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1 Introduction and preliminary knowledge

Suppose that% + é =1(p > 1),d = {ay} € lp,l; = {by} € Ly, the classical Hilbert series inequality was obtained
in 1925 [1]:

Yy o o N, IB1,, (1)

Tamym+n  sin(/p)

where the constant factor —*— is the best.
sin(r/p)

If f(x) € Ly(0, +00), g(¥) € L4(0, +00), the corresponding Hilbert integral inequality was obtained in
1934 [2]:

+00 +00

fx)g(y) i
_([ _([ Xty dxdy < SinGTp) I1£1l gl » Q)

where the constant factor —~ is still the best.
sin(m/p)

Since (1) is of great significance for the study of boundedness and norm of series operator in [, and (2)
is of great significance for the study of boundedness and norm of integral operator in L,(0, +00), Hilbert in-
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equality has been widely concerned. To study the operator boundedness and operator norm from sequence
space [ to function space L or from function space L to sequence space [, the half-discrete Hilbert in-
equality has been paid more attention. In 2011, the following results were obtained [3]: If & = {a,} € I,, f(x) €
L4(0, +00), then

I Z anf(x) i )||a||,,||fllq, ®

n+x sin(mt/p

the constant factor is also the best. Later on the equivalent conditions for validity of multiple integral half-
discrete Hilbert-type inequality with generalized homogeneous kernel were discussed [4]. In [5], the para-
meter conditions for the optimal constant factor of half-discrete Hilbert-type inequality with homogeneous
kernel in one dimension were established. Good results were obtained.

To further discuss the multiple integral half-discrete Hilbert-type inequality, we need to introduce the
following notations: Suppose thatm € N, x = (xq, %,..., Xn), RT = {x= (4, %, ..., Xn) : ;> 0,i =1, 2,..., m}.
For p > 0, the norm of x is defined by

IXlhn,p = O + X + -+ +x0)WP.

Spaces [ and L are defined by, respectively,

) 1p
Iy =1a = {ay} : llp,q = {Z n“lanlp] < +ooyp,

n=1

1/q

LERT) = £00) : fllg.p = j Ixl, 1 fOldx| < +oo .
R
If K(n, IXllm,p) = G(n"1||x||f,§,p) > 0, then K(n, [x|lm,,) is @ nonhomogeneous nonnegative function. In this
paper, we will discuss the equivalent parameter conditions under which the multiple integral half-discrete
Hilbert-type inequality

[e¢]

>, [o I ) anf00dx < Milalfles @)

n=1|Rm

+

can be established when A4, > 0. That is, what conditions do the parameters a, 8, A;, A, p, g meet if there is
a constant M > O such that (4) holds? On the contrary, if there exists a constant M > 0 such that (4) holds,
then what conditions do the parameters a, 8, A, A, p, g satisfy? Such problems are undoubtedly very
important theoretical problems, which have not been well solved at present. At the same time, we also
discuss the best constant factor of (4) and its application in operator theory. More related literature can be
found in [6-21].

2 Some lemmas
By using the Holder’s inequality of integral and series, we can easily get the following lemma.

Lemma 2.1. Assume that% + % =1(p > 1), ay(x) > 0, by(x) > 0, Q is measurable. Then, the mixed Hélder’s

inequality can be obtained
1p 1/q

j Y () by(x) dx = Z Ian(x)bn(x)dx < I Y afax | 3" b0 dx

in Qn Q"=
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Lemma 2.2, [22] If m € N, p > 0, r > 0, Y(u) is measurable, then

- M r m-1

"X"I . Y (Ixllm,p) dx = "™ 1T (m/p) 0 Y)um™du,
I‘m(l/p) +00 )

m. dX - i m 1d ,

||X||"£)>r ll)(”X" ,P) p’"‘lr(m/p) '!‘ ',[)(ll)u u

where['(t) is the Gamma function, and || x|, , < r represents the regionQ, = {x = (X, X, ..., Xm) : X; 2 0, | X[lm,p < 1}

According to Lemma 2.2, one gets

I™(1/p)

L ¥ (ol ) x =

R

+

I Y umdu.
0

Lemma 2.3. Assume thatm € N, p > O,% + % =1(p > 1,4 > 0,K(n, [X|n,p) = G(nh ||x||f,§’p) is nonnegative

m/11+1x/t2 _ /12+ﬁ/1])

» = ¢, and K(t, 1)[”%1” is monotonically decreasing in (0, +00). Denote that

1
measurable, = (
2

+00 +00
W, = IK(l, Ot mde, W, = IK(t, 1)t +edt.
0 0

Then,
/\1“12 = AZVVI
and
_pm Ay (Brm I™(1/p)
wy(n) = '[ K (n, [1X1m,p) 1Ml pq dx = n/Tz( ! 7m)? b
8 g “I'(m
i P I(m/p)
& a+l %(%717 )
@y(0) = Y K (1, [l o)1= < il e

n=1

Proof. It follows from ™4 +% _ 2tPh _ j ojpap L(_% L 2 d o) — 1= —B*™ 4 1, then
p q M p q q

+00

ﬂ a+l
J_ K (1, tAz)t"T+Cdt

0

W,

+00
= A j K, u)u%(’%l”)*%’ldu
A
0

+00
B &jK(l,u)uﬁl(_a}'%bc)"ldu
A
0

+00
-k j K, wu " m-dy = 2w

A A
0

Hence, AW, = A, W,
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By Lemma 2.2, one gets

I'™(1/p) J’ _Bm e mo1
—— " | K(n, )t~ *m™dt
(l)l(n) m lr( / ) (n )
- w K (1, t- nﬁ)t-ﬂif"’*m-ldt
p"'T(mjp) !
_ wn’%(’%ﬂ*m 1 jK(l W T m1dy
p"'T(mjp)
_ n%(ﬂ;m—m) F’I’(l/P) :
p"'T(m/p)

a+1

Note that K(t, 1)t~ » *¢ is monotonically decreasing in (0, +00), thus

[o9)
w,(x) = Y K (n-[x|/a, 1yn=5'+e

A (a+1 00
o G
p A y— &L
= ||x||Al( ) K(n 2, 1) (n- /a5 +
+1 +
A\ P _a+l
< ||x|| K K (¢ IxI, 1) (¢-xlip/an-5"+ede
Az( +1

—Ixd, P IK(u Du%' redu

A a+1
L2(a+l g o
a\p
= ||X||m1,£ ) W;. O

3 Main results

Theorem 3.1. Suppose that m € N, p > 0, 414, > O, % % =1(p > 1), K(n, |Xllm,p) = (n"lllxll’lz ) is non-

a+l

negative measurable, ('MI;MZ - %) =c, K(t, )t~ and K(t, )t~ *¢ are monotonically decreasing

in (0, +00), and
+00

Wy = IA _[K(t, D5t < +oo.

Then,
(i) The necessary and sufficient conditions for the validity of inequality

L;K (1, [l ) @ f OO X < Ml 5)

with some constant M > 0 is ¢ > 0, where d = {a,} € I, f(x) € L,f (R
(i) For c = 0, the best constant factor of (5) is

infM =

Wo (i) |
[V |17\ pm 1T (mfp) )
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Proof. (i) Suppose that (5) holds. If ¢ < 0, for € = ﬁ > 0, taking
ay = nCe- IO p =12,
and

Fo0 = xRl 0 < < 1,
0, Ixllm,p > 1.

It follows from Lemma 2.2 that

0 1p Va
Miallp,allfllg,p = M(Z nllﬁllfj I ”X";nrzzrlllz\sdx
n=1 0<[Xllm p<1
+00 up 1 1q
<M1+ I t-lhledt T™Q/p) t1+lhleqy

p™ 'T(m/p)
0

1

___ M () ¥
eI o™ T (m/p)

1/ m 1p
= %(ﬁ} q[l - Ejl/p[4r (1/p) ] < +00.
-\ A 2) p™'T(m/p)

Since K(t, 1)t~ is monotonically decreasing in (0, +co), then

1+ I/llle)l/p[

j > K, enp)anfoodc = | ||x||<,,;fi;’"”2'€>/q[z K, ||x||m,p>n-<“+1+'h'€>/p}dx

mn 1 0<||x\|m,p§l n=1

0<[Ixllm,p<1

Brm-lhle A atl+lhle| A A P
> [ e T [t welid, | dujax
0<||X”m,p51 1
B+m—-|A;|e Aza+l+|}l1|£ A IIM
= Ixllmp R I K@, Dt » d
0<)IXlm,p<1
’ i,
A
—m+7c+ a+1+\/11|e
> [ Iy qut D058 g |
0<[[xllm,p<1
m L +oo
= _mlil(l/p) t71+%c+|/‘2|£dt'|‘ I((t, 1)[, ‘“HMﬂsdt
p F(m/p)
1
__I"p) ¢ “*CdtJ‘ K, e g
P'"‘lF(M/p)

Consequently,

1

0

B-mtlhle A —a-1-|Ale| oo A A
q A 14 A
| Wy 1 3 K| 1 by

DE GRUYTER

_a+1+|/\1\s
P

_a+lt|lle

t|dx

a+1+|Ale g Ip m -1q
Jt 1+u1cdtJK(t De g o M A (1 - 5} _Mp)
—-c\A 2) \ p™ T (m/p)

dx

(6)
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Note that c <0, hence_[ t~ 1"wcdt = +00, which contradicts (6). Therefore, ¢ > 0.
On the contrary, suppose that ¢ > 0. It follows from the mixed Ho6lder’s inequality and Lemma 2.3 that

f(X)JK 1, [1Xllm,p) dx

n(@+1-pc)/(pq)
n(@+1-pc)/(pq)

||X||(ﬁ+m)/(104)
||X||(£LM)/(IJQ)

mnl

j Y. K (1, Ixlm,p) @ f ) dx = fZ

mn 1
Ip

*© nla+1-po)lq -
j g o K o )
n=

m

1/q

o |x ||(ﬁ+m)/p
IZ i OO 1K (1, Xl ) dx

1/q

- [Z n(“”m/ﬂanlpwl(nJ j I 5™ 1f (o) 1 wa(x) dx

n=1

Vp(co a+l-pc A (B+m Up
1/:{&] L n 4 +/T;( q 'mj|an|p]
=1

< WPW,
b2 Irmp)
1/q
B+m &(Lﬂ, ,)
juxump A 100 l4dx
IR+
y 1q
Wo ™(/p) g p P I B q
= P ay, dx
|/\1|1/4|/\2|l/p[pm1r(m/p)J Z_:ln || X[, o L f GO
1/q

W, I™(1/p) 1p (o . ,
: NN (pm—lr(m/p)] én Ianlp fllx||mp|f(x)|qu

W mjp) V7
- |A1|1/q|/12|1/p [pm—lr(m/p)] "a"P,a"f"q,ﬁ'

. Wo map) VP
Taking M > T T (p’"’ll"(m /p)) arbitrarily, one can get (5).
(ii) For ¢ = 0, assuming the best constant factor of (5) is My, then we can see from the previous proof that

o< Mo m(p)
= e AP  pmiTamp) |

IZ (1, Xllm,p) an f () dx < Mo lldllp,allfllg,-

For € > 0, sufficiently small and N sufficiently large, taking
ay = nCe-hleb - n=1,2, ...
IR0 < iy, < N,
foa = {o, IXllmp > N.
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Then,
. " 1/q
Mo llallp,allfllg.p = Mo[z n-l-'M'eJ j [l 21 dx
k=1 0<lxllmp<N
+00 Ip N g
< My|1+ j ¢-1-hileg I™(1/p) -1Hlledy

p™'T(m/p)
1 0

M, ( I"(1/p)

1/q
= NWlela (1 4 |A|e)vp,
eM[PIA, 9 pmlr(m/p)J 1+ Ale)

[o0)
szm 1Xllm,p) @n f () dx = zn<a+1+mns>/p f K (1, [l p) II5H5 1221904 dx
n=1

R 0<lxlmp<N
= Mi n- (a+1+|A]€)/p IK n, t)t Brm-IRole IzI +m— 1dt
1T (m/p) 12 )
N

= _ M) i n-@+l+lhle)p IK(I’ t- n/h//lz) e o1 g
p™ 'T(m/p) i=

0
N nA2

Fm(l/p) 00 n_a+1yﬂlle+;l;(ﬁ+m;|/lz\e m+1 J‘ KA, wu Brm-lle 1du

p" ' T(mjp) =

N .nM/A2

= Mi nl-lle I K1, u) u—’gm;"‘z‘gm—ldu
p™ 'T(m/p) i=

, _I"p) z n-l- |A1|£JK(1 wyu- e eme gy

p™ T (m/p) =
m +m-|Agle
> M t1- |A1|€dtII<(1 wu b q\/\\ +m-1qy
" Tmjp) J
m +m-|Aple
run T ro e
\Ailep™ T (m/p) J

Consequently,

I™(1/p)
Aep™ IT(m/p)

N
bl m
I K, wu " em1gy < Mo [ T

1/q
< NWlela (1 4+ A |e)vp,
el P |, pm-ll“(m/p)] (@ + Ale)

I/hl””l/\zl”q( I™(1/p)

yp N
; ] IK(L wu """ < Mo - NIWIE 1+ 4e),
Al pm - T(m/p)

Let € — 0%, then

|A1|1/p|/12|1/q( I"™(1/p)

l/p
- j JK(l u)u**”" 1du < M.
Al p"'T(m/p)
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In addition, let N — +o00, we have

m Up i +m
1 r (1/p) |/12| KQ, u)u‘ﬁq m-1dy < M.
AV |A[7P \ pm1T (m/p)

0

It follows from Lemma 2.3 that

1A I™(1/p) 1/p<M
W97  pmIT(mfp) |~

Hence, the best constant factor of (5) is

Moy

_ W () " -
M pm 1T (mp) )

4 Applications in operator theory
The series operator T; and singular integral operator T, are defined by, respectively,

T(@) (x) = Y K, IXllmp) s To(F)n = JK (1, IXllm,p) f (x) dx. @)

n=1 R

+

According to the basic theory of Hilbert-type inequality, (5) can be equivalently written as the following two
expressions:

ITi(@p,pa-p) < Mllp,e and  [T(flgaa-q < Mlfllg,p-
Thus, by Theorem 3.1, one has

1 1 .
5+t = 10>, K, Ixlm,) = G (nh|xll ;) is non-

negative measurable, i(@ - %) =c, K(t, l)t‘“lz1 and K(t, 1)t“‘;1+0 are monotonically decreasing

Theorem 4.1. Assume that m e N, p > 0, 4A;, > O,

in (0, +00), and
+00

Wo = A _[K(t, Dt-5'dt
0

is convergent. Then,
() T: 12— LEPR™ and T : LF R™) — 1209 are bounded operators if and only if ¢ > 0;

m/11+aA2

(ii)y Forc =0, i.e., = %, the operator norms of T, and T, are as follows:

W, ™1 1/p
1Tl = 1%l = — 0 - _1( /p) '
M9, 1P | 1T (mp)

Corollary 4.1. Suppose thatm € N, p > O,% + % =1(p>1,a>0,A4>0,4 >0, %(@ - %) =1,
2

5 + max{ph( - a), p(ib - 1), pthc - 1), pib + 1 - 1), pic + 1 - D} < a < g + phc, and

1
Wo:_[ L [t“i“*‘%l)*ut“*bﬁ“*%”*l}dt.
0

1+1t)¢

The operators Ty and T, are defined by, respectively,
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S (max{L, nt 1P (minfl, nhixlz 1)

2 (@ + nMx|2 )

n=1

J‘ (max{1, n ||X||;\,f,p})b (min{1, n IIXII#’/, he
RY

Ti(@) (x)

n»

B(f)n - fOodx.

A,
A + nhilxdiz )7

Then,
(i) T, is a bounded operator from 12 to LE"™P) (R™) and T is a bounded operator from LE R™) to 15*-9 if and
only ifl > 0;

(i) Forl=0, ie., ™%

= %, the operator norms of T, and T, are as follows:

W (i) |
A9 ple\ pm1T(mjp))

1L = 1%l =

Proof. It follows from g +phb-a)<a< g + pAc that ¢ + Al(l - “;1) >0,a-b- i(1 - ‘“1) >0,
1

and the integral in W, is convergent. Denote that

(max{1, nt|x[z HP (min{1, n* x|, 1)

A
A + nhilxdiz )2

K1, [Xllm,p) =

Then,
+00

Wy = A, I K(t, 1)t de
0

=X T (max({1, t"})? (min{1, th})° St
0

1+ th)a
+00
b .
_ J‘ (max{1, u})’ (min{1, u})° kg,
1+u?
) j— UC -1 +.°[° b+ a-eh-1
_0 (1 +u)e 1 + u)
1
-| . 1t)a oA oo (05 ar,
+
0
According to a > s +pyb - 1) and a > s + p(Ac — 1), one has ;b - “le <0, Ac - “Tj'l < 0, and
1 arl
— . the% 0<t<],
K, )5 (max{1, t*})? (min{1, th})° poost 1+ thya
N r = . P =
1+ th)a 1 s psq
1 + thy ’ '

Thus, K(t, 1)t~ is monotonically decreasing in (0, +co).

Note that a > § +pb+1-1)anda > g +plhic+1-1), weget b — %1 +1<0,Ac - %1 +1<0,
and
1 Me-%1y]
m N t p > 0 < t < 1,
K(t, D)t~ = (
! AL S SN}

1+ thya
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Therefore, K(t, 1)t~ *! is monotonically decreasing in (0, +c0).
Finally, it follows from Theorem 4.1 that Corollary 4.1 holds. O

Taking ¢ = b in Corollary 4.1, according to the properties of Beta function, one gets

1
o= [ — [tbﬁ(l-“%l)-l e )*ﬂdt —Blb+ l(l _at IJ, a-|b+ 1(1 _at 1) :
1+ 07 7 p M p

Hence, we have

Corollary 4.2. Assume that meN_, p >0, % + % =1(p>1,a>0,4 >0, >0, i(w - %) =1,
g + max{pA(b — a), p(Ab - 1), p(Aib + 1 - 1)} < a < g + pA b, operators T, and T, are defined by, respectively,
. & (Mxl )P
L@ ) = Y —————
(1 + n™lIxliz2 )¢

n=1
) I (Il )
(= [ 2 Xmp
) s,

m
+

n»

fx)dx

Then,
() T: 12> LECPR™ and T, : LE(R™) — 1509 are bounded operators if and only if > 0.

, the operator norms of Ty and T, are

m 1p
Il = 1B = B b+l[1_ ‘“1), a- b+i[1_ “+1j ( (1)) j _
/11 qAZ /p Al )4 Al p p F(m/p)

We can get the following results by taking b = 0 in Corollary 4.2.

.. . mhraly A pA
(ii) Forl=0, l.e.,%z%ﬂl

Corollary 4.3. Assume thatm € N,, p > 0, % + % =1(p>1,a>0,A4>0,4 >0, i(m - M) =1,

p q
max{p(l - ha) - 1,-1,pl - 1} < a < p — 1, operators T; and T, are defined by, respectively,
s - a f)dx
L@ = ) —————— L(f)n = I—
i L Iz ,)? A=) Iz ,)?

n=1 m

+

Then,
() T: 12> LEP R™ and T : Lf R™) — 1279 are bounded operators if and only if 1 > 0.

(ii) Forl =0, ie., w = %, the operator norms of Ty and T, are expressed as follows:

1 1 1 1 1 A 1p
Il = 1B = —77B _(1_ ar j a__(l_ ax M 1) j .
AP A p M p p™1T(m/p)

mA; + ady

In Corollary 4.1, letm =1, a = Aiz(po -A)and B = All(qo - 1), then —g="% ;ﬁ}l‘. The following

results can be obtained.

Corollary 4.4. Assume that % + é =1(p>1,a>0, 4 >0, &, >0, % + % + maxih b - a), hob - Ay,

Mye-A< o< % + % + AMAe, a = Aiz(po -A), B= Ail(qo — A). Denote that

1
Wo _ I(l 1 t)a [tﬁ(%Jr%ﬁhAzc—a)—l + ta—ﬁ(%+%+/ll/lzb—0)—l:|dt.
+
0
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Operators T and T, are defined by, respectively,

o s (max{l, nhx®)P (minf1, e
L@ (x) = n; s oy ans
B i (max{1, ntx*})P (min{1, "t}
B = | e fodx.

0

Then, Ty : IS — LEAP(0, +00) and T, : LF(0, +00) — 1749 are bounded operators, and the operator norms
of T, and T, are expressed as follows:

Wo

Il = 1Tl = AT
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