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THE EQUILIBRIUM OF DISTORTED POLYTROPES
(I). THE ROTATIONAL PROBLEM.

S. Chandrasekhar.
(Communicated by E. A. Milne)

§ 1. Emden’s well-known researches on the equilibrium of polytropic
gas spheres has been of fundamental importance in its repercussions on the
modern theories of stellar structure. But it is a matter of some surprise
that scarcely any serious attempt has been made to extend Emden’s re-
searches to the case of rotating gas spheres which in their non-rotating
states have polytropic distributions described by the so-called Emden
functions.

The problem is exceedingly simple in its classical severity and can be
formulated as follows :—

We have a gas sphere in gravitational equilibrium. It is given that
the total pressure P is related to the density p by means of the relation

141
P=Kp ™ (1)
This defines for the non-rotating gas sphere a distribution of density and
pressure governed by the differential equation

1 df,.d0\ N
)=~ ®
—Emden’s differential equation of index n. Now the gas sphere is set rotating
at a constant small angular velocity w. The problem is to determine the
shape and density distribution in such a gas sphere and explicitly to relate the
structure of such rotating masses with the Emden functions which describe the
polytropic non-rotating state.

§ 2. In treating this problem we shall assume that the rotation is so slow
that the configurations are only slightly oblate. In other words, the purpose
of this paper is to specify completely those configurations for the polytropic
model which correspond to the Maclaurin spheroids 1 in the case of the
“incompressible rotating stellar masses.”

It is thus clear that the point of view and the problem here is different
from that considered by Jeans under the heading ‘‘ Adiabatic-model ” in
his book on The Problems of Cosmogony and Stellar-dynamics (p. 165).
The problem treated by Jeans is to enumerate the complete sequence of
the geometry of the configurations for the whole range of w. Further, the
analysis of Jeans is to establish a general result that a gas sphere rotating
as a rigid body can break up in two distinct ways—either by fission into
two detached masses or by a process of equatorial break-up after assuming

* The significance of £ and 6 are explained later. + For small o.
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a lenticular shape as in the Roche model—according as the central con-
densation is ‘“weak” or ‘“pronounced.” We shall not enter into such
questions—which of course are of fundamental significance in any problem
of cosmogony—but confine ourselves to the comparatively more simple and
elementary problem of specifying completely the “polytropic Maclaurin
spheroids.” Also the fundamental mathematical point of view will be
different from that of Jeans. We will explicitly relate the geometry and
the physical properties of these configurations with the Emden functions
describing the polytropic non-rotating gas spheres.

Substantially the case »=3 has been treated already by Milne * and
von Zeipel.t Indeed it was in this connection that von Zeipel discovered
his fundamental theorem.] The method of solution adopted in the sequel
will in main be that of Milne, to whose memoir the present paper owes a
great deal. :

§ 3. Equations of the Problem.—The equations of mechanical equilibrium
are, taking the Z-axis as the axis of rotation,

oP 6V+ 2y

JNE— p__. w R

0x ox  F

oP oV

= 2

8P_ oV

oz oz’
where V is the gravitational potential, which of course satisfies Poisson’s
equation

ooV
P B @

Introducing polar co-ordinates 7, 8, ¢ and neglecting ¢ on account of sym-
metry we find that

oP oV
5 P, TPe(1-p),
o o 39
a =Pa —pWITL,
where u=cos . Also (4) in these variables reduces to
1 0/ oV\ 1 0 ov
— 2___ Z —u?)., —|=— ¢
A (R R AEEIc )
From (3') and (4") we deduce the fundamental equation of the problem:
1 07 0P 181—M28P>_ .
;2’3—7<;5>+r—25;< P = —4mGp +20?, (5)

* E.A.Milne, M.N., 83, 118, 1923. 1 H. von Zeipel, M.N., 84, 665, 684, 1924.
1 For a general discussion of the whole problem we refer the reader to Milne’s
article in the Handbuch der Astrophysik, Band I11/1, p. 235.
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where
14 '
P=Kp " (6)
§ 4. If we introduce the new variables

1
p=X0%; P=X"a.K.0m, (7)
(5) reduces to
1

e e o

Put
(n+1)K 2.1
[ G ]f (9)
and
~27GX (x0)
We get
I 0f,, 1 0 2@ _ an
§26§<§ §> §28p,<( I—p?) >— Or+o. (x1)

§ 5. Non-rotating Configuration.—If the gas sphere is non-rotating then
w and therefore v is zero. If, further, now

p= Agn’ (7’)
we see that 0 satisfies the differential equation
1 d
2 _ n
)= (:2)

—Emden’s differential equation of index 7.

§ 6. Solution for the Rotating Gas Sphere—We will now seek a solution
of (11) in terms of those of (12), and indeed we will assume the following
form for our solution:—

O=0+0¥+020+ . . . (13)

We shall work consistently only up to the first order in v, i.e. we consider only
such slow rotations that the effects arising from w* can be neglected. ¥
then should satisfy the differential equation, remembering that 6 is a
spherically symmetrical function and therefore independent of v,

19 2 19 2 QF = — n—1
R ()
Now we shall assume for ¥ the following form: *
¥ (&) + 2 AP, (15)

* For a formal justification of this assumption see von Zeipel (loc. cit.), p. 691.
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where the P;(u)’s are the Legendre functions of the various indices, the
function with index j satisfying the differential equation :

P\ . .
%<(I - uz)aa—l:> +j(j +1)P; =o. (16)

Further, the ;s are functions of ¢ only.
Substituting (15) in (14), and using (16) and equating coefficients of P;,
we get

gz ;g <gzd¢°> - g+ 1, (7)
(j=1, 2,0 .

So far the A;’s are arbitrary. To determine them we must evaluate the
potential V. For equation (5) (from which (14) is deduced) contains no
explicit reference to the potential and is the same whatevér the external
gravitational field. To remove this indeterminateness we must use the
solution found (with the arbitrary A;’s) to calculate the potential arising
from the matter and then determine the A4,’s such that the equations of
equilibrium (3’) are satisfied.
Poisson’s equation in the &, u variables takes the form

1 0/, 1 0 ) ﬂ/
e O 1
= —(n+ I)Kxﬁ[en+n0n—lv{¢0+ ZA,%P,.}]. (19)
We develop ¥V in the form (to the first order in o)
V=U+o{ Vo) + SVAOPG (20)

where U is the potential of the non-rotating configuration. Substitution
of (20) in (19) yields on equating the coefficients of P;(u),

§2d§§d§> - Ro% (21)
I d 2 —_ n—1

sl £ = R (22)
1d X ](_1+1) et

5 62 LDy, Ruon-iay, (23)

where we have used the abbreviation
1
R=(n+1)Kk.

Remembering that 6 satisfies the Emden equation with index n we deduce
from (21) that
U = R0 + constant. (24)
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Using the differential equation (17) defining #,, we derive from (22) that

e )

Vo =R(y — $£?) + constant. (25)
Similarly from (23) and (18) we get

1 d<§2 ,> Uty g [I d<§2d¢f>_1ﬁ1_)¢,.]. (26)

Hence

& dg\" dé £ £ dE\” d¢ &
A particular solution of (26) is
V; =RAz); + constant. (27)
The general solution is obtained by adding any regular solution of the
equation
1 d I
fa ) =)
which is RB;¢ where B; is arbitrary. Hence
V; =R(A#);+ B;£") + constant. (29)

Combining the results (24), (25) and (29) we get after some minor rearrange-
ment of the terms (to the first order in v)

14 =R[@ + '0{ ng,-fij(/L) - %52}]. (39)

We have to substitute now (30) in (3’), which in the £, p variables takes the
form
ap _ 6V 2 (n+ I)K ]
2 hw? -

Substituting (30) in the above equation and remembering that

P K. @ni1,
and equating coefficients of P,(n) we find that

Bj = O, j * 2
and
B,=3%. (31)
Finally, we obtain
V =R(0 — §v(£2 — Py(r)é?)) + constant. (32)

We have still to ensure that V' is the acfual potential arising from the mass.
This will determine the A4,’s.
A little consideration shows that (compare Milne (loc. cit.), p. 134) to the
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order of accuracy we are working, the potential (and its derivative) given by
(32) should be continuous with an expression of the type

Vextemal [ +v Z .: 1P (/‘l’)] + constant ‘ (3 3)

on a sphere of radius £, the first zero of the Emden’s function with index #.
Comparing the “inner” and the “external” potentials at £ =¢; and also
their derivatives we obtain

Aj = Cj =0, ] * 2.
But, if j =2, we get

C,
5_3 —Az‘;bz(&) + 3.
3C (34)
- El‘f = Axpy'(€1) + 31
This gives
/IR SRR : M (35)
6 31ha(£1) + Etba'(€0)
Hence the solution to the problem is given by
&2
0 =0+o| b -3 P | 36)
" where i, and ¢, satisfy the differential equations
1 df A\ |
52 d§<§ g > = —nf Sl‘o +1, (371)
1 df, A, et |
e R (37:)

which are for purposes of numerical integration more conveniently written
as

42 d? 6 '
_(?7720 = —nfr-ln,+§; —‘En: _.< ngn-1+ §2)7]2, (37 )
where
Noy2 = EPos 2- (37”)

§ 7. Expansion, Ellipticity and Oblateness.—The boundary ¢, is given by
® =o, and hence by (36)
§1%a(§1)Po(p)

e L3
fomtit | WD S e G

Thus there is an expansion of the star as a whole of amount wvi(&,)/] 8, |
and superposed on this an ellipticity. At the equator Py(u)= —% and at
the poles Py(un) = +1. Hence we get for the oblateness of the boundary the

general expression
5 v Eubol(€1)

10| 3B + e B (39)
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396 Mr. S. Chandrasekhar, 93, 5
§ 8. Mass Relation.—The mass is given by
M =27Tjjpr2drdp.

The ellipticity term does not clearly contribute to the mass on the average.
Introducing the £, 6 variables in the above integral we have

1_,718/2 &y +dE,
M=4w[(";2KAn 1] ,\j (67 -+ nfn—1onf,)E2dE,
(1]

which to the first order in v can be replaced by

M —4m l:(ﬂ :772 K __]3/2 { Elonfzdg —l—vjilnf?”‘lzl/oézdf}.

Now t
J o= - j §<§2 §> §1< §>
a2l e
Hence = = &%/ (6) + 36>

S A

If v =0, we have for the case of non-rotating stars
B (n+1)K %‘:]3/2 <d9>
MO - 47T|: 477'G A El dg (41)

Hence the “mass relation” for two gas spheres with equal central densities—
one rotating with an angular velocity w and the other non-rotating—is

My,=M,. [1 +v%—§-1‘_0—‘f,°l(§—1)} (42)

Hence the rotating configuration has a greater mass, as indeed we should
expect on general grounds.*

§ 9. Volume and Relation between Mean and Central Density.—The
volume NN of the conﬁguration is clearly given by

e

"3l 4G
which by (38) yields
_4 [+ DKL 3o(£)
N‘s [ 47G ] & '[””'aw;l} (43)

* Compare Milne’s article in the Handbuch (*‘ General Effects of Rotation,”
p. 236).
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Using the mass relation (40) we get for the mean density p,, the formula
36—’ (6)
351 0 1
/\~<d9> I+7v. a
IR A7 ()
&6

or to the order of accuracy we are working we have, remembering that A =p,
(0 and O are both unity at the centre),

3 <d9> [I 3162 =o' (E0)é1 - 3%o(€ 1)}

m=—\ =) pe. | 1T+0 : .
v AN (44

If v =0, we get the well-known formula for the non-rotating polytropes
__ ;<@>
Pm fl df 1p0° . (45)
From (44) we deduce (to the first order) that
db\ w?

szpc o E< ), 22Gon (#6)

Formulz (38, (39), (40), (42), (43) can all now be expressed in terms of p,,
{instead of p,) by means of (46).

§ 10. Numerical Integration of the Differential Equations.—Thus we see
that the structure of a slowly rotating polytropic gas configuration is com-
pletely specified when the pair of differential equations (37;, ;) are solved.
There is just one case where integration can be effected at once. The
equation for ¢, for the index z» =1 can be written as

& d§<§2d(¢:’i§ )> ~($o— (47)

[y

which is just Emden’s equation with index 1. Remembering the boundary
conditions that ¢, and ¢, are to be zero at the origin, we see that

tho=1 - il’n_g’ (48)
3
is the required solution. [By (48) we see that
I 4
Po(61) =1 ; o' (€1) = & =m. (48")

The mass relation (42) and the volume relation (43) therefore take for this
case the neat forms
Moy =M1 +o(3n* - 1)), (48")

Ng =Ny[1 +37]. (48

In all other cases numerical integration must be adopted. To do this we
must have a power series in ¢ for ¢, and i, at the origin, and with a start
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398 Mr. S. Chandrasekhar, 93, §

thus made the integration has to be continued by any of the known standard
methods.

Now it 1s seen that near the origin Emden’s equation with index # has
the expansion *

I n 8n? —5m
O=1——E24—f4———=£64+
SETSE T (49)
which yields for §»-1 the expansion
(n g, (2= 1)(47-5)
n-=1 — 2 4
fn-t=1 - e (50)

Substituting this in equations (371, »), and assuming for ¢, and ¢, power
series of the type

o, o =AE2+DE +cE4+ . . ., " (51)

and solving, we obtain the following expansions for #, and ¥, near the
origin :—

(I3n 10),  n(9on®— 157n+"70)

) &6 _ 8

Yo § zo 42 .360 ° 72 . 42 . 360 £+ (52)
_ee_ ey n(1on — 7)!:6 n(308n® — 503n+210) ..

e 6 2. 36.330 T (9

The numerical integration was carried out for the cases n=1, 1-5, 2, 3, 4,
and the functions ¢, and ¢, are tabulated in Tables I-V appended to the
end of this paper. At the bottom of each table the value of i, and i,
and their derivatives at {;—the first zero of Emden’s equation—are given.
The method of integration adopted is the one attributed to Adams and
sketched at the end of the second of von Zeipel’s papers referred to at the

outset. In the following Table VI the values of $4(£,), ¥o'(£L), Pa(£L),
Py’ (€1), €1 and 8,’ are given.
TasLE VI
n 1 15 2 3 4

& 3-14159 3-6538 43529 6-8968 14:9715

-0, 0-31831 0-20330 0-12725 0-04243 0-0080181

vo(&1) 1-00000 1:2942 19153 5-8380 . 335327

o' (&1) 0-31831 0-6364 0-9961 2-0391 4-8812

v2(£1) 4:55940 47820 5-6431 11-2780 465444

va'(51) 0-42060 1-1495 17559 3-0409 6-1766

220z 1snbny 0z uo 1sanb Ag 6102S56/06€/S/€6/2]1011e/SBIUW/WOo2 dnoolwepede)/:sdijy Wwoly papeojumoq

§ 11. With the use of the values given in the above table we can now
numerically evaluate many of the “coefficients” occurring in the formulz

* See the introduction (by D. H. Sadler) to the Mathematical Tables, vol. ii, on
‘““ Emden Functions,” issued by the British Association for the Advancement of
Science.
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of §§7, 8 and 9. We shall now give the precise forms for the cases where
the numerical integration has been effected.
Firstly, equation (36), expressing ©, takes the following forms :—

O =0+ 0[hy(€) - 0-5483oE)Po(p)], 7 =1
0 =0+ o[h(€) - 0-5999P:(£)Po()], n=15
O =0+ o[h(8) - 0-64260,(E)Po(pr)], 7 =2 (54)
© =0+ 0[ho(€) - 0-72325¢5(£) Po(p)], 7 =3
O =0+ 0[ho(€) - 0-8048iy(E)Po(1)], 7 =4
The equations of the boundary &, are :
£o= 31416+ 3-14169] 1 — 2-5000Py(u)], n=1
o= 36538+ 4-91880[ 1-2942 — 2-8687Py(n)], n=1'5
o= 43529+ 7-85850[ 1-9153 — 3-6260Py(u)], n=2 (55)
Eo= 68968+ 23-568v [ 5-8380— 8-1568P,(w)], 7n=3
€0=14-9715+124-718v [33-533 —37-460Py(n)], 7n=4

Remembering that P,(u) = — 4 at the equator and + 1 at the poles we obtain
from (55) the following table giving the fractional elongation at the equator,
the fractional contraction at the poles and the oblateness as expressed by

equation (39):—

TasLe VII
Geometry of the Boundary
Fractional Fractional
Elongation at the | Contraction at the Oblateness o
Equator Poles
1 2+25007 I-50000 3+75000
1 3-67300 2-11950 5-7926v
2 6-73009v 3-0884v 9-8194v
3 33-888v 7-92400 41-8119
4 435350 32:714v 468-07v
The mass relations are :
My=M;.(1+ 2-2900), n=x
Mg) =M0 . (I + 2‘8607}), n= I'S
My=M,.(x+ 35750), n=2 (56)
My=M,.(1+ 6-1230), n=3
My =M, . (1+13-6320), n=4
The volume relations are :
Ny=N,.(1+ 39), n=1
No=N,.(1+ 52270), n=1-5
Ny =N, .(1+ 10:3730), n=2 (57)
No =Ny . (1+ 59-849v), n=3
Ny =N, . (1+838:000), n=4
27
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The relations between the mean and the central densities are :

pe=pm* 32899[1+ o7109], m=1
Pe=pm* 59907[1+ 2:3677], m=1

Pc =Pm X II'4025[I + 6797”]’ n=2 . (58)
Pc=Pm X 54-1825[1+ 53-724v], n=3 [

pe =pm % 622-408 [1+814-370], mn=4

§ 12. Comparison of Configurations with equal Mass.—The above sections
(in particular § 11) give a complete answer to the problem formulated at
the outset in § 1. But it is of interest to compare two configurations, one
“stationary” and the other rotating with a slow angular velocity w, both
having the same mass. Now for this problem to have a meaning, the radius
of the non-rotating polytrope must be determined when the mass is given.
As is well known (and as is clear from equation (41)) this is not the case
when #=3. Hence we should expect (and indeed as it turns out subse-
quently) that » =3 must be of the nature of a singularity with respect to
this problem.

We have already seen that if a rotating and a non-rotating configuration
are to have the same central density, then the non-rotating configuration
has a smaller mass. To secure the same mass we must alter the central
density of one of them—say the rotating one. The problem then is to find
the fractional increase (or decrease) in A (Z.e. the central density) such that
the masses of the two configurations are the same, 7.e. we have to find 5\
such that

M(A+8A, w) =M(2, o). (59)
From (41) we easily find by differentiation with respect to A that
3A 2n (60)

PR
o E-gE) Y

If n 43 we can rewrite the above relation approximately to the first order as

oA 2n 36 — ' (£1) ‘ .
5—=—7J.3_n 7] ; (61)

It is at once clear from the above formula that if n > 3 the central density
of the rotating configuration is greater than that of the non-rotating configuration,
while if n < 3 the converse is true.

Of course the above result is precisely what we should expect. For if
the central densities of the two configurations are equal the non-rotating
configuration has a smaller mass, and as we have

3—n

Myoc X2, (62)

to increase the mass of the non-rotating sphere we should increase or decrease
A according as # is less than or greater than 3. 'This is just what (61) shows.
When n=3 the radius of the non-rotating configuration is indeterminate
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and the question ‘“‘the fractional change in the central density” has no
meaning, for the radius of the polytrope z =3 is first determined only when
the mean density (and therefore also the central density) is given (in addition
to M).

If n+3 the change in the central density is proportional to ¥ and hence
Sformulee (54), (55), (57), (58) and the results of Table VI continue to be true
(to the first order in v) when we are comparing two configurations with equal
mass.

. . . . A
Finally, the following short table gives precise values for ~
n 1 1-5 2 3 4
- SA[A 2-290V 5-7200 142990 - 109-06v

§ 13. General Discussion.—There are a number of points which can now
be discussed in connection with the above calculations and their bearing
on actual physical facts, but I shall make only some brief comments and
reserve more detailed references to possible applications for a separate
communication after treating the closely related problem of the double stars.

(1) Though the problem has been formulated in an abstract form and
the whole calculation proceeds on the assumption that there exists a relation

1
P =Kp1+’_‘ between the total pressure and density, it can actually be shown
that the whole investigation applies to the more general ““standard model.”

(2) A glance at Table VII shows that as the central condensation of the
configuration increases the fractional elongation at the equator and the
fractional contraction at the poles increase rapidly for a given angular
velocity w. But what is noteworthy is that the fractional elongation at the
equator increases much more rapidly than the fractional contraction at the
poles. Thus the ratio of the fractional elongation at the equator to the
fractional contraction at the poles increases from 1-5 for # =1 to 13-3 for 7 =4.
This is precisely what one would expect if for large values of w the con-
figurations with large central condensations should tend to assume lenticular
forms for equatorial break-up.

(3) In § 12 we considered the fractional change in the central density
(8A/2) which takes place when a gas sphere is set rotating with a slow angular
velocity w. It was found that if # < 3, dA/A is megative, while if n > 3,
SA/A is positive. Thus from this standpoint configurations with ““‘large”
central condensations behave quite differently from configurations with
comparatively weak central condensations. One is tempted to conjecture
that these two distinct different initial behaviours of rotating masses corre-
spond to the two distinct types of break-up—namely, the fissional break-up
and the equatorial break-up—which occur when o gets large. But this
conjecture, though fascinating, is by no means well founded.

In conclusion, I wish to record my thanks to Professor N. Bohr for
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allowing me the very valuable privileges of his Institute, where the above work
was carried out. My thanks are also due to Professor E. A. Mllne for his
interest and advice.

APPENDIX

Solutions of the differential equations

T a—

et

Jorn=1, 1-5, 2, 3 and 4.

In the following tables, in addition to i, and ¢,, n67~! is also tabulated.
The values of the Emden functions were taken from Mathematical Tables,
vol. ii, on “Emden Functions,” issued by L. J. Comrie on behalf of the
British Association for the Advancement of Science. Only as many decimal
figures are retained as are regarded to be reliable.

and

TasBLE I
Index n=1
§ gg -I o ¥a
o o o o-
o2 149-0000 0-00665 0-039886
o4 36-5000 0-02645 0-158180
0-6 15-6667 0-05893 0-350835
o-8 8-3750 0-10330 0-611258
I-0 5-0000 0-15853 0-93053
I-2 3-16666 0:22330 1-2977
I-4 2-06122 0-28611 1-7001
1-6 1-34375 0-37527 21239
1-8 0-85185 0-45897 2-5544
2-0 0-50000 0-54535 2-9767
22 0-23967 0-63250 33759
2-4 0-04167 0-71856 37380
26 - 0-11243 0-80173 4-0499
2-8 —0-23469 0-88036 4+3002
3-0 — 033333 0-95296 44795
32 —0-41406 4-5804
34 - 0:48097 4-5982
§,=3-14159,
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Pro(£,) = 1-00000,

Py'(&) =0-31831,

Pa(£1) =4-55940,
' (£,) =0-42060.
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TaBLe 11
Index n=1-5
& 1'56} Yo ¥
0-0 1-5000 o- o-
0-2 1-4950 0-0066467 0-0398291
04 1-4801 0-026351 0-15728¢9
-6 14556 0-058423 0-346477
o-8 1:4217 o-101785 0:59813
I-0 1:3790 0-155001 0-90040
1.2 1-3281 0-21669 123978
1-4 1-2698 0-28506 1-6022
1-6 1-2046 0-35862 1-9741
1-8 1-1332 0-43601 2:3430
2-0 1-0564 0-51612 2-6985
22 0:97449 0-59822 3-0324
2-4 0-88802 0-68194 3-3401
2:6 0-79699 0-76739 3-6197
2-8 0-70067 o-85511 3-8714
30 0-59787 0-94618 40992
32 0-48403 1-04226 4-3095
34 0:35286 114581 4-5121
36 0-15797 1-26074 47218
£ =3-6538,
(&) =1-2042, a(&1) =4-7820,
tho’(51) =0:6364, o' (51) =1-1495.
TasLe III
Index n=2
E 20 lﬁo lﬁz
o 200000 o- o
0-2 1-98672 0-0066401 0-039773
04 194751 0-026249 0-15641
o6 1-88419 0:057935 0-34226
-8 179959 0-100359 0-58572
1-0 1-69731 0-I52110 0-87277
I-2 1-58134 0-21126 1-1886
14 1-45582 0-27629 1-5190
1-6 1-32472 0-34605 1-8519
1-8 1:19165 0:41957 2-1778
2-0 1-05967 0-49641 2:4904
22 0-93130 0-57652 2-7862
2.4 0-80842 0-66030 3-0643
2:6 0-69237 074845 33263
2-8 058398 0-84195 35751
30 0-48365 0-04200 3-8151
32 0-39145 1-0500 4-0515
34 0:30720 1-1675 4-2898
3-6 0-23051 1-2963 45361
3-8 0-16086 1-4381 47966
40 0-09768 15049 5-0776
42 0-04032 17691 5-3855
44 1-9629 57274
§1=43529,

‘ﬁo(fl): 1-9153,
o'(€1) =0-9961,

Sl‘z(§1) =5-6431,
o' (§) =1-7559.
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TaBLE IV
Index n=3
& 362 Po s
o- 3-000 o o
0-2 2-960 0-0066271 0-039657
04 2-846 o-026050 0-15470
0-6 2-668 0-057010 0-33425
0-8 2-444 0-09768 0-56286
1-0 2-194 0-14637 0-8237
1-2 1-932 0-20142 1-1015
I-4 1-676 0-26168 1-3841
1-6 1-434 0-32655 1-6632
1-8 1-21I5 0:39596 1-9341
2-0 1-019 0-47021 2-195
2-2 0-8486 0:5499 2-448
2+4 0-7023 0-6360 2-693
2-6 0-5785 07292 2:935
2-8 0-4743 0-8306 3175
3-0 0-3870 0-9412 3:419
32 0-3147 1-0618 3-668
34 02549 11932 3924
36 0:2055 1-3364 ‘ 4192
3-8 0-1648 1-4920 4472
4-0 0-1314 1-6607 4767
42 0-1040 18431 5-078
4:4 0-08168 2.0398 5-407
46 0-06352 2-2513 5-753
4-8 0-04876 2-4780 6-121
5-0 0-03682 2-7203 6-506
52 0-02730 2-9787 6-916
5-4 0-aI971 3-2532 7-346
56 0-01376 3-5443 7798
5-8 0-00853 3-8520 8-272
6-0 0-00574 41765 8-768
6-2 0:00325. 4-5180 9-288
6-4 0-00155 4-8760 9-829
6-6 0-00052 5:25I0 10-39
6-8 0-00005 . 5-6429 10-98
7-0 6-0510 11-59
&,=6-8969,
o(&1) = 5-8380, Pa(&1) = 11-2780,
Po'(61) =2-0301, Po'(5) = 3-0409.
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TABLE V
Index n=4
§ 40° o do
o- 4-0000 o- o
o2 3:9209 0-0066140 0-0395434
°-4 3:6976 0-025857 0-153027
-6 3-3651 0-056144 0-32671
c-8 2.9682 0-095460 ©:54239
10 2:5514 0:141909 078215
1-2 2+1490 0-10413 1-03149
14 1-7824 025144 1-2809
1-6 1-4625 0-31378 I-5255
1-8 1-1915 0-37044 17636
20 0-96690 045543 1-9962
22 0-78328 0:53624 22254
2-4 0-63448 0-62487 2-4536
2-6 0-51458 072217 2-6837
2:8 0-41824 0-82892 2-9181
30 0-34076 0:94583 31591
32 0-27853 1-07355, 34087
34 0-22845 1-2126 3-6683
36 0-18807 1-3636 3-9394
3-8 0-15533 1-5268 42230
4-0 0-12869 1-7027 4-5200
42 0-10695 1-8916 4-8311
44 0-08916 2-0938 5-1569
46 0:07454 23096 54979
48 0-06251 2-5390 5-8546
5-0 0:05253 2-7825 6-2270
52 0-04424 3-0400 6-6161
5-6 0-03159 3-5980 7:4434
6-0 0-02271 42140 8-3380
6.4 0-01639 4-8886 9-3008
6-8 0-01190 5-6223 10-3326
7.2 0-008648 6:4156 11-4337
7-6 0-006285 7.2685 12-6045
- 8o 0:004566 81811 13-8451
84 0-003306 9-1535 15-1558
8-8 0-002384 10-1856 16-5364
92 0-001707 11-2773 17-9870
9-6 0-00I211 12-4301 19-5076
10-0 0-000850 13-6407 21-0980
104 0-000588 14-9118 22-7500
10-8 0-000399 16-2414 244756
11-2 0-000264 17-6204 26-2663
11-6 0-000170 19-0754 28-1281
12-0 0-000105 20-5792 30-0592
124 0-000062 22:1405 32:0501
128 ©:000034 237589 34-1276
132 0-000017 254344 36-2645
13-6 0-00000%7 27-1664 38-4695
14-0 0-000002 28-9549 407424
144 0-0000004 30+7996 43-0830
14-8 0-0000000 327003 45°4911
152 346567 47-9667
§1=14-9715,

Po(81) =33-5327, s (§1) =46-5444,
Pho'(€1) = 48812, Pa'(61) = 6:-1766.
Institut For Teoretisk Fysik,
Copenhagen :
1933 Fanuary 4.
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PHOTOGRAPHIC OBSERVATIONS OF COMETS MADE AT
THE ROYAL OBSERVATORY, GREENWICH, 1926—-27.

G. Merton, M.A., Ph.D.

(Communicated by the Astronomer Royal)

Through the kindness of the Astronomer Royal I was enabled to obtain
some photographic observations of comets with the 3o-inch reflector, at
times when it was available for such work between 1927 February and
August, and with short focus cameras mounted on the 13-inch astrographic
telescope.

The work with the short focus cameras was started with a Ross portrait
lens of 17-inch focal length working at F/53 to see what could be done with
such an instrument. This work was continued after 1926 November 13 with
an Aldis aeroplane lens and a Cooke Aviar lens, both of 20-inch focal length
and working at F/5-6. They gave excellent definition over nearly the whole
of a §x4-inch plate. The results show that the accuracy of the deduced
positions is surprisingly good, especially when, as in this case, duplicate
exposures are made ; it is in fact of the same order as the best visual obser-
vations of comets, say + 2”. 'The results obtained with the 30-inch reflector
are, of course, in general entitled to greater weight.

In Table I the last column indicates the instrument used, 30-inch re-
flector (R) or short focus cameras (S), and the number of plates or exposures
on which each result depends. The cometary magnitudes given are based
on careful estimates of the integrated light. One plate of Comet Pons-
Winnecke taken by Mr. Witchell on June 23 with the 13-inch astrographic
(A) was also reduced, and is included.

Table II gives the necessary information concerning the comparison stars
used in the reductions.

TABLE 1

Comet 1926 f—Comas Sola

?92T6 a 1926-0 d 1926-0 logp.,A logpsA Cé)t]:;fs) Mag. Exp.
h m 8 o 1 "
1 Nov.10-1394 2513543 + 649163 0485 o-809 1to 3 iz S3
2 s 12:0296 2 48 46-63 7 o 67 9gwo14n 0-78¢9 4and s 113 Sa2
3 »s 14-9973 2 46 40-66 v 8589 8834 0-788 6andy7 12 S2
4 Dec. 249133 2 21 41-59 12 24 58-9 9-218 0-750 8andg 113 S2
1927 a 19270 d 1927-0
5 Jan. 27-86425 2 44 26-29 +19 30 41-5 0-361 o697 102and 11 123 S2
6 Apr. 3092346 6 26 59-63 33 10 27'5 9-640 o772 12and13 ... RI1
v May 1-92211 630 1-34 33 9562 9-640 0772 14 to 17 ... R1
8 »» 8:88425 651 8.88 32 9305 9:635 o724 18andig ... Ri1
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