
,JOURNAL OF COMPUTER AND SYSTEM SCIENCES 24, 149-161 (1982)

The Equivalence Problem for LL- and L/?-Regular Grammars*

ANTON NIJHOLT

Informatics Department, N&negen University, The Netherlands

Received March 17, 198 1; revised November 1, 198 I

The equivalence problem for context-free grammars is “given two arbitrary grammars, do
they generate the same language ?” Since this is undecidable in general attention has been
restricted to decidable subclasses of the context-free grammars. For example, the classes of
U(k) grammars and real-time strict deterministic grammars. In this paper it is shown that
the equivalence problem for U-regular grammars is decidable by reducing it to the
equivalence problem for real-time strict deterministic grammars. Moreover, we show that the
U-regular equivalence problem is a special case of a more general equivalence problem
which is also decidable. Our techniques can also be used to show that the equivalence
problem for LR-regular grammars is decidable if and only if the equivalence problem for
U?(O) grammars is decidable.

1. INTRODUCTION

Questions of whether or not two grammars belonging to a family of grammars
generate the same language have been extensively studied in the literature. These
problems are called equivalence problems, and if there exists an algorithm which
gives an answer to this question for each pair of grammars of this family then the
equivalence problem for this family of grammars is said to be decidable. Otherwise
the problem is said to be undecidable. For example, the equivalence’problem for the
family of regular grammars is decidable. On the other hand, the equivalence problem
for the family of context-free grammars is known to be undecidable.

The equivalence problem is open for various classes of grammars which generate
deterministic languages. For simple deterministic and LL(k) grammars the problem
has been solved. In this paper we study the equivalence problem for the class of LL-
regular grammars and languages. The class of LL-regular grammars is obtained from
the class of LL(k) grammars by allowing regular look-ahead instead of finite look-
ahead, cf. Jarzabek and Krawczyk [9], Nijholt [11-131 and Poplawski [171 for
results on LL-regular grammars and languages. The class of LL(k) grammars is
properly included in the class of LL-regular grammars and the class of LL(k)

*The preparation of this paper was partially supported by a Natural Sciences and Engineering
Research Council of Canada Grant A-7700 during the author’s stay at McMaster University. An
abstract of this paper was published in the proceedings of the Third International Conference on
Fundamentals of Computation Theory (Springer-Verlag, Berlin/New York, I98 1).

149
0022.OOOO/82~020149-139602OO/O

Copyright 0 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

150 ANTON NIJHOLT

languages is properly included in the class of LL-regular languages. The class of LL-
regular languages contains languages which are not deterministic.

It will be shown that the equivalence problem for LL-regular grammars is
decidable. Apart from extending the known result for LL(k) grammar equivalence to
LL-regular grammar equivalence we obtain an alternative proof of the decidability of
LL(k) equivalence. From 1221 we understand that the equivalence problem for LL-
regular grammars has been studied before, but not solved. Our proof that this
equivalence problem is decidable is simple. However, this is mainly because we can
reduce the problem to the equivalence problem for real-time strict deterministic
grammars, which is decidable, see Oyamaguchi et al. [161 and Ukkonen [191.

The method which we use can also be used for more genera1 classes of grammars.
In this way we are able to show that the equivalence problem for real-time strict
deterministic grammars with regular look-ahead is also decidable. Moreover, we
obtain the result that the equivalence problem for LA-regular grammars (cf. Culik
and Cohen [2]) is decidable if and only if the equivalence problem for LR(0)
grammars is decidable.

Preliminaries

We assume that the reader is familiar with Aho and Ullman [l] or Harrison 141.
For notational reasons we review some concepts.

A context-free grammar (CFG for short) is denoted by the quadruple
G = (N, C, P, S), where N consists of the nonterminal symbols, 2 consists of the
terminal symbols, N n C = 4 (the empty set); N U C is denoted by V (elements of V
will be denoted by X, Y and 2; elements of V* will be denoted by a, /3, y, 6 and w).
We use E to denote the empty word. The elements of Z* will be denoted by x, y, z
and w. The set P of productions is a subset of N x V* (notation A + a if (A, a) is in
P) and S E N is called the start symbol of the grammar.

We have the usual notation a, =s~ and qR for derivations, leftmost derivations and
rightmost derivations, respectively. The superscripts + and * will be used to denote
the transitive and the reflexive-transitive closures of these relations

For any string a E V* define

L(a)= (wEC*Ia&w}.

The language L(G) of a CFG is the set L(S). Two grammars G, and G, are said
to be equivalent if L(G,) = L(G,).

For any string a E V* we use aR to denote the reverse of a. If L is a set of strings
then LR = { wR] w E L). If a E V* then]a] denotes the length of a. For any a E I/*
and nonnegative integer k we use k: a to denote the prefix of a with length k if
Ial > k and otherwise k: a denotes a. A production A + E is called an e-production; a
CFG without s-productions is called an c-free grammar.

A CFG G = (N, Z, P, S) is said to be right linear if each rule is of the form
A -+ uB or A -+ u, with A, B E N and u E Z*. A subset L of C* is said to be regular
if there exists a right linear grammar G such that L(G) = L.

LL- AND LR-REGULAR EQUIVALENCE 151

For any set Q, a partition K of Q is a finite set of mutually disjoint subsets of Q
such that each element of Q is in one of these subsets. The elements of a partition are
called blocks or equivalence classes. If two elements x and y belong to the same block
B E z then we write x s y (mod K).

DEFINITION 1.1. Let rr= {B,, Bz,..., B,} denote a partition of Z*, where Z is a
finite set, into n blocks. Partition n is said to be a regular partition of C* if all the
sets B, are regular. Partition 72 is a left congruence (right congruence) if for any
strings x, y and z in Z*, x = y (mod n) implies zx - zy (mod rr) (xz z yz (mod z)).

A partition 7~’ = {Bi, Bi,..., B&} is a refinement of a regular partition x =
{B,,Bz,..., B,} of ,?Y* if each Bi of rc is the union of some of the blocks of 71’. It is
well known that every regular partition of a set Z* has a refinement of finite index
which is both a left and a right congruence (which we call a congruence for short)
(see Hopcroft and Ullman [8]).

In the forthcoming sections it is assumed that the grammars under consideration
are reduced, that is, for each XE V there exists a derivation

SSaXL?4 w

for some a, /3 E V* and w E Z*. There exists an algorithm (cf. Aho and Ullman [1]
or Harrison [4]) which produces for each context-free grammar an equivalent
context-free grammar which is reduced.

We recall the definitions of strict deterministic and real-time strict deterministic
grammars (cf. Harrison and Have1 [5,6]).

DEFINITION 1.2. Let G = (N, I;, P, S) be a CFG and let r// be a partition of V.
Partition ty is called strict if

(i) Z E w, and
(ii) For any A, A’EN a, p, /?‘E I’*, if A-+ap and Al-tap’ are in P and

A E A ’ (mod w), then either:
(a) both p, /3’ # E and 1 :/I = 1 :p’ (mod w), or
(b) P=P’=c and A=A’.

Now a grammar G = (N, Z, P, S) is called strict deterministic if there exists a strict
partition of V.

In general, a strict deterministic grammar can have more than one strict partition
of V. Let w, and ry, be two partitions of V with induced equivalence relations -, and
s*, respectively, then w1 < wz if and only if =I G Go. The partitions form a semi-
lattice with this ordering and under the meet-operation. In Harrison and Have1 [5] an
algorithm is given which computes the minimal strict partition of a strict deter-
ministic grammar.

A strict deterministic grammar G = (ZV, E, P, S) with minimal strict partition w is

152 ANTON NIJHOLT

called a real-time strict deterministic grammar if it is s-free and for all A, A’, B,
B’EN, a,/?E V*, if A+aB and A’ + aB’j3 are in P, then A s A’ (mod I+Y) implies
l3= E.

2. THE EQUIVALENCE PROBLEM FOR GRAMMARS WITH LOOK-AHEAD

One way to generalize definitions of classes of deterministically parsable grammars
is to let the decisions in the parsing process of these grammars be determined by
look-ahead. This look-ahead may be finite or regular. Finite look-ahead is for
instance used in the definitions of U(k) and LR(k) grammars. Moreover, in Friede
[3] finite look-ahead has been used in connection with strict deterministic grammars.
Regular look-ahead is used in the definitions of U-regular and LR-regular
grammars. In Culik and Cohen (21 it has been shown how to convert an HZ-regular
grammar into an LR(0) grammar. In this section we will introduce regular look-
ahead for strict deterministic and real-time deterministic grammars. Then it will be
shown how the equivalence problems for these grammars with look-ahead can be
reduced to the equivalence problems for strict deterministic and real-time strict deter-
ministic grammars. In the following section we will study LL-regular grammars as a
special case of the (real-time) strict deterministic grammars with regular look-ahead.

The generalization which we give here for (real-time) strict deterministic grammars
conforms the generalizations in [141 for finite look-ahead. We use the following
notation. Let G = (N, Z:, P, S) be a CFG and let 7c = {B,, B, ,..., B,} be a regular
partition of C*. For any a E V*,

BLOCK(a) = {Bk E TC 1 L(a) n B, # $}.

DEFINITION 2.1. A CFG G = (N, C, P, S) is strong SD(z), where rc is a regular
partition of Z*, if there exists a partition I// of V = N U C such that

(i) ZE w.
(ii) For any w,, w2 E Z *; A, A’E N; a, /3, /I’, w,, o, E V* with A =A’

(mod w) and derivations

(a) S =$ w,Aw, =>L w, aPq,
(b) S *f wZA’q =xL wzoLp’wz,

the condition

BLOCK(&) n BLOCKCg’w,) # Q

always implies that either

(1) bothP,P’#cand l:p=l:/?‘(modv),or
(2) P=/~‘=E and A=A’.

LL- AND LR-REGULAR EQUIVALENCE 153

A strong SD(x) grammar G = (N, Z, P, S) with a minimal partition w is now
called strong real-time SD(n) if G is s-free and the following condition is satisfied:

For all A, B,A’, B’ENand a,pEV*, ifA-,aB andA’+aB’j?are in Pwith
A E A ’ (mod w) then if

S-*- w,Aq= w,aBw,,
L L

S d+ wzA’mz ==+ w2 aB’@, ,
L L

and

then p = E.

BLOCK(Bw,) n BLOCK(B’/Iw,) # 4, (*I

Clearly, the real-time strict deterministic grammars are a special case (no look-
ahead) of this definition. Notice that because of (*) B = B’ (mod w).

We now show that the equivalence problem for strong real-time So(n) grammars
is decidable. We start with a strong real-time SO(x) grammar and convert it into a
real-time strict deterministic grammar. The conversion will be done in such a way
that two strong real-time SD(n) grammars are equivalent if and only if their
associated real-time strict deterministic grammars are equivalent. It is known that this
latter problem is decidable (cf. [16, 191).

Let G = (N, 2, P, 5’) be any CFG without c-productions and let rr = {B,, B, ,..., B, }
be a regular partition of Z*. Without loss of generality we may assume that x is a left
congruence and that B, = {E}. It follows that 7rR = (BE, B:,..., Bi} is a right
congruence. Then rrR defines the states and the transitions of a (deterministic) finite
automaton M, = (Q, Z, 6, q,,), where

Q is the set of states, Q = (q. , q, ,..., q,,),

q. E Q is the initial state,
Z is the input alphabet,
6: Q x Z + Q is the transition function

and 6 satisfies

for 0 < i < n.
Now let p. be a symbol not in Q and let I be a special symbol. Define a grammar

G, = (IV’, 27, P’, S’) as follows:

N’= {S’}U(QxNx Q),

C’ = <Qu 1~01) x Gu (11) x Q,

154 ANTON NIJHOLT

and P’ contains productions

(9 S’ + [p. ~~I[&%1 for all P E Q.
(ii) If A +X, X, -.. Jf, is in P then [Ml + [PX, P~IIP,X~P,I ... Ip,-lX,ql

is in P’, for any p, q, p, ,..., p,.-, in Q such that if Xj E t;, then 6(pj, Xi) = pj- , , for
l<j<r;ifX,ECthen6(p,,X,)=pandifX,EC,then6(q,X,)=p,_,.

We can reduce grammar G,. Throughout this paper, whenever we use the subscript
rr then we refer to the grammar which is obtained with this construction.

Let G and G, be as above. Define a homomorphism p: V’ * + V* by

PUPo~Pl=& for every p E Q,

A]pXql)=X foreachp,qE Q and XE I’.

The proofs of the following three claims are straightforward and therefore omitted.

Claim 2.1. For any [rXs] E I/’ and y EZ’*, if [rXs] 3” y, then 6(s,P(yR)) = r.
Clearly, this claim can easily be extended to an arbitrary string a = [rX, s,]

[s,X,s,] ... [s,-,X,s,] in V’*. If aa*y, whereyEC’*, then 6(s,P(yR))=r.

Claim 2.2. For any [pXq] E V’, if

for some string a[rYs,][s,Zt] p in V’*, then s, = s2.

Claim 2.3. For any [pXq] E V’ and cc)’ E I” *, if [pXq] 3: w’ in G, then
X=+,* p(d) in G.

From Claim 2.3 it is immediately clear that L(G) =P(L(G,)), where we have
extended the definition of P to sets of strings.

Claim 2.4. For any w, x E C’*, [pXq] E V’ and o E V’*, if

in G,, then P(x) E B,, where B, is a block of partition rc = (B,, B, ,,.., B, }.

Proof. From Claim 2.1 it follows that &q,, p(x”)) =p. Hence, p(x) E B, . 1

LEMMA 2.1. If G is an E-free strong SD(z) grammar then G, is an e-free strict
deterministic grammar.

ProoJ We show that if grammar G is (s-free) strong .SD(a) for a strict partition
v, then G, is strict deterministic for a partition VI’ of V’ which is defined as follows:

(i) C’ E w’, {S’) E I@.
(ii) For any p, p’, q, r in Q and A, A’ EN, [pAq] = [p’A’r] (mod w’) if and

only if p = P’ and A E A ’ (mod w).

LL- AND LR-REGULAR EQUIVALENCE 155

By definition, C’ E w’. Notice that for every pair of productions with left-hand side
S’ condition (ii) of Definition 1.4 is satisfied. Now consider nonterminals [pAq] and
[pA ‘r] in N’ with A = A’ (mod I//). We may assume that G, is reduced. Therefore
there exist a, p, ,8’ E Y’*; wl, w2, x, y E Z’ * and w, , w2 E V’ * such that

are derivations in G,.
From Claim 2.3 it follows that we have derivations

in G. From Claim 2.2 and Claim 2.4 we may conclude that BLOCK@@q))r7
BLOCK@@‘o,)) # 4. Since G is SD(x) it follows that either

(i) 1 :p@), 1 :p(,8’) # E and 1 :p@) z 1 :p(j?‘) (mod w), or
(ii) p(J)=@‘)=& and A=A’.

It follows that either

(i)’ 1 :j?, 1 :p’ # E and 1:/3 = 1 :/I’ (mod w’), since we can write 1 :p = [sX, t,]
and 1 :/?’ = [sXzt,] for some s, t, and t, in Q and X, = 1 :&I) and X, = 1 :p@‘); or

(ii)’ /3 = p’ = E and since we have [pAq] + a and [pAr] -+ a it follows that
q = r.

This concludes the proof that I$ is a strict partition. 1

LEMMA 2.2. If G is a strong real-time SD(z) grammar then G, is a real-time
deterministic grammar.

Proof: From Lemma 2.1 it follows that G, is a strict deterministic grammar for
partition I’. Obviously, G, is s-free. Now consider productions [pAq] + a[rBq] and
[pA’q’] + a[rB’s]p in P’ with A = A’ (mod v/). We have to show that /?= E.
Consider derivations

S’ + w,[pA’q’] CT+ 7 w,a[rB’s] j?wz

156 ANTON NIJHOLT

in G,. It follows that for CFG G we have derivations

Since G is strong real-time SD(x) and since BLOCK(Bp(w,))n BLOCK
(B’m%))f$ (no ice t that block B, is in the intersection), we must conclude that
B z B’ (mod w) and p(J) = E. It follows that /I = E, which had to be proved. !

Now consider two s-free grammars G, and G, which are strong (real-time) SD(rri)
and strong (real-time) SD(z,), respectively. Here rc, and rt2 are regular partitions of
the same set C*. Then G, and G, are both strong (real-time) SD(z) with respect to
the regular partition

7c= {BIBinBj=B,B#~,BiEn,,BjE~*}.

For 7f we can construct the sequential machine M, and the (real-time) strict deter-
ministic grammars Gf, and Gi. Clearly, if L(G,) = L(G,) then L(Gi) = L(Gi) and if
L(G,) # L(G,) then L(Gi) # L(Gi). It follows that we have reduced the equivalence
problem for strong (real-time) SD-regular grammars to the problem for (real-time)
strict deterministic grammars.

Any real-time strict deterministic grammar can be converted into an equivalent
real-time deterministic pushdown automaton (cf. Harrison (41) which accepts with
empty stack. In Oyamaguchi, Honda and Inagaki [161 the decidability of the
equivalence problem for these automata has been shown.

COROLLARY 2.1. The equivalence problem for strong real-time SD(R) grammars
is decidable.

In the following section it will be shown that each strong U-regular grammar is a
strong real-time SD-regular grammar. It is well-known that strong U-regular
grammars can generate nondeterministic languages. The language L = (anbka”,
akb”c”(n > 1, k > 1) is an example of a language which is not real-time strict deter-
ministic but it is deterministic. Moreover, L is a strong ‘real-time SD-regular
language.

Culik and Cohen [2] use a slightly different method than is presented here to
convert an LR-regular grammar into an LR(0) grammar. Clearly, the argument
which we have above holds for LA-regular grammars as well. That is, we have the
following proposition:

PROPOSITION 2.1. The equivalence problem for LR-regular grammars is
decidable f and only if the equivalence problem for LR(0) grammars is decidable.

LL- AND LR-REGULAR EQUIVALENCE 157

3. THE EQUIVALENCE PROBLEM FOR LL-REGULAR GRAMMARS

We start this section with the definition of LL-regular grammars (Nijholt [121,
Poplawski [171).

DEFINITION 3.1. Let G = (N, Z, P, S) be a CFG and let z = (B,, B, ,..., B,} be
a regular partition of Z*. Grammar G is an ‘LL(n) grammar if, for each w, X,
y E E*; a, y, 6 E V* and A E ZV, the conditions

(i) S =xL* wAcf -L wya 3: wx,
(ii) S 32 wAa *L. w&f *L* wy,

(iii) BLOCK(ya) n BLOCK(Ga) # 4

always imply that y = 6.

Notice that if BLOCK(ya) n BLOCK(Ga) # Q then there exist strings x E L(ya)
and y E L(6a) such that x E y (mod z).

A CFG G is called LL-regular if it is LL(z) for some regular partition z of C*.
Notice that a grammar G is LL(k) if G is LL(x,J for the regular partition

~~={{~}I~E~*andJul<k)

U

where Ck is the set of all words over C with length k.
As in the case of LL(k) grammars it is possible to define strong LL-regular

grammars.

DEFINITION 3.2. Let G = (N, Z, P, S) be a CFG and let 71 = {B,, B, ,..., B,} be a
regular partition of I=*. Grammar G is a strong LL(n) grammar if, for each w, , w2,
x,yEZ*; a,, a*, y, 6 E V* and A E N, the conditions

(i) S *L* w,Aa, JI. w, ya, =z+L* w,x,

(ii) S +-L* w,Aa, =sL w2 da, 3: w, y,

(iii) x E y (mod r),

always imply that y = 6.

The class of LL-regular grammars properly includes the class of strong LL-regular
grammars. However, the language families coincide. In Poplawski [171 a transfor-
mation can be found which converts any LL-regular grammar into an equivalent
strong LL-regular grammar. Hence, without loss of generality we may assume that
the LL-regular grammars which are considered here are strong.

The language

L = {aa”ba*“b, banbaln, aa”ba”a, ba”ba”b 1 n > 0}

158 ANTON NIJHOLT

is an example of a nondeterministic language which is LL-regular (cf. [121).
Language

L = {u”b’V, db”c”) n 2 1, k >, 1}

is an example of an LL-regular language which is not a real-time deterministic
language.

The equivalence problem for LL(k) grammars is decidable (cf. Rosenkrantz and
Stearns [181, Aho and Ullman [1] and Olshansky and Pnueli [15 I). From [22 1 we
understand that the equivalence problem for special subclasses of the LL-regular
grammars has been considered. Here we show that the equivalence problem for LL-
regular grammars is decidable.

Let G be an LL-regular grammar. The method which is given in 111 for eliminating
s-productions from an LL(k) grammar can easily be modified in order to obtain the
result that for every LL-regular grammar we can find an equivalent e-free LL-regular
grammar. This method for the elimination of s-productions may require a change in
partitions. It transforms an LL(n) grammar into an LL(n’) grammar where 71’ is
defined by

As mentioned above we my assume that the LL-regular grammars under
consideration are strong.

THEOREM 3.1. lj” G is an c-free strong LL-regular grammar, then G is a strong
real-time SD-regular grammar.

Proof. Let G = (N, C, P, S) be an s-free strong LL(n) grammar, where 7c is a
regular partition of .?Z*. We show that G is a strong real-time SD(x) grammar for
partition v/ = {Z) U ((A } (A E N}. Without loss of generality we may assume that 7~
is a left congruence. Now consider two derivations

SA w,Ao, ===s w,Orpw,,
L L

with A z A’ (mod w) and BLOCK@+) n BLOCK(P’w,) # 4. From the definition of
w it follows that A = A’. Clearly, if BLOCK(Pw,) n BLOCK(P’oJ # 4 then
BLOCK(a/?o,)nBLOCK(aj3’w,)# 4 and since G is strong LL(lr) we have that
a/I = a/3 and the conditions (1) and (2) of Definition 2.1 are trivially satisfied. It
remains to verify that the real-time condition is satisfied. Therefore consider A, B, A’,
B’EN and a, /3EV* with A-+aB and A’+aB’/3 in P, ArA’ (modv) and
derivations

LL- ANDLR-REGULAREQUIVALENCE

Sz w,Ao, ==+ w, aBw,,
L L

159

S=% w,A’w,~ wzaB’Pw,
L

with BLOCK(Bw,) fl BLOCK(B’w,) # d. However, since R is a left congruence we
obtain that BLOCK(aBw,)nBLOCK(aB’/Io,) # $. Since G is strong LL(z) and
since A = A’ it follows that aB = aB’p, that is B = B’ and p= E. Hence, G is a
strong real-time SD-regular grammar. I

From Corollary 2.1 and Theorem 3.1 we may now conclude:

COROLLARY 3.1. The equivalence problem for LL-regular grammars is decidable.

It is natural to ask whether it is possible to convert LL-regular grammar G to an
LL(1) grammar G,. The conversion which is given in Culik and Cohen [2] yields for
each LR-regular grammar G an LR(0) grammar G,. Therefore it is not necessary to
develop a parsing method for LR-regular grammars since the methods for LR(0)
grammar can be used.

Unfortunately the conversion which we use here does not necessarily yield an
LL(1) grammar. This has been one of the reasons to introduce a direct parsing
algorithm for LL-regular grammars (cf. [121). In [131 a method has been given
which converts an LL(z) grammar G into an LL(1) grammar G’ such that
L(G,) c L(G’). H ere G, is the grammar which is obtained from LL(n) grammar G
with the method described above. If we were able to obtain from LL(n) grammar G
an LL(l) grammar G’, with L(G’) =L(G,) then we should have reduced the
equivalence problem for LL-regular grammars to the (decidable) equivalence problem
for LL(l) grammars. In the following example we show that our method does not
necessarily produce an LL(1) grammar.

EXAMPLE 3.1. Consider CFG G with production set

S-+AD,

A+aAIb,

D-+a)b.

Grammar G is LL(n) for partition II = {{E}, aC*, bZ*}. Partition II is a left
congruence. For zR = {{&},Z*a, .Z*b} we have the sequential machine which is
displayed in the following table. The numbers in this table denote the states of the
machine.

0 1 2

a 1 1 1
b 2 2 2

160 ANTON NIJHOLT

With our method we obtain the following grammar G,:

[lSO]-r [lAl][lDO] \lAl]-, [lal][lAl]

[lSOJ --) [lA2][200] [lA2]+ [lal][lA2]

[2SO]+ [Ul][lDO] [lAl]+ [ln2][2.41]

[2SO] -+ [U2][2DO] [IA21 + 1 la2][U2]

[lDO] --t [laOI 1224 l] -+ [2bl]

12DOj --t [2bO] I2A2) -+ 12621

It is easily verified that G, is not U(k), k > 0. Another example for which it can be
shown that the method does not produce an U(k) grammar is the class of grammars
which generate the languages in the well-known Kurki-Suonio hierarchy of U.(k)
languages. That is, for each k > 0, when the method is applied to the LL(k + 1)
grammar G

S+aSA)uA,

A + bkd(b(c,

then for each left congruence R such that G is U(n) we have that the resulting
grammar G, is not an U-grammar.

It is an open problem whether a conversion can be given, based on LL(rr) grammar
G and sequential machine M,, such that G, is an U(1) grammar. It should be
mentioned that the example grammars which are given above yield LL(1) languages.

CONCLUDING REMARKS

The class of U(k) grammars is a proper subclass of the class of U-regular
grammars. Therefore we have obtained a new method for deciding LL(k) grammar
equivalence. Our method is completely different from other methods. However, we
have to use a very strong result on the equivalence of real-time deterministic
pushdown automata. Since the class of U,(k) languages is properly included in the
class of U-regular languages our result is more general than the results on U(k)
language equivalence.

The results in Section 2 have merely been given to provide the framework in which
the equivalence problem for U-regular grammars fits. Therefore we have not
discussed properties of languages which can be generated by strong real-time SD-
regular grammars. Looking at the results from the point of view of the equivalence
problem of strict deterministic grammars then we see that, contrary to the situation
for real-time strict deterministic grammars, we can allow productions of the form
A --, aB and A ’ + aB’p with A 5 A ’ and /3 # E. However, in these cases we have
restrictions on the strings which can be generated by B and B’/? respectively.

LL- AND LR-REGULAR EQUIVALENCE 161

ACKNOWLEDGMENTS

I am grateful to Derick Wood (McMaster University) and an unknown referee for making several
helpful suggestions.

REFERENCES

1. A. V. AHO AND J. D. ULLMAN, “The Theory of Parsing, Translation, and Compiling,” Vols. 1 and
2, Prentice-Hall, Englewood Cliffs, N. J., 1972 and 1973.

2. K. CUUK AND R. COHEN, LR-regular grammars-an extension of LR(k) grammars, J. Comput.
System Sci. 7 (1973), 66-96.

3. D. FRI~DE, Transition diagrams and strict deterministic grammars, in “Proc. 4th GI Conference on
Theoretical Computer Science” (K. Weihrauch, Ed.), Lect. Notes in Comput. Sci. 67, 113-123,
Springer-Verlag, 1979.

4. M. A. HARRISON, “Introduction to Formal Language Theory,” Addison-Wesley, Reading, Mass.,
1978.

5. M. A. HARRISON AND I. M. HAVEL, Strict deterministic grammars, J. Compur. System Sci. 7
(1973) 237-277.

6. M. A. HARRISON AND I. M. HAVEL, Real-time strict deterministic grammars, SIAM J. Comput. 1
(1972), 333-349.

7. M. A. HARRISON, I. M. HAVEL, AND A. YEHUDAI, An equivalence of grammars through transfor-
mation trees, Theoret. Comput. Sci. 9 (1979), 173-206.

8. J. E. HOPCROFT AND J. D. ULLMAN, “Formal Languages and Their Relation to Automata,”
Addison-Wesley, Reading, Mass., 1969.

9. S. JARZABEK AND T. KRAWCZYK, LL-regular grammars, Inform. Process. Lett. 4 (1975), 31-37.
IO. A. J. KORENJAK AND J. E. HOPCROFT, Simple deterministic languages, in “Conf. Record of Seventh

Annual Symposium on Switching and Automata Theory 1966,” pp. 36-46.
11. A. NIJHOLT, On the parsing of LL-regular grammars, in “Proc. 5th Symposium on the

Mathematical Foundations of Computer Science,” (A. Mazurkiewicz, Ed.), Lect. Notes in Comput.
Sci. 45, pp. 446-452, Springer-Verlag, Berlin, 1976.

12. A. NIJHOLT, LL-regular grammars, Internat. J. Compur. Math. 8 (1980), 303-318.
13. A. NIJHOLT, “From LL-Regular to LL(1) Grammars: Transformations, Covers and Parsing,”

Report IR-61, Vrije Universiteit Amsterdam, May 1980.
14. A. NWHOLT, “A Framework for Classes of Grammars between the LL(k) and LR(k) Grammars,”

TR No. 80.CS-25, McMaster University, Hamilton, Canada.
15. T. OLSHANSKY AND A. PNUELI, A direct algorithm for checking equivalence of LL(k) grammars,

Theoret. Comput. Sri. 4 (1977), 321-349.
16. M. OYAMAGUCHI, N. HONDA, AND Y. INAGAKI, The equivalence problem for real-time strict deter-

ministic languages, Inform. Contr. 45 (1980) 90-I 15.
17. D. A. POPLAWSKI, On LL-regular grammars, J. Comput. System Sci. 18 (1979), 218-227.
18. D. J. ROSENKRANTZ AND R. E. STEARNS, Properties of deterministic top-down grammars, Inform.

Contr. 17 (1970), 226-255.
19. E. UKKONEN, A decision method for the equivalence of some non-real-time deterministic pushdown

automata, in “Proceedings, Twelfth Annual ACM Symp. on Theory of Computing, 1980,” pp.
29-38.

20. D. WOOD, Some remarks on the KH algorithm for s-grammars, BIT 13 (1973), 476-489.
21. D. WOOD, Lecture notes on top-down syntax analysis, J. Comput. Sot. India 8 (1978), I-22.
22. V. V. ZUBENKO, “Simple Pushdown Storage Automata and the Equivalence Problem in Certain

Classes of LL(x) Grammars” (in Russian). “Theory and Practice of Systems Programming”
(Russian), Inst. Kibernet., Akad. Nauk Ukrain. SSR, Kiev, 1979, pp. 60-76.

