e Pi, i e 1, the corresponding formal solution 

reduces to a binary tree of product forms and it is denoted by {x~~n,r(a,~, y)}, where the 

superscript (i) denotes on which boundary it starts: 

(i) ( R ) _ ~ b mRn r Xm,n,r a, p, 'Y. - ~ av vcvav Pv Yv (4.10) 

veV; 

with 

Vi = {(v}. ... , VI) e V I if v ;If: 0 then v 1 ;If: i } . 

The following lemma states that for each formal solution {x~~n.r( a,~, y)} all factors <lv, ~v 

and Yv are well-defined (Le. one always has nonnull denominators for the terms fi~ ,.) in the 

definitions of these factors) and all (<lv'~v,yv) are elements of P. The coefficients av , bv and 

Cv cannot be guaranteed to be well-defined. Part (i) of the following lemma is easily proved 

with the help of Lemmas 4.1 and 4.2; the other parts follow from part (i). 

Lemma 4.4 

Let i e I and (a,~, y) e Pi' Then all factors <lv, ~v and Yv of the formal 

{x~~n,r(a, ~.1J} are well-defined and they have the following properties: 

(i) For all v e Vi, we have 

1
0< l<lvl <Cll~vyvl if vI(v)=l; 

0< I~vl <C2 I<lvYvI if VI (v) =2; 

0< Iyv I < C31<lv~v I if vl(v) =3; 

solution 

(U) For each path {v(k)} in Vi. all three factors <lv<k), ~V(k) and yv(t) decrease monotonically 

in absolute value for increasing k; 

(iii) (<lv'~v' Yv) e P for all v e Vi; 

(iv) For each path {v{k)} in Vi. at least two of the three factors <lv<k) , ~v(k) andYv(k) go to zero 

exponentially fast as k ~ 00. 

We have derived two necessary conditions arising from (3.7) and (3.9), however we still 

have the following questions about the convergence of the redefined formal solutions 

{x~~n.r(a.~,y)}. Are the sums x~~n,r(a,~,y) absolutely convergent for all (m,n,r)eM? And, 

is it possible to normalize all formal solutions? We know that all factors <lv, ~v and Yv are 

smaller than one in absolute value, which is necessary for the normalization. Furthermore, 

according to Lemma 4.4(iv), for each path {v(k)} at least two of the three factors <lv(kl. ~V(kl 

and Yv<i) go exponentially fast to zero as k ~ 00. Since not all three factors are guaranteed to 

go to zero, different paths may have different limits for the coefficients av, bv and cv • which is 

one of the difficulties arising when one tries to prove the absolute convergence. Another 

difficulty is the fact that each formal solution is a binary tree instead of a series, by which it is 

no longer sufficient for the convergence to prove that the ratio of two successive terms has a 

limit smaller than one. 

If the questions raised above are answered, then the question arises which formal solu

tions should be linearly combined to get the equilibrium distribution {Pm.n,r}. i.e. to get a 
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solution which also satisfies the equilibrium equations for the axes and the origin. For the 

general case we are not able yet to answer all these questions, but for random walks with the 

projection property we are. The 2 x N switch has this property. 

Remark 4.1 (about Assumption 3.1 and special cases) 

In each compensation step it may happen that a special case occurs when computing the new 

product-form factor or the coefficient of the corresponding compensation term. For example, 

as we have seen at the beginning of Section 3, for a compensation term ad:m~n'f added to 

compensate for an error of a product form am ~n.( on the boundary plane m = 0, a special 

case occurs if the numerator or denominator of It (~, y) is equal to zero or if the denominator 

of the coefficient a vanishes. To avoid that such special cases have to be taken into account 

we introduced Assumption 3.1. However, if this assumption is not satisfied, then one could 

try to determine the eqUilibrium distribution in an alternative way (because of symmetry, it 

suffices to treat only the case that part (i) is not satisfied): 

If LO,t2,t3)eTQ 1.12.13 =0, then the numerator of 11 (~, y) is identical to zero and each com

pensation term on the boundary plane m = 0 gets an a-factor equal to zero. Such com

pensation terms do not introduce new errors on the other two boundary planes and there

fore they should not lead to the generation of more compensation terms. In this case, 

constructing series of terms am~nyr +aom~nyr by alternately compensating on the 

boundary planes n = 0 and r = 0 could lead to finding the equilibrium distribution. 

If L(-1,12,t3)eTQ-l,t2,t, =0 (which, as one can easily check, is the case for the symmetric 

longest queue system; see Zheng and Zipkin [35] and Flatto [20]), then the denominator 

of I 1 (~, y) is identical to zero and the compensation approach cannot be used at all. In 

this case one could try to determine the equilibrium probabilities Pm.n,r iteratively: first 

for m =0, next for m = 1, etc. 

If Assumption 3.1 is satisfied, then only incidentally a special case may occur. In that case, in 

general the formal solutions will not reduce to finite sums and one has to require that Condi

tion 4.1 is satisfied. Then for each formal solution starting with an appropriate starting solu

tion (see Condition 4.2) all factors of its product forms will be well-defined and nonnull, i.e. 

the denominator and the numerator of the functions fi(.,.) never vanish for the relevant values 

of the domain variables (see Lemma 4.4). The only special case that still might occur is that 

the denominator in the definition of one of the coefficients vanishes. If this happens for one 

of the formal solutions needed for the equilibrium distribution, then this indicates that the 

equilibrium distribution does not only consist of product forms an~n'f but also of alternative 

terms such as mam ~nyr (see also Section 7 of [8]). Fortunately this is never the case for ran

dom walks with the projection property. 

S. The projection property 

To be able to continue the analysis which we performed for the class of strongly homogene

ous, nearest-neighboring random walks in the Sections 3 and 4, we would like to have some 

extra information. This extra information is obtained by the introduction of the so-called pro

jection property, which is described in this section. This property is defined in such a way 
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that the marginal distributions of the equilibrium distribution {Pm,n,r} may be characterized 

as the equilibrium distributions of one- and two-dimensional random walks. This characteri

zation enables us to derive explicit formulae for the marginal distributions. Besides, as we 

shall see in the next section, the projection property also leads to an important simplification 

for the coefficients av , bv and Cv of a formal solution. 

Consider the class of three-dimensional, irreducible, positive recurrent, strongly homo

geneous, nearest-neighboring random walks; see Assumption 2.1 of Section 2. In the next 

sections we shall restrict ourselves to the subclass of random walks which also have the pro

jection property. 

Since the formal definition of the projection property is rather complex, we first describe 

this property for the class of two-dimensional, homogeneous, nearest-neighboring random 

walks; see Figure 1. In general words, for a random walk of this class the projection property 

is described as follows. For all states at the vertical boundary the set of outgoing transitions 

is a kind of projection of the set of transitions for the interior points, and similarly for the hor

izontal boundary; for the origin the set of transitions is the projection of the set of transitions 

of both the vertical boundary and the horizontal boundary. For the vertical boundary for 

example, this means: the rates Vl,t2 are the same as the rates ql,t2 and the rates qO,t2 are 

equal to the sums of the rates qO.t2 and q-l,t2' So to speak, the set of transitions for the verti

cal boundary is obtained by pushing the set of transitions for the interior against this vertical 

boundary. For the origin the impact of the projection property is a little bit more complex. 

This set of transitions for the origin is obtained by pushing the set for the vertical boundary 

against the horizontal boundary. As a result, we find that the rates 01,1, 00,1. 01,0 and 00,0 

are equal to ql,l (=vl,d, qO,I+q-l,l (=VO,l)' Ql,O+Ql,-l (=Vl,O+Vl,-d and 

QO,O+Q-l,O+QO,-I+Q-l,-1 (=vo,o+vo,-d respectively. As one can easily verify, the same 

rates for the origin are obtained by pushing the set of transitions for the horizontal boundary 

against the vertical boundary. 

Let us now describe the projection property for the class of three-dimensional, homo

geneous, nearest-neighboring random walks. In this case the projection property may be 

described as follows. For all J c I, J # 0, the set of outgoing transitions for the states 

(m,n,r) E M J is a kind of projection of the set of transitions for the states (m,n,r) E M)\U}' 

where i E J. For example, the set of transitions for the boundary plane m = 0, i.e. for M {I}' is 

the projection of the set of transitions for the interior, i.e. for M 0' which means: the rates 

QEi2,t3 are the same as the rates Q 1,t2,t3 and the rates Qb~t}2,t3 are equal to the sums of the rates 

QO,t2,t3 and Q-l.t2,t3· So to speak, the set of transitions for M{l} is got by pushing the set of 

transitions for the interior against the boundary plane m = O. Just like for the origin in the 

two-dimensional case, for the axes and the origin the impact of the projection property is 

more complex. This also follows from the following mathematical description of the projec

tion property. 
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Assumption 5.1 

Projection property: for all JeI, J;¢:. 0, and all transitions (t J,t2,t3) E Tj , we have 

Note that for a random walk with the projection property all transition rates are uniquely 

determined by the transition rates qt
lt t2,t2 for the interior ofthe state space. 

A random walk with the projection property has the nice feature that the transitions for a 

subset of all components are independent of the state of the whole system. This does not 

mean that the marginal distribution for a subset of all components is independent of the distri

bution for the other components, but it does mean that all marginal distributions can be 

characterized as equilibrium distributions of lower-dimensional, homogeneous, nearest

neighboring random walks with the projection property. Queueing systems satisfying the 

projection property are the 2 x N switch and the fork and join model. Of course, the shortest 

queue system violates this property (the random walk describing this system is not even 

strongly homogeneous). 

Since we need the marginal distributions in later sections, we shall now derive formulae 

for them. Let us start with considering the one-dimensional marginal distributions {p~)}, 
{p~2> } and {p~3)}: 

Pm (i) = ~ pm ..... 0 I' E 1 
"" nl>n2,n3 ' :=::;, • 

(nj,n2,n3)eM 

n;=m 

Analyzing these distributions for the component chains/random walks of the full Markov 

chain/random walk does not only lead to explicit formulae for these distributions, but it also 

leads to a simple, necessary and sufficient condition for the ergodicity. Due to the projection 

property, for all states (m,n,r) with m ~ I the total rate to states (m',n',r') with m'=m+t 

equals qp> =L.(t,t2,t3)eTqt,t2. t3' where t is fixed and tE {-I,O,I}, and for all states (O,n,r) the 

total rate to states (t,n',r') equals qll) for t = I and qb1
) +q~( for t = 0; similarly for the n- and 

r-direction. This shows that the distributions {p~)} may be characterized as the equilibrium 

distributions of one-dimensional, homogeneous, nearest-neighboring random walks with the 

projection property; here, the transition rates for the interior are given by the variables q~i) 

defined by (4.4). 

The full random walk will be positive recurrent (=ergodic) if and only if all component 

random walks are positive recurrent, Le. if and only if the component random walks have 

negative drifts. So, for a random walk with the projection property the ergodicity condition 

is: 

q~f > qli) for all i E l. (5.1) 

This condition is assumed to be satisfied, which implies that we have the following geometric 

distributions for the one-dimensional marginal distributions (p~)}: 

(i) - _ ~ ~ >. (5 2) 
[

(i) 1 [ (i) 1 m 
Pm - 1 q~i q~f ,m_O, lEI. . 
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Here, qli) /q~l is the companion solution to 1 of the quadratic equation which is obtained by 

substituting a power in the equilibrium equation for the interior of the i-th component random 

walk. Since these quadratic equations can also be derived from the quadratic equation (3.1) 

by taking two of the three factors ex, ~ and "( equal to 1, we have q\i) /q~l = fie 1,1) for all i E I. 

If q~i) =0 for some i, then all states (mJ,m2,m3) with mi >0 are transient and we can 

restrict ourselves to a lower-dimensional problem. To exclude this special case, we shall 

require that q~i) > 0 for all i. Together with (S.l) this leads to the assumption that 

q~f > q~i) > 0 for all i E I. (S.3) 

This condition implies Assumption 3.1. Given Condition 4.1. condition (S.3) is necessary and 

sufficient for having an irreducible and positive recurrent random walk, since then 

ql,-l,-l>O, Q-l,l,-l>O and q-l,-l,l>O (without Condition 4.1, (S.3) does not guarantee the 

irreducibility, since then one might have the situation with q -1. -1, -1 > q 1,1,1 > 0 and 

qtl>t2,t3 =0 for all other Crt ,t2,t3) E T, for example). 

Let us now consider the two-dimensional marginal distributions, which we denote by 

{p(l,2)} {p(l,3)} and {p(2,3)}: 
m,n ,m,r n,r 

For all i,j E I, i > j, {P~!:m2 } is the equilibrium distribution of the two-dimensional random 

walk with the projection property for which the transition rates are given by 

In general it is not possible to derive explicit formulae for the distributions {P~'!:m2 }. How

ever, in order to ensure the convergence of the formal solutions, we are only interested in 

three-dimensional random walks for which Condition 4.1 holds. Remarkably enough, this 

condition is just strong enough to let the rates q~~'Y2 satisfy condition (1.1) for all i,j E I, i > j. 

As a result, all {P~'(:m2 } can be determined by using the two-dimensional version of the com

pensation approach. 

The compensation approach, which has been developed in [8] for the class of two

dimensional, irreducible, positive recurrent, homogeneous, nearest-neighboring random 

walks satisfying condition (1.1), has been worked out in more detail in [13] for random walks 

having the projection property. For such a random walk the equilibrium distribution may be 

represented as a sum of two alternating series of product-form distributions. We shall further 

explain this main result on the basis of the random walk describing the behavior of the com

ponents n and r, see Figure 4. For the eqUilibrium distribution {p~;.3)} of this random walk, 

the use of the compensation approach shows that 

00 

p~:;.3) = L (_I}k(1_~kl)(~kl)}n(1-nl)(nl)r 
k=O 

+ ~(-I)k(1_~kl)(~kl)n(1-nl))('w))r, n,r;;:';O, n+r;;:'; 1, 

k=O 

(S.4) 
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Figure 4. The transition rates for the random walk which describes the behavior for the 

components n and r; for all states the transitions to themselves have been left out. 

and pfb?) follows from the normalization: 

Pb:cr) = 1 - It p~:~) . 
n,r~O 

n+r~l 

(5.5) 

Here, the first series in (5.4) is a formal solution starting on the vertical boundary n =0 and it 

satisfies the following properties: 

II< All (~~l), ~1) are solutions of the quadratic equation 

~'Y = It q}~:ll ~1-t2'Yl-t3 , (5.6) 
t2,13 E {-I,O,I} 

which is obtained after substituting the product form ~n'Yr in the eqUilibrium equation 

for the interior. This quadratic equation is equivalent to the quadratic equation (3.1) for 

fixed a= I, which implies that the product of the roots ~ of (5.6) for fixed 'Y is equal to 

f2(1,'Y) and the product of the roots 'Yof (5.6) for fixed ~ is equal to h(1,~); 

II< (~bl). y&l» is the unique solution of the equilibrium equations for the interior and the 

vertical boundary n = 0: y&1) is equal to the geometric factor of {p ~3) }, Le. 

y&l) =qP) /q(]( =13(1,1), and ~bl) is the companion solution to 1 of the quadratic equa

tion (5.6) for fixed r=y&l), i.e. ~bl) = f2(1, y&l»; 

II< For all even k, the factors ~Pll and ~111 are chosen such that the sum of the k-th and 

(k + 1 )-th term satisfies the equilibrium equations for the interior and the horizontal boun

dary r=O: ~,Hl =~~l) and ~~l is the companion solution to ~l) of (5.6) for fixed 

~= ~P), i.e. ~111 = f3(1,~~l))lyP); 

II< For all odd k, the factors ~Pll and 'Y~~1 are chosen such that the sum of the k-th and 

(k + 1 )-th term satisfies the eqUilibrium equations for the interior and the vertical 
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boundary n =0: 111~1 =111
) and ~~I~1 is the companion solution to ~P) of (5.6) for fixed 

y=y~l), i.e. ~P~l = 12(1, 111))I13~1}. 

For the factors ~P) and 111
) one may prove that 

1 > -ybl) > ~hl) = ~)l) > itI
) = -IP > ~~I) = ... 

and the ratios 111~1!llkl) for even k and ~P~l~l) for odd k decrease monotonically to 

_1_ = 2q~2f;( d A _ q(2,3)_V(q<2,3»2_4q\::!(q9f;( 

A • I an 1 - (2 3) 
2 q(2,3)+'V(q(2,3»2_4q\::!(q9f.3( 2q-I,J 

respectively, where q(2,3) = l-qfbl) (see [13J, Lemma 2 and the remarks after the Main 

Theorem). As a result, 

~kl~2 I A 1 111~2 I Al 
~kl) ..v A2 and 111) ..v A2 as k~OQ. (5.7) 

Hence, since A }IA 2 < I, the factors ~kl) and y~l) decrease exponentially fast to zero. Similar 

results hold for the second series in (5.4), which is a formal solution starting on the horizontal 

boundary r=O. For this solution the factors ~kl) and n1) are defined by 

~bl) = q12) Iq9( =/2(1,1), yfl) =/3(1,~h1) and for all k ~O: 

YkIJI =n1) , ~kl~1 =/2(1, n1»)Il3kl) if k is even; 

~kI~1 = ~P) , ikl~1 = 13(1,~P)vYk1) if k is odd. 

By (5.7) and a similar result for the factors ~kl) and nl), both series in (5.4) are absolutely 

convergent in all states except for the origin, by which the sum of both series satisfies all 

equilibrium equations except for the ones for the states (0,0), (0,1) and (1,0). By using the 

marginal distributions {p~2)} and {pP)}, it is shown that the solution given in (5.4) and (5.5) 

also satisfies the eqUilibrium equations in these remaining states. 

For the sake of completeness, we also give the formulae for the other two-dimensional 

marginal distributions {p~:;>} and {p~:;) }. For {p~}} we have 

"" p~}) = I:(-ll(l-a.k2»(aF»m(1-112»(112)( 

k=O 

00 

+ I: (-ll(1-<if»(tik2»m(1-n2»(n2
)(, m,r ~O, m+r ~ 1, (5.8) 

k=O 

where the first series represents the formal solution starting on the boundary m = ° and the 

second series is the formal solution starting on the boundary r = O. The factors ai?), 112) , tik2) 
and n2) are defined by -yb2) =/3(1,1), ah2

) =11 (1,Yb2», tih2) =11 (1, 1), ifl) = 13 (tifl) ,I) and for 

all k ~o: 

aF~l =(42), 11221 =h(ai2),1~2), n2~1 =n2), tii':?l =/1 (1,n2»/tiF) if k even; 

112~1 =112), aF~1 =/1 (1,112»)lai2), tik2~1 =tik2), n2~1 =h(tik2
),lyYk2) if k odd. 

Finally, for {p~:;)} we get 



- 31 -

00 

p2:;) = L (-l)k(1-ap»(ap»m(1_pP»(PP)t 
k=O 

.... 
+ L (_I)k(l-&p»(ak3»m(1-M;»(~k3»n, m,n ~O, m+n ~ 1, (5.9) 

k=O 

with pg) =/2(1,1), ag) = 11 (pg), I), ag) = II (l,l), ~~) = 12(a~) ,I) and for all k ~O: 

a);)1 =a~), Pk3)1 =/2(ap),I),1ii3), ~k3)1 =~P), ap)l =/l(~k3),I)lak3) if k even; 

PP)1 =Pk3), ak3)t =/I(pp),I)lap), aP21 =ap), ~P)l =/2(ap),I)113k3) if k odd 

Just like Pb:~), the remaining probabilities Pb~~) and Pb~b2) follow from the normalization 

equation; see (5.5). 

6. The convergence of the formal solutions 

Due to the projection property, we get a considerable simplification in the formula for the for

mal solutions {xg~n,r(a,p,'Y)}, by which we are able to answer the convergence questions put 

at the end of Section 4. 

By the projection property, the transition rates qb~}2,t3 for the boundary plane m =0 are 

equal to q 0,t2.t3 + q -1,12,13' by which the function g) (P, 'Y) defined in (3.5) is identical to one; 

and similarly for g2(a,'Y) and g3(a,p). As a consequence, the formulae for a, b and c in 

Lemma 3.2 simplify to 

A I-a A I_R I_A 
a = - -- a b = _...!-J::... band c = - ~ c (6.1) 

I-a' I-P 1-'Y 

and similar simplifications are obtained for the coefficients av, bv and Cv of each formal solu

tion {xg~n.r(a, P, 'Y)} (see the definition of xm,n,r(a,p, 'Y) in (3.6». Using induction with respect 

to I (v) shows that this results in 

avbvcv = (-Ii (v) (l-nv) (l-Pv) (l-'Yv) for all v e V, (6.2) 

by which formula (4.10) simplifies to 

xg~n,r(a,p,'Y) = L (_l)l(v)(l-nv)a~ (1-pv)P~ (l-'Yv)'Y~, (a,p,'Y)ePj, i eI. (6.3) 
veVj 

So, each formal solution is a kind of alternating sum of pure product-form distributions. 

The most important consequence of the projection property, with regard to the conver

gence, is the boundedness of the product of the coefficients avo by and Cy: 

I aybycy I S; 8 for all v. 

As a result, to prove that x~~n.r( a, p, 'Y) is absolutely convergent, Le. to prove that the absolute 

sum 

abs(xg~n.r(a,p, 'Y» = 1: I (_l)l(v)(l-nv)a~ (l-Py)P~ (1-'Yv)'Y~ I 
yeVj 

converges, it suffices to show that Eve v. I a~ P~'Y~ I < 00, This property, together with Lemma , 
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4.4, forms the basis of the proof of the following theorem. 

Theorem 6.1 

For all i e I and (a,~, y) e Pj: 

OJ x~:n,r(a,~.y) is absolutely convergent/or all states (m,n,r) eMe, where 

Me = {(m,n,r)eM I (m,n,r)eM0 or (m,n,r)eM{j}/orsomejel}; 

(1 (1 
(ii) :E Ix~,n,r(a,~,y) I ~ :E abs(x~,n.r(a,~,y» 

(m,n,r)eMc (m.n,r)eMc 

~ abs(x&'>l,l (a,~, y» + abs(x\i!o,l (a,~, y» 

(l-I~I)(l-lyl) (l-Ial)(l-Iyl) 

abs(x\i)l 0 (a,~, y» abs(x\i)l 1 (a,~. y» 
+ ' , + ' , < 00. 

(l-lal)(l-I~1) (l-lal)(l-I~I)(l-IYI) 

Part (i) of this theorem states that x~~n,r( a,~. y) is absolutely convergent for all states in 

the interior and on the boundary planes. The set of these states is called the convergence 

region Me. It is easily shown that x~) n r( a, ~,y) is not absolutely convergent, Le. 

abs(x~~n,r(a,~,y» diverges, on the axes an'd'in the origin. For example, x~~n,r(a,~,y) is 

shown to be not absolutely convergent for all states (m, 0,0) by considering the terms of a 

path {v(k)} in Vi with Va;) e {2,3} for all k. For this path <Xv(k) = a for all k and I ~V(k) I and 

I YV(k) I decrease monotonically (see Lemma 4.4). so 

abs(x~~ 0,0 (a, ~. Y)) ~ i I (l-<Xv!k) )a~k) (l-~v(k) ) (l-Yv!k) ) I 
k=O 

..., 
~ (1- I ~ I )( 1- I y I ) 1: I (I-a )a

m I = 00. 

k=O 

Part (ii) of Theorem 6.1 is needed in the next section; this part gives a useful upper bound for 

the summation of abs(x~~n.r(a,~,y» over all (m,n,r)eMc and it states that {x~~n.r(a,~,y)} 
can be normalized. 

For the proof of Theorem 6.1, we shall use a recurrence relation for the sums 

x~n,r(a,~, Y), which,as we know, are binary trees of product forms. Therefore, we tem

porary have to extend the domains for the formal solutions {x~~n,r(a,~,y)}, which at the end 

of Section 4 only have been defined for starting solutions (a,~,y)ePi; see (4.10) and the 

definitions of the sets Pi' In the remainder of this section, we ignore the condition that 

(a, ~, y) e Pi has to satisfy the equilibrium equation for the i-th boundary plane and we let 

{x},!!n.r(a.~,y)} be defined for all solutions (a,~,y)eP[, where 

PI' = {(a,~,y)eP I lal < I ~YI } 

and P{ and P{ are defined similarly, but with the condition lal < I~YI replaced by 

I~I < layl and Iyl < la~1 respectively. As one can easily verify, then the following 

recurrence relation holds for all i el and (a,~,y) eP[: 

x~~n,r(a,~,y) = (l-a)am (l_~)~n (l-y)yr - L x~~~;;(<Xv,~v,yv). (6.4) 
veVi 

l(v)=l 
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We shall use this recurrence relation to prove Theorem 6.1 for all (a,~. y) e P f. Remark that 

for all these (a.~, y) the properties for the factors Clv. ~v and Yv given in Lemma 4.4 still hold; 

this lemma will be used to derive two preliminary results. 

If one wants to prove the absolute convergence of a series. i.e. a unary tree. then one can 

try to do this by proving that for all k ~ 0 the k-th term is in absolute value smaller than C k for 

some constant C < 1; in that case the sum of all terms is smaller than 1/(l-C). The analogue 

of this concept for a binary tree is proving that for all k;::: 0 all terms at distance k from the 

origin are in absolute value smaller than Ck for some constant C < lh; in that case the sum of 

the terms at distance k is smaller than 2k C k = (2Cl and the sum of all terms is bounded by 

1/(l-2C). This concept is used to derive a bound for the binary trees x~~n,r(a.,~.'Y) with 

I al. I ~ I. I yl < lh. 

Consider a formal solution {x~~n,r(a.~.y)} with (a,~.y)ePf. Let the real constant C 

satisfy C ;::: max[ I ai, I ~ I • \ y\] Remark that if i = 1 then I a\ < I ~'Y\ and we have 

max[l al. I ~ I , 111 ] = max [ I ~ I. I 'Y 1]; and similarly for the cases i = 2 and i = 3. With the help 

of (i) and (ii) of Lemma 4.2 (property (ii) implies that I Clv I, I ~v I. I Yv I < C for all v) and by 

using induction with respect to I (v) one can show that 

l~v'Yvl SC1(v)+2 if vl(v) = 1. \~v1vl SC1(v)+3 ifv/(v)eI\{l}; 

I Clv'Yv I S C1(v)+2 if vl(v) =2, 

I Clv~v I S C1(v)+2 if vl(v) =3, 

I Clv 'Yv I S C/(v)+3 if VI (v) e I\{ 2}; 

IClv~v IS Ci(v)+3 if v/(v) eI\{3}. 

for all ve Vi. where VI (v) :=i for v =0. This implies that 

l~v'Yvl. IClv'Yvl. IClv~vl S Cl(v)+2 for all veVi• (6.5) 

As a consequence. la~~~'Y~1 S C/(v)+2 for all states (m.n,r) with at most one coordinate 

equal to zero, i.e. for all states (m,n,r) eMc' and, if C < lh, then we find 

8C 2 

abs(x~~n,r(a.~.'Y» S 8 L la~~~Y~1 S 8C
2 L Cl(v) = 1-2C' 

veVj veVi 

which proves the following lemma. 

Lemma 6.1 

Let ieI and (a.~.'Y)ePf. Further, let the constant C satisfy C~max[lal.l~I,IYI] and 

assume C < lh. Then x~~n,r(a,~, 'Y) is absolutely convergent in all states (m,n,r) e Mc and 

b « i) ( A "II) < 8C
2 

a s Xm,n,r a, ..... , 1J - 1-2C 

The upper bound for abs(x~~n,r(a,~,1» given in Lemma 6.1, together with Lemma 4.4(i) 

and the recursion in (6.4), is used to prove the second preliminary result, which is needed to 

prove part (i) of Theorem 6.1. 
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Lemma 6.2 

Let i e I and (a,~, 1) e Pi. Further, assume that min [I ~ I. 111] < 112 if i = 1, min [ I al.lll] <-'l2 

if i = 2 and min [I al. I ~ I ] < 112 if i = 3. Then x~~n.r( a,~, 1) is absolutely convergent in all 

states (m,n,r) eMc. 

Proof. 

It suffices to prove the lemma for a formal solution x~:n.r( a, ~,1), i.e. for the case i = 1. 

W.l.o.g. we may assume I~I S; 111; so I~I <-'l2. Define the path {v(k)} by v (0) =0 and 

v(k) =(2.1 •... ,2) if k ~ 1 and k odd, v(k) =(2,1, ... ,2,1) if k ~ 1 and k even. Further let the 

vectors w(k) for all k ~ 1 be defined by w(k) = (2,1, ... ,2,1,3) if k odd, w(k) = (2,1, ... ,2,3) 

if k even (w(k) follows from v (k-I) by adding a 3). Then by using (6.4) one can show that 

00 

abs(x~:n,r(a,~,l» = ~ I (l-CXv(k) )a't> (l-~v(k) )~~(k) (l-"(v(k) )l:<k> I 
k=O 

+ i abs(x~:n.r( f1.w(k), ~W(k) ,1w<") » . 
k=l 

By using Lemma 4.4(i) and induction with respect to k it is shown that 

ICXv(k) I S; 1~111Ik+l and I~v(k) I S; 1~llllk if k~O and k even; 

ICXv(k) I S; 1~llllk and I~v(k) I S; 1~111Ik+l if k~O and k odd, 

(6.6) 

by which one can easily see that the first series on the right-hand side of (6.6) converges for 

all (m,n,r) eMc (so, m+n ~ 1; further, note that lv(k) =1 for all k): 

00 

~ I (l-CXv(k) )a'kJ (l-~V(k) )~~(k) (l-lv(k) )1:(1) I 
k=O 

co 

= 11-11111 r ~ I (l-CXv(k) )a,k) (l-~v(k) )~~(k) I 
k=O 

S; 8 i la'k)~~(k) I S; 8 i<l~IIYlk)m+n S; 8 i 1~IIYlk = 81~1 
k=O k=O k=O 1- 111 

Since f1.w(k) = CXv(H) and ~w(lt.) = ~v(H) for all k ~ I, we have 

max[ I f1.w(k) I, 1 ~W(k) I. 1 Yw{t) I] = max[ I f1.w(k) I. 1 ~w(k) I] S; I ~ 1111 k-l 

for all k ~ 1. Combining this result with Lemma 6.1 shows that also the second series on the 

right-hand side of (6.6) converges for all (m,n,r)eMc: 

~ abs(x(3) (N (t) R (t), '1/ (k») S; ~ 81 ~ II YI k-l 
f:t m,n,r '""'W ,tJw IW (':1 1 _ 21 ~ 1111 k-l 

< 00 81~IIYlk-l = 81~1 

- kY:l 1 - 21 ~ I (1- 21 ~ 1)(1- 1 Y I) 

As a result, for all (m,n,r)eMc the sum abs(x~:n,r(a,~,l» is finite, Le. x~:n,r(a,~,y) con

verges absolutely. 0 
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Proof of Theorem 6.1. 

Now we are able to prove part (i) of Theorem 6. L Let i e I and (a,~, 'Y) e Pt. Define the con

stant C by C = max[l a I, I ~ I , I 'Y 1]. Since C < 1, there is an integer k ~ 0 such that 

CV2k
+

1 < lh. By repeated application of (6.4), we get 

abs(xg~n.r(a,~,'Y» = L 1(1-av)a~(1-~v)~~(I-'Yv),,{:1 
veVi 

I (v)<.k 

+ L abs(x~:~:;(a,~, 'Y». 
veVi 

I (v)=k 

By (6.5), for all v e Vj with I (v) = k, we have I ~v 'Yv I ::; Ck+2 and therefore 

min£! ~v I, I 'Yv I] ::; "Ck+2 = CV2k+l < lh ; 

(6.7) 

and similarly for min[ I av I, I 'Yv I] and min[ I av I, I ~v I]. SO, by Lemma 6.2, for all 

(m,n,r)eMc all terms of the second sum in (6.7) converge. Since this sum, and also the first 

sum in (6.7), consists of only a finite number of terms, we can conclude that for all 

(m,n,r)eMc the sum abs(xg~n.r(a,~,'Y» is finite. i.e. xg~n.r(a,~,'Y) converges absolutely. 

This completes the proof of Theorem 6.1(i). 

Let us now prove the second part of Theorem 6.1. The validity of the first inequality is 

trivial and the third inequality immediately follows from part (i). The second inequality is 

proved as follows. From the definition of Me. it follows that 

(') L abs(x ~,n, r( a,~, 'Y» 
(m,n,r)eMc 

(i) (') = L abs(xd.n.r(a,~.'Y» + L abs(x~,o.r(a,~,'Y» 
(O,n,r)eM(I) (m,O,r)eM{2) 

+ (') (') 
abs(x~,n,o(a,~,'Y»+ L abs(x~,n,r(a,~,'Y». (6.8) 

(m,n, O)eM!3l (m,n,r)eM 0 

By using Lemma 4.4(ii), one easily derives the following bound for the first sum on the 

right-hand side of (6.8): 

co 00 

L abs(x~!n,r(a,~.'Y» = L L L I (l-av) (1-~v)~~ (1-'Yv)"{: I 
(O,n,r)eM{I) n=l r=l veVi 

= ,~v Il-a, I I H, I I ~~L Il-'Y, I I ~~'~, I ~ ~~~(~~;;(;"!;~~ (6.9) 
I 

In a similar way one derives bounds for the other sums on the right-hand side of (6.8), after 

which substitution of all these bounds in (6.8) completes the proof. 0 

7. The eqUilibrium distribution 

Due to the projection property, we have been able to prove that each formal solution 

{xg~n,r(a,~,'Y)} converges absolutely in all states of the convergence region Mc' which con

sists of the interior and the three boundary planes. According to the reasoning given in the 
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last paragraph of Section 3, this implies that each fonnal solution {x~~n,r(a,~,1)} satisfies all 

equilibrium equations for the states in Me having no incoming transitions from states outside 

Me. As one can easily verify, the only states in Me which have incoming transitions from 

states outside Me' i.e. from states on the axes or from the origin, are the states (m, 0, 1), 

(m. 1,0), (O,n, I), (l,n, 0), (O,I,r) and (l,O,r). Let M; be the set of all states for which the 

equilibrium equations are satisfied by a fonnal solution. Then 

M; = {(m1,m2,m3)eM I mi+mj~2 for all i,jel, i *j}. 

Since each formal solution satisfies the equilibrium equations for all states in M;. also 

each linear combination of formal solutions satisfies the equations for this set M;. This gives 

us some freedom in finding a solution which also satisfies the equilibrium equations for the 

states in M'M;. i.e. in finding the equilibrium distribution {Pm,n,r}' Now the question is 

which formal solutions should be linearly combined. or better, which starting solutions have 

to be selected. First, due to the projection property, we are able to derive a nice characteriza

tion for the starting solutions, from which we learn that each set Pi of starting solutions has an 

uncountable number of elements. It appears that out of these uncountable sets of candidates 

only a countable number of starting solutions is needed to obtain a linear combination of for

mal solutions which also satisfies the equilibrium equations for the countable set M'M;. For 

the selection of the appropriate candidates, and also for the choice of the coefficients of the 

linear combination. we shall use the explicit expressions for the two-dimensional marginal 

distributions {p;t;(:m2 } (note that we only were able to derive these expressions after the intro

duction of the projection property). In fact, it is at this point that induction has to be used to 

extend the main result of this paper to general N. Finally, we remark that the problem of 

selecting the appropriate starting solutions did not appear in the two-dimensional case, where 

one gets only a finite number of starting solutions, which all have to be used for the construc

tion of the equilibrium distribution (see [8] and [13]). 

Let us start with the derivation of the nice characterization for the starting solutions 

(a,~, 1) E Pi' Consider a solution (a,~, 1) e P 10 i.e. a starting solution on the boundary m = O. 

Such a solution has to satisfy the equilibrium equations (2.1) and (2.2), Le. (o;.~,1) has to 

satisfy the quadratic equation (3.1) and the equation 

A1 = ~ aAI-/2 1-/3 + ~ f1} A 1-/2 l-t 3 
I-' ~ q -1,t2./3 I-' 1 ~ QO,t2,t3 I-' 1 , (7.1) 

(-1,t2.t3)eT (O,t2,t3)eT 

which is obtained by substituting the product fonn ern ~n1r in (2.2) (see also the definition of 

K(o;,~,1) at the beginning of Section 3). Because of the projection property, the rates qb:t~'t3 

in (7.1) may be replaced by QO,t2. t 3 +Q -l, t2,t3' Subsequently, multiplying both sides of (7.1) 

by a and subtracting (7.1) from both sides of (3.1) leads to 

A 1-12 1-/3 A 1-12 1-/3 
o = L q 1.12.13 I-' 1 - a .I, q -I,t2,t3 I-' 1 . 

(l,/2,13)e T (-1,12.tj)e T 

which shows that a has to be equal to 11 (~,1). Rewriting (3.1) to a quadratic equation in a 
(see (3.3», dividing all tenns by a and next substituting a= II (~. 1) shows that ~ and 1 have 

to satisfy the equation 

(7.2) 
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which is equivalent to (3.1) for fixed a= 1. Finally, we have to evaluate the condition 

0< I al < I ~YI. Let (~, y) be a solution of (7.2) with 0 < I ~ I < 1 and 0 < I yl < 1, then for 

these fixed ~ and y the quadratic equation (3.1) has two solutions: a= 1 and a= II (f),y). 

Since 1> I ~YI. according to Lemma 4.1 (i), the second root a= fl (~, y) satisfies 

o < I al < I ~y I. This proves part (i) of the following lemma; the other two parts may be 

proved along the same lines. 

Lemma 7.1 

(i) (a,~, y) is a starting solution on the boundary plane m = 0, i.e. (a,~. y) e PI, if and only 

if W'y is a solution of the quadratic equation (3.1) for fixed a= 1 and a is equal to 

a= fl (~, y); 

(ii) (a, ~,y) is a starting solution on the boundary plane n = 0, i. e. (a,~, y) e P 2, if and only if 
amyr is a solution of the quadratic equation (3.1) for fixed ~= 1 and ~ is equal to 

~=f2(a,y); 

(iii) (a,~,y) is a starting solution on the boundary plane r=O, i.e. (a,~,y)eP3' if and only if 
am ~n is a solution of the quadratic equation (3.1) for fixed y= 1 and y is equal to 

y= f3(a, ~). 

When reading part (i) of Lemma 7.1, we realize the following. Since the quadratic 

equation (3.1) for fixed a= 1 is equivalent to the quadratic equation for the two-dimensional 

random walk describing the behavior for the components n and r (see (5.6) and Figure 4), all 

product forms -present in formula (5.4) for {p~;.3)} may be extended to starting solutions on 

the boundary m = O. So, what comes up in our mind now is that we have to do something 

with the product forms of the marginal distributions {P~'::m2 }. This thought is strengthened 

by the remarkable property of the formal solutions {x~~n.r(a,~,y)} described in the next para

graph. 

Because of the projection property we were able to derive the explicit formula (6.2) for 

avbvcv , which has led to the simplified formula (6.3) for {x~~n,r(a,~,y)}. Formula (6.3) 

shows that each formal solution is a kind of alternating sum of product-form distributions. As 

a consequence, for each formal solution two terms with the same values for two of the three 

factors av. ~v and Yv vanish when taking the summation over the coordinate belonging to the 

third factor. For example. for a formal solution {x~:n.r(a,~,y)} two terms with the same ~

and y-factor vanish if we take the summation of x~:n.r( a, ~,y) over m = 0 to 00, by which 

:.E x~!n.r(a,~,y) = :.E [(l-ae)a~ (1-~0)~0 (1-Y0)Y0 
m=O m=O 

+ L (-li(P(v» [(l-CXp(v»a;'(v) -(1-av)a~] (1-~p(v»~p(v) (l-YP(v)>Y;(V)] 
veV1\{0} 

vl(v)=1 

Here, the last equality is found after changing summations, which is allowed by Theorem 

6.1(ii). The first term of x~:n.r(a,~, y) does not vanish when summing over m, since this term 

does not have a companion term with the same ~- and y-factor. When summing over n, all 
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terms have a companion term with the same a- and y-factor, by which 

co 

L x2!n.r( a, ~, y) 
n=O 

00 

= L L (-li(p(v»[(1-~p(v»~;(v) -(l-~v)~~] (l-<Xp{v})a;(v) (l-yp(v)lY;(v) 
n=OveV)\{0) 

VI (v)=2 

= 0 for all m, r ;;::. 1; 

and similarly when summing over r. This proves Lemma 7.2 for i = 1; the cases with i = 2 or 

3 are treated in a similar way. 

Lemma 7.2 

Let i,j eI and (al ,a2,(3) e Pi. Then 

I
n (l-at )aT' 

co te l\{ i) 

L x~)I,m2,m3 (al ,a2,(3) = 
m·=O } 0 

if j = i; 

if j * i, 
for all ml ;;::'1, lel\{j}. 

Together with the expressions for the two-dimensional marginal distributions {P~!!m2 }. 

the results stated in the Lemmas 7.1 and 7.2 suggest which starting solutions have to be 

selected and how the coefficients of the linear combination of the corresponding formal solu

tions should be chosen to obtain the equilibrium distribution {Pm,n,r}' We shall now first 

define the suggested linear combination, whereafter it will be shown that the suggested linear 

combination indeed satisfies all equilibrium equations. 

Combining the results of the Lemmas 7.1 and 7.2 gives us the idea to define a linear 

combination of all formal solutions with starting solutions coming from the product forms in 

formula (5.4) for the marginal distribution {p~2;.3)}. Define a~l) = fl (~~l) ,ril) and 

d;~l)=iI(~~l),nl) for all k;;::'O, then, by Lemma i.l(i), all solutions (a~1),~kl),ril) and 

(d;P) ,~P), nl) are starting solutions on the boundary plane m =0. Next, defining 

co co A 

YO) = ~ (-l)kxO) (aO) nO) ~.(l)+ ~ (-l)kxO) (d;O) nO) .t'(l» (m n r) eM 
m,n,r,6.1 m,n,r k ,pk '-rk ~ m,n,r k ,pk ,Jk , " c' 

k=O k=O 

gives us a solution {Y~!n,r}' for which, by Lemma 7.2, 

00 00 00 00 00 tit. 

Ly2;n,r = L(-l)k Lx2:n,r(akl),~p),ril)+ L(-ll Lx2;n,r(d;kl),~~1),nl) 
m=O k=O m=O k=O m=O 

= p~:;.3) for all n.r;;::'1. 

So, when summing {y2;n,r} over the m-component, one gets the marginal distribution for the 

other two components. This indicates that we are on the right track with our search for 

{Pm,n,r }, since this property is satisfied by the equilibrium distribution {Pm,n,r} by definition 

(see the definition of the marginal distributions {P~{!m2 } in Section 5). Summing {Y~:n,r} 
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over n or r leads to: 

~y(l) = 0 for all m,r~ I, .. m,n,r 

00 

~y(l) = 0 for all m,n ~ 1. .. m,n,r 
n=O r=O 

As we see, in this case the result is zero instead of a marginal probability. Fortunately, this is 

corrected by adding linear combinations of formal solutions {x~:n,r( a, p, y) } and 

{x~:n,r(a,p, y)}. 

The definition and properties for {Y~;n,r} are easily extended to solutions {Y~~n,r}' i e 1. 

Let 

akl) = 11 (Pk1), nl), all) = 11 (~kl), nl); 
PF) = h(ak2

) ,n2» , ~F) = 12 (ak2) ,n2»; 

n3) = 13 (ap) ,pP», n3) = 13 (ap) ,~P», 

for all k ~ 0 and let the solutions {y~~n,r}' i e I, be defined by 

Y~~n,r = 1: (_I)kx~:n,r(a~), p~), Yli» + 1: (_l)kx~:n.r(a~) ,~~), 'W», (m,n,r) e Me· 
k=O k=O 

Then for all i,j eI, k,l eI\{i}, k < I, and all mhml ~ 1, it holds that 

{p (k,l) i" J' = i' 
QO mkoml J , 
~ y(i) _ 
.. ml.m2,m3 -

mj=O 0 il j:l:i. 

Obviously, the solution {Ym,n,r} defined as the sum of the solutions {y~~n,r}' i.e. 

Ym,n,r = LY~:n,r' (m,n,r)eMe, 
iel 

satisfies the desired property: for all i e I, k, Ie I\{ i }, k < I, it holds that 

(7.3) 

(7.4) 

Before continuing, we remark that the solution {Ym,n,r}, so far being defined for all 

states (m,n,r) in the convergence region Mc' is well-defined, since all six series constituting 

{Ym,n,r} are absolutely convergent for all states in Mc: 

1: I x~:n,r(a~), p~), ~» I < 00 and 
k=O 

~ I (i) ( A (i) 11 (0 :,(i» I () M . I .. xm,n,r ak ,JJk ,rk < 00, m,n,r e e' Ie. (7.5) 
k=O 

For l:r=ox~;n,r(ak1) ,Pkl
) ,',11), the absolute convergence is proved by using the bound given 

in Lemma 6.1 and the property that the factors Pit) and nl) decrease monotonically and 

exponentially fast (see (5.7»; and similarly for the other series. Further, we have to remark 

that the properties stated in (7.3) and (7.4) have been derived after changing summations; this 

was allowed, since 
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co 

L Llx~~n,r(a~),~~),'Y~i)1 < 00 and 
(m,n,r)eMc k=O 

co 

L L IX~~n,r(&~),~~),ni»1 < 00, ieI, (7.6) 
(m,n,r)eMc k=O 

which is proved by using (7.5), Theorem 6.1 (ii) and the property that all factors of the starting 

solutions (a~) ,~~) ,W» and (&~) ,~~), ni» decrease monotonically and exponentially fast. 

The solution {Ym,n,r} defined for all states (m,n,r) eMc up to now, satisfies two proper

ties. In the first place, since {Ym,n,r} is a linear combination of formal solutions, {Ym,n,r} 

satisfies the equilibrium equations for all states (m,n,r) eM;. Secondly, {Ym,n,r} satisfies 

(7.4). Now, define Ym,n,r on the m-axis by 

Ym,O,O = p2) - L Ym,n,r for all m ~ I, 
n,r<!:O 
n+r<i!:l 

and similarly for the n-axis and r-axis. Finally, define Yo,o,o by 

Yo,o,o = 1 - L Ymj,m2,m3 
(mj ,ml,m3)eM\{(O,O,O)} 

(use (7.6) to show the correctness of these definitions, i.e. to show that the series at the right

hand sides are absolutely convergent). Then {Ym,n,r} may be shown to satisfy (7.4) also for 

mk =0 and/or ml =0 (see Lemma 7.3), whereafter we are able to finish the proof that {Ym,n,r} 

also satisfies the equilibrium equations for the states outside M;. From this, we may conclude 

that {Ym,n,r} equals the eqUilibrium distribution {Pm,n,r}' 

Lemma 7.3 

Let i eI and k,l eI\{i}, k < I. Then 

L Ym Jom2,m3 = P~;~~I for all mk,m{ ~ O. 
mj=O 

Proof. 

The result stated in (7.4) is extended in two steps. In the first step (7.4) is extended to 

00 

L Ym.,m2,m3 = P~;~~I for all mktml ~O, mk+ml ~ I, (7.7) 

mi=O 

where i e I and k,l e I\ { i }, k < I. This extension is proved by rewriting the expressions for 

Ym,n, r on the axes. For example, for the case i = I, so k = 2 and I = 3, we may rewrite Y O,n, 0 

for all n ~ 1 as (use (7.4» 

"'" co co 

YO,n,O = pCj-) - L Ym,n,r = p~2) - LYm,n,o - L L Ym,n,r 
m,r~O m=l r=lm=O 
m+r~l 

00 00 co 

= p(2) _ ~ Y 0 _ ~p(2.3) _ p(2,3) ~ Y 
n "" m,n, "" n,r - n,O - "" m,n,O , 

m=l r=l m=l 
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which proves that l;;;;=o Ym,n, 0 = P~~'6) for all n ~ 1; rewriting YO,O,r for all r ~ 1 proves the 

extension of (7.4) for the case n = 0 and r ~ 1. In the second step (7.7) is extended to the 

result stated in Lemma 7.3; this extension is proved by rewriting Yo.o,o. 0 

In the final part of the proof of the Main Theorem we have to show that {Ym.n,r} also 

satisfies the equilibrium equations for the states outside M;. For this we shall use the balance 

principle: 

the rate out of a set M' = the rate into this set M', M'cM. (7.8) 

Obviously, for a subset M' consisting of a single state the balance principle is equivalent to 

the equilibrium equation for that state. Therefore {Ym,n,r} satisfies (7.8) for all states of M;. 

Further, by Lemma 7.3, {Ym,n,r} satisfies (7.8) for all subsets of the form 

(7.9) 

where i eI and mj ~O, j e I\{i}, since for such a subset the balance principle is equivalent to 

the eqUilibrium equation in the state (mkoml) of one of the two-dimensional marginal random 

walk describing the behavior for the components mk and ml, k,l e I\{ i}, k < I. For example, 

for the subset M' = {(m,n,r) I m ~O} with fixed n,r ~ 1 the balance principle is equivalent to 

(take the sum of (2.1) over m ~ 1 and add (2.2), after having replaced qb~}2,t3 by 

which is the equilibrium equation for the state (n,r) of the random walk describing the 

behavior for the last two components (see Figure 4). Now, by considering differences 

M 1 \M 2 with M 2cM 1 of the sets given in (7.9) and sets consisting of states of M;, {Ym,n,r} 

may be shown to satisfy also the eqUilibrium equations for the states outside M;. For exam

ple, for all m~ 1, (7.8) is satisfied for the set Ml = {(m,n, 1)In~0} (see (7.9» and (7.8) is 

satisfied for the set M 2 = {(m,n, 1) I n ~1}, since {Ym.n.r} satisfies the balance principle for 

every state of this set. Therefore, {Ym,n,r} also satisfies the balance principle (7.8) for 

M 1 \M 2 = {(m, 0, I)} (since (7,8) for M 1 \M 2 is obtained by subtracting (7.8) for M 2 from 

(7.8) for M 1)' This proves that {Ym,n.r} also satisfies the equilibrium equations for the states 

(m, 0,1), m ~ 1. One can easily check that all other states outside M; may be treated in a 

similar way. Hence we may conclude that {Ym.n.r} satisfies all eqUilibrium equations. Since, 

by the definition of Yo.o,o. the solution {Ym,n,r} already adds up to one, this completes the 

proof of the Main Theorem (cf. the main result stated in [32] for the symmetric case). 

Theorem 7.1 (Main Theorem) 

Pm,n,r = Ym,n,r for all (m,n,r) e M. 

The Main Theorem states that the eqUilibrium distribution {Pm,n,r}' restricted to the inte

rior and the boundary planes, may be written as the sum of six alternating series of alternating 

binary trees of product-form distributions. Looking in less detail, we can say that {Pm,n,r} 

may be written as one (alternating) sum of product-form distributions. As we know, all these 
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product forms, and also all product forms appearing in the formulae for the marginal distribu

tions, are solutions of the equilibrium equation for the interior, i.e. of the quadratic equation 

(3.1). By considering the definitions of all factors, we may conclude that all these product 

forms are obtained by taking the trivial solution (1,1,1) of (3.1) and generating new solutions 

of (3.1) by letting one factor free each time. The tree of solutions which we get in this way is 

depicted in Figure 5. 

(1,1,1) 

Figure S. All relevant solutions of (3.1) needed for the equilibrium distribution {Pm,n,r} 

and all its marginal distributions. 

Using this tree of product forms enables us to give more compact formulae for {Pm,n,r} 

and its marginal distributions. Let V be the set of vectors given in Section 3. Define 

(<Xcz,'~0' 10)=(1,1,1) and let for all other vectors v E V the factors of (<Xv'~v, 1v) be defined by 

<Xv = 11 (~p(v),1p(v»)I(Xp(v)' ~v = ~p(v), 1v =1p(v) if vl(v) = 1; 

<Xv = (Xp(v) , ~v = 12 «(Xp (v).1p (v»!l3p (v) , 1v = 1p(v) if v/(v) =2; 

av=(Xp(v) , ~v=~p(v). 1v=h«(Xp(v).~p(v»)lyp(v) if Vl(v) =3. 

Then the set of all solutions depicted in Figure 5 is given by 

p* = {(<Xv,~v' 1v) I v E V } . 

For each solution (av'~v,'Yv) in this set. all factors are real numbers in the interval (0,1] and 
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therefore p. may be partitioned into the subsets 

Pj = {(al.a2.a3) e p. I ai < 1 for all ie J and ai = 1 for all i ft. J } , Jc I. 

As one can easily check. for the marginal distribution {pW} only the unique solution 

(tlv.~v,'Yv)eP· with <Xv < 1 and ~v='Yv= 1 is needed: 

p~) = 1: (_1)'(v)-1 (l-av)a~ = (l-a(l)a(,h, m 2'=0; 

(a,..~ •• Yv)ePil) 

and similarly for {p~2)} and {p~3)}. Considering the formula for {p~:;)} shows that {p~:;)} 

consists of the product forms ±(l-av)a~ (l-~v)~~ with (<Xv.~v.'Yv)eP· and tlv < 1, ~v < 1 

and 'Yv = 1, where the sign depends on the distance between the node v and the node 0: 

p~:;) = 1: (-li(v)-2 (l-av)a~ (1-~v)~~' m,n 2'=0, m+n;=: 1; 

(a,..Pv, Y.) e Pi 1.21 

and similarly for {p~:;>} and {p~:;)}. Finally, for the eqUilibrium distribution {Pm,n,r} all 

solutions (<Xv.~v' 'Yv) e p. with <Xv < 1, ~v < 1 and 'Yv < 1 are needed: 

Pm,n,r = 1: (-li(v)-3 (1-<Xv)a~ (1-~v)~~ (1-'Yv)'Y~, (m,n,r) eMc• (7.10) 

(a,.,Il.,Y.) ePi 

Together with the expressions for the equilibrium probabilities for the axes and the origin, 

this formula represents an alternative formulation of the Main Theorem. In Section 9 it is 

shown that the above formulae may easily be extended to random walks with dimension four 

or more. 

8. Numerical analysis and some results 

After having found the explicit expressions for the equilibrium probabilities in the previous 

section, the question arises how the probabilities and functions of them may be efficiently 

computed. In this section we shortly describe three procedures: a simple procedure. a simple 

procedure with bounds and a sophisticated procedure. For a more extensive description the 

reader is referred to [33]. 

Suppose that we want to compute the equilibrium probabilities Pm,n,r for all states 

(m,n,r) lying sufficiently close to the origin, for example for all states with m, n and r smaller 

than or equal to some threshold. Then one may do this by first computing the eqUilibrium 

probabilities for the states in the convergent region, whereafter the probabilities for the axes 

and the origin may be computed with the help of appropriately chosen eqUilibrium equations. 

Let us focus on the computation of an eqUilibrium probability Pm,n,r with (m,n,r)eMc' 

An expression for this probability is given by formula (7.10). An equivalent, but more 

appropriate formula for computational purposes is given by 

Pm.n.r = 1: 1 {a,. , P.,Yv< l}(-I)I(v)-3 (l-<Xv)a~ (l-~v)~~ (l-'Yv)'Y~. (m,n,r)eMc' (S.I) 
veV 

where 1 {a,., ~v, Y. < I} is equal to 1 if all three factors <Xv, ~v and 'Yv are smaller than 1 and equal 

to 0 else. Both (7.10) as well as (S.1) show that Pm,n,r is equal to a sum consisting of an 
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infinite number of terms, which, for numerical purposes, has to be truncated in some way. By 

Lemma 4.4 (and the behavior of the factors (X.~), ~~), 1,1) and d~), ~~), 'W», for each 

v E V\{0} the factors <lv. ~v' 'Yv are smaller than or equal to the factors (X.p(v), ~p(v), 'Yp(v) of 

the parent P (v). So, the sum is dominated by the terms corresponding to short vectors v E V 

and therefore Pm,n,r may be easily computed within a given relative or absolute accuracy by 

approximating the infinite sum by finite sums consisting of dominant terms. The main dis

tinction between the simple procedure (with or without bounds) and the sophisticated one 

consists of the way in which dominant terms are selected. 

In the simple procedure, one computes finite (partial) sums Pm,n.r(d) consisting of all 

terms up to and including depth d, i.e. all terms corresponding to vectors v with length 

lev) Sd: 

Pm,n,r(d):;: L I{a.,~v,T.< 1}(-li(v)-3 (l-<Xv)(X.~ (l-~v)~~ (l-yv)'Y~ , (8.2) 
v e V(d) 

where V(d) = {v E V Il(v)Sd}, dE /No. Since {Pm,n,r(d)}de lNo constitutes an (alternating) 

sequence with limit Pm,n,r> the probability Pm,n,r may be determined by successively comput

ing Pm,n,r(d) for d = 0,1, .. '. This computing process should be stopped as soon as for some 

d the relative or absolute error of Pm,n,r(d) with respect to Pm,n,r is sufficiently small. An 

indication of the magnitude of this error is given by the difference between Pm,n,r(d) and 

Pm,n,r(d-I). 

In the simple procedure with bounds, one uses a bound for I Pm,n,r - Pm,n,r(d) I to deter

mine when the computing process has to be stopped. Such a bound is given by 

I Pm,n,r -Pm,n,r(d) I S L I 1 {a.,~v,Yv < 1} (_1)1 (v)-3 (l-<Xv)(X.~ (l-~v)~~ (l-'Yv>'Y: I 
veVW(d) 

S L (X.~ ~~'Y: 
veVW(d) 

= L bm,n,r(v) , (8.3) 
veV,I(v)=d 

where bm,n,r(v) is the sum of the terms (X.~~!'Y~ over all vectors w corresponding to the 

nodes, except v itself, of the subtree starting at node v: 

bm,n,r(v) = L (X.~~! y~ 
w eS(v)\{v) 

with 

S (v) = {w E V I I (w ) ~ I (v) and Wk = Vk for all k = 1, ... ,I (v) }, V E V. 

In fact, bm,n,r(v) gives an upper bound for the absolute error when approximating the sum 

over all terms of a subtree S (v) by its dominant term corresponding to v. 

Instead of being able to compute bm,n,r(v), we are able to derive a computable upper 

bound which also suffices for our purpose. To find such an upper bound we consider ratios of 

connected terms of a subtree S (v). For a vector W E S (v), w;t v. the ratio of the term 

corresponding to w and the term corresponding to its parent P (w) is given by 

A \(Uw/(X.p(w»m = (hl(~w,Yw»m if wl(w) =1; 
(X.mpnyr 

m ~n w w r = (~Ap(w»n:;: (h 2(Uw,Yw»n if Wl(w) =2; 

(X.p(w) p(w)'Yp(w) (AI)r _ (h ( A »r'f 3 
YW f Ip(w) - 3 <X.w'Pw 1 Wl(w) = , 
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where the function h 1 (~, y) is defined as the ratio of the smallest root a and the largest root a 
of the quadratic equation (3.1) for fixed ~ and y with ~, y e [0, 1] (since both roots may be 

shown to be real, hl(~,'Y) is a real valued function); and the functions h2(a,'Y) and h3(a,~) 

are defined similarly. Since the functions hj(' ,.) may be shown to be increasing in both argu

ments and since, by Lemma 4(H), all factors Ow, ~w and 'Yw are smaller than a", ~v and Yv, we 

find that 

m~n r l(hl(~V''Yv»m if W/(w) =1; 

m a;n w'Yw r S; (h 2(a",'Yv»n if wl(w) =2; 

ap(w) p(w)'Yp(w) (h3(N,Rv»r 
""V ... if Wl(w) =3. 

Define Xl =(h 1 (~v,'Yv»m. X2 = (h 2(a".'Yv)t and X3 =(h 3(a", ~v»r, then by induction one 

may show that 

a~~:''Y~ 
--- S; Yw for all weS(v), 
a,:~~'Y: 

where Yw := 1 for w = v and for all W e S (v )\ { v} the terms Yw are recursively defined by 

I
Xl Yp(w) if wl(w) = 1; 

Yw:= X2 Yp(w) if wl(w) =2; 

X3Yp(w) if Wl(w) =3. 

As a consequence, 

bm,n,r(v) S; bm,n,r(v) , 

where 

bm,n,r(v) := a': ~~ 'Y: L YW' 
weS(v)\{v} 

(8.4) 

As one can easily see, the values of the terms Yw only depend on X I , X 2 and X 3. The 

sum of all Yw also depends on the kind of subtree S(v) we have. In case v;t; 0, the subtree 

S (v) is a binary tree (if v = 0, then v itself has three successors) and the sum of all Yw further 

only depends on vl(v); the value of VI (v) determines which factor Xi is not used when comput

ing the terms Yw for the successors W e 0 (v) of v. Let G (i) (X 1 ,x 2,X 3) denote the sum of all 

terms Yw of a subtree S(v) with v ;t; 0 and vJ(v) =i. Then, by using elementary algebra, one 

may prove that the geometric tree G(i)(x l,X2,X3) converges absolutely if and only if 

d(XttX2,X3) := 1- (XIX2 +xlx3 +X2x3 +2XIX2X3) > 0, 

and if (8.5) is satisfied then 

G(i)(XltX2,X3) = L Yw = 1 n (l +Xk)' 
weS(v) d(Xl,X2,X3) kel\{i) 

Combining (8.4) and (8.6) shows that bm,n,r(v) is bounded by 

(8.5) 

(8.6) 

bm,n,r(v) = a':~~'Y:(G(Vl(V»(Xl,X2.X3)-I), veV\{0}, (8.7) 

provided that d(XJ,X2,X3»0. Together with (8.3) this bound is used in the simple 
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procedure with bounds to get an upper bound for the relative or absolute error of Pm,n,r(d), 

d~l. 

In the simple procedure each time the selection of new terms of the sum in (8.1) is based 

on the distance of the indices v of the terms up to the root 0. In the sophisticated procedure it 

is tried to select the dominant terms of (8.1) in a more sophisticated way. This procedure 

computes the sum in (8.1) within a given absolute accuracy by truncating subtrees at different 

depths. A set V' stores the nodes where the computing process still has to be continued. This 

set is initiated by the set of nodes at depth 1. For each node v e V' one stores the solution 

(av,flv,"(v) and the bound bm,n,r(v), i.e. a bound for the absolute error when approximating the 

sum of all terms. except v itself. of the binary subtree starting at v. Further the absolute accu

racy is stored with which the subtree starting at v has to be computed. In the initialization 

step the initial allowed inaccuracy is spread over the three nodes at depth 1 proportionally to 

the values of their bounds bm,n,r(v) (provided that each node gets at least 5%). In each next 

step, one selects a node v of the set V' and computes the contribution of the corresponding 

term. Subsequently, it is checked whether the subtree starting at v may be truncated below v, 

i.e. whether the bound bm,n,r(v) is smaller than or equal to the inaccuracy allocated to v. If 

so, then one can continue with another element of V', otherwise one first has to add two suc

cessors of v to the set V'. Here, again the inaccuracy allocated to v is spread over its succes

sors proportionally to the values of their bounds bm,n,r(v) (provided that each successor gets 

at least 5%). Finally, we remark that an equilibrium probability Pm,n,r for a state in the con

vergent region Me may be computed within a given relative accuracy by applying the sophis

ticated procedllfe for decreasing values of the allowed absolute inaccuracy. 

In Table 1, the performance of the three procedures is compared on the hand of the com

putation of the equilibrium probability P 0,1,1 for the symmetric 2 x 3 switch. Le. the 2 x 3 

switch with equal arrival rates rl = r2 = r, where r e (0, 1], and rk,l = 1/3 for all k and I (see 

Example 2,2). For all cases an absolute accuracy of 10-6 has been required. In the first two 

columns the range of chosen values of r and the corresponding values of PO,I,1 are depicted. 

In the fourth column the number of computed terms of the sum in (8.1) is given, while the 

fifth column denotes the number of computed relevant terms, i.e. the number of computed 

terms for which av, flv, "tv < 1. The third column denotes the maximal depth reached during 

the computing process, i.e. the maximal length of the indices v of the computed terms. For 

the simple procedure with or without bounds this value is equal to the smallest d for which 

PO,I,I (d) approximates PO,I,1 within the required accuracy. The sixth column gives the upper 

bound for the absolute accuracy with which Po I 1 has been computed. Of course, for the 

simple procedure with bounds this value is equal' t~ the sum of the bound bm,n,r(v) over all v 

at depth d (see (8.3», i.e. the depth depicted in the third column. For the sophisticated pro

cedure this value is equal to the bound bm,n,r(v) summed up over all v where subtrees have 

been truncated. In the simple procedure without bounds we have used 

IPm,n,r(d)-Pm,n,r(d-1) I as an indication for the absolute accuracy of Pm,n,r(d). where dis 

assumed to be larger than or equal to 3 since Pm,n,r(d) =0 for d =0,1,2. Finally, in the last 

column the absolute accuracy itself has been depicted. These values have been computed 

after having determined P 0,1, I with a smaller absolute accuracy. 
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procedure 
A 

depth 
relevant error absolute 

r PO,l,} terms 
bound terms error 

simple 0.01 0.000000 3 22 6 2.8.10-15 6.9.10-25 

procedure 0.2 0.000000 3 22 6 2.3.10-7 1.0.10-11 

without 0.4 0;000020 4 46 24 1.6.10-8 6.1.10-12 

bounds 0.6 0.000323 5 94 66 3.4.10-9 7.6.10-12 

0.8 0.002593 5 94 66 4.2.10-7 3.4.10-9 

1.0 0.013901 6 190 156 6.4.10-7 1.6.10-8 

simple 0.01 0.000000 3 22 6 2.8.10-15 6.9.10-25 

procedure 0.2 0.000000 3 22 6 2.1.10-7 1.0.10-11 

with 0.4 0.000020 4 46 24 3.1.10-7 6.1.10-12 

bounds 0.6 0.000323 5 94 66 5.0.10-7 7.6.10-12 

0.8 0.002593 7 382 342 1.1.10-7 2.7.10-13 

1.0 0.013901 9 1534 1482 1.5.10-7 3.3.10-13 

sophis- 0.01 0.000000 2 10 0 2.5.10-10 2.8.10-15 

ticated 0.2 0.000000 3 14 2 6.5.10-7 2.3.10-7 

procedure 0.4 0.000020 5 34 12 2.7.10-8 1.6.10-8 

0.6 0.000323 6 54 26 4.8.10-8 1.3.10-9 

0.8 0.002593 7 78 46 3.7.10-7 1.6.10-7 

1.0 0.013901 9 134 92 5.5.10-7 2.2.10-7 

Table 1. Performance characteristics for the computation of P 0,1,1 with absolute accuracy 

10-6 for the symmetric 2 x 3 switch. 

Table 1 shows that for the simple procedure with bounds a lot more (relevant) terms 

have to be computed than for the sophisticated procedure. especially for high values of r (Le. 

for high workloads). This seems to be caused by the bad quality of the upper bound used for 

the absolute accuracy (compare the values in the last two columns). Probably. this bad qual

ity is mainly due to the use of the bound bm,n,r(v), or better bm,n,r(v). at nodes v for which at 

least one of the factors of (av, ~v. "tv) is equal to one. The subtree starting at such a node v has 

a whole series of nodes w with <X.w. ~w or "tw equal to one. Since the contribution of these 

terms is equal to zero for Pm,n,r> but equal to (X~~!'fw for bm,n,r(v). a large gap arises between 

the upper bound for the absolute accuracy and the absolute accuracy itself, especially when 

we are at a node v near the root of the tree. The sophisticated procedure overcomes the prob

lem caused by the bad quality of bm,n,r(v), and of bm,n,r(v), for nodes v with at least one of 

the factors avo Pv and "tv equal to 1, by going deeper in the tree at such nodes than at other 

nodes. As a consequence. the sophisticated procedure performs much better than the simple 

procedure with bounds. The results in Table 1 also show that in the simple procedure without 

bounds the indication IPm,n,r(d)-Pm,n,r(d-l) I appears to serve as a good upper bound for 

the absolute accuracy of Pm,n,r(d). Therefore this procedure may serve as a good alternative 
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for the sophisticated procedure (in case one wants to minimize the programming work, for 

example). 

Except for the equilibrium distribution, the above procedures may also be used for quan

tities such as moments of queue lengths (however, note that for a moment IEQ~1 Q~2 Q~3 • 

where Qj denotes the length of the queue at server i, it suffices to analyze a 2 x 2 switch in 

case one or more of the powers kj equal to 0) and the distribution of the number N of non

empty queues at the beginning of a time unit. Let the probability that N equals i be denoted 

by p (i). By using (8.1), we find 

00 00 00 

p (3) = :E L :EPm,n,7 
m=l n=l 7=1 

- ~ 1 ( 1)I(v)-3 am t:v. 7 
- LI {a",Pv,'Yv < I} - v I-'v"tv (8.8) 

veV 

and a similar expression may be found for P (2); P (0) = P 0,0,0 and P (1) follows from the pro

perty that the probabilities P (i) add up to 1. The sum in (8.8) may be computed in the same 

way as the sums for the equilibrium probabilities given in (8.1) and one may use the same 

bounds. 

A " 
A 

A 

system r p(O) p(1) p(2) p(3) J,l(N) a(N) eveN) 

2x3 0.01 0.9801 0.0198 0.0001 0.0000 0.02 0.140 7.024 

switch 0.2 0.6302 0.3397 0.0299 0.0002 0.4 0.548 1.371 

0.4 0.3345 0.5336 0.1294 0.0025 0.8 0.659 0.823 

0.6 0.1302 0.5549 0.2997 0.0152 1.2 0.671 0.559 

0.8 0.0245 0.4091 0.5084 0.0580 1.6 0.636 0.398 

1.0 0.0000 0.1732 0.6536 0.1732 2.0 0.589 0.294 

indepen- 0.01 0.9801 0.0198 0.0001 0.0000 0.02 0.141 7.047 

dent 0.2 0.6510 0.3004 0.0462 0.0024 0.4 0.589 1.472 

servers 0.4 0.3944 0.4302 0.1564 0.0190 0.8 0.766 0.957 

0.6 0.2160 0.4320 0.2880 0.0640 1.2 0.849 0.707 

0.8 0.1016 0.3485 0.3982 0.1517 1.6 0.864 0.540 

1.0 0.0370 0.2222 0.4445 0.2963 2.0 0.816 0.408 

Table 2. The distribution of the number of working servers during a time unit for the 

symmetric 2 x 3 switch; the second part gives the distribution for independent servers. 

A 

Out of the distribution of N. one can easily compute the distribution of the number N of 

working servers during a time unit. In Table 2 this distribution <PU) denotes the probability 
" "" 

that N equals i), and also its first moment J,l(N), deviation a(N) and coefficient of variation 
A 

ve(N), are given for the symmetric 2 x 3 switch. In the second part of the table the same 
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quantities are depicted for the corresponding system with independent servers, i.e. the system 

consisting of three, parallel servers where each server has two Bernoulli streams of arriving 

jobs with rate r/3. The results in Table 2 show that for all values of r the 2 x 3 switch has a 

smaller variability in the number of working servers than the system with independent 

servers, which, of course, is due to the (negative) coupling between the streams of arriving 

jobs. For large values of r this coupling has a considerable impact, while for small values of r 
the impact is almost negligible. 

9. N-dimensional random walks 

All results derived in the previous sections for three-dimensional random walks may easily be 

extended to N-dimensional random walks with general N;:: 2. In this section the main results 

are gathered. As the reader can easily check, all these results also appear to hold for the case 

N=l. 

Consider an N-dimensional, irreducible, positive recurrent, strongly homogeneous, 

nearest-neighboring random walk with state space 

M = {(m 10 •.• ,mN) I mj e IN 0 for all i e I } • 

where N ;:: 2 and I := { 1, ... ,N}. For such a random walk, the set of feasible transitions for 

the interior points is given by 

T = {(t 1 , ••. , tN) I tj e {-I, 0, I} for all i e I } 

and the corresponding transition rates are denoted by qt/, ... ,tN (assume that 

1:(t}> ... ,IN)eTqt/, ... ,tN = 1). The equilibrium equation for the interior points is given by: 

Pml ..... mN = L q'/ .... 'INPml-I}> ... ,mN-IN' mj >0 for all iel. (9.1) 
(11,· .. ,IN)eT 

To determine the eqUilibrium distribution {Pm 1 ••••• mN} one can use the compensation 

approach, which tries to construct a solution of all equilibrium equations by linearly combin

ing product-form solutions which satisfy the equilibrium equation (9.1) for the interior. By 

substituting the product form n f=l ari into equation (9.1), it follows that this equation is 

satisfied if and only if (aI, ... ,aN) satisfies the quadratic equation 

(9.2) 

Without explicitly defining the formal solutions constructed by the compensation approach, 

we can say the following. To avoid special cases one has to assume that 

L ql/, ... ,IN> 0 and L qt1, ... ,tN > 0 for all iel, (9.3) 
(I" ... ,IN)eT (tl •... ,IN)eT 

1;=1 1;=-1 

i.e. for all interior points and each coordinate direction, both the total rate in the positive 

direction and the total rate in the negative direction have to be positive; if this assumption is 

not satisfied then one may use an alternative method (see Remark 4.1). If (9.3) is satisfied, 
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then, for the sake of the absolute convergence of the formal solutions, (in general) one has to 

require that the transition rates qll"" ,IN for the interior points satisfy the necessary condition 

(cf. (L1) and (4.3) and cf. condition (12) stated in [32]) 

q'I"" ,IN = 0 if ti+tj > 0 for some i,j e I, i ¢ j. (9.4) 

Further, for each formal solution the starting solution also has to satisfy an equilibrium equa

tion for one of the boundary planes, by which each formal solution reduces to an (N -1 )-ary 

tree of product forms. This second condition does not restrict the applicability of the com

pensation approach, but the condition stated in (9.4) does, especially for N~3. However, for 

N~3 there still is a queueing system satisfying (9.4): the 2xN switch. The questions 

whether condition (9.4) is also sufficient for the absolute convergence of the formal solutions 

and which formal solutions should be linearly combined, i.e. which starting solutions have to 

be taken, to get the equilibrium distribution are still open. We are able to answer these ques

tions for random walks which also satisfy the projection property. 

Consider an N-dimensional, irreducible, positive recurrent, homogeneous, nearest

neighboring random walk with the projection property (remark that these raildom walks form 

a subclass of the class described in the previous paragraph, since the homogeneity and the 

projection property imply strong homogeneity). For a random walk of this class, (9.3) is 

always satisfied, since 

L qll, ... ,tN> L q'It ... ,tN > 0 for all ie/, (9.5) 
(tit··· ,tN)eT (II' ... ,tN)eT 

~-1 ~l 

which is necessary and sufficient for the random walk to be positive recurrent; together with 

(9.4), this condition also guarantees the irreducibility. Further, for such a random walk condi

tion (9.4) may be shown to be also sufficient for the absolute convergence of the formal solu

tions, at least for all states (m 1 , ••• ,mN) with mi = 0 for at most one i e I. 

By using induction with respect to N, we now can prove that the eqUilibrium distribution 

and all its marginal distributions are equal to alternating sums of pure product-form distribu

tions, where all product forms are obtained by taking the trivial solution (1, ... , 1) of the qua

dratic equation (9.2) and generating new solutions of (9.2) by letting one factor free each 

time. Let the set of vectors V be defined by 

V = {(v 10 •.• ,VI) 11 e IN 0, v I e I and Vk e l\{ Vk-l } for all k ~ } . 

Next, define (al,0' ... ,aN,0)=(1, ... , 1) and let for all other vectors ve V the factors of 

(al,v, ... ,aN,v) be defined by 

{

Ji(a1,p(V)' ..• ,ai-l,p (v), aj +1 ,p(v), ... ,aN,p(v)Yai,p (v) if vl(v) = i; 

ai,v = q,p(v) if vl(v) ¢ i, 

where p (v) and 1 (v) are the parent and the length of a vector v and the function 

!i(alo ... ,ai-ltai+l, ... ,aN) denotes the product of the two roots of the quadratic equation 

(9.2) for fixed al> ... ,aj-l ,ai+lt ... ,aN' Then the set of all relevant product-form solu

tions is given by 

p* = {(al,v,'" ,aN,v) I v e V} . 

For each solution (al,v • •••• aN,v) of this set, all factors are real numbers in the interval (0,1], 
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so we can partition P * into the subsets 

P j = {«(Xl,"" (XN) E P * I (Xi < 1 for all i E J and (Xi = 1 for all i ~ J }, J c l. 

The solutions in a set pj are just the ones needed to describe the equilibrium behavior of the 

components which belong to J. 

Theorem 9.1 (extension of Theorem 7.1) 

Let {p~::::: :~:} be the equilibrium distribution for the components it, ... ,iL, where 

1 SL SN and 1 Sj 1 < ... <iL SN. Define J = {it, ... ,jN}, then 

(9.6) 

for all (m 1 , ••• ,md with mi ~ 0 for all i = 1, ... ,L and mi = 0 for at most one i. 

Remark that according to the notation used in this theorem the distribution {Pm I, •.. ,mN} for 

the full Markov chain/random walk is denoted by {p~;;:: :~~N}' Further, note that all equili

brium probabilities p~::::: :~1 for the states for which formula (9.6) does not hold. may be 

determined with the help of the marginal distributions of {p~::: : : :~1 } or with the help of the 

equilibrium equations of the random walk for the components j 1 •••• ,iL. Since the random 

walk describing the behavior of the 2 xN switch has the projection property and satisfies con

dition (9.4), Theorem 9.1 may be applied to the 2 x N switch to determine the eqUilibrium dis

tribution and/or other interesting quantities such as the moments of the total number of jobs in 

the system. Here, one can use the three procedures described in Section 8; these procedures 

and the bounds used by them, which have been described in Section 8 for the three

dimensional case, may be easily extended to the N-dimensional case. 

10. Final conclusions and suggestions for future research 

The goal of this paper was to investigate for which multi-dimensional, irreducible, positive 

recurrent, homogeneous, nearest-neighboring random walks the compensation approach 

works, in particular for which random walks with dimension three or more. First, for the sub

class of strongly homogeneous random walks, we have derived the necessary condition stated 

in (9.4), but this condition may be shown to hold also for the whole class. Next, we have 

shown that this condition is necessary and sufficient for the subclass of random walks with 

the projection property. For such a random walk, using the compensation approach shows 

that the eqUilibrium distribution may be written as a kind of alternating sum of pure product

form distributions. As we saw in Section 8 for the three-dimensional case, this last result may 

lead to an efficient algorithm for the computation of the eqUilibrium distribution and the 

quantities which are deducible from it. 

From the research in [8] we know that for the two-dimensional case the condition stated 

in (9.4) is also sufficient for random walks without the projection property. Whether this also 

holds for the N-dimensional case with N ~ 3 is not known yet. We believe that for N ~ 3 the 

condition in (9.4) has to be extended a little bit. We conjecture that for a (strongly) 
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homogeneous, nearest-neighboring random walk the compensation approach works if and 

only if for all J c I 

(10.1) 

As one can easily check, for random walks with the projection property this condition is 

equivalent to (9.4). Future research should confirm our conjecture. However, since for three

and higher-dimensional random walks the condition is that severe that almost no queueing 

problem satisfies this condition, other topics might be more interesting. Recently the com

pensation approach has been shown to be successful for the two-dimensional, symmetric 

shortest queue system with Erlang distributed service-times, see [4], This problem is in the 

class of two-dimensional, homogeneous random walks where for each state transitions are 

allowed to all states within a given distance. Probably for this class the necessary and 

sufficient condition (1.1) for the application of the compensation approach is still valid. 

Future research should confirm this. The problem studied in [4] appears to satisfy this condi

tion. A more important topic for future research, but also a more difficult one, is finding a 

new method similar to the compensation approach for two-dimensional random walks which 

violate condition (1.1). Such a new method maybe can be extended to a method for a less 

restrictive class of three- and higher-dimensional random walks. 

If it is not possible to develop a method for the three- and higher-dimensional random 

walks which violate (9.4). then one can only use numerical methods. such as truncation, for 

the computation of the equilibrium distribution and the relevant performance measures. In 

general these methods are rather rough, by which they consume large amounts of computing 

time. Therefore, finding more sophisticated and less expensive numerical methods could also 

considerably improve the present situation. For some particular problems such methods are 

already available. For example, for the symmetric shortest queue system with N ~ 2 servers 

one can use the power series method, see [12], and the methods described in [29] and [1]. In 

the last paper, an upper and a lower bound model have been derived to approximate the mean 

waiting time as accurate as wished. Both models describe a slightly modified system of 

which the waiting time provides an upper or lower bound for the waiting time of the original 

system. Parameters introduced to describe the modifications, determine the impact of the 

modifications and may be varied to determine the waiting time within a given accuracy. Both 

modifications are such that the N-dimensional state space of the Markov chain which 

describes the symmetric shortest queue system is made finite in exactly N -1 directions, by 

which the waiting times of the modified systems may be determined with the help of the 

matrix-geometric approach (see [30]). Future research has to make clear whether this tech

nique is also appropriate for the whole class of random walks studied in this paper. 
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