
J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

Published for SISSA by Springer

Received: May 19, 2015

Accepted: May 19, 2015

Published: June 12, 2015

The equivariant A-twist and gauged linear sigma

models on the two-sphere

Cyril Closset,a Stefano Cremonesib and Daniel S. Parka

aSimons Center for Geometry and Physics, State University of New York,

Stony Brook, NY 11794, U.S.A.
bDepartment of Mathematics, King’s College London,

The Strand, London WC2R 2LS, U.K.

E-mail: cclosset@scgp.stonybrook.edu, s.cremonesi@imperial.ac.uk,

dpark@scgp.stonybrook.edu

Abstract: We study two-dimensional N = (2, 2) supersymmetric gauged linear sigma

models (GLSM) on the Ω-deformed sphere, S2
Ω, which is a one-parameter deformation of

the A-twisted sphere. We provide an exact formula for the S2
Ω supersymmetric correlation

functions using supersymmetric localization. The contribution of each instanton sector

is given in terms of a Jeffrey-Kirwan residue on the Coulomb branch. In the limit of

vanishing Ω-deformation, the localization formula greatly simplifies the computation of A-

twisted correlation functions, and leads to new results for non-abelian theories. We discuss

a number of examples and comment on the ǫΩ-deformation of the quantum cohomology

relations. Finally, we present a complementary Higgs branch localization scheme in the

special case of abelian gauge groups.

Keywords: Supersymmetric gauge theory, Topological Field Theories

ArXiv ePrint: 1504.06308

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)076

mailto:cclosset@scgp.stonybrook.edu
mailto:s.cremonesi@imperial.ac.uk
mailto:dpark@scgp.stonybrook.edu
http://arxiv.org/abs/1504.06308
http://dx.doi.org/10.1007/JHEP06(2015)076


J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

Contents

1 Introduction 1

2 Supersymmetry on the Ω-deformed sphere 6

2.1 Supersymmetric background on S2
Ω 6

2.2 Supersymmetric multiplets 8

2.2.1 Vector multiplet V 8

2.2.2 Charged chiral multiplet Φ 9

2.2.3 Twisted chiral multiplet Ω 10

2.2.4 Twisted chiral multiplets from the vector multiplet 11

2.3 Supersymmetric Lagrangians 12

2.3.1 D-terms 12

2.3.2 Superpotential 13

2.3.3 Twisted superpotential 13

2.4 Supersymmetry equations 14

3 GLSM and supersymmetric observables 15

3.1 Coupling to flavor symmetries 17

3.2 The Coulomb branch 18

3.3 Correlation functions on S2
Ω 19

3.4 Parameter dependence and selection rules 20

4 Localizing the GLSM on the Coulomb branch 22

4.1 The Coulomb branch formula 22

4.2 Localization on the Coulomb branch 24

4.3 Gaugino zero-modes 28

4.4 Classical action 29

4.5 One-loop determinants 29

4.6 The Jeffrey-Kirwan residue 31

4.7 GLSM chambers and JK residues 32

4.8 A-model correlation functions 34

5 Derivation of the Coulomb branch formula 36

5.1 U(1) theories 38

5.2 The general case 49

6 Quantum cohomology and recursion relations in ǫΩ 60

6.1 Abelian GLSMs 62

6.2 Non-abelian GLSMs 65

– i –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

7 Examples: correlators with Ω-deformation 66

7.1 The abelian Higgs model 66

7.2 CP
Nf−1 68

7.3 The quintic 70

7.3.1 Geometric phase 71

7.3.2 Landau-Ginzburg phase 73

7.4 The resolved WCP
4
1,1,2,2,2 73

7.4.1 The geometric phase with mF 6= 0 76

7.4.2 Recursion relations 77

7.4.3 Geometric and orbifold phases in the ǫΩ = 0 and mF = 0 limit 78

8 Examples: correlators of A-twisted GLSMs 79

8.1 C
3/Z(2N+1)(2,2,1) 79

8.2 Calabi-Yau complete intersections in Grassmannians 81

8.2.1 The associated Cartan theory and the ξ < 0 phase 84

8.2.2 Resumming the instantons and phase independence of correlators 87

8.2.3 Resumming the instantons and the general residue formula 88

8.3 The Gulliksen-Neg̊ard CY3 89

9 Higgs branch localization and vortices 92

9.1 Localizing on the Higgs branch 92

9.2 Vortex equations on S2
Ω 93

9.3 Higgs branch localization formula 95

9.4 Elementary examples 96

A Notations and conventions 97

A.1 A-twisted fields 98

B More about supersymmetry multiplets 99

C One-loop determinants 100

C.1 Chiral multiplet determinant 100

C.2 Chiral multiplet determinant with D̂ 6= 0 101

C.2.1 The large σ̂ limit of the one-loop determinant 102

C.3 Gauge-fixing of the SYM Lagrangian 104

C.4 Vector multiplet one-loop determinant 105

1 Introduction

The study of supersymmetric quantum field theories on curved manifolds often leads to ex-

act non-perturbative results, by effectively isolating interesting supersymmetric sub-sectors.

One of the simplest examples of this approach is the (A- or B-type) topological twist in two
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dimensions [1], defined by “twisting” the spin by the (vector-like or axial-like) R-charge.

It preserves two scalar supercharges Q, Q̃ such that Q2 = Q̃2 = 0, on any orientable Rie-

mann surface Σ. The supersymmetric sector it isolates corresponds to the twisted chiral

operators1 in the case of the A-twist (or to the chiral operators in the case of the B-twist).

Let us consider two-dimensional N = (2, 2) theories with a vector-like R-symmetry,

U(1)R. Any supersymmetric background on a closed orientable Riemann surface Σ can be

understood as an off-shell supergravity background [2, 3]
(
Σ ; gµν , A

(R)
µ , Cµ , C̃µ

)
, (1.1)

where, in addition to a metric gµν on Σ, we have a background R-symmetry gauge field

A
(R)
µ and a complex graviphoton Cµ, C̃µ coupling to the conserved current for the central

charge Z, Z̃. Supersymmetry imposes particular relations between the fields in (1.1) [3].

In this work, we study the Ω-deformed sphere, which we denote S2
Ω. It corresponds to

Σ = CP
1 with a U(1) isometry generated by the Killing vector

V = iz∂z − iz̄∂z̄ , (1.2)

using the usual complex coordinate on the sphere. Note that V has fixed points at the

north and south poles, z = 0 and z = ∞, respectively. The supergravity background is

further characterized by one unit of flux for the U(1)R gauge field,

1

2π

∫

S2

dA(R) = −1 , (1.3)

and by the following background for the graviphoton:

Cµ = i
ǫΩ

2
Vµ , C̃µ = 0 , (1.4)

with ǫΩ ∈ C a constant of mass dimension 1. The supersymmetry algebra on S2
Ω is

Q2 = 0 , Q̃2 = 0 , {Q, Q̃} = −2i (Z − ǫΩJV ) , (1.5)

where Z is the holomorphic central charge of the flat-space N = (2, 2) algebra that com-

mutes with U(1)R, and JV is the generator of rotations along (1.2). The S2
Ω background is

a JV -equivariant deformation of the A-twist on the sphere — the A-twist itself corresponds

to ǫΩ = 0.

In this paper, we consider general gauged linear sigma models (GLSM) [4] on the

Ω-deformed sphere. A GLSM is a two-dimensional gauge theory consisting of a vector

multiplet for some gauge group G and of some matter fields in chiral multiplets charged

under G. The chiral multiplets can interact through a U(1)R-preserving superpotential. If

G includes some U(1) factors,

G ⊃
n∏

I=1

U(1)I , 1 ≤ n ≤ rank(G) , (1.6)

1Note that there are two distinct uses of the term “twisted” here. The first one refers to the A-twist and

the corresponding “twisting” of the spin by the R-charge, while the other refers to the “twisted multiplets”,

which are representations of the N = (2, 2) supersymmetry algebra. We shall distinguish between the two

acceptations by writing “A-twisted” and “twisted”, respectively.
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we can turn on Fayet-Iliopoulos (FI) couplings and θ-angles:2

LFI = −
∑

I

ξI trI(D) +
i

2π

∑

I

θI trI (2if11̄) . (1.7)

Here trI denotes the generator of U(1)I inside G. The couplings ξI , θI are paired by

supersymmetry into the complex combination

τ I =
θI

2π
+ iξI . (1.8)

The Lagrangian (1.7) descends from a twisted superpotential Ŵ (σ) linear in σ, with σ the

complex scalar in the vector multiplet:

Ŵ (σ) =

n∑

I=1

τ I trI (σ) . (1.9)

Much of the interest in this class of theories is that it provides renormalizable ultraviolet

(UV) completions of interesting strongly-interacting field theories in the infrared (IR). In

particular, GLSMs can UV-complete non-linear sigma models (NLSM) on Kähler — and in

particular Calabi-Yau (CY) — manifolds, as well as superconformal field theories (SCFT)

with no geometric description.

The computable quantities of interest on S2
Ω are the correlation functions of gauge-

invariant polynomials in σ inserted at the fixed points of the isometry (1.2). Consider the

two operators O(N)(σ) and O(S)(σ) inserted at the north and south poles, respectively.

The main result of this paper is an exact formula for their correlation function, of the

schematic form 〈
O(N)(σN )O(S)(σS)

〉
=

1

|W |
∑

k

qk Z̃k(O) , (1.10)

where σ = σN , σ = σS stands for the north and south pole insertions, and

Z̃k(O) =

∮

JK(ξUV
eff )

( rk(G)∏

a=1

dσ̂a
2πi

)
Z1-loop
k (σ̂; ǫΩ)O(N)

(
σ̂ − ǫΩ

k

2

)
O(S)

(
σ̂ + ǫΩ

k

2

)
. (1.11)

The sum over fluxes k in (1.10) runs over the weight lattice ΓG∨ of the GNO (or Langlands)

dual group G∨ of G,3 weighted by an instanton factor of the form q = e2πiτ for the

couplings (1.8). |W | is the order of the Weyl group of G. The k-instanton factor (1.11) is

a multi-dimensional contour integral on the “Coulomb branch” spanned by the constant

vacuum expectation values (VEV) σ = diag(σ̂a). More precisely, the contour integral

in (1.11) is a particular residue operation known as Jeffrey-Kirwan (JK) residue [7–9], the

definition of which depends on the effective FI parameter in the UV, ξUV
eff . Finally, the

integrand of (1.11) consists of a one-loop determinant Z1-loop
k (σ̂; ǫΩ) from massive fields on

2In the notation of this paper, the actual FI Lagrangian is given in (2.46), which includes an idiosyncratic

redefinition of the D-term.
3
G

∨ is the group whose weights k satisfy the Dirac quantization condition e2πik = 1G [5, 6].
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the Coulomb branch, and of the operator insertions themselves (including an important

ǫΩ-dependent shift of σ̂a).
4 An executive summary of this formula is provided in section 4.1.

While we shall spend much time deriving and explaining (1.10)–(1.11) in the following,

a few important remarks should be made from the outset:

• The result (1.10) is holomorphic in the parameters q and ǫΩ. In the presence of a

flavor symmetry group, it is also holomorphic in any twisted mass mF that can be

turned on. The q parameters have the interpretation as coordinates on the Kähler

moduli space of the geometry the GLSM engineers. They are referred to as “algebraic

coordinates” in [10], and are identified with complex coefficients of superpotential

terms in the mirror theory [11–13].

• This “Coulomb branch” formula is obtained by supersymmetric localization in the

UV. Thus the term “Coulomb branch” should be taken with a grain of salt, as we

do not sum over flat-space infrared vacua. Rather, we use the S2
Ω supersymmetry to

force the path integral into saddles that mimic a Coulomb branch. As we will show

in section 9 (in the abelian case), a different localization computation can lead to a

complementary understanding of (1.10) as a sum over “Higgs branch” configurations,

which are supersymmetric vortices corresponding to the residues picked by (1.11).

This point of view is closer in spirit to the seminal work of Morrison and Plesser [10].

• The formula is valid in any of the chambers in FI-parameter space — the famous

GLSM phases [4] — except on the chamber walls. The JK residue prescription only

depends on a choice of chamber. In any given chamber, only some particular set of

fluxes k contributes to the JK residue, and the sum (1.10) is convergent.

• One should be careful about the meaning of (1.10)–(1.11) when the FI-parameters

run under RG flow. In that case, one can write the formula in a RG-invariant way

in terms of dynamical scales. Moreover, many of the classical GLSM chambers are

lifted at one-loop. This is reflected in the JK residue prescription in (1.11), which

depends on the one-loop UV effective FI parameter ξUV
eff .

• The formula (1.10)–(1.11) provides a direct way of computing various correlators

in the ǫΩ-deformed theory. The A-model correlators can be recovered from these

correlators by sending ǫΩ to zero. For example, we obtain

〈σnN 〉 = 0 (n = 0, 1, 2)

〈σ3N 〉 = 5

1 + 55q

〈σ4N 〉 = ǫΩ
2 · 56q

(1 + 55q)2

〈σ5N 〉 = ǫΩ
2 5

5q(−17 + 13 · 55q)
(1 + 55q)3

...

(1.12)

4We determine the integrand up to an overall sign ambiguity. We shall give an ad-hoc prescription to

fix this sign, consistent with all the examples.
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for the quintic threefold, where σ is the lowest component of the unique twisted

chiral field in the theory. Notice that the celebrated triple-intersection formula [11]

is reproduced.

• The formula (1.10)–(1.11) applies straightforwardly to non-abelian gauge theories.

In particular, it is applicable to the computation of correlators constructed out of

higher Casimir operators of twisted chiral fields. We are thus able to compute some

correlators in (submanifolds of) non-abelian Kähler quotient manifolds that have not

been computed before, to our knowledge (see section 8).

• Setting ǫΩ = 0, we obtain a simple formula for (genus zero) correlations functions

〈O(σ)〉0 in the A-twisted GLSM:

〈O(σ)〉0 =
1

|W |
∑

k

qk
∮

JK(ξUV
eff )

( rk(G)∏

a=1

dσ̂a
2πi

)
Z1-loop
k (σ̂)O(σ̂) . (1.13)

This includes in particular the holomorphic Yukawa couplings of CY string phe-

nomenology, and some non-abelian generalizations thereof. The results we obtain

from (1.13) can be compared to various results in the literature, whether obtained

from mirror symmetry or from direct GLSM computations [10, 14–17]. When G is

abelian, the “Coulomb branch” formula significantly simplifies the toric geometry

computations of [10]. In fact, this particular use of the JK residue was first intro-

duced in [9] from a mathematical point of view. In a different approach, a related

Coulomb branch formula has also been introduced in [15, 17], which can be recovered

from (1.13) in the appropriate regime of validity.

• The formula (1.13) can be viewed as a generalization of Vafa’s formula for A-twisted

Landau-Ginzburg theories of twisted chiral multiplets [18] to the case of gauge fields.

• In the ǫΩ = 0 case, it is relatively easy to show from (1.13) that the quantum chi-

ral ring relations (also known as quantum cohomology relations) are realized by the

correlation functions, given a technical assumption about the integrand. This as-

sumption corresponds physically to the absence of certain dangerous gauge invariant

operators which could take any VEV. (In geometric models, such a situation oc-

curs on non-compact geometries with all mass terms set to zero. This clarifies some

observations made in [15].)

• For ǫΩ 6= 0, one can derive recursion relations for the ǫΩ-dependence of correlations

functions, generalizing the quantum cohomology relations of the A-twisted theory.

These recursion relations simplify many explicit computations, and have deep rela-

tionships to enumerative geometry.5 It is interesting to observe that the one-loop

5The recursion relations have been derived for the computation of Gromov-Witten invariants of com-

plete intersections inside toric manifolds in the mathematical literature, for example, in the works of Given-

tal [19–21]. These recursion relations and their relation to Picard-Fuchs equations have been noticed [22, 23]

in the context of correlators on the supersymmetric hemisphere [22, 24, 25] and two-sphere [26, 27]. Some

related relations, that translate into difference equations of “holomorphic blocks” [28, 29] have been stud-

ied in [30].
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determinant Z1-loop we have computed can be identified with the densities computed

in [19–21, 31] that are integrated over moduli spaces of curves to obtain certain

geometric invariants, once ǫΩ is identified with the “equivariant parameter” ~ of

these works.

To conclude this introduction, let us briefly compare our setup to similar localization

results for N = (2, 2) theories obtained in recent years. The authors of [26, 27] localized

N = (2, 2) gauge theories on a different S2 background with vanishing U(1)R flux and

some unit flux for the graviphotons Cµ, C̃µ. Thus, in that background the R-charges can

be arbitrary while the central charge Z is quantized.6 That S2 background corresponds

to a supersymmetric fusion of the A- and Ā-twists on two hemispheres [32–34], while this

work considers a deformation of the A-twist on S2. (See [22, 24, 25] for the localization of

2d N = (2, 2) theories on hemispheres.)

Another closely related localization result is the computation of the N = (2, 2) elliptic

genus [35–37] — the T 2 partition function — which was found to be given in terms of a

JK residue on the space of flat connections [37]. Finally, the recent computation of the 1d

supersymmetric index in [38] was very influential to our derivation of the Coulomb branch

formula (1.10). Some other partially related recent works, in the context of topologically

twisted 4d N = 2 theories, are [39–41].

This paper is organized as follows. In section 2, we expound on supersymmetry on

S2
Ω. In section 3, we give some relevant background material on GLSM and we discuss

the supersymmetric observables we are set on computing. We present the derivation of

the Coulomb branch formula in sections 4 and 5. Section 5 is more technical, and might

be skipped on first reading. In section 6, we discuss the quantum cohomology relations

and their ǫΩ-deformations. In sections 7 and 8, we present several instructive examples.

In section 9, we discuss the Higgs branch localization. Several appendices summarize our

conventions and provide some useful technical results.

Note added. As this paper was being completed, a related work [42] appeared on the

arXiv which contains some overlapping material.

2 Supersymmetry on the Ω-deformed sphere

In this section we study off-shell supersymmetry on the S2
Ω background, we discuss vari-

ous supersymmetric Lagrangians which will be used in the following, and we present the

equations satisfied by any supersymmetric configuration of vector and chiral multiplets.

2.1 Supersymmetric background on S2
Ω

In the “curved-space supersymmetry” formalism we are using, a general supersymmetric

background is an off-shell supergravity background (1.1) which preserves some generalized

6More precisely, the imaginary part (or real part, depending on conventions) of Z is quantized. This

leads to a Coulomb branch integral over the real part of σ, as opposed to our integral formula which is

holomorphic in σ.
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Killing spinors ζ± or ζ̃± [3]. We have the following generalized Killing spinor equations

for ζ±,

(∇z − iAz)ζ− = 0 , (∇z̄ − iAz̄)ζ− =
1

2
H e1̄z̄ ζ+ ,

(∇z − iAz)ζ+ =
1

2
H̃ e1z ζ− , (∇z̄ − iAz̄)ζ+ = 0 ,

(2.1)

and for ζ̃±,

(∇z + iAz)ζ̃− = 0 , (∇z̄ + iAz̄)ζ̃− =
1

2
H̃ e1̄z̄ ζ̃+ ,

(∇z + iAz)ζ̃+ =
1

2
H e1z ζ̃− , (∇z̄ + iAz̄)ζ̃+ = 0 .

(2.2)

Note that ζ± and ζ̃± have U(1)R charge ±1, respectively. Here we introduced the gravipho-

ton dual field strengths

H = −iǫµν∂µCν , H̃ = −iǫµν∂µC̃ν (2.3)

and the canonical complex frame {e1 = e1zdz = g
1
4dz, e1̄ = e1̄z̄dz̄ = g

1
4dz̄}.

Let us consider a sphere with metric

ds2 = 2gzz̄(|z|2)dzdz̄ =
√
gdzdz̄ = e1e1̄ , (2.4)

with a U(1) isometry generated by the real Killing vector V in (1.2). The supersymmetric

background S2
Ω is given by (2.4) together with

Aµ =
1

2
ωµ , H =

ǫΩ

2
ǫµν∂µVν , H̃ = 0 , (2.5)

where ωµ is the spin connection. The graviphotons are given by (1.4). The supergravity

fluxes are:
1

2π

∫

S2

dA(R) = −1 ,
1

2π

∫

S2

dC =
1

2π

∫

S2

dC̃ = 0 . (2.6)

In consequence, the R-charges of all the fields must be integer by Dirac quantization,

while the value of the central charge Z, Z̃ is unconstrained. One can check that the back-

ground (2.4)–(2.5) gives a solution of (2.1)–(2.2) with the Killing spinors

ζ =

(
ζ−
ζ+

)
=

(
iǫΩ V1

1

)
, ζ̃ =

(
ζ̃−
ζ̃+

)
=

(
1

−iǫΩ V1̄

)
. (2.7)

In the language of the A-twist, and in keeping with the formalism of [3], the components

ζ+ and ζ̃− transform as scalars while ζ− and ζ̃+ are naturally sections of O(2) and O(2),

respectively.

The Killing spinors (2.7) can be used to provide an explicit map between the usual

flat-space variables and the more convenient A-twisted variables — see appendix A. By

construction, A-twisted variables are fields of vanishing R-charge and spin s = s0 + r
2 ,

where s0 and r are the original flat-space spin and R-charge. By abuse of terminology,
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we always refer to r as the R-charge even when the field is technically U(1)R-neutral after

the A-twist.

Denoting by δ and δ̃ the supersymmetry variations along ζ and ζ̃, respectively, the S2
Ω

supersymmetry algebra (1.5) is realized on A-twisted fields as [3]:

δ2 = 0 , δ̃2 = 0 , {δ, δ̃} = −2i (Z + iǫΩLV ) , (2.8)

where LV denotes the Lie derivative along V . This gives a U(1)-equivariant deforma-

tion of the topological A-twist algebra with equivariant parameter ǫΩ, also known as Ω-

deformation [43–45].

A more familiar description of the Ω-background is in terms of a fibration of space-time

over a torus [44]. An N = (2, 2) supersymmetric theory on S2
Ω can be naturally uplifted to a

4d N = 1 theory on an S2×T 2 supersymmetric background.7 As explained in [46–48], one

can consider a two-parameter family of complex structures on S2×T 2 while preserving two

supercharges of opposite chiralities. The complex structure moduli are denoted by τS
2×T 2

and σS
2×T 2

in [48], where τS
2×T 2

is the complex structure modulus of the T 2 factor, while

σS
2×T 2

governs a (topologically but not holomorphically trivial) fibration of S2 over T 2.

One can show that the supersymmetric uplift of S2
Ω to S2×T 2 is precisely the background

of [48] with the identification

ǫΩ = σS
2×T 2

. (2.9)

This relationship to 4d N = 1 is another motivation to study S2
Ω in detail. The T 2 × S2

partition function should be given by an elliptic uplift of our S2
Ω results (see [42, 49] for

some recent progress in that direction).

2.2 Supersymmetric multiplets

Let us consider the vector and chiral multiplets, which are the building blocks of the GLSM.

We shall also discuss the twisted chiral multiplet, which is important to understand the

vector multiplet itself. We discuss all multiplets in A-twisted notation, as summarized in

appendix A.

2.2.1 Vector multiplet V
Consider a vector multiplet V with gauge group G, and denote g = Lie(G). In Wess-

Zumino (WZ) gauge, V has components:

V =
(
aµ , σ , σ̃ , Λ1 , λ , Λ̃1̄ , λ̃ , D

)
. (2.10)

All the fields are valued in the adjoint representation of g. Let us define the field strength

f11̄ = ∂1a1̄ − ∂1̄a1 − i[a1, a1̄] . (2.11)

The covariant derivative Dµ is taken to be gauge-covariant, and we denote by L(a)
V the

gauge-covariant version of the Lie derivative along V . The supersymmetry transformations

7At least classically; 4d gauge anomalies forbid many matter contents that are allowed in 2d.
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of (2.10) are

δa1 = 0 ,

δa1̄ = iΛ̃1̄ ,

δσ = 2iǫΩV1Λ̃1̄ ,

δσ̃ = −2λ̃ ,

δΛ1 = −ǫΩV1(4if11̄) + 2iD1σ ,

δΛ̃1̄ = 0 ,

δλ = i

(
D − 2if11̄ −

1

2
[σ, σ̃]

)
− 2ǫΩV1D1̄σ̃

δλ̃ = 0 ,

δD = −2D1Λ̃1̄ + 4iǫΩV1D1̄λ̃− [σ, λ̃] + iǫΩV1[σ̃, Λ̃1̄] ,

(2.12)

for the supersymmetry Q, and

δ̃a1 = −iΛ1 ,

δ̃a1̄ = 0 ,

δ̃σ = −2iǫΩV1̄Λ1 ,

δ̃σ̃ = −2λ ,

δ̃Λ1 = 0 ,

δ̃Λ̃1̄ = −ǫΩV1̄(4if11̄)− 2iD1̄σ ,

δ̃λ = 0 ,

δ̃λ̃ = −i
(
D − 2if11̄ +

1

2
[σ, σ̃]

)
− 2ǫΩV1̄D1σ̃ ,

δ̃D = −2D1̄Λ1 − 4iǫΩV1̄D1λ+ [σ, λ] + iǫΩV1̄[σ̃,Λ1] ,

(2.13)

for the supersymmetry Q̃. These transformations realize a gauge-covariant version of the

supersymmetry algebra (2.8). One has

δ2ϕ = 0 , δ̃2ϕ = 0 , {δ, δ̃}ϕ = −2i
(
−[σ, ϕ] + iǫΩL(a)

V ϕ
)

(2.14)

on every g-covariant field ϕ in V, while for the gauge field aµ one has

{δ, δ̃}aµ = 2ǫΩLV aµ − 2ǫΩV
ν (∂µaν − i[aµ, aν ]) + 2Dµσ . (2.15)

Note that σ enters the supersymmetry algebra similarly to a central charge Z = −σ, as
a result of the WZ gauge fixing. This is expected from the dimensional reduction of 4d

N = 1 to 2d N = (2, 2) supersymmetry, where Z ∝ P3 + iP4 and σ ∝ a3 + ia4.

2.2.2 Charged chiral multiplet Φ

Consider a chiral multiplet Φ of R-charge r, transforming in a representation R of g. In

A-twisted notation (see appendix A), we denote the components of Φ by

Φ = (A , B , C , F) . (2.16)
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They are sections of appropriate powers of the canonical line bundle:

A , B ∈ Γ(K r
2 ) , C , F ∈ Γ(K r

2 ⊗ K̄) . (2.17)

The supersymmetry transformations are given by

δA = B , δ̃A = 0 ,

δB = 0 , δ̃B = −2i
(
− σ + iǫΩL(a)

V

)
A ,

δC = F , δ̃C = 2iDz̄A ,

δF = 0 , δ̃F = −2i
(
− σ + iǫΩL(a)

V

)
C − 2iDz̄B − 2iΛ̃z̄A ,

(2.18)

where Dµ is appropriately gauge-covariant and σ and Λ̃z̄ act in the representation R.

Similarly, the charge-conjugate antichiral multiplet Φ̃ of R-charge −r in the representation

R̄ has components

Φ̃ =
(
Ã , B̃ , C̃ , F̃

)
, Ã , B̃ ∈ Γ(K̄ r

2 ) , C̃ , F̃ ∈ Γ(K̄ r
2 ⊗K) . (2.19)

Its supersymmetry transformations are

δÃ = 0 , δ̃Ã = B̃ ,
δB̃ = −2i

(
σ + iǫΩL(a)

V

)
Ã , δ̃B̃ = 0 ,

δC̃ = −2iDzÃ , δ̃C̃ = F̃ ,

δF̃ = −2i
(
σ + iǫΩL(a)

V

)
C̃ + 2iDzB̃ + 2iΛzÃ δ̃F̃ = 0 .

(2.20)

Using the vector multiplet transformation rules (2.12)–(2.13), one can check

that (2.18)–(2.20) realize the supersymmetry algebra

δ2 = 0 , δ̃2 = 0 , {δ, δ̃} = −2i
(
−σ + iǫΩL(a)

V

)
, (2.21)

where σ and L(a)
V act in the appropriate representation of the gauge group.

We introduced the chiral and antichiral multiplets in complex coordinates to mani-

fest the fact that their supersymmetry transformation rules are metric-independent. In

concrete computations, however, it is useful to use the frame basis (see appendix A).

One translates between the coordinate and frame bases using the vielbein. For instance,

Aframe = (ez1)
r
2Acoord and Cframe = (ez1)

r
2 ez̄

1̄
Ccoord. In the frame basis, the fields A,B and

C,F have spin r
2 and r−2

2 , respectively.

2.2.3 Twisted chiral multiplet Ω

Another important short representation of the N = (2, 2) supersymmetry algebra is the

twisted chiral multiplet Ω. This multiplet has vanishing vector-like R-charge and vanishing

central charge. Its components in A-twisted notation are

Ω = (ω , Hz , H̃z̄ , G) , (2.22)
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where ω and G are scalars. The supersymmetry transformations of (2.22) are

δω = − 2i√
g
ǫΩVzH̃z̄ , δ̃ω = − 2i√

g
ǫΩVz̄Hz ,

δHz = iǫΩVzG+ 2i∂zω , δ̃Hz = 0 ,

δH̃z̄ = 0 , δ̃H̃z̄ = −iǫΩVz̄G+ 2i∂z̄ω ,

δG =
4i√
g
∂zH̃z̄ , δ̃G = − 4i√

g
∂z̄Hz .

(2.23)

Similarly, the twisted antichiral multiplet has components

Ω̃ = (ω , h̃ , h , G̃) , (2.24)

where the four components are scalars, and their supersymmetry transformations are

δω̃ = −2h̃ , δ̃ω̃ = 2h ,

δh̃ = 0 , δ̃h̃ = G̃− 2√
g
ǫΩVz̄∂zω̃ ,

δh = G̃+
2√
g
ǫΩVz∂z̄ω̃ , δ̃h = 0 ,

δG̃ =
4√
g
ǫΩVz∂z̄h̃ , δ̃G̃ =

4√
g
ǫΩVz̄∂zh .

(2.25)

These multiplets realize the supersymmetry algebra (2.8) with Z = 0. The comment of the

previous subsection about coordinate versus frame basis applies here as well. Note that

the supersymmetry transformations do depend on the metric except when ǫΩ = 0.

2.2.4 Twisted chiral multiplets from the vector multiplet

Important examples of twisted chiral multiplets are built from the vector multiplets V.
More precisely, let us consider U(1)I an abelian factor in G, and denote by VI = trI V the

corresponding abelian vector multiplet.8 We can build the gauge-invariant twisted chiral

multiplet

ΣI =
(
ω , H1 , H̃1̄ , G

)ΣI

=
(
trI(σ) , trI(Λ1) , − trI(Λ̃1̄) , 2i trI(2if11̄)

)
. (2.26)

We also have the twisted antichiral multiplet

Σ̃I =
(
ω̃ , h̃ , h , G̃

)Σ̃I

=
(
trI(σ̃) , trI(λ̃) , − trI(λ) , −i trI(D − 2if11̄)

)
. (2.27)

More generally, we can build a twisted chiral multiplet with any gauge-invariant function

of σ as its lowest component, ωO = O(σ).

Note that the G-term in (2.26) is slightly non-standard. The components (2.26) follow

from our redefinition of σ described in appendix A, which is natural in the presence of the

ǫΩ-deformation. One can also build another twisted chiral multiplet Σ′
I from V,

Σ′
I =

(
trI(σ − ǫΩ

2V1V1̄σ̃) , trI(Λ1 + iǫΩV1λ) , − trI(Λ̃1̄ − iǫΩV1̄λ̃) , G
Σ′

I

)
, (2.28)

8If G = U(N), trI denotes the usual trace.
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with

GΣ′
I = i trI (D + 2if11̄ + σ̃H+ 2iǫΩ (V1D1̄ − V1̄D1) σ̃) , (2.29)

where H is the background supergravity field (2.3). Importantly, ΣI and Σ′
I differ by their

G-term even in the ǫΩ = 0 limit. The fact that there exist distinct choices of twisted chiral

multiplets inside V is a consequence of S2
Ω only preserving two supercharges. (In flat space

with four supercharges, only (2.28) with ǫΩ = 0 would be twisted chiral.)

2.3 Supersymmetric Lagrangians

One can easily construct supersymmetric actions on S2
Ω [3],

S =

∫
d2x

√
gL , (2.30)

with δL = δ̃L = 0 up to a total derivative. Here we present the standard renormalizable

actions and we study their δ-, δ̃-exactness properties.

2.3.1 D-terms

From the vector multiplet (2.10), one can build a gauge-invariant general multiplet of lowest

component 1
4e20

tr(σ̃σ). The corresponding D-term action reads

L
Σ̃Σ

=
1

e20
tr

(
1

2
Dµσ̃D

µσ + (2if11̄)
2 − 2if11̄D

+2iΛ̃1̄D1λ− 2iΛ1D1̄λ̃− iΛ̃1̄[σ̃,Λ1]

)
. (2.31)

Here e20 is the dimensionful Yang-Mills (YM) coupling. Note that (2.31) is linear in D and

independent of ǫΩ. This non-standard choice of supersymmetric Yang-Mills (SYM) term

is on a par with our non-standard choice of GΣ in (2.26). The Lagrangian (2.31) is also δ-

and δ̃-exact (up to a total derivative):

L
Σ̃Σ

=
1

e20
δδ̃ tr (σ̃f11̄) . (2.32)

Equation (2.31), however, is not a good starting point because it is degenerate. The more

standard SYM Lagrangian can be obtained by adding another δδ̃-exact term to (2.32):

LYM =
1

e2
δδ̃ tr

(
σ̃f11̄ −

1

2
λ̃λ

)
. (2.33)

This gives

LYM =
1

e20
tr

[
1

2
Dµσ̃D

µσ +
1

2
(2if11̄)

2 − 1

2
D2 +

1

8
[σ, σ̃]2

+2iΛ̃1̄D1λ− 2iΛ1D1̄λ̃− iΛ̃1̄[σ̃,Λ1] + iλ̃[σ, λ] + ǫΩλ̃L(a)
V λ

−iǫΩ(D − 2if11̄)(V1D1̄ − V1̄D1)σ̃ − iǫΩ
4

[σ, σ̃]L(a)
V σ̃

−2ǫΩ
2V1V1̄D1σ̃D1̄σ̃

]
. (2.34)
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In particular, the first line of (2.34) is the same as the bosonic part of the N = (2, 2) SYM

Lagrangian in flat space.

The standard kinetic term for the chiral and antichiral multiplets Φ, Φ̃ coupled to V
reads:

L
Φ̃Φ

=− 4ÃD1D1̄A− Ãσ̃
(
−σ + iǫΩL(a)

V

)
A− F̃F + 2iB̃D1C − 2iC̃D1̄B

− i

2
B̃σ̃B − 2iC̃

(
−σ + iǫΩL(a)

V

)
C + iBλ̃A+ ÃλB − 2iÃΛ1C

+ 2iC̃Λ̃1̄A+ Ã
(
D − 2if11̄ +

1

2
[σ, σ̃]− 2iǫΩV1̄D1σ̃

)
A .

(2.35)

Here the vector multiplet fields are R-valued, and an overall trace over the gauge group is

implicit. The components of Φ, Φ̃ are written in the frame basis. The Lagrangian (2.35) is

δ-, δ̃-exact:

L
Φ̃Φ

= δδ̃ tr

(
i

2
Ãσ̃A+ C̃C

)
. (2.36)

Another important D-term Lagrangian is the “improvement Lagrangian” described

in [3]. Let f(ω) be an arbitrary holomorphic function of ωi, the bottom components of

some twisted chiral multiplets Ωi. The improvement Lagrangian on S2
Ω is given by

Lf = −1

2
Rf(ω)− i

2
H
(
Gi∂if(ω) + 2Hi

1H̃j
1̄
∂i∂jf(ω)

)
, (2.37)

which is marginal if f(ω) is dimensionless. (Any anti-holomorphic dependence drops out

on S2
Ω.)

2.3.2 Superpotential

Given a gauge-invariant holomorphic functionW (A) of the chiral multiplets Φi, of R-charge

r = 2, one can write down the superpotential term

LW = F i∂iW +
(
BiCj + 2iǫΩV1CiCj

)
∂i∂jW (2.38)

Note thatW =W (Ai) is a section of K — or a field of spin 1, in the frame basis. Similarly,

the conjugate superpotential W̃ (Ã) leads to

L
W̃

= F̃ i∂iW̃ −
(
C̃iB̃j − 2iǫΩV1̄C̃iC̃j

)
∂i∂jW̃ . (2.39)

These Lagrangians are F- and F̃-terms, and they are therefore δ-, δ̃-exact due

to (2.18), (2.20).

2.3.3 Twisted superpotential

Given a twisted chiral multiplet (2.22) and its conjugate (2.24), one can build the G and

G̃-term Lagrangians

LG = G , L
G̃
= G̃+ iHω̃ , (2.40)
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which are supersymmetric by virtue of (2.23), (2.25). One can also see from (2.25) that

L
G̃

is δ- and δ̃-exact. Importantly, the G-term is not δ- or δ̃-exact. However, if ǫΩ 6= 0,

LG only fails to be exact at the fixed points of V . Using (2.23), one can show that

SG =

∫
d2
√
g G =

4πi

ǫΩ
(ωN − ωS) + δ(· · · ) . (2.41)

Here ωN , ωS denote ω inserted at the north and south pole, respectively.

Given a gauge-invariant holomorphic function O(σ) = Ŵ (σ) and its conjugate
˜̂
W (σ̃),

we define the twisted superpotential terms

LŴ + L˜̂
W

=
1

2
GŴ +

1

2

(
G

˜̂
W + iH˜̂W

)
. (2.42)

In this case (2.41) implies that

SŴ =

∫
d2
√
gLŴ =

2πi

ǫΩ

(
ŴN − ŴS

)
+ δ(· · · ) . (2.43)

Of particular importance is the linear superpotential for an abelian factor U(1)I of the

gauge group,

Ŵ = τ I trI(σ) ,
˜̂
W = τ̃ I trI(σ̃) , (2.44)

where trI is defined like in section 2.2.4. Here τ, τ̃ is the complexified Fayet-Iliopoulos

coupling constant defined by

τ I =
θI

2π
+ iξI , τ̃ I = −2iξI . (2.45)

The Lagrangian (2.42) becomes

LFI = i
θI

2π
trI (2if11̄)− ξI trI (D −Hσ̃) . (2.46)

The non-standard choice of τ̃ in (2.45) is a result of our choice of ΣI , Σ̃I in (2.26)–(2.27).

2.4 Supersymmetry equations

Let us discuss the necessary and sufficient conditions for a particular configuration of

bosonic (dynamical or background) fields to preserve the two supersymmetries of S2
Ω. For

a vector multiplet V, setting to zero the gaugini variations in (2.12), (2.13) gives:

L(a)
V σ = 0 , D1σ + iǫΩV1 (2if11̄) = 0 ,

ǫΩL(a)
V σ̃ + i[σ, σ̃] = 0 , D − 2if11̄ + iǫΩ (V1D1̄ − V1̄D1) σ̃ = 0 .

(2.47)

For a pair of chiral and antichiral multiplets Φ, Φ̃ coupled to V, the supersymmetry equa-

tions correspond to setting the variations of the fermionic fields B, C and C̃, C̃ to zero, in

addition to (2.47):

(
− σ + iǫΩL(a)

V

)
A = 0 , Dz̄A = 0 , F = 0 ,

(
σ + iǫΩL(a)

V

)
Ã = 0 , DzÃ = 0 , F̃ = 0 .

(2.48)
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This implies, in particular, that a supersymmetric background for A is a holomorphic

section of the vector bundle with connection aµ.

For a twisted chiral multiplet Ω, the supersymmetry equations following from (2.23) are

LV ω = 0 , ǫΩG = − 4i√
g
∂|z|2ω , (2.49)

while for the twisted antichiral multiplet Ω̃ we have

ǫΩLV ω̃ = 0 , G̃ = iǫΩ|z|2∂|z|2ω̃ . (2.50)

This applies in particular to the gauge-invariant twisted chiral multiplets built out of the

gauge field. Consider the multiplet (2.26) for an abelian factor U(1)I ⊂ G. Assuming

ǫΩ 6= 0, it follows from (2.49) that

trI (2if11̄) = − 2

ǫΩ
√
g
∂|z|2 trI(σ) . (2.51)

Let us denote by kI the quantized flux of the U(1)I gauge field through the sphere,

1

2π
trI

∫

S2
Ω

da =
1

2π

∫
d2x

√
g trI (−2if11̄) = kI ∈ Z . (2.52)

The supersymmetry relation (2.51) implies that, for any supersymmetric configuration of

trI V, the flux (2.52) is related to the values of trI(σ) at the poles:

kI = − 1

ǫΩ
trI (σN − σS) . (2.53)

This simple relation will play an important role in the following.

3 GLSM and supersymmetric observables

The theories of interest in this paper are N = (2, 2) supersymmetric GLSMs in two dimen-

sions, consisting of the following ingredients:

• A gauge group G with Lie algebra g. The corresponding gauge field aµ sits in a

g-valued vector multiplet V.

• Charged matter fields in chiral and antichiral multiplets Φi, Φ̃i, transforming in rep-

resentations Ri, R̄i of G, and with integer vector-like R-charges, ri ∈ Z. We further

assume that G has no decoupled factor, that is, for every element of the maximal

torus H of G there is at least one charged chiral multiplet. The chiral multiplets can

also be coupled to twisted masses whenever there is a flavor symmetry (see section 3.1

below).

• A superpotential W (Φi), which must have R-charge 2 in order to preserve the R-

symmetry. Once we put the theory on S2
Ω and use the A-twisted variables, the

requirement that R[W (Φ)] = 2 is equivalent to W (Ai) being a holomorphic one-

form, as explained in section 2.3.2.
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• If G contains some U(1) factors, denoted U(1)I , I = 1, · · · , n with n ≤ rk(G), we

consider the linear twisted superpotential (1.9),

Ŵ (σ) = τ I trI (σ) , (3.1)

for σ the g-valued complex scalar in V.

While the complexified FI couplings τ I in (3.1) are classically marginal, they can run

at one-loop.9 Their β functions are given by

βI ≡ µ
dτ I

dµ
= − bI0

2πi
, bI0 =

∑

i

trRi(tI) , (3.2)

where the sum is over all the chiral multiplets Φi, and tI ∈ ih is the generator for the

subgroup U(1)I . For instance, if G = U(1) we have b0 =
∑

iQi, where the Qi’s are

the U(1) charges of the chiral multiplets Φi. Similarly, if we take G = U(N) with Nf

fundamental and Na anti-fundamental chiral multiplets, we have b0 = Nf −Na.

If bI0 6= 0, one defines the RG-invariant scale ΛI ,

ΛI = µ exp

(
2πiτ I(µ)

bI0

)
. (3.3)

This dynamically generated scale is very small when the bare FI parameter ξI is very large

and positive, ξI ≫ 0. If bI0 = 0, instead, the coupling τ I is truly marginal and we define

the dimensionless parameter

qI = e2πiτ
I
. (3.4)

(Recall that τ I ∼ τ I + 1.) In practice, it is often convenient to use the parameters qI
even when bI0 6= 0. The correct statements in term of the RG invariant quantities (ΛI)

bI0 =

µb
I
0qI(µ) can be recovered by dimensional analysis.

Classically, our GLSM with linear twisted superpotential (1.9) possesses an axial-like

R-symmetry U(1)A, whose charge we denote by RA. The RA-charges of the fields in the

vector multiplet are given in table 1. In particular, we have

RA[σ] = 2 . (3.5)

A twisted superpotential Ŵ (σ) preserves U(1)A if and only if it has RA-charge 2, which

is the case of (3.1). The U(1)A charges for the components of the chiral and antichiral

multiplets (2.16), (2.19) are given in table 2. The supercharges themselves are charged

under U(1)A:

[RA,Q] = Q , [RA, Q̃] = Q̃ . (3.6)

Therefore the cohomology of Q, Q̃ is graded by RA, sometimes called the ghost number.

If bI0 6= 0 for at least one U(1)I , U(1)A is gauge-anomalous at one-loop. The anomalous

transformation of the path integral measure under ϕ → eiRA[ϕ]αϕ can be compensated by

an anomalous shift of the θ-angles:

θI → θI + 2αbI0 . (3.7)

9The β functions of the holomorphic couplings τ I are one-loop exact by a standard argument.
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aµ σ σ̃ Λ1 λ Λ̃1̄ λ̃ D

RA 0 2 −2 1 −1 1 −1 0

Table 1. U(1)A charges for the (A-twisted) fields in the vector multiplet.

A B C F Ã B̃ C̃ F̃
RA 0 1 −1 0 0 1 −1 0

Table 2. U(1)A charges for the (A-twisted) fields in the chiral and antichiral multiplets.

The dynamically generated scales (3.3) thus transform under U(1)A with RA[ΛI ] = 2.

Gauge anomalies thus break the axial R-symmetry U(1)A to ∩I Z2bI0
in the UV (further

breaking to the Z2 fermion number is expected to occur in the IR [50]). Whenever bI0 = 0

for all U(1)I , the axial R-symmetry survives quantum-mechanically, and the theory is

expected to flow to a non-trivial CFT in the infrared. By abuse of terminology, we call

this situation the conformal case.

Upon coupling the GLSM to the curved-space background S2
Ω, U(1)A also suffers from

a gravitational anomaly due to the twisted spins of the fermionic fields [10]. In the GLSM

under consideration, the anomalous transformation of the path integral measure [Dϕ] under
U(1)A is

[Dϕ] → e−2i dgravα[Dϕ] , dgrav = −dim(g)−
∑

i

(ri − 1)dim(Ri) . (3.8)

In other words, a correlator 〈O〉 has a U(1)A charge

RA[〈O〉] = RA[O]− 2 dgrav . (3.9)

When the GLSM is in a purely geometric phase, dgrav coincides with the complex dimen-

sion of the target space.10 For instance, for G = U(N) with Nf fundamentals of R-charge

r, we have dgrav = −N2 − (r − 1)NfN . When r = 0, the target space is the Grassman-

nian G(N,Nf ), which has complex dimension N(Nf − N). When the GLSM flows to an

interacting fixed point, 3dgrav is the central charge of the IR N = (2, 2) SCFT [51].

In addition to this anomaly, the Ω-deformation parameter itself carries RA-charge

RA[ǫΩ] = 2 . (3.10)

Therefore the S2
Ω background with ǫΩ 6= 0 breaks U(1)A explicitly [3].

3.1 Coupling to flavor symmetries

In general, the GLSM might enjoy a non-trivial flavor symmetry, that is, a non-R, contin-

uous, global symmetry group acting on the chiral multiplets, which we denote by F. It is

10This is true assuming that the theory flows to a non-linear sigma model (NLSM) on that target space

Xd, such that all the NLSM chiral multiplets — which correspond to local coordinates on Xd — have

vanishing R-charge. We have dgrav = d in the NLSM, and this must be equal to the GLSM anomaly by the

’t Hooft anomaly matching condition.
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natural to turn on a background vector multiplet VF for F. To preserve supersymmetry

on S2
Ω, the background vector multiplet must satisfy the conditions (2.47). When ǫΩ 6= 0,

this implies that we can turn on any V -invariant profile for σF , σ̃F in the Cartan subgroup

of F, with the accompanying background fields 2ifF
11̄

and DF that satisfy (2.47). (When

ǫΩ = 0, σ, σ̃ must be constant while any flux can be turned on independently.)

For simplicity, we will mostly restrict ourselves to the simpler case11

σF = mF , σ̃F = m̃F , [mF , m̃F ] = 0 , 2ifF11̄ = DF = 0 , (3.11)

with mF , m̃F some constant background values for σF , σ̃F . These parameters are called

twisted masses. More precisely, if we have a family of chiral multiplets RρF which realize

some representation RF of of the flavor Lie algebra, with ρF the weights of RF , then the

holomorphic twisted mass of RρF is simply

mρF = ρF (mF ) . (3.12)

In the following we will denote bymi the holomorphic mass (3.12) of a given chiral multiplet

Φi, with the understanding that mi = 0 if Φi is F-neutral.

3.2 The Coulomb branch

Consider the Coulomb branch M = hC/W of the theory in flat space, corresponding to

turning on constant expectation values for σ, σ̃. Here h is the Cartan subalgebra and W is

the Weyl group of G. The two fields can be diagonalized simultaneously:12

〈σ〉 = diag(σa) , 〈σ̃〉 = diag(σ̃a) , a = 1, · · · , rank(g) . (3.13)

At a generic point on M, the gauge group is broken to its Cartan subgroup H,

G → H =

rank(G)∏

a=1

U(1)a , (3.14)

and all the fields are massive except for the H-valued vector multiplets Va. The effective

twisted superpotential on the Coulomb branch is [52]

Ŵeff = Ŵ + Ŵmat + Ŵvec , (3.15)

where the first term is the classical term (3.1), the second term is the contribution from

the chiral multiplets Φi with twisted masses mi,

Ŵmat = − 1

2πi

∑

i

∑

ρi∈Ri

(ρi(σ) +mi) [log (ρi(σ) +mi)− 1] , (3.16)

11We will comment on how this assumption can be relaxed in the next section.
12We will often use σ to denote both a Coulomb branch parameter and the actual field. This should

cause no confusion.
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(there is a renormalization scale implicit in the logarithm), and the last term is the contri-

bution from the W -bosons, i.e. the vector multiplets for G/H:

Ŵvec =
1

2πi

∑

α∈g\h

α(σ) [logα(σ)− 1] = −1

2

∑

α>0

α(σ) . (3.17)

The only effect of this last contribution is to induce a subtle shift of the effective θ-angles

by a multiple of π. The vacuum equations coming from (3.15) are [4]

e2πi ∂σaŴeff = 1 , a = 1, · · · , dim(g) . (3.18)

In the case of massive theories, these equations have come under great scrutiny in recent

years in the context of the Bethe/gauge correspondence [52]. For future reference, let us

also define the effective τ -couplings on the Coulomb branch:

τaeff ≡ ∂σaŴeff = τa − 1

2

∑

α>0

αa − 1

2πi

∑

i

∑

ρi∈Ri

ρai log(ρi(σ) +mi) (3.19)

where τa ≡ ∂σaŴ . Finally, let us note that the flat space axial R-symmetry anomaly is seen

on the Coulomb branch as a monodromy of (3.19) under σ → e2iασ, which is compensated

by the θ-angle shift (3.7).

3.3 Correlation functions on S2
Ω

The interesting supersymmetric observables on S2
Ω are the correlation functions of non-

trivial supersymmetric operators, that is, operators that are non-trivial in the cohomology

of the supercharges Q, Q̃. The only such local operators one can build out of the GLSM

fields are functions of the complex scalar field σ. In the presence of the ǫΩ-deformation,

δσ = δ̃σ = 0 if and only if V = 0. Therefore the operators must be inserted at the north

and south poles of S2
Ω,

O(N)(σN ) , O(S)(σS) . (3.20)

Here O(N),O(S) denote two arbitrary gauge-invariant functions of σ. The subscripts N,S

stand for the point of insertion at the north or south poles, z = 0,∞, respectively. We

therefore consider the correlation functions
〈
O(N)(σN )O(S)(σS)

〉
. (3.21)

Note that the operators (3.20) are not, in general, the only non-trivial supersymmetric

local operators in the GLSM, but they are the only such operators one can build out of the

elementary fields. More general supersymmetric operators, generally known as disorder

operators, can be defined in term of singular boundary conditions in the path integral. In

this work, we restrict our attention to the operators (3.21).

If ǫΩ = 0, a gauge-invariant operator O(σ) can be inserted anywhere on the sphere.

Moreover, any correlation function

〈O(σ)〉0 =
〈
O(1)(σ(z1, z̄1)) · · · O(n)(σ(zn, z̄n))

〉
0
, O = O1 · · · On , (3.22)
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is independent of the insertion points, since the derivatives ∂zσ, ∂z̄σ are δ- or δ̃-exact. By

a standard procedure [53], one can construct the so-called descendant of the local operator

O = O(σ),

X2(O) = − i

4π

∫
d2x

√
g GO =

1

2π

∫
d2x

√
g
(
−2if11̄ ∂σO − iΛ1Λ̃1̄ ∂

2
σO
)
, (3.23)

which is supersymmetric in the A-model.13 The normalization of (3.23) has been chosen

for future convenience. A general supersymmetric observable in the A-model includes such

descendants.

The operator (3.23) is also supersymmetric with ǫΩ 6= 0. In that case, however,

equation (2.41) gives

X2(O) =
O(σN )−O(σS)

ǫΩ
+ · · · , (3.24)

where the ellipsis denotes a δ-, δ̃-exact term. Therefore, the insertion of any descendant

X2 into a supersymmetric correlation function on S2
Ω is accounted for in (3.21), being

equivalent to the insertion of 1
ǫΩ

(O(σN )−O(σS)).

3.4 Parameter dependence and selection rules

The correlation function (3.21) only depends on the supergravity background through the

complex parameter ǫΩ. For ǫΩ = 0, it is well-known that the theory is topological [1, 54].

In the general case, one can argue that any small deformations of the hermitian metric

preserving the Killing vector K is δ-, δ̃-exact, similarly to the analysis of [47].

The correlation function also depends on the complexified FI parameters τ I through

their exponentials qI defined in (3.4) (or through the RG-invariant scales (3.3) if τ I runs).

This dependence is holomorphic, since the conjugate couplings τ̃ I in (2.45) are δ-, δ̃-exact.

We can also have a dependence on the twisted masses mF for the flavor symmetry, and

one can similarly argue that this dependence is holomorphic. In total, we therefore have a

function 〈
O(N)(σN )O(S)(σS)

〉
= F

(
qI ,m

F , ǫΩ
)
, (3.25)

which is locally holomorphic in all the parameters.

On general grounds, (3.25) might suffer from ambiguities, corresponding to supersym-

metric local terms one can add to the UV description. Allowed local terms of dimension

two are severely restricted by supersymmetry (and by gauge and supergravity invariance).

The parameters qI and mF are the lowest components of background twisted chiral mul-

tiplets of dimension 0 and 1, respectively, with all higher components set to zero. For a

conformal qI , the only allowed term is the improvement Lagrangian (2.37), which gives

Lf = −1
2Rf(q) on the supersymmetric locus. Note that this term is topological due to the

Gauss-Bonnet theorem:

Sf =

∫
d2x

√
gLf = 4πf(q) . (3.26)

13Strictly speaking, the last equality in (3.23) only holds for G = U(1), but X2 takes this schematic form

for any G.

– 20 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

For the twisted masses mF , we can only turn on a linear twisted superpotential, which

vanishes on the background (3.11). For a non-conformal τ I , the dependence is through the

scale ΛI and no local term is allowed either. Finally, ǫΩ can also be seen as the lowest

component of a twisted chiral multiplet, of dimension 1, built out of the supergravity

multiplet. No local term in ǫΩ is allowed by dimensional analysis. In conclusion, the

only ambiguity in the definition of (3.25) is through an entire holomorphic function of the

conformal couplings qI ,

F
(
qI ,m

F , ǫΩ
)
∼ e−4πf(q)F

(
qI ,m

F , ǫΩ
)
. (3.27)

Such local terms often appear as renormalization scheme ambiguities; see in particular [55]

for a discussion in a related context. On S2
Ω, however, all the one-loop determinants that

will appear in the localization computation are actually finite, and f(q) can be chosen

in a scheme-independent way. We shall choose f(q) = 0 in the following. When the IR

description is in terms of a NLSM on a CY manifold Xd, the ambiguity (3.27) corresponds

to a Kähler transformation on the Kähler structure moduli space of Xd.

Dimensional analysis and the U(1)A axial R-symmetry lead to simple selection rules

for (3.25). Note that qI for a conformal τ I has vanishing RA-charge, while ΛI for a non-

conformal coupling, the twisted masses mF and ǫΩ all have RA = 2. Without loss of

generality, consider the insertion of operators of definite RA-charge in (3.25),

RA[O(N)] = rA(N) , RA[O(S)] = rA(S) , rA(O) = rA(N) + rA(S) . (3.28)

Taking into account the gravitational anomaly (3.8) of U(1)A, we have

RA[F
(
qI ,m

F , ǫΩ
)
] = rA(O)− 2dgrav . (3.29)

Consider first the case of a conformal GLSM flowing to a non-singular CFT, that is, bI0 = 0

∀I and mF = 0. Then we must have

F (qI , 0, ǫΩ) = (ǫΩ)
1
2
rA(O)−dgrav Fc(qI) , (3.30)

with the condition rA(O) ≥ 2dgrav because the answer should be smooth in the ǫΩ → 0

limit. In particular, we recover the usual ghost number selection rule rA(O) = 2dgrav for

ǫΩ = 0. More generally, we have

F
(
qI ,ΛI′ ,m

F , ǫΩ
)
∼ (ǫΩ)

j

(
∏

I′

Λ
bI

′

0 k′
I′

I′

)
(mF )l Fc(qI) , (3.31)

where I and I ′ denote conformal and non-conformal gauge couplings, respectively, and

j + bI
′

0 k
′
I′ + l = 1

2rA(O) − dgrav with j ≥ 0. This is of course schematic. Interestingly, we

can have negative powers of the twisted mass mF . (A slightly finer selection rule can be

obtained by realizing that the mF term should appear as a singlet of the flavor group F,

which can disallow some values of l.)

– 21 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

4 Localizing the GLSM on the Coulomb branch

In this section, we outline the derivation of the Coulomb branch formula (1.10)–(1.11).

Some of the more technical steps are presented in section 5 and in appendix. We also

discuss the specialization (1.13) to the A-twisted GLSM (the ǫΩ = 0 limit).

4.1 The Coulomb branch formula

Our main result is that the correlation function (3.21) can be computed exactly by a sum

of Jeffrey-Kirwan (JK) residues [7–9]:

〈O(N)(σN )O(S)(σS)〉 =

=
(−1)N∗

|W |
∑

k∈Γ
G∨

qk
∑

σ̂∗∈M̃k
sing

JK-Res
σ̂=σ̂∗

[
Q(σ̂∗), ξ

UV
eff

]
Ik(O(N),O(S)) , (4.1)

of the differential form

Ik(O(N),O(S)) = Z1-loop
k (σ̂)O(N)

(
σ̂ − ǫΩk

2

)
O(S)

(
σ̂ +

ǫΩk

2

)
dσ̂1 ∧ · · · ∧ dσ̂rk(G) , (4.2)

on M̃ ∼= C
rk(G), in each topological sector k.

Let us explain (4.1) in more detail. We denote by k ∈ ΓG∨ ⊂ ih the magnetic fluxes

that label the topological sectors [5], where h is the Cartan subalgebra of the gauge algebra

g. The lattice ΓG∨ ∼= Z
rk(G) is the integral lattice of magnetic fluxes, which can be obtained

from ΓG, the weight lattice of electric charges of G within the vector space ih∗, by [6, 56]

ΓG∨ = { k : ρ(k) ∈ Z ∀ρ ∈ ΓG } , (4.3)

where ρ(k) is given by the canonical pairing of the dual vector spaces, which we elaborate

on shortly. Let us also introduce the notation ~k ∈ Z
n to denote the fluxes in the free part

U(1)n of the center of G. We have

qk ≡ exp(2πi

n∑

I=1

(~τ)I(~k)I) = exp(2πiτ(k)) . (4.4)

The complex FI parameter ~τ ∈ C
n lies in the central sub-algebra c∗

C
⊂ h∗

C
⊂ g∗

C
of the dual

of the Lie algebra g, but is also an element of h∗
C
by the embedding of the center into the

Cartan subgroup H — thus the equality of (4.4). The pairing τ(k) is the canonical pairing

between elements of h∗
C
and hC. In particular, for elements V ∈ h∗

C
and W ∈ hC of the

vector spaces over C, we write V (W ) ≡∑rk(G)
a=1 V aWa, where the label “a” is used to index

the basis ta of ih, as well as elements of the dual basis t∗a of ih∗. The parameter σ̂ = (σ̂a) is

the complex coordinate on M̃ = hC ≡ C
rk(G), which is the cover of the “Coulomb branch

moduli space” M = M̃/W , where the quotient is taken with respect to the Weyl group

W = Weyl(G). The “one-loop” factor Z1-loop
k (σ̂; ǫΩ) is the product of all the one-loop

determinants of charged fields on the Coulomb branch:

Z1-loop
k (σ̂; ǫΩ) = Zvector

k (σ̂; ǫΩ)
∏

i

ZΦi
k (σ̂; ǫΩ) . (4.5)
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For each chiral multiplet Φi, we have

ZΦi
k (σ̂; ǫΩ) =

∏

ρi∈Ri


ǫΩ

ri−ρi(k)−1
Γ(

ρi(σ̂)+mF
i

ǫΩ
+ ri−ρi(k)

2 )

Γ(
ρi(σ̂)+mF

i
ǫΩ

− ri−ρi(k)
2 + 1)


 , (4.6)

where ρi denote the weights of the representation Ri of G in which Φi transforms, whereas

mF
i and ri are the twisted mass and the R-charge of Φi. The result (4.6) has a R-charge-

dependent sign ambiguity, which we could not determine. This leads to the sign ambiguity

(−1)N∗ in (4.1). We propose a prescription to fix this sign in subsection 4.5 below. The

vector multiplet factor Zvector
k (σ̂; ǫΩ) receives contribution from all the W -bosons and their

superpartners V(α), indexed by the roots α of the gauge group. These W -boson multiplets

contribute like an adjoint chiral multiplet of R-charge 2.

It is convenient to collect together the labels (i, ρi) for the component of weight ρi of

the i-th chiral multiplet Φi and the label α for the W -boson multiplet V(α) into a collective

label I for all the components of the charged fields in the theory. In this notation,

Z1-loop
k (σ̂; ǫΩ) =

∏

I

ZI
k (σ̂; ǫΩ) ,

ZI
k (σ̂; ǫΩ) = ǫΩ

rI−QI(k)−1
Γ
(
QI(σ̂)+mF

I
ǫΩ

+ rI−QI(k)
2

)

Γ
(
QI(σ̂)+mF

I
ǫΩ

− rI−QI(k)
2 + 1

) ,
(4.7)

where QI ∈ ih∗ is the charge of the field component I of the theory, and rI its R-charge.

That is, QI equals ρi for the component of labels (i, ρi) of a chiral multiplet Φi, and it

equals α for a W -boson multiplet V(α) associated to the root α, and similarly for rI .

In each flux sector labelled by k, the singular locus of the one-loop determinant Z1-loop
k

arises from codimension-one poles located on hyperplanes in M̃, and the intersections

thereof in higher codimension. Using the collective label I, these hyperplanes are given by:

Hn
I =

{
σ̂ : QI(σ̂) = −mF

I − ǫΩ

(
n+

rI −QI(k)

2

)}
, n ∈ [0,−rI +QI(k)]int . (4.8)

We use the notation [A,B]int to denote the set of integers

[A,B]int ≡ {n : n ∈ Z and A ≤ m ≤ B } , (4.9)

which is empty when A > B. These singular hyperplanes are due to all the components

of the charged chiral and vector multiplets. However, any hyperplane Hn
α coming from

a W -boson multiplet V(α) is actually non-singular, because of additional zeros in the de-

terminant of the oppositely charged multiplet V(−α).14 In (4.1), we denote by M̃k
sing the

collection of complex-codimension-rk(G) singularities of Z1-loop
k (σ̂; ǫΩ), which come from

the intersection of s ≥ rk(G) hyperplanes Hn1
I1
, · · · , Hns

Is
. Finally, Q(σ̂∗) denotes the col-

lection of charges QI1 , · · · , QIs determining the orientations of the singular hyperplanes

which intersect at σ̂∗.

14We do not introduce additional indices that label only the hyperplane singularities coming from modes

of the chiral fields, since we lose nothing by treating the hyperplanes Hn
α as codimension-one poles of

Z1-loop
k (σ̂; ǫΩ) with residue zero.
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The Coulomb branch formula (4.1) gives the correlation function 〈O(N)(σN )O(S)(σS)〉
as a sum of Jeffrey-Kirwan (JK) residues of the codimension-rk(G) poles of the meromor-

phic rk(G)-form (4.2) on M̃. To define the JK residue, one needs to specify an additional

vector η ∈ ih∗. In particular, for non-degenerate codimension-rk(G) poles, where exactly

rk(G) hyperplanes are intersecting, we have

JK-Res
σ̂=σ̂∗

[(Qi), η]
dσ̂1 ∧ · · · ∧ dσ̂rk(G)

Q1(σ̂) · · ·Qrk(G)(σ̂)
=

{
1

| det(Qi)|
if η ∈ Cone(Qi)

0 if η /∈ Cone(Qi) ,
(4.10)

by definition, where (Qi) = (Q1, · · · , Qrk(G)), and Cone(Qi) is the cone in ih∗ spanned

by the Qi’s. We give the complete definition of the JK residue in subsection 4.7 below.

In (4.1), the vector η must be set to ξUV
eff ∈ ih∗, which is defined as follows. Let us first

note that the coupling τ̃ in (2.45) is Q-exact. It could thus be taken arbitrary as

τ̃ = −2i

e2
ξ̃ , (4.11)

independent of the physical complexified FI parameter τ . Here e2 is a dimensionless pa-

rameter which will appear in the supersymmetric localization computation, and ξ̃ ∈ ih∗ is

finite and otherwise arbitrary. We define:

ξUV
eff = ξ̃ +

1

2π
b0 lim

R→∞
logR (4.12)

with

b0 ≡
∑

I

QI . (4.13)

Note that this definition of b0 ∈ ih∗ is equivalent to the one given by equation (3.2). For

theories with conformal IR fixed points, b0 vanishes and ξUV
eff = ξ̃. When b0 6= 0, the vector

ξUV
eff ∈ ih∗ is defined to lie within the cone Cone(Q1, · · · , Qp) spanned by Q1, · · · , Qp if

there exists an R0 > 1 such that

ξ̃ +
1

2π
b0 logR ∈ Cone(Q1, · · · , Qp) for all R ≥ R0 . (4.14)

Thus there exists a large enough R that can be used to define ξUV
eff for all practical purposes.

The value of ξ̃ is arbitrary, but we shall always choose it to be parallel and pointing in the

same direction to the physical FI parameter ξ which appears in τ . This is because, even

though the result (4.1) is formally true for any choice of ξ̃, the q series in (4.1) might not

converge otherwise. Discussion on this issue is presented at the end of section 5.2.

This concludes the executive summary of our main result (4.1). For the remainder

of the section, we explain how we arrive at this result and we present some important

background material. More technical aspects of the derivation are presented in section 5.

4.2 Localization on the Coulomb branch

The exact computation of the correlation function (3.21) in (4.1) is possible because of

supersymmetry. By a standard argument — see e.g. [54], we expect the path integral to
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localize on the subspace Msusy of supersymmetric configurations {ϕ} such that δϕ = δ̃ϕ =

0, where ϕ runs over all the fields in the path integral. In the present case, Msusy is given by

the solutions to the supersymmetry equations (2.47)–(2.48) for the bosonic fields, together

with their fermionic counterparts. However, Msusy is still too large and complicated to be

of much use. In particular, it includes arbitrary profiles of σ = σ(|z|2). Another potential
issue is that there are fermionic zero modes on S2

Ω, which must be treated carefully before

localizing to Msusy.

Both of these issues can be addressed by introducing a localizing action, Sloc. This is a

δ-, δ̃-exact action for all the fields in the theory, which plays two roles. First of all, it further

restrictsMsusy to a more manageable subset given by its supersymmetric saddles. Secondly,

it introduces a convenient kinetic term for the fluctuations around the localization locus.

For the GLSM, one can consider two distinct localizing actions, leading to two different

localization schemes [26]. By construction, the final answer is independent of such schemes,

but the explicit formula resulting from one or the other localization procedure can be more

or less wieldy. In this section, we consider the “Coulomb branch” localization, which leads

to the simplest answer. The so-called “Higgs branch” localization is discussed in section 9.

Let us consider the localizing action

Lloc =
1

e2

(
LYM − ξ̃(D − 2if11̄ − σ̃H)

)
+

1

g2
L

Φ̃Φ
. (4.15)

Consider first the limit e2 → 0, so that we localize the vector multiplet using the the YM

action (2.34):

LYM =
1

e20
tr

[
1

2
Dµσ̃D

µσ +
1

2
(2if11̄)

2 − 1

2
D2 +

1

8
[σ, σ̃]2 + · · ·

]
, (4.16)

where the ellipsis denotes the fermion contributions plus some terms of higher order in

ǫΩ.
15 The gauge-fixing of this action is considered in appendix C. For future convenience,

we also introduced a δ, δ̃-exact coupling ξ̃ in (4.15), which we defined in (4.11).

To perform the path integral over the vector multiplet, one should specify reality

conditions for the bosonic fields. We choose

σ† = σ̃ , (2if11̄)
† = 2if11̄ . (4.17)

In particular, we take the gauge field to be real. The proper contour for D is rather

more complicated, as we shall discuss. Let us denote by MR
susy the intersection of Msusy

with (4.17). On MR
susy, we must have

D = 2if11̄
(
1− 2|ǫΩ|2V1V1̄

)
, [σ, σ̃] = 0 . (4.18)

The “Coulomb branch” localization locus is the intersection of MR
susy with the sad-

dles of (4.16). Näıvely, one would integrate out the auxiliary field D to find D =

15The YM coupling e20 is a mass scale that we keep fixed while we send the dimensionless coupling e2 to

zero.
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−iǫΩ (V1D1̄ − V1̄D1) σ̃. Plugging into the supersymmetry equations (2.47), this would

imply the supersymmetric saddle

σ = constant , 2if11̄ = 0 . (4.19)

However, this cannot be the whole story. For consistency, the path integral should include

a sum over all allowed G-bundles.16 This implies, at the very least, that some saddles have

non-vanishing fluxes (2.52) for the U(1)I factors in G.

To accommodate the proper sum over topological sectors, we should consider more

general field configurations in MR
susy, and worry about the auxiliary field D a posteriori.

Thanks to (4.18), we can use the gauge freedom to diagonalize σ and σ̃ simultaneously on

MR
susy. The localization locus is the “Coulomb branch”,

σ = diag(σa) , σ̃ = diag(σ̃a) , a = 1, · · · , rk(G) , (4.20)

for some σa = σa(|z|2) to be determined. A generic expectation value (4.20) breaks G to

its Cartan subgroup,

H =

rk(G)∏

a=1

U(1)a . (4.21)

Upon choosing the diagonal gauge for σ, the path-integral generalization of the Weyl inte-

gral formula leads to a sum over all H-bundles [62, 63]. (It is in keeping with a Coulomb

branch intuition that we should be able to deal with an abelianized theory throughout.)

Such bundles are the line bundles ⊕aLa characterized by the first Chern classes

c1(La) =
1

2π

∫

S2

(da)a ≡ ka . (4.22)

The fluxes ka are GNO quantized [5, 6, 56, 62] and lie in a discrete subspace k = (ka) ∈ ΓG∨

of ih. In any k-flux sector, supersymmetry imposes the relations

ka =
(σa)S − (σa)N

ǫΩ
, (4.23)

which can be derived like (2.53).

To gain some intuition, it is useful to minimize

1

2

∫
d2x

√
g ∂µσ̃a∂

µσa (4.24)

on MR
susy, with the constraint (4.23). One finds:

σa =





σ̂a − ǫΩ
ka
2 if z = 0 ,

σ̂a if z 6= 0,∞ ,

σ̂a + ǫΩ
ka
2 if z = ∞ ,

(4.25)

16Although sometimes a restricted sum over topological sectors can be consistent [57–61], we take the

simplest approach of summing over all such sectors, weighted by the θI -angles.
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with σ̂a ∈ C a constant. This obviously satisfies (4.23). By supersymmetry, the profile of

the field strength (2if11̄)a is determined precisely in terms of σa:

(2if11̄)a = − 2

ǫΩ
√
g
∂|z|2 σa . (4.26)

Plugging (4.28) into (4.26), we see that the flux is given by Dirac δ-functions at the poles,

(−2if11̄)a =
2π√
g

ka
2

(δN + δS) . (4.27)

The field configurations (4.25)–(4.27) are thus equal to (4.19) away from the the fixed

points of the Killing vector V , and they thus solve the equations of motions that follow

from (4.16) away from the poles. Their singular behavior at the poles is itself rather mild;

in particular, these “singular saddles” have vanishing action by construction (since the field

configuration is supersymmetric and the SYM action is δ-exact).

More generally, let us conjecture that there exists a proper “saddle” of the localizing

action (4.15) — that is, a vector multiplet configuration which minimizes the real part of

the action, in a given topological sector. (By supersymmetry, this minimum is in fact a

configuration of zero action.) Such a saddle always has a bosonic zero mode, which shifts

σ by an arbitrary constant σ̂. Since we also know that (4.23) holds by supersymmetry, this

determines the value of σ at the north and south poles:

(σa)N = σ̂a − ǫΩ
ka
2
, (σa)S = σ̂a + ǫΩ

ka
2
, (4.28)

where the constant mode σ̂ is here defined as the average, σ̂ = 1
2(σN + σS). We further

assume that the saddle σ is unique up to the shift by σ̂, in any given flux sector. This is

all we need for everything that follows. Ultimately, we regard the final answer we obtain

and the agreement with the Higgs branch localization scheme of section 9 as the most

convincing arguments in support of our conjecture.

Let us now comment on the integration contour of the auxiliary field D. The näıve

contour obtained by analytic continuation from flat space takes D to be purely imaginary.

Instead, we should take

Da = Dsusy
a + iD̂a , (4.29)

where Dsusy
a is the supersymmetric saddle solution, which is related to the gauge field flux

by (4.18). That is, the D contour is taken to pass through the supersymmetric saddle (at

D̂ = 0). The contour for D̂ itself will be discussed more thoroughly in the following. Let us

just note that it should go to ±∞ on the real axis to provide a damping factor in the path

integral, and that it should be such that it does not introduce any tachyonic instabilities

for the chiral multiplets to which it couples.

Finally, let us remark that we have implicitly considered a limit where e2 → 0 before

taking g2 → 0, so that we can discuss the vector multiplet saddles and worry about the

matter contribution later. In fact, this procedure turns out to be incorrect [35, 37]. At

some special values of σ̂, extra massless modes from the matter sector can appear in the

g2 → 0 limit, leading to singularities which invalidate the localization argument. The

proper treatment of these singularities shall be discussed at length in section 5.
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4.3 Gaugino zero-modes

We denote M ∼= M̃/W the Coulomb branch, and M̃ = C
rk(G) its cover, spanned by σ̂a, ˜̂σa

in (4.28), for any k. Here, W is the Weyl group of G. It is clear from (2.34) that the

scalar gauginos λa, λ̃a have constant zero modes on M. (The gauginos Λ1, Λ̃1̄, on the

other hand, have no zero modes on the sphere.) The vector multiplet path integral then

reduces to an integral over the constant modes σ̂a, ˜̂σa, λa, λ̃a in each flux sector. However,

the integral over M has singularities at points where some of the chiral multiplet scalars

become massless. To regulate them, it is convenient to keep some constant modes D̂a of

the auxiliary fields Da as an intermediate step [35, 37]. The field D̂ was defined in (4.29),

and in the rest of this paper D̂ will simply denote its constant mode. It is clear from (2.35)

that this gives an extra mass squared ρi(D̂) to the chiral multiplet scalars.

The consideration of D̂ is especially useful because the constant modes

V(0)
a =

(
σ̂a , ˜̂σa , λa , λ̃a , D̂a

)
(4.30)

transform non-trivially under a residual supersymmetry

δσ̂a = 0 , δ˜̂σa = −2λ̃a , δλa = −D̂a , δλ̃a = 0 , δD̂a = 0 ,

δ̃σ̂a = 0 , δ̃˜̂σa = −2λa , δ̃λa = 0 , δ̃λ̃a = D̂a , δ̃D̂a = 0 ,
(4.31)

which follows from (2.12)–(2.13). The full path integral can be written as

1

|W |

∫

M̃

∑

k

∏

a

d2σ̂a

∫

Γ

∏

a

dD̂a

∫ ∏

a

(dλadλ̃a) Zk(σ̂, ˜̂σ, λ, λ̃, D̂) , (4.32)

where Zk is the result of the path integration over all modes other than the zero-mode mul-

tiplets (4.30), including the matter fields in chiral multiplets. Note that the equation (4.32)

can be obtained by first taking the integral over M̃ and identifying the integration variables

σ̂a, ˜̂σa, λa, λ̃a and D̂a up to actions of the Weyl group. The integrand of (4.32), however,

is invariant under the Weyl group, and hence the integral
∫
M

may be replaced by 1
|W |

∫
M̃
.

The supersymmetry (4.31) implies that

δZk =

(
−2λ̃a

∂

∂˜̂σa
− D̂a

∂

∂λa

)
Zk = 0 , (4.33)

and similarly for δ̃Zk = 0. In section 5.2, we show that the path integral (4.32) can be

written as
1

|W |
∑

k

∫

M̃

∏

a

d2σ̂a

∫

Γ

∏

a

dD̂a det
bc

(hbc) Zk(σ̂, ˜̂σ, 0, 0, D̂) (4.34)

upon integrating out the gaugino zero modes, thanks to supersymmetry. Here, hab is a

symmetric tensor that satisfies

∂̄Zk(σ̂, ˜̂σ, 0, 0, D̂) =
1

2
D̂a h

abZk(σ̂, ˜̂σ, 0, 0, D̂) d˜̂σb (4.35)

and the relation

∂̄ahbc − ∂̄bhac = 0 . (4.36)
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As we explain in detail in section 5, closely following similar computations in [35, 37, 38],

the integration cycle Γ for the D̂ integration is determined by requiring that the modes of

the chiral multiplet scalars not be tachyonic.

Note that, on the localization locus, D̂ = 0 and the integrand Zk in (4.34) is holomor-

phic in σ̂ due to (4.33):

Zk(σ̂, ˜̂σ, 0, 0, 0) = Zk(σ̂) . (4.37)

4.4 Classical action

On the supersymmetric locus Msusy, all δ- or δ̃-exact actions vanish. The only classical

contribution to (4.34) thus comes from the twisted superpotential Ŵ (σ). Due to (2.43),

we have

e−Scl(k) = e
2πi
ǫΩ

(Ŵ(σ̂+ k
2
ǫΩ)−Ŵ(σ̂− k

2
ǫΩ)) , (4.38)

for a generic superpotential Ŵ . In our case, we have (3.1) and thus

e−Scl(k) =
n∏

I=1

q
trI(k)
I ≡ qk , (4.39)

with qI defined in (3.4). Note that (4.39) is independent of ǫΩ, and topological.

4.5 One-loop determinants

Here we introduce the fluctuation determinants for all the massive fields around the local-

ization locus, which enter into (4.37). Their computation is relegated to appendix C. Let

us define the function

Z(r)(x; ǫΩ) = ǫΩ
r−1

Γ( x
ǫΩ

+ r
2)

Γ( x
ǫΩ

+ 2−r
2 )

= ǫΩ
r−1

(
x

ǫΩ
+

2− r

2

)

r−1

, (4.40)

where x ∈ C, r ∈ Z, and (y)n denotes the extension of the Pochhammer symbol to n ∈ Z.

Since r is integer, the function can be written as a finite product:

Z(r)(x; ǫΩ) =





∏ r

2
−1

m=− r

2
+1(x+ ǫΩm) if r > 1 ,

1 if r = 1 ,
∏ |r|

2

m=−
|r|
2

(x+ ǫΩm)−1 if r < 1 .

(4.41)

On a supersymmetric saddle with flux k, one finds that the one-loop determinant from a

chiral multiplet Φ of R-charge r, gauge charges Qa under H, and twisted mass mF is

ZΦ
k = Z(r−Q(k))

(
Q(σ̂) +mF ; ǫΩ

)
, (4.42)

where σ̂ = 1
2(σN + σS). Note that ZΦ has Q(k) − r + 1 simples poles if Q(k) − r ≥ 0,

and no poles otherwise. The poles corresponds to zero-modes of the bottom component

A of the chiral multiplet, which are holomorphic sections of O(Q(k)− r). We will discuss

those modes in more detail in section 9. Similarly, the zeros of (4.42) for Q(k) − r < −1

correspond to zero-modes of the fermionic field C in the chiral multiplet.
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There is a sign ambiguity in the determination of (4.42). Following a similar discussion

in [10], we propose to assign +1 to chiral multiplets of R-charge 0 and−1 to chiral multiplets

of R-charge 2. This introduces the overall factor (−1)N∗ in (4.1), where N∗ is the number

of field components of R-charge 2 in the GLSM. This prescription is consistent with all

the examples worked out in sections 7 and 8. It would be interesting to derive it, and to

generalize it to any integer R-charge.

The total contribution from the matter sector is

Zmatter
k (σ̂; ǫΩ) =

∏

i

∏

ρi∈Ri

Z(ri−ρi(k))
(
ρi(σ̂) +mF

i ; ǫΩ
)
. (4.43)

So far, we have assumed for simplicity that the background gauge field for the flavor sym-

metry F has no flux, see (3.11). This assumption can be relaxed in the obvious way,

treating the background vector multiplet on the same footing as a dynamical vector mul-

tiplet: the only effect is to shift ri − ρi(k) → ri − ρi(k) − ρFi (k
F ) in (4.43) and to change

the Dirac quantization condition for the vector-like R-charge to ri − ρFi (k
F ) ∈ Z. One can

then gauge a subgroup of the flavor symmetry F by summing over the associated fluxes

kF and integrating over the associated complex scalars mF .

As argued in appendix C, a W -boson multiplet V(α) for the simple root α has the

same one-loop determinant as a chiral multiplet of R-charge r = 2 and H-charges αa. The

massive fluctuations along H itself are completely paired between bosons and fermions,

leading to a trivial contribution. Thus, the total contribution for the vector multiplet reads:

Zvector
k (σ̂; ǫΩ) =

∏

α∈g\h

Z(2−α(k))(α(σ̂); ǫΩ)

= (−1)
∑

α>0(α(k)+1) ∆

(
σ̂ +

k

2
ǫΩ

)
∆

(
σ̂ − k

2
ǫΩ

)
,

(4.44)

where α > 0 denotes the positive roots, and we introduced the function

∆(x) ≡
∏

α>0

α(x) , (4.45)

which is the Vandermonde determinant of G. Note that there is no sign ambiguity in this

case, since the roots come in pairs α,−α.
The one-loop determinant of all the fields around the localization locus with flux k is

then given by

Z1-loop
k (σ̂; ǫΩ) = Zvector

k (σ̂; ǫΩ)Z
matter
k (σ̂; ǫΩ) . (4.46)

As explained in subsection 4.1, it is convenient to collect all the labels of the components

(i, ρi) of the chiral multiplets Φi and α of the W -boson multiplets V(α) into a collective

label I. Taking QI to be the charge of the component, mF
I to be its twisted mass and rI

to be its R-charge, i.e.

(QI ,m
F
I , rI) =

{
(ρi,m

F
i , ri) when I = (i, ρi)

(α, 0, 2) when I = α
, (4.47)
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we can simply write:

Z1-loop
k (σ̂; ǫΩ) =

∏

I

ZI
k (σ̂; ǫΩ) =

∏

I

Z(rI−QI(k))(QI(σ̂) +mF
I ; ǫΩ) . (4.48)

The analytic structure of Z1-loop
k plays an important role in the computation of cor-

relators. The singular loci of Z1-loop
k can be specified by the oriented hyperplanes (4.8).

All singularities of Z1-loop
k lie at hyperplanes and at their intersections. In particular, any

codimension-p singularity lies at the intersection of p or more hyperplanes. When the

charges QI of the hyperplanes intersecting at the singularity lie within a half-space of

ih∗, the singularity is said to be projective. If a codimension-p singularity comes from p

linearly-independent hyperplanes intersecting, the singularity is said to be non-degenerate.

4.6 The Jeffrey-Kirwan residue

From the previous discussion, upon integrating out all the constant modes of the theory

save for σ̂, we expect the correlator
〈
O(N)(σN )O(S)(σS)

〉
to be of the form:

∑

k

qk
∮ (∏

a

dσ̂a

)
Z1-loop
k (σ̂; ǫΩ)O(N)

(
σ̂ − ǫΩ

k

2

)
O(S)

(
σ̂ + ǫΩ

k

2

)
. (4.49)

The contour of this integral is, for now, an unspecified rk(G)-(real)-dimensional cycle within

M̃. Note that the operator insertions at the north and south poles depend on σ̂a ∓ ka
2 ǫΩ,

since they are evaluated on the saddle (4.28). From the analytic structure of Z1-loop
k , it is

thus natural to expect the correlators to be a sum of residues of codimension-rk(G) poles

of the integrand,

Ik

(
O(N)O(S)

)
= Z1-loop

k (σ̂; ǫΩ)O(N)

(
σ̂ − ǫΩ

k

2

)
O(S)

(
σ̂ + ǫΩ

k

2

)
dσ̂1 ∧ · · · ∧ dσ̂rk(G) .

(4.50)

We prove in section 5 that the final answer for the correlation function is in fact given by

〈
O(N)(σN )O(S)(σS)

〉
=

(−1)N∗

|W |
∑

k∈Γ
G∨

qk JK-Res
[
ξUV
eff

]
Ik

(
O(N)O(S)

)
. (4.51)

The symbol JK-Res
[
ξUV
eff

]
Ik in (4.51) is a short-hand for a sum over the Jeffrey-Kirwan

residues at all the codimension-rk(G) “poles” of Ik:

JK-Res
[
ξUV
eff

]
Ik =

∑

σ̂∗∈M̃
sing
k

JK-Res σ̂=σ̂∗

[
Q(σ̂∗), ξ

UV
eff

]
Ik

(
O(N)O(S)

)
. (4.52)

Recall that M̃
sing
k denotes the location of all the codimension-rk(G) poles of Z1-loop

k , and

Q(σ̂∗) denotes the set of all charges QI of hyperplanes HI
n crossing through σ̂∗. We shall

explain the JK residue prescription in the following subsection.

The sum over fluxes k in (4.51) is weighted by the classical factor (4.39). In examples,

it is useful to formally generalize it to

e−Scl(k) =

rk(G)∏

a=1

qkaa = exp(2πiτ(k)) , (4.53)
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where the complexified FI parameter τ is now taken to be a generic element of h∗
C
. In order

for this term to be gauge invariant, τ must be restricted to the subspace c∗
C
⊂ h∗

C
spanned

by the generators of the center of G. For instance, for G = U(N) we should take qa = q,

a = 1, · · · , N . Nevertheless, it is often convenient and sometimes necessary to keep τ to

be general until the end of a computation. We follow [64] and refer to the auxiliary theory

with generic τ ∈ h∗
C
as the Cartan theory associated to the non-abelian GLSM. In cases in

which some of the FI parameters run, one should replace qa in (4.39) by the RG invariant

scale (3.3),

qa = Λba0 , if ba0 6= 0 . (4.54)

Note that we have implicitly set the RG scale µ to 1 throughout.

The formula (4.51)–(4.50) is the more precise form of the Coulomb branch for-

mula (1.10)–(1.11) promised in the introduction. Incidentally, one can easily see that the

anomalous U(1)A transformation of the path integral in (3.8) and the RA-gauge anomaly

are explicitly realized by (4.51)–(4.50), using the 1-loop determinants (4.7).

4.7 GLSM chambers and JK residues

Any set of rk(G) distinct charges (QI1 , · · · , QIrk(G)
) defines a cone in ih∗, denoted by

Cone(QI1 , · · · , QIrk(G)
) . (4.55)

The union of all such cones spans a subspace K ⊆ ih∗. K can be subdivided in minimal

cones (chambers) of maximal dimension rk(G), that meet on codimension-one walls. The

phases [4, 10] of the associated Cartan theory are determined by the chamber which the

FI parameter (ξa) belongs to. The phase diagram of the Cartan theory refines the phase

diagram of the non-abelian GLSM [51], that is obtained by the projection (ξa) 7→ (ξI) from

ih∗ to the physical FI parameter space ic∗.

The effective FI parameters on the Coulomb branch were defined in (3.19). We denote

by ξUV
eff the effective FI parameters on the Coulomb branch at infinity on M, that is, the

effective coupling in the limit |σ| → ∞:

ξUV
eff = ξ̃ +

1

2π
b0 lim

R→∞
logR , (4.56)

with b0 ∈ ic∗ ⊂ ih∗ as in (4.13). The chamber that ξUV
eff lies in determines the phase of

the Cartan theory. More rigorously, ξUV
eff is defined to be in a chamber C of K, or for that

matter any rk(G)-dimensional cone C ⊂ ih∗, if

∃ R0 > 1 such that for all R ≥ R0, ξ̃ +
1

2π
b0 logR ∈ C . (4.57)

When b0 6= 0, the finite piece ξ̃ is irrelevant unless b0 lies at the boundary of multiple

chambers. That is, when b0 lies safely within a chamber C0 of K, the Cartan theory has

only one phase C0. When b0 lies at the boundary of multiple chambers C0, · · · ,Cp, the

Cartan theory can be taken to be in any one of these chambers by turning on a finite

ξ̃. When b0 = 0, i.e., when the theory flows to a conformal fixed point in the infrared,
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ξUV
eff = ξ̃ can span the entire ih∗-space and can be in any chamber of K. As we discussed

in subsection 4.1, we always choose to align ξ̃ with the physical FI parameter ξ.

Let us now define the JK residue at a singular point, or codimension-rk(G) singularity,

σ̂∗ of Z1-loop
k (σ̂; ǫΩ). Recall that all such singularities come from intersections of rk(G)

or more hyperplanes Hn1
I1
, · · · , Hns

Is
.17 Let us assume that σ̂∗ = 0, so that the singular

hyperplanes are given by the equations

QI1(σ̂) = 0 , · · · , QIs(σ̂) = 0 . (4.58)

This can be achieved by shifting σ̂ appropriately. We have defined

Q(σ̂∗) = {QI1 , · · · , QIs} , s ≥ rk(G) , (4.59)

the set of H-charges defining the hyperplanes (4.58). We further assume that this arrange-

ment of hyperplanes is projective — that is, the vectors Q(σ̂∗) are contained in a half-space

of ih∗. This important technical assumption is satisfied in “most” cases of interest. We

comment on the non-projective case below.

Let us denote by RQ(σ̂∗) the ring of rational holomorphic rk(G)-forms, with poles on

the hyperplane arrangement (4.58). Let us also define SQ(σ̂∗) ⊂ RQ(σ̂∗) the linear span of

ωS =
∏

Qj∈QS

1

Qj(σ)
dσ̂1 ∧ · · · ∧ dσ̂rk(G) , (4.60)

where QS denotes any subset of rk(G) distinct charges in Q(σ̂∗). (There are thus
(

s
rk(G)

)

distinct QS .) There also exists a natural projection [8]

π : RQ(σ̂∗) → SQ(σ̂∗) , (4.61)

whose exact definition we shall not need. The JK residue on SQ(σ̂∗) is defined by

JK-Res σ̂=0 [Q(σ̂∗), η] ωS =

{
1

| det(QS)|
if η ∈ Cone(QS) ,

0 if η /∈ Cone(QS) ,
(4.62)

in terms of a vector η ∈ h∗. More generally, the JK residue of any holomorphic rk(G)-form

in RQ(σ̂∗) is defined as the composition of (4.61) with (4.62). This definition, along with

equation (4.57) is enough to compute the correlation functions with (4.51).

In general, there are
(

s
rk(G)

)
homologically distinct rk(G)-cycles that one can define on

the complement of the hyperplane arrangement (4.58), and the definition (4.62) determines

a choice of cycle for any η ∈ h∗ (or rather, for any chamber). It has been proven that (4.62)

always leads to a consistent choice of contour [8, 9].

Finally, let us comment on the case of a non-projective hyperplane arrangement. In

that case, one can often turn on twisted masses to split the non-projective singular point

17Recall that the hyperplane Hn
I is a singular locus of Z1-loop

k only when I is an index for a component of

the chiral field, i.e., I = (i, ρi). The hyperplanes H
n
α with vector labels can be thought of as codimension-one

poles of Z1-loop
k (σ̂; ǫΩ) with residue zero.
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into a sum of projective singularities. The occurrence of a non-projective singularity typi-

cally signals the presence of a non-normalizable vacuum, for instance in the case of GLSMs

for non-compact geometries. To be more precise, the existence of a non-projective sin-

gularity implies that there is a point in M̃ where s > rk(G) hyperplanes HI1
n1
, · · · , HIs

ns

collide, where

c1QI1 + · · ·+ csQIp = c1ρi1 + · · ·+ csρis = 0 , (4.63)

for some positive integers cp. We have made the components of the involved chiral fields

explicit. In order for the hyperplanes to have poles at this point, it must be the case that

QIp(k) ≥ rIp for all rIp . This implies the existence of the gauge invariant chiral operator

O ≡
∑

w∈W

w




s∏

p=1

(Φip,ρip )
cp


 , (4.64)

with R-charge

rO =
∑

p

cprip ≤
∑

p

cpρip(k) = 0 (4.65)

which is allowed to take a vacuum expectation value by the D-term equations.

Given the choice of η = ξUV
eff , only a subset of the flux sectors k ∈ ΓG∨ contribute to the

computation of the correlation function. In particular, let us define the set of rk(G)-tuples

of components

RCS(η) ≡ {S : S = {I1, · · · , Irk(G)}, η ∈ Cone(QI1 , · · · , QIrk(G)
) } (4.66)

(the set of “relevant component sets”) that contribute to the JK residue for the vector

η ∈ ih∗. The k-flux sectors that contribute to the correlators for the choice of ξUV
eff are

given by Γflux(ξ
UV
eff ) ⊂ ΓG∨ for

Γflux(η) ≡ ΓG∨ ∩


 ⋃

S∈RCS(η)

{ k : QI(k)− rI ≥ 0 for all I ∈ S }


 . (4.67)

Note that Γflux(η) only depends on the chamber of K in which η lies, and not on η itself.

This is true also of the JK residue.

4.8 A-model correlation functions

The ǫΩ = 0 limit of the Coulomb branch formula (4.51) computes the A-model correlation

function (3.22). We find:

〈O(σ)〉0 =
(−1)N∗

|W |
∑

k

qk JK-Res
[
ξUV
eff

]
Z1-loop
k (σ̂; 0)O (σ̂) dσ̂1 ∧ · · · ∧ dσ̂rk(G) , (4.68)

with

Z1-loop
k (σ̂; 0) = (−1)

∑
α>0(α(k)+1)

∏

α>0

α(σ̂)2
∏

i

∏

ρi∈Ri

(
ρi(σ̂) +mF

i

)ri−1−ρi(k)
. (4.69)
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This Coulomb branch formula can be favorably compared to many known results for the

A-twisted GLSM. In particular, in the abelian case G = U(1)n, the exact correlation

functions were first obtained by Morrison and Plesser using toric geometry [10]. The JK

residue formula (4.68) for such theories was first obtained in [9] from a more mathematical

perspective. Both references focussed on the case of a complete intersection X in a compact

toric variety V , which is realized by an abelian GLSM with chiral multiplets of R-charge

0 (corresponding to V ) and some chiral multiplets of R-charge 2 (corresponding to the

superpotential terms which restrict V to X). We comment on such models using the

Coulomb branch formula in section 6.

One can also write (4.68) as

〈O(σ)〉0 =
(−1)N∗

|W |
∑

k

JK-Res
[
ξUV
eff

]
e2πiτeff(k)Z1-loop

0 (σ̂; 0)O (σ̂) dσ̂1∧· · ·∧dσ̂rk(G) , (4.70)

where the classical and one-loop contributions have been recombined into the Coulomb

branch effective couplings τaeff(σ̂) defined in (3.19), with τeff(k) =
∑

a τ
a
eff(σ̂)ka, and

Z1-loop
0 (σ̂; 0) = (−1)

1
2
dim(g/h)

∏

α>0

α(σ̂)2
∏

i

∏

ρi∈Ri

(
ρi(σ̂) +mF

i

)ri−1
. (4.71)

Let us assume that ξUV
eff lies within a chamber C of K such that Γflux(ξ

UV
eff ), as defined

in equation (4.67), is entirely contained within a discrete cone Λ ⊂ ΓG∨ that satisfies the

following properties:

• Λ is given by

Λ = { k : k =
∑

A

nAκ
A + r(0), nA ∈ Z≥0 } (4.72)

for some r(0) ∈ ΓG∨ , where κ1, · · · , κrk(G) ∈ ih is a basis of ΓG∨ .

• Λ ∩ Γflux(η) = ∅ for η /∈ C.

The second assumption implies that for k ∈ Λ, all the poles of Z1-loop
k (σ̂; 0) are counted in

the JK residue and thus

JK-Res
[
ξUV
eff

]
Z1-loop
k (σ̂; 0)O (σ̂) dσ1 ∧ · · · ∧ dσ̂rk(G)

=

∮

∂M̃
Z1-loop
k (σ̂; 0)O (σ̂) dσ1 ∧ · · · ∧ dσ̂rk(G) .

(4.73)

where ∂M̃ is the rk(G)-torus at infinity. In particular, the contour is the same for all

k ∈ Λ, which lets us sum over all k ∈ Λ to arrive at

〈O(σ)〉0 =
(−1)N∗

|W |

∮

∂M̃




rk(G)∏

a=1

dσ̂a
2πi


 e2πir

(0)
a ∂σ̂aŴeff

∏rk(G)
A=1 (1− e2πiκ

A
a ∂σ̂aŴeff )

Z1-loop
0 (σ̂; 0)O (σ̂) , (4.74)

with Ŵeff as defined in section 3.2. The sum over the repeated indices a in the formula

is understood. This instanton-resummed expression makes it obvious that the A-twisted
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correlations functions are singular on the “singular locus” defined as the set of values of qa
for which some of the vacuum equations

e2πiκ
A
a ∂σ̂aŴeff(σ̂;q) = 1 (4.75)

are trivially satisfied (for any σ̂). (Note that (4.75) is the proper form of (3.18) in general,

with κAa = δAa for unitary gauge groups.)

When the theory is fully massive, i.e., when the theory has a finite number of distinct

ground states and a mass gap, the critical points of Ŵeff become isolated, and the integral

simply picks the iterated poles at the critical points. Let us denote:

P =
{
σ̂P
∣∣ e2πiκA

a ∂σ̂aŴeff(σ̂B) = 1 for all A = 1, · · · , rk(G)
}
. (4.76)

The formula (4.74) becomes

〈O(σ)〉0 =
(−1)N∗

|W |
1

(−2πi)rk(G)

∑

σ̂P∈P

Z1-loop(σ̂P ; 0)O (σ̂P )

H(σ̂P )
, (4.77)

with H(σ̂) = detAB

(
κAa κ

B
b ∂σ̂a∂σ̂b

Ŵeff

)
the Hessian of Ŵeff . The exact same formula has

been recently derived in [17], using different methods. In the abelian case and in the

special case when all the chiral fields have vanishing R-charge, the formula (4.77) was also

found earlier in [15]. It is also a natural generalization of the formula of [18] for A-twisted

Landau-Ginzburg models of twisted chiral multiplets.18

5 Derivation of the Coulomb branch formula

We derive the formula for the partition function in the Coulomb branch in this section.

The techniques used in the derivation are equivalent to those used in arriving at the elliptic

genus [35, 37] or the index of supersymmetric quantum mechanics [38]. Our situation has

more similarity with the latter case, as the integral over the Coulomb branch parameter is

taken over a non-compact space. Let us first summarize the overall picture of getting at

the partition function by replicating the arguments of [35, 37, 38].

As explained before, the partition function, upon naive localization on the Coulomb

branch, can be written as the holomorphic integral

ZS2
Ω
=
∑

k

qk
∮ (∏

a

dσ̂a

)
Z1-loop
k (σ̂) , (5.1)

where the contour of integration is an unspecified real dimension-r cycle in M̃. In this

section, and only in this section, we use

r = rk(G) (5.2)

18More precisely, [18] considered B-twisted LG models of chiral multiplets, which is the same thing by

the Z2 mirror automorphism of the N = (2, 2) supersymmetry algebra.
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for sake of brevity. We also make the ǫΩ-dependence of the one-loop determinant im-

plicit, i.e.,

Z1-loop
k (σ̂) ≡ Z1-loop

k (σ̂; ǫΩ) (5.3)

to shorten equations.

We follow [35, 37, 38] to evaluate the partition function. Decomposing the action of

the gauge theory into

L =
1

e2
LYM +

1

g2
L

Φ̃Φ
+ L˜̂

W
+ LŴ , (5.4)

the path integral of the theory can be formally written as

ZS2
Ω
=

1

|W |

∫

M̃

∏

a

(dσ̂ad˜̂σa)Fe,g(σ̂, ˜̂σ) . (5.5)

While the twisted superpotential Ŵ is given by that of equation (2.44), the δ and δ̃-exact

term L˜̂
W

is set to be

L˜̂
W

= − ξ̃

e2
(D − 2if11̄ − σ̃H) , (5.6)

as explained in the previous section. The e → 0 limit of the partition function then can be

obtained by the integral

ZS2
Ω
=

1

|W |
∑

k

qk lim
ǫ→0
e→0

∫

M̃\∆ǫ

∏

a

(dσ̂ad˜̂σa)F k
e,0(σ̂,

˜̂σ) (5.7)

in a double scaling limit of ǫ and e, which we soon explain. F k
e,0 is obtained via an integral

over the gauginos λa, λ̃a and the auxiliary fields D̂a along the Coulomb branch localization

locus. ∆ǫ is a union of tubular neighborhoods of the codimension-one poles of Zk(σ̂), i.e.,

the hyperplanes HI
n , of size ǫ. The parameter ǫ is to be distinguished from the omega

deformation parameter ǫΩ. The tubular neighborhoods are carved out precisely around

points of the “Coulomb branch” where massless modes of the chiral fields may develop.

The radius ǫ is taken to scale with respect to e so that ǫ < eM∗+1 as e is taken to zero,

where M∗ is the maximal number of modes that become massless at any of the poles.19

In this limit, the integral (5.7) becomes the contour integral (5.1) along a particular

middle-dimensional cycle in M̃, whose value is summarized by the formula:

ZS2
Ω
=

(−8π2)r

|W |
∑

k

qk
∑

σ̂∗∈M̃k
sing

JK-Res
σ̂=σ̂∗

[
Q(σ̂∗), ξ

UV
eff

]
Z1-loop
k (σ̂) . (5.8)

19As pointed out in [35, 37], it must be assumed that at any point σ̂∗, the charges of the field components

whose modes become massless at σ̂∗ lie within a half plane of ih∗, i.e., the configuration of hyperplanes

intersecting at σ̂∗ must be projective. Throughout this section, we assume this is always the case, and

refer to this property as “projectivity.” Furthermore, a theory for which at every σ̂∗ there are at most

r singular hyperplanes intersecting is said to be “non-degenerate” [37]. When there is a non-projective

hyperplane configuration responsible for a pole of the integrand, it can be made projective by formally

giving generic twisted masses to all the components to the charged fields involved — the path integral of

the original theory can be obtained by evaluating the partition function (or operator expectation values)

in this “resolved” theory and taking the twisted masses to the initial values.

– 37 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

In this section, we omit the factor dσ̂1 ∧ · · · ∧ dσ̂r in this expression. The result for the

physical correlation functions follows straightforwardly, once the contour of integration is

understood for the partition function:

〈O(N)(σN )O(S)(σS)〉 =
(−1)N∗

|W |
∑

k

qk
∑

σ̂∗∈M̃k
sing

JK-Res
σ̂=σ̂∗

[
Q(σ̂∗), ξ

UV
eff

]
Z1-loop
k (σ̂)O(N)

(
σ̂ − ǫΩk

2

)
O(S)

(
σ̂ +

ǫΩk

2

)
.

(5.9)

Here we have fixed the overall normalization constant (−1)N∗ of the physical correlators.

There are two sets of data going into the overall normalization. An overall proportionality

constant (−8π2)−r is introduced, coming from the normalization of the Coulomb branch

coordinates. The coefficient has been fixed empirically to match geometric computations.

The sign (−1)N∗ originates from the sign ambiguity of the one-loop determinants of the

chiral fields, as explained in the previous section. Our prescription for N∗ is explained in

section 4.5.

To arrive at this result, we follow the tradition of [35, 37, 38] and examine the rank-

one path integral in detail to gain insight. We subsequently generalize to the theories with

gauge groups with higher rank. The main outcome of this section is that the methods

of [35, 37, 38] generalize with minimal modification to the problem at hand. We apply

these methods to arrive at the final answer.

5.1 U(1) theories

Let us write the path integral of the rank-one theory in the form

ZS2
Ω
=

∫
dσ̂d˜̂σdλdλ̃dD̂Ze,g(σ̂, ˜̂σ, λ, λ̃, D̂) , (5.10)

where the integral is taken with respect to constant modes σ̂, ˜̂σ, λ, λ̃ and the auxiliary field

D̂ on the Coulomb branch localization locus. As explained before, these constant modes

form a supersymmetric multiplet for a supersymmetric integration measure Ze,g. While

for e, g 6= 0 we do not know the exact value of Ze,g, supersymmetry implies that for any

supersymmetric function Z of the constant-mode supermultiplet,

D̂∂λ∂λ̃Z|
λ=λ̃=0

= 2∂˜̂σZ|
λ=λ̃=0

. (5.11)

Hence, upon integrating the gaugino zero modes, the integral (5.10) must take the form

ZS2
Ω
=

2

|W |

∫

M̃\∆ǫ

dσ̂d¯̂σ∂˜̂σ

∫
dD̂

1

D̂
Ze,g(σ̂, ¯̂σ, D̂) , (5.12)

where we have denoted

Ze,g(σ̂, ¯̂σ, D̂) ≡ Ze,g(σ̂, ¯̂σ, 0, 0, D̂) . (5.13)

Note that M̃ = C in the rank-one case. We have imposed the reality condition (4.17) on

the integration contour to take ˜̂σ = ¯̂σ.
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Let us now examine what the contour for D̂ should be. To do so, let us begin with

taking the limit20

lim
e→0
g→0

Ze,g(σ̂, ¯̂σ, D̂) =
∑

k∈Z

qk lim
e→0

(
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂)

)
. (5.14)

Zk(σ̂, ¯̂σ, D̂) is given by the product of one-loop determinants of the components of the

charged fields of the theory in the flux-k sector:

Zk(σ̂, ¯̂σ, D̂) =
∏

I

ZI
k (σ̂,

¯̂σ, D̂) . (5.15)

The computation of these determinants is presented in appendix C. It is useful to split the

contribution from the component I of the charged field into two pieces

ZI
k (σ̂,

¯̂σ, D̂) = Z
(0)
rI−QIk

(Σ, Σ̄, D) · Zpos
rI−QIk

(Σ, Σ̄, D)|Σ=QI σ̂+mF
I , D=QID̂

, (5.16)

where

Z
(0)
r (Σ, Σ̄, D) =





∏r/2−1
m=−r/2+1(Σ + ǫΩm) if r > 1 ,

1 if r = 1 ,
∏|r|/2

m=−|r|/2
Σ̄

Σ̄(Σ+ǫΩm)+iD
if r < 1 ,

(5.17)

and

Zpos
r (Σ, Σ̄, D) =

∏

|m|≤j

j>j0(r)

Σ̄(Σ + ǫΩm) + j(j + 1)− r
2(

r
2 − 1)

iD + Σ̄(Σ + ǫΩm) + j(j + 1)− r
2(

r
2 − 1)

, (5.18)

where

j0(r) =
|r− 1|

2
− 1

2
. (5.19)

We have split up the chiral fields into individual components with charge QI . When D̂ is

set to zero in Zk(σ̂, ¯̂σ, D̂), we recover the holomorphic one-loop integral Zk(σ̂):

Zk(σ̂, ¯̂σ, D̂ = 0) = Zk(σ̂) (5.20)

since ZI
k (σ̂,

¯̂σ, 0) = ZI
k (σ̂).

From the denominator of ZI
k , we can see that the contour of integration for D̂ is rather

subtle. Examining the eigenmodes of the chiral fields of effective R-charge

rI ≡ rI −QIk (5.21)

around a constant background field σ̂, ¯̂σ and D̂, we find that there exist complex bosonic

eigenmodes φj,m of the chiral fields Φi with eigenvalues

∆j,m
bos = iQID̂ + (QI σ̂ +mF

I )(QI σ̂ +mF
I + ǫΩm) + j(j + 1)− rI

2

(rI
2

− 1
)
, (5.22)

20We have set the dimensionful Yang-Mills coupling to
√

vol(S2) for simplicity. As can be seen in latter

parts of this section, this choice is not important, as the classical contribution of the Yang-Mills Lagrangian

to the action does not affect the final answer.
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for j > j0 and |m| ≤ j in general, and

∆j0,m
bos = iQID̂ + (QI σ̂ +mF

I )(QI σ̂ +mF
I + ǫΩm) , |m| ≤ j0 (5.23)

when rI < 1, that are uncanceled by fermionic ones in the flux sector k. Now this implies

that when g is very small, the action of the theory contains the term:

− 1

g2
∆j,m

bosφj,mφ
∗
j,m . (5.24)

When the real part of ∆j,m
bos is negative, the Gaussian integral is unstable, and the saddle

point approximation is unreliable. In more physical terms, the limit g → 0 is the limit

where perturbation theory is exact, but the perturbation theory is not well-defined when

Re∆j,m
bos is negative for some j, m. Hence the D̂ integration contour must be such that

QIImD̂ ≤ Re
[
(QI σ̂ +mF

I )(QI σ̂ +mF
I + ǫΩm) + j(j + 1)− rI

2

(rI
2

− 1
)]

, (5.25)

for all allowed values of j and m. More precisely, the contour Γ of D̂ must satisfy the

following conditions:

• Γ asymptotes from −∞ to real +∞.

• All poles of ZI
k (σ̂,

¯̂σ, D̂) with positive charge QI (“positive poles”) lie above Γ.

• All poles of ZI
k (σ̂,

¯̂σ, D̂) with negative charge QI (“negative poles”) lie below Γ.

The latter two conditions can be stated more “covariantly” as the following:

• All poles of ZI
k (σ̂,

¯̂σ, D̂) must lie above Γ in the QID̂ plane.

Since the integration measure of (5.12) in the localization limit is (locally) holomorphic

with respect to D̂, the integral is completely determined if the asymptotics of Γ and its

position with respect to all the poles are specified. Hence there is one more crucial choice

in completely specifying the choice for Γ. We see from (5.12) that the fermion integral

yields an additional pole of the integrand at D̂ = 0. Γ can be chosen to be on either side

of this pole. Hence we define two contours Γ+ and Γ− so that

• The pole D̂ = 0 lies below Γ+.

• The pole D̂ = 0 lies above Γ−.

The contours Γ± are depicted in figure 1.

The poles of Zk behave more erratically than the poles of the integrands studied

in [35, 37, 38]. For the elliptic genus and the Witten index, poles of Zk coming from

positively/negatively charged fields with respect to D̂ stayed strictly in the upper/lower-

half plane of D̂, respectively. In our case, some poles cross the real D̂-axis, as depicted in

figure 2.

The contours Γ− and Γ+ are nevertheless well defined for generic values of σ̂ — they

are not, only for the following real codimension-two loci:
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Γ+

Γ-

Figure 1. Two different choices of contours Γ− and Γ+ for the D̂-integral depicted on the D̂-

plane. The poles of the integrand coming from positively charged fields are marked by ⊗, while

the those coming from negatively charged fields are marked ×. The pole at the origin D̂ = 0 is

marked by a ⋆.

Figure 2. Schematic depiction of behavior of poles of Zk(σ̂, ¯̂σ, D̂) in the D̂-plane with respect to

variation of σ̂.

• Γ+ is ill-defined when a positive pole collides with the origin.

• Γ− is ill-defined when a negative pole collides with the origin.

Upon such collisions, a positive or negative pole unavoidably crosses the contour, leading to

a possible singularity of the D̂-integral, as we see shortly. One may worry about positive or

negative poles swooping to the other side of the real D̂ axis from their half-plane, but this

can be dealt with. In particular, at small ǫΩ, the only poles that cross the real D̂ axis are

poles D̂∗(σ̂, ¯̂σ) of the Z
(0) factor of the one-loop determinants of the charged fields. In par-

ticular, this only happens when D̂∗(σ̂, ¯̂σ) ∼ O(ǫΩ), and the imaginary part of the location

of the pole is of order O(ǫΩ
2). Hence these poles can be kept from crossing the contour of

integration by a small deformation of this order. The path integral for macroscopic values

of ǫΩ can be obtained from the ones with small ǫΩ by analytic continuation. Additional

complications ensue as certain poles may circle around the origin, but this can also be

accommodated. The appropriate maneuvers for Γ− are depicted in figures 3 and 4. The

final worry might be that a positive pole may coincide with a negative pole at some value

of σ̂. Such a situation can be avoided by taking ǫΩ to be very small, computing the path
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Figure 3. Deformation of the contour Γ− in the D̂-plane as a positive pole swoops below the

real axis. When negative poles are far enough away (which can always be made the case by taking

small ǫΩ due to the assumption of projectivity), the contour Γ− can be taken to be parallel along

the real axis by taking the imaginary part of Γ− to be −iδ for δ > K|ǫΩ|2 for an order-one constant

K.

integral, and then analytically continuing for macroscopic values of ǫΩ. Throughout this

section, we thus work with the convenient assumption that ǫΩ is very small. We discuss

the contours Γ− and Γ+ in further detail at the end of this subsection.

It is worth emphasizing that the only poles D̂∗(σ̂, ¯̂σ) that collide with the origin and

can make the integrand

F k
e,0 = ∂¯̂σ

∫

Γ
dD̂

1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂) (5.26)

of the σ̂-integral singular, are the poles of the Z(0) piece of the one-loop determinants. We

have made the contour-dependence of Fe,0 implicit. For macroscopic values of ǫΩ the poles

of Zpos can collide with the origin, but their effects are benign, and does not give rise to

any singularities. In fact, when ǫΩ is taken to be very small compared to other masses of

the theory, the imaginary part of the poles of the Zpos piece has magnitude of order O(1)

— thus for small enough ǫΩ, the poles of Zpos never even come near the real axis of D̂.

The integral (5.26) at macroscopic values of ǫΩ can be obtained via analytic continuation

from small values of ǫΩ.

The poles of the Z(0) piece of the one-loop determinant of charged field component I,
as can be seen from equation (5.17), collide with the origin D̂ = 0 when

QI σ̂ = −mF
I − ǫΩ

(
n+

rI
2

)
for n ∈ [0,−rI ]int , or QI σ̂ +mF

I = 0 . (5.27)

It is simple to see that the singularity is absent when QI σ̂ + mF
I = 0 unless rI is even,

due to the factor (QI σ̂ +mF
I )

rI+1
present in the numerator of Z

(0)
rI . We hence find that

the values of σ̂ at which F k
e,0 can become singular narrows down to precisely the poles

of Zk(σ̂) = Zk(σ̂, ¯̂σ, D̂ = 0), as expected. Recall that ∆ǫ is defined to be a tubular

neighborhood of these points. For future purposes, it is useful to split the poles of Zk(σ̂),

or rather, the potentially singular loci of F k
e,0, into two groups — the “positive” loci H+

at which the positive poles of Zk(σ̂, ¯̂σ, D̂) with respect to D̂ collide with D̂ = 0 and the

“negative” loci H− at which the negative poles of Zk(σ̂, ¯̂σ, D̂) do. Let ∆ǫ,k
+ / ∆ǫ,k

− denote

the tubular neighborhoods around the positive/negative loci respectively.
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Γ-

(1)

Γ+

C0

(2)

Figure 4. Two homologically equivalent ways of deforming of the contour Γ− in the D̂-plane

as a negative pole circles around the origin. One can either split a small portion of the contour

and move it around with the pole, or pass it through the origin to obtain Γ+ + C0, where C0 is

a tight contour around the origin. When all positive poles are far enough away, the contour Γ+

can be made parallel to the real axis, with imaginary part iδ with δ > K|ǫΩ|2 for a constant K of

order-one.

Let us now, for definiteness, take the contour of integration to be Γ− and evaluate the

path integral (5.12) in the localization limit where e, g → 0. The integral is given by

ZS2
Ω
=

2

|W |
∑

k∈Z

qk lim
e→0
ǫ→0

∫

M̃\∆ǫ,k

dσ̂d¯̂σF k
e,0

=
2

|W |
∑

k∈Z

qk lim
e→0
ǫ→0

∫

M̃\∆ǫ,k

dσ̂d¯̂σ∂¯̂σ

∫

Γ−

dD̂
1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂) .

(5.28)

The path integral is a total derivative in ¯̂σ, and hence it is important to understand the

boundaries of M̃ \∆ǫ,k:

∂M̃ \∆ǫ,k = ∂M̃− ∂∆ǫ,k
+ − ∂∆ǫ,k

− . (5.29)

The boundary of ∆ǫ,k consists of counter-clockwise contours encircling the potentially sin-

gular loci of F k
e,0. Meanwhile, the boundary of M̃ = C can be obtained by first constructing

a large circular counter-clockwise contour of radius R
M̃
, which encircles all the singular loci,

and taking the limit R
M̃

→ ∞.

Let us first examine the integral

Zǫ,+
k = −

∫

∂∆ǫ,k
+
dσ̂

∫

Γ−

dD̂
1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂) . (5.30)

The D̂-integral is bounded and well-defined within ∆ǫ,k
+. This is because the pole of

Zk(σ̂, ¯̂σ, D̂) with respect to D̂ that collides with D̂ = 0 does not cross Γ−, as depicted in

the left panel of figure 5, thereby making the integrand of the Γ− integral to be smooth

across the integration contour. We therefore see that

lim
e→0
ǫ→0

Zǫ,+
k = 0 . (5.31)
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Figure 5. The behavior of poles of Z(σ̂, ¯̂σ, D̂) in the D̂-plane as σ̂ varies inside ∆ǫ,k. The left

panel depicts a positive pole colliding with the origin as σ̂ is taken to a singular point within ∆ǫ,k
+.

The Γ−-contour integral is smooth and bounded. The right panel depicts a negative pole colliding

with the origin as σ̂ is taken to a singular locus within ∆ǫ,k
−. The Γ−-contour integral is singular

— the singular element can be isolated as the contour integral around C0.

The integral

Zǫ,−
k = −

∫

∂∆ǫ,k
−
dσ̂

∫

Γ−

dD̂
1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂) (5.32)

is more interesting. Since a pole of Zk(σ̂, ¯̂σ, D̂) necessarily crosses the contour Γ− to collide

with the pole of the integrand at D̂ = 0, the integral along Γ− is expected to be singular

at some point within ∆ǫ,k
−. An efficient way to deal with this singularity, as pointed

out in [35, 37, 38], is to deform the contour Γ− = Γ+ + C0, where C0 is a small contour

encircling the origin in the counter-clockwise direction. The D̂ integral over Γ+, as argued

before, is smooth and bounded as a function of σ̂ and ¯̂σ in ∆ǫ,k
− as e is taken to be very

small. The contour integral around C0 can be evaluated explicitly, due to (5.20). We thus

arrive at

lim
e→0
ǫ→0

Zǫ,−
k = − lim

e→0
ǫ→0

∫

∂∆ǫ,k
−
dσ̂

∫

C0

dD̂
1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂)

= −2πi

∫

∂∆ǫ,k
−
dσ̂Z1-loop

k (σ̂)

= 4π2
∑

σ̂∗∈H−

Res
σ̂=σ̂∗

Z1-loop
k (σ̂) .

(5.33)

Finally, let us examine the integral along the boundary at infinity:

Z∞
k =

∫

∂M̃
dσ̂

∫

Γ−

dD̂
1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂) . (5.34)

To evaluate this integral, one must understand how to control the behavior of the parameter

ξ̃ as the coupling e is taken to infinity. We choose to keep ξ̃ constant. This is called the

“Higgs scaling limit” in [38].21 This is because we wish to compute correlators of the

IR theories obtained by flowing from various Higgs phases of the GLSM. To make the

21Note that our ξ̃ can be identified with e2ζ of [38], where ζ is the FI parameter of the one-dimensional

“gauge” theories studied therein.
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discussion more concrete, let us first restrict to values of ξ̃ that lie in a chamber of a

“geometric phase.” We then see that the classical “Higgs phase” field configurations of the

localization Lagrangian (5.4) engineers the IR geometry whose Kähler structure is given

by ξ̃. Hence in order for the Coulomb branch path integral to compute correlators which

eventually are to be identified with those of the non-linear sigma model of an IR geometry,

this value must be kept macroscopic as e is taken to be small. An equivalent argument

holds for all phases of the GLSM.

We therefore arrive at

Z∞
k =

∫

∂M̃
dσ̂

∫

Γ′
−

dD̂′ 1

D̂′
e−

e2D̂′2

2
+4πiξ̃D̂′Zk(σ̂, ¯̂σ, e

2D̂′) . (5.35)

by the reparametrization D̂ = e2D̂′. The contour of the integrand of (5.35) is depicted in

figure 6. Before going further, we must acknowledge an order of limits issue here. This

integral depends on whether the boundary of ∂M̃ is taken to infinity faster than e is taken

to zero. We assume that R must grow much faster, as the domain of integration should

in principle span the entire M̃ regardless of the coupling. To be more precise, take the

|σ̂| → ∞ and e → 0 limit so that

R ≡ |σ̂|e2 → ∞ . (5.36)

In other words, log |σ̂| is taken to grow faster than 1
e2
. The behavior of the determinant

ZI
k (σ̂,

¯̂σ, D̂) has been studied in detail in appendix C.2.1. There, we provide strong evi-

dence that

lim
e→0
R→∞

ZI
k (σ̂,

¯̂σ, e2D̂′) = lim
e→0
R→∞

ZI
k (σ̂)e

2i(1+ǫΩ
′α

ǫΩ
′ )(logR)QID̂

′

. (5.37)

Here, ǫΩ
′ is defined to be

ǫΩ
′ =

¯̂σ

|σ̂|ǫΩ , (5.38)

while α
ǫΩ

′ is a function of ǫΩ
′ that is smooth and bounded in a small enough neighbor-

hood of ǫΩ
′ = 0. This limit comes from estimating the ζ-function regularization of the

determinants Zpos defined in equation (5.18). We thus find that

lim
e→0
R→∞

e−
e2D̂′2

2
+4πiξ̃D̂′Zk(σ̂, ¯̂σ, e

2D̂′) = lim
e→0
R→∞

e
4πi

[
ξ̃+ 1

2π
b0(1+ǫΩ

′α
ǫΩ

′ ) logR
]
D̂′

Z1-loop
k (σ̂) . (5.39)

Recall that b0 =
∑

I QI . We can absorb the real part of the factor (1 + ǫΩ
′α

ǫΩ
′) in front

of logR in the equation (5.39) into R. Then, defining

ξUV
eff = ξ̃ +

1

2π
b0 logR , (5.40)

we arrive at the integral

lim
e→0

Z∞
k = lim

R→∞

∫

∂M̃
dσ̂

∫

Γ′
−

dD̂′ 1

D̂′
e4πi(ξ

UV
eff + i

2π
b0O(|ǫΩ|) logR)D̂′Z(0)

k (σ̂, ¯̂σ, 0) , (5.41)
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Γ'+

C0
Γ'-

ξ < 0 ξ > 0

Figure 6. The D̂′ integration contour in the e → 0 limit. When ξ < 0, the contour Γ′

−
can be

deformed away in the lower half plane. When ξ > 0, the contour must be deformed away to the

upper half plane, thus forcing the integral to pick up the pole at the origin.

where we have indicated that the exponent develops a real part parametrically smaller

than ξUV
eff . In the presence of this real part, i.e., when b0 6= 0, the contour Γ′

− needs to be

slightly bent downward in the D̂-plane by an angle of order O(|ǫΩ|) to exhibit desirable

asymptotic behavior. This does not alter the position of the contour with respect to any

of the poles of the integrand. Now when ξUV
eff < 0, the contour can be deformed away in

the lower half of the complex D̂-plane. On the other hand, when ξUV
eff > 0, the contour

must be deformed away in the upper half plane. In this process, the contour C0 around

the origin is picked up. In conclusion, we arrive at

Z∞
k = 2πiΘ(ξUV

eff )

∫

∂M̃
dσ̂Z(0)

k (σ̂, ¯̂σ, 0) = 2πiΘ(ξUV
eff )

∫

∂M̃
dσ̂Z1-loop

k (σ̂) , (5.42)

where Θ(ξ) is defined to be

Θ(ξ) =

{
1 ξ > 0 ,

0 ξ < 0 .
(5.43)

Since Zk(σ̂) is a holomorphic function on M̃ \∆ǫ, it follows that

2πi

∫

∂M̃
dσ̂Zk(σ̂) = −4π2

∑

σ̂∗∈H+∪H−

Res
σ̂=σ̂∗

Z1-loop
k (σ̂) . (5.44)

Putting everything together, we arrive at the result:

ZS2
Ω
=

2

|W |
∑

k∈Z

qk lim
e→0
ǫ→0

(
Zǫ,−
k + Zǫ,+

k + Z∞
k

)
(5.45)

=
−8π2

|W |
∑

k∈Z

qk


Θ(ξUV

eff )
∑

σ̂∗∈H+

Res
σ̂=σ̂∗

Z1-loop
k (σ̂)−Θ(−ξUV

eff )
∑

σ̂∗∈H−

Res
σ̂=σ̂∗

Z1-loop
k (σ̂)


 .

In doing the integral (5.28), we could have chosen the D̂-contour to be Γ+:

Z′
S2
Ω
=

2

|W |
∑

k∈Z

qk lim
e→0
ǫ→0

∫

M̃\∆ǫ,k

dσ̂d¯̂σ∂¯̂σ

∫

Γ+

dD̂
1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂) . (5.46)
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This would not have made a difference in the final result. Since Γ+ − Γ− = −C0,
∫

Γ+−Γ−

dD̂
1

D̂
e−

D̂2

2e2
+ 4πiξ̃

e2
D̂Zk(σ̂, ¯̂σ, D̂) = −

∫

C0

dD̂
1

D̂
= −2πiZ1-loop

k (σ) (5.47)

and thus

Z′
S2
Ω
− ZS2

Ω
= − 4πi

|W |
∑

k∈Z

qk lim
e→0
ǫ→0

∫

M̃\∆ǫ,k

dσ̂d¯̂σ∂¯̂σZ1-loop
k (σ) = 0 , (5.48)

since Z1-loop
k (σ) is smooth and holomorphic on M̃ \∆ǫ,k.

Let us conclude this section by commenting on the geometry of the contour of integra-

tion for D̂, to prepare ourselves for moving on to gauge theories with higher rank. In the

rank-one case, the topology of the D̂-plane and contours is simple enough to visualize, so

that the consistency of the prescription for the contours Γ± is manifest. When the D̂-space

is multi-dimensional, it appears rather tricky to keep track of the topology of the contour.

In order for us to apply the machinery of [37, 38], we need to describe the contours as

hyperplanes. For the rest of the section, we demonstrate that this can be done, as we take

ǫΩ to be

ǫ≪ ǫΩ ≪ µ0 ≤ 1 , (5.49)

where µ0 is the minimum of all other mass scales present in the theory:

µ0 = min(1, µmin) (5.50)

where µmin is the lightest twisted mass. Following the usual strategy, the contour Γ for the

D̂-integral is defined via hyperplanes as we take ǫΩ to be very small compared to µ0. The

path integral for macroscopic ǫΩ can be obtained by analytically continuing the result for

small ǫΩ.

Recall that the poles of ZI
k (σ̂) lie at the “hyperplanes” (4.8):

σ̂ = σ̂I∗,n ≡
[
−mF

I − ǫΩ

(
n+

rI
2

)]
/QI , n ∈ [0,−rI ]int . (5.51)

Assuming the separation of scales (5.49), all the poles of ZI(σ̂, ¯̂σ, D̂) with respect to D̂I

lie above the contour

ImD̂I = −r2I |ǫΩ|2 (5.52)

in the D̂I-plane where we have defined

D̂I ≡ QID̂ . (5.53)

Meanwhile, all poles of ZI(σ̂, ¯̂σ, D̂) (with respect to D̂I) lie above the contour

ImD̂I = x2|ǫΩ|2 (5.54)

in the D̂I-plane when

|QI σ̂ −QI σ̂
I
∗,n| > (x+ rI)|ǫΩ| (5.55)

for all poles σ̂I∗,n of ZI
k (σ̂). The poles of ZI

k (σ̂) all lie close to each other at a distance of

O(ǫΩ).
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O(μN)

ε

O(μ0)

σ
A

B

C

εΩ

B

A C

δ

δ

δ

δ

Γ+δ

Γ-δ

Γ+δ

Γ-δ

Figure 7. Distribution of poles of Zk(σ̂, ¯̂σ, D̂) in the D̂ plane as σ̂ is varied. A / C is an O(µN )-

neighborhood of poles of ZI

k (σ̂) with QI > 0 / QI < 0, respectively. The poles of ZI

k (σ̂) themselves,

within A and C are separated by a distance of order ǫΩ. In B, the positive poles lie above Γ+δ and

the negative poles lie below Γ−δ, where δ is of order O(|ǫΩ|) — there are no poles of Zk(σ̂, ¯̂σ, D̂)

between the two contours, as they are all away at a distance O(µ2
N ) from the real axis. In A, while

some negative poles cross the real D̂-axis, Γ+δ still can be used to divide the positive and negative

poles. This is because the negative poles that cross D̂ = 0 still lie within a range O(ǫΩ
2) of the

real line, while the positive poles are far away from the real line at distances of O(µ2
N ). In C, Γ−δ

divides the positive and negative poles.

Let us take a small connected open set NI that contains the domain

{ σ̂ : |QI σ̂ −QI σ̂
I
∗,n| ≤ µ2N } , (5.56)

for

ǫΩ ≪ µ2N ≪ µN ≪ µ0 ≤ 1 . (5.57)

NI is of size O(µN ) ≪ µ0 in the D̂-plane. Outside of
⋃

I NI , the positive poles of

Zk(σ̂, ¯̂σ, D̂) with respect to D̂ lie above

Γ+δ = { D̂ : Im D̂ = δ } (5.58)

and negative poles lie below

Γ−δ = { D̂ : Im D̂ = −δ } (5.59)

for any δ of O(|ǫΩ|). Meanwhile, inside NI with QI > 0, positive poles may swoop down

below the real D̂-axis, but do not go below Γ−δ. Due to the separation of scales, all negative

poles of Zk(σ̂, ¯̂σ, D̂) stay far below Γ−δ within such NI . Likewise, inside NI with QI < 0,

negative poles may go above the real axis of D̂, but do not go over Γ+δ. All positive poles

of Zk(σ̂, ¯̂σ, D̂) are far above Γ+δ within such NI . The situation is depicted in figure 7.

The upshot is for any point in M̃ \∆ǫ, there exists a real line of the complex D̂-plane

that lies below all the negative poles, and that lies above all the positive poles. One can use
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these hyperplanes to represent the topological prescription of the contour. Let us denote

N+ =
⋃

I,QI>0

NI , N− =
⋃

I,QI<0

NI , (5.60)

which consist of regions of size O(µN ). Γ±, which we have defined topologically can be

redefined in the following way:

• Γ+ is given by Γ+δ in M̃ \ (∆ǫ ∪N+), and by (Γ−δ − C0) in N+ \∆ǫ.

• Γ− is given by Γ−δ in M̃ \ (∆ǫ ∪N−), and by (Γ+δ + C0) in N− \∆ǫ.

An important point to emphasize is that this is true as long as δ is of order O(ǫΩ). This

provides a nice handle on the D̂-contours that proves useful as we move on to computing

the path integral in the general case.

5.2 The general case

Let us now prove the formula (4.1) for gauge theories with general gauge groups. The

result follows from the analysis of [37, 38] straightforwardly — in this section, we explain

why that analysis can be extended to our case. To be more precise, we show that:

(1) The partition function can be written in the form

ZS2
Ω
=

1

|W |
∑

k

qk lim
ǫ→0
e→0

∫

Γ⋉M̃\∆ǫ

µ (5.61)

with

µ =
1

r!
· e−

D̂2

2e2
+ 4πiξ̃

e2
D̂ · Zk(σ̂, ¯̂σ, D̂)drσ̂ ∧ (ν(dD̂))∧r (5.62)

where ν is defined such that

ν(V ) = habd¯̂σa ∧ Vb . (5.63)

for any form V valued in hC. h
ab is given by equation (5.84) and satisfies the proper-

ties (5.68). Zk(σ̂, ¯̂σ, D̂) satisfies

Zk(σ̂, ¯̂σ, D̂ = 0) = Z1-loop
k (σ̂) . (5.64)

(2) The D̂-contour of integration is equivalent to that of [37, 38].

(3) The asymptotics of µ are such that when the covector η [37, 38] that defines the D̂

contour is aligned with

ξUV
eff = ξ̃ +

1

2π
b0 lim

R→∞
logR (5.65)

as defined in section 4.1, the contribution from the cells adjacent to the boundary of

M̃ at infinity vanishes.22

These conditions are enough to arrive at (4.1).

22As is evident from various examples presented further into the paper, the parameter ξ̃, when restricted

to the dual of the center of the lie algebra ic∗ ⊂ ih∗ may not be generic enough. In this case, ξ̃ is to be

deformed within ih∗ slightly to a generic value, and then taken to its initial value by analytic continuation.
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In this section, we choose to follow the notation of [37, 38], without much alteration.

Since our result follows rather straightforwardly from the methods of [37, 38], we do not

rehash all the steps taken in those papers with the level of rigor of their presentation.

Instead, we simply review their notation and results relevant in the present setting and

explain why they can be re-run for our computation.

Condition (1) follows from supersymmetry. Repeating previous arguments, the parti-

tion function is obtained by the integral23

ZS2
Ω
=

1

|W |
∑

k

qk lim
ǫ→0
e→0

∫

Γ⋉M̃\∆ǫ

∏

a

(dσ̂ad¯̂σadD̂adλadλ̃a)e
− D̂2

2e2
+ 4πiξ̃

e2
(D̂)Zk(σ̂, ¯̂σ, λ, λ̃, D̂) .

(5.66)

Here, D̂2 is understood to be the inner-product of an element of hC defined by the Lie

algebra, while ξ̃(D̂) is the pairing between elements of h∗
C
and hC. Note that ξ̃ in this term

is not to be taken as the n-dimensional vector in the free subalgebra of g, but rather as

an element of h∗
C
with r components. Recall that Zk(σ̂, ¯̂σ, λ, λ̃, D̂), which we denote Zk for

sake of brevity, satisfies the supersymmetry equations

(
−2λ̃a

∂

∂ ¯̂σa
− D̂a

∂

∂λa

)
Zk =

(
−2λa

∂

∂ ¯̂σa
+ D̂a

∂

∂λ̃a

)
Zk = 0 . (5.67)

Let us assume that there exists a symmetric tensor hab satisfying

∂¯̂σa
Zk(σ̂, ¯̂σ, D̂) =

1

2
D̂bh

baZk(σ̂, ¯̂σ, D̂), ∂¯̂σc
hab = ∂¯̂σa

hcb . (5.68)

Then we find that

Zk(σ̂, ¯̂σ, D̂) exp(hbcλ̃bλc) (5.69)

is a solution to (5.67). This implies that

Zk(σ̂, ¯̂σ, λ, λ̃, D̂) = Zk(σ̂, ¯̂σ, D̂) exp(hbcλ̃bλc) + C(σ̂, ¯̂σ, λ, λ̃, D̂) (5.70)

where C is a solution of (5.67) whose bottom component is zero:

C0 ≡ C|
λ=λ̃=0

= 0 . (5.71)

Let us now show that the top component C|
λ̃1λ1···λ̃rλr

of C vanishes. The
∏

a(λ̃aλa)

component of C can be written as

(
∏

a

D̂a

)
C|

λ̃1λ1···λ̃rλr
=

1

r!

[(
∏

b

D̂a
∂2

∂λb∂λ̃a

)
C
]

λ=λ̃=0

. (5.72)

Meanwhile, the supersymmetry relation implies that

DbC = 2AbC , (5.73)

23Note that the definition of Zk in this section differs from that of section 4.3 by an exponential factor

only dependent on D̂. This does not affect the supersymmetry relations or properties of hbc, as D̂a are

invariant under supersymmetry transformations, as can be seen from equation (5.67).
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where we have defined the operators

Db ≡ D̂a
∂2

∂λb∂λ̃a
, Ab ≡

∂

∂ ¯̂σb
− λa

∂2

∂ ¯̂σa∂λb
. (5.74)

The commutation relation between these operators are given by

[Da,Db] = [Aa,Ab] = 0 , [Da,Ab] = −2
∂

∂ ¯̂σa
Db . (5.75)

We therefore see that

1

r!

(
r∏

b=1

Db

)
C =

2

r!

(
r−1∏

b=1

Db

)
ArC = · · · (5.76)

can be ultimately written as a linear combination of terms of the form

∂

∂ ¯̂σa1
· · · ∂

∂ ¯̂σap
Ab1 · · · Abr−pC . (5.77)

The lowest components of these terms vanish, since they must be multiples of derivatives

of C0, which is zero. We therefore arrive at

C|
λ̃1λ1···λ̃rλr

= 0, when C|
λ=λ̃=0

= 0 . (5.78)

Hence we find that the highest component of Zk(σ̂, ¯̂σ, λ, λ̃, D̂) is given by

Zk|λ̃1λ1···λ̃rλr
= Zk(σ̂, ¯̂σ, D̂) exp(hbcλ̃bλc)|λ̃1λ1···λ̃rλr

= det
bc

(hbc)Zk(σ̂, ¯̂σ, D̂) . (5.79)

It follows that

ZS2
Ω
=

1

|W |
∑

k

qk lim
ǫ→0
e→0

∫

Γ⋉M̃\∆ǫ

∏

a

(dσ̂ad¯̂σadD̂a)e
− D̂2

2e2
+ 4πiξ̃

e2
(D̂) det

bc
(hbc)Zk(σ̂, ¯̂σ, D̂)

=
1

|W |
∑

k

qk lim
ǫ→0
e→0

∫

Γ⋉M̃\∆ǫ

µ .

(5.80)

The function Zk(σ̂, ¯̂σ, D̂) is obtained by multiplying all the one-loop determinants of

charged field components in the theory labeled by I when the background zero modes

σ̂a, ¯̂σa and D̂a are turned on:

Zk(σ̂, ¯̂σ, D̂) =
∏

I

ZI
k (σ̂,

¯̂σ, D̂) . (5.81)

Recall that the determinants of a component of a charged vector field is equivalent to that

of a charged chiral field with R-charge 2. The one-loop determinant of a charged field

component I, whose computation is presented in appendix C, is given by

ZI
k (σ̂,

¯̂σ, D̂) = Z
(0)
rI−QI(k)

(Σ, Σ̄, D) · Zpos
rI−QI(k)

(Σ, Σ̄, D)|Σ=QI(σ̂)+mF
I , D=QI(D̂) , (5.82)
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where Z
(0)
r and Zpos

r have been defined in equations (5.17) and (5.18), respectively. It

follows that

Zk(σ̂, ¯̂σ, D̂ = 0) =
∏

I

ZI
k (σ̂) = Z1-loop

k (σ̂) , (5.83)

as claimed. We find that the symmetric tensor hab given by

hab = 2i
∑

I

QI
aQ

I
bFrI−QI(k)(Σ, Σ̄, D)|Σ=QI(σ̂)+mF

I ,D=QI(D̂) , (5.84)

satisfies the conditions (5.68). Here, Fr(Σ, Σ̄, D) is defined to be

Fr(Σ, Σ̄, D) ≡Θ(r < 1)

|r|/2∑

m=−|r|/2

1

Σ̄(iD + Σ̄(Σ + ǫΩm))

+
∑

|m|<j
j>j0(r)

1

∆j,m,r(Σ, Σ̄)
(
iD +∆j,m,r(Σ, Σ̄)

) ,
(5.85)

with

∆j,m,r(Σ, Σ̄) = Σ̄(Σ + ǫΩm) + j(j + 1)− r

2

(r
2
− 1
)
. (5.86)

In particular, it can be explicitly verified that

∂¯̂σc
hab = ∂¯̂σa

hcb = 2i
∑

I

QI
aQ

I
bQ

I
c ∂Σ̄FrI−QI(k)(Σ, Σ̄, D)|Σ=QI(σ̂)+mF

I ,D=QI(D̂) . (5.87)

Note that the poles of hab with respect to D̂ are a subset of the poles of Zk(σ̂, ¯̂σ, D̂). Now

defining

µQ1···Qs ≡
(−2)s

(r−s)!e
− D̂2

2e2
+ 4πiξ̃

e2
D̂ · Zk(σ̂, ¯̂σ, D̂)drσ̂ ∧ (ν(dD̂))∧(r−s) ∧ dQ1(D)

Q1(D)
∧ · · · ∧ dQs(D)

Qs(D)
,

(5.88)

we find that

dµQ0···Qs =

s∑

l=0

(−1)s−lµ
Q0···Q̂l···Qs

, (5.89)

wherê implies omission. Note that for generic values of σ̂, the only singular loci of µQ1···Qs

with respect to D̂ when D̂ is real are given by the hyperplanes

Ql(D̂) = 0 . (5.90)

The inclusion of operators in the path integral does not alter these relations. Recall

that the operator insertions O(σ) at the north/south pole of the sphere corresponds to

inserting a polynomial O(σ̂± ǫΩk
2 ) of σ̂a in the integral. Since this polynomial only depends

on σ̂a, this does not affect any of the relations the integration measure µ satisfies.

Now taking an appropriate cell-decomposition of the integration domain M̃ \∆ǫ, we

find that the integral (5.80) can be written as [37, 38]:

∫

Γ⋉M̃\∆ǫ

µ = −
r∑

p=1

∑

(I1,n1)<···<(Ip,np)

∫

Γ×S(I1,n1)···(Ip,np)

µQI1
···QIp

, (5.91)
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due to (5.89). Some notation needs to be explained. Denoting the ǫ-neighborhood of a

hyperplane H as ∆ǫ(H), we define

S(I,n) ≡ ∂∆ǫ ∩ ∂∆ǫ(H
n
I ) . (5.92)

We also define the “contour at infinity”

S∞ ≡ −(∂M̃) \∆ǫ (5.93)

where ∂M̃ is understood as the infinite radius limit of a (2r − 1)-dimensional sphere en-

closing a 2r-dimensional ball inside M̃. Let us denote the set of indices (I, n) by IS , and

I = IS ∪ {∞}. We order the indices so that (I, n) <∞ for all (I, n) and

(I, n) < (I ′, n′) if I < I ′ or I = I ′ and n < n′ . (5.94)

Then S(I1,n1)···(Ip,np) is defined as

S(I1,n1)···(Ip,np) =

p⋂

s=1

S(Is,ns) . (5.95)

Hence in order to compute the integral, one must define the D̂-contour Γ for µQI1
···QIp

when σ̂ take values on S(I1,n1)···(Ip,np). The vector Q∞, for now, is taken to be arbitrary.

Now let us show that condition (2) holds true. In particular, we construct the D̂

contour Γ fibering over the domain of integration for σ̂ and ¯̂σ, i.e., M̃ \∆ǫ, and find that

it is equivalent to the D̂-contour used in [37, 38]. What we show is that the manipulations

shifting the D̂-contours carried out in those references can be carried out equivalently in

our case as well. Before doing so, let us extend upon the discussion at the end of the

previous section. Due to the rather erratic behavior of poles of the integrand with respect

to D̂, it is rather difficult to describe the geometry of the contour Γ for macroscopic ǫΩ.

Upon assuming the separation of scales (5.49), we gain enough control over the behavior of

poles to describe the contours using hyperplanes, as demonstrated at the end of section 5.1.

Following the process presented there, we can show for all charged field components I that

there exists a tube

NI = NI ×KerQI , (5.96)

such that

• NI is a disc of radius O(µN ) encircling all the hyperplanes HI
n , where

ǫΩ ≪ µ2N ≪ µN ≪ µ0 (5.97)

• When σ̂ /∈ NI , all poles of Z
I
k (σ̂,

¯̂σ, D̂) with respect to QI(D̂) lie above the contour

ΓQI ,δ ≡ {QI(D̂) : ImQI(D̂) = δ } (5.98)

on the QI(D̂)-plane if δ is a positive number of O(|ǫΩ|).
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• Even when σ̂ ∈ NI , all poles of ZI
k (σ̂,

¯̂σ, D̂) with respect to QI(D̂) lie above the

contour

ΓQI ,−δ = {QI(D̂) : ImQI(D̂) = −δ } (5.99)

on the QI(D̂)-plane if δ is a positive number of O(|ǫΩ|).

By assumption of projectivity, we can make ǫΩ and, accordingly, µN sufficiently small so

that for any set of indices

I = {I1, · · · , Ip} , (5.100)

the intersection ⋂

I∈I

NI = ∅ (5.101)

when QI1 , · · · , QIp do not lie within a half-plane of ih∗. Note that

S(I,n) ⊂ NI . (5.102)

Let us denote

Ntot =
⋃

I

NI . (5.103)

We see that for values of σ̂ ∈ M̃ \ Ntot the contour

Γ = { D̂ : Im D̂ = δ } (5.104)

for an r-dimensional vector δ of magnitude of O(|ǫΩ|) divides all the poles of the theory cor-

rectly, and thus defines a valid contour of integration for the integration density µQI1
···QIp

for any I1, · · · , Ip. More precisely, the poles of ZI
k (σ̂,

¯̂σ, D̂) lie above the projection of Γ to

the QI(D̂)-plane for all I. The construction of NI along with projectivity enables us to

make a stronger statement. Let σ̂ be a point in M̃ \∆ǫ and let

I(σ̂) ≡ {I : σ̂ ∈ NI } . (5.105)

Then, Γ of equation (5.104) is a valid contour of integration for D̂ at σ̂ — i.e., divides up

the poles correctly — if δ is a vector of magnitude O(|ǫΩ|) and

QI(δ) < 0 , for all I ∈ I(σ̂) . (5.106)

At this point we can define the D̂-integral of any µQI1
···QIp

by specifying a contour Γ with

respect to δ on M̃ \ Ntot, computing the D̂-integral there, and analytically continuing to

regions within NI . This provides an existence proof for the appropriate “deformation” of

Γ into all points in M̃ \∆ǫ. In order to evaluate (5.91), however, we need to provide more

details about the D̂-integration contours on S(I1,n1)···(Ip,np), which lie inside
⋂p

s=1NIs .

We now have the necessary tools for consistently assigning contours Γ for the integra-

tion (5.91). The main difference of our situation compared to [37, 38] is that in order for

the contour of integration to be defined as a linear combination of products of hyperplanes

and tori, the contour Γ must be defined via the shifted D̂-contours, even before considering
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the integral (5.91), for points σ̂ that lie inside any NI . As we show shortly, the “shifting”

is equivalent to that introduced in those works, as long as the shifts δ are taken to be of

size O(|ǫΩ|). Note that µQI1
···QIp

vanishes unless the charges QI1 , · · · , QIp are linearly

independent. Also, in evaluating equation (5.91) we only need to specify the integration

contour Γ for the integral of µQI1
···QIp

within
⋂p

s=1NIs .

Let us construct a D̂-contour Γ for some covector η ∈ ih∗. Here η is a book-keeping

device that specifies the topology of the integration contour. In the previous section, ih∗

was one-dimensional, and η > 0 / η < 0 for the choice of contour Γ+ / Γ− there. We

assume that η is generic so that it cannot be written as a sum of less than r vectors QI .

Given such a η, and a set of indices {I1, · · · , Ip,J1, · · · ,Jq} for which the charges

QI1 , · · · , QIp , QJ1 , · · · , QJq (5.107)

are linearly independent, we define the vector δI1···Ip✚J 1···✚J q
that satisfies the following

conditions:

• It is orthogonal to QIs :

QI1(δI1···Ip✚J 1···✚J q
) = · · · = QIp(δI1···Ip✚J 1···✚J q

) = 0 . (5.108)

• For any J such that

NJ ∩
(

q⋂

s=1

NJs

)
6= ∅ , (5.109)

the following holds:

QJ (δI1···Ip✚J 1···✚J q
) < 0 . (5.110)

• Its magnitude is of order O(|ǫΩ|), i.e., for any J ,

QJ (δI1···Ip✚J 1···✚J q
) = 0 , or QJ (δI1···Ip✚J 1···✚J q

) ∼ O(|ǫΩ|) . (5.111)

• δI1···Ip , with no slashed indices, satisfy the condition

η(δ) > 0, η(δI1···Ip) > 0 . (5.112)

Using these vectors, we define the contours

ΓI1···Ip✚J 1···✚J q
= { D̂ ∈ hC : Im D̂ = δI1···Ip✚J 1···✚J q

, QIs(D̂) = 0 for all s }×ℓI1···Ip (5.113)

where ℓI1···Ip is a small p-torus encircling
⋂p

s=1{QIs(D̂) = 0 }. As before,

Γ = { D̂ : Im D̂ = δ } . (5.114)

We see that ΓI1···Ip✚J 1···✚J q
has the topology R

r−p × T p.

Now let us consider a point σ̂ on M̃ \∆ǫ. Let

I ′
1, · · · , I ′

p′ ∈ I(σ̂) . (5.115)
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Then, for any I1, · · · , Ip,J1, · · · ,Jq such that

{I ′
1, · · · , I ′

p′} ⊂ {I1, · · · , Ip,J1, · · · ,Jq} ⊂ I(σ̂) , (5.116)

with linearly independent

QI1 , · · · , QIp , QJ1 , · · · , QJq , (5.117)

the contour

ΓI1···Ip✚J 1···✚J q
(5.118)

divides the poles of µQI′
1
···QI′

p′
correctly at σ̂, by construction. Hence it is a valid contour

of integration for µQI′
1
···QI′

p′
at the point σ̂.

Meanwhile, in σ̂ ∈ M̃ \ Ntot, the contours for the integral of µQK1
···QKt

satisfy the

relation

ΓI1···Ip
∼=ΓI1···Ip✚J 1···✚J q

+Θ(QJ1(δI1,··· ,Ip))ΓI1···IpJ1✚J 2···✚J q
+ · · ·

+

k∏

t=1

Θ(QJs(δI1,··· ,Ip))ΓI1···IpJs1 ···Jsk✚J s′1
···✚J s′

q−k

+ · · · (5.119)

+

p∏

s=2

Θ(QJs(δI1,··· ,Ip))ΓI1···Ip✚J 1J2···Jq
+

p∏

s=1

Θ(QJs(δI1,··· ,Ip))ΓI1···IpJ1J2···Jq

for

{Ks} ⊂ {Is} ∪ {Js} . (5.120)

The right-hand side of (5.119) is a sum over 2q terms where each index Js appears either

slashed or not. The congruence (5.119) is at the level of homology on the “punctured”

complex D̂-space where hyperplanes of poles of µQK1
···QKt

with respect to D̂ are removed.

Hence, any contour, once split up in the manner (5.119) can be continued to a point σ̂

within

σ̂ ∈
⋂

I∈{Is}∪{Js}

NI . (5.121)

An important property of the contour ΓI1···IpJs1 ···Jsk✚J s′1
···✚J s′

q−k

in (5.119) is that if

Ks ∈ {Js′l
} , (5.122)

i.e., if any of the indices Ks show up as a slashed index in the contour, then

lim
e→0
ǫ→0

∫

ΓI1···IpJs1 ···Jsk✚J s′1
···✚J s′

q−k

×S(K1,n1)···(Kt,nt)

µQK1
···QKt

= 0 . (5.123)

This is because equation (5.122) implies that the contour of (5.123) for the D̂ integral is

such that QKt(D̂) < 0 and QKt(D̂) ∼ O(|ǫΩ|) on the contour. This means that all the poles

of µQK1
···QKt

in the QKt(D̂)-plane, including the one at the origin, lie above the contour,

and no poles cross the contour as ǫ is taken to zero. Hence the integrand vanishes in the

limit ǫ→ 0.
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We can now describe the integration contour Γ for µQK1
···QKt

for points σ̂ inside⋂t
s=1Ns. This in particular implies that Ks ∈ I(σ̂) for all s. Therefore, from previous

discussions, the contour Γ can be continued to such a point σ̂ by the decomposition:

Γ =Γ✚K 1···✚K t
+Θ(QK1(δ))ΓK1✚K 2···✚K t

+ · · ·

+
t∏

s=2

Θ(QKs(δ))Γ✚K 1K2···Kt
+

t∏

s=1

Θ(QJs(δ))ΓK1K2···Kt .
(5.124)

This is precisely the contour used in [37, 38] to evaluate the integrals of µQK1
···QKt

. Tak-

ing (5.91), and using (5.123) we arrive at the expression

∫

Γ⋉M̃\∆ǫ

µ = −
r∑

p=1

∑

(I1,n1)<···<(Ip,np)

p∏

s=1

Θ(QIs(δ))

∫

ΓI1···Ip
×S(I1,n1)···(Ip,np)

µQI1
···QIp

. (5.125)

Equation (5.89), the decomposition rule (5.119), and the vanishing rule (5.123) enable

us to replicate the manipulations of [37, 38] further to arrive at

∫

Γ⋉M̃\∆ǫ

µ = (5.126)

= (−1)r
∑

(I1,n1)<···<(Ir,nr)<∞


 ∏

J∈{I1,··· ,Ir}

Θ(QJ (δI1···Ĵ ···Ir
))


P(I1,n1)···(Ir,nr) +B ,

where P(I1,n1)···(Ir,nr) is defined by

P(I1,n1)···(Ir,nr) ≡ lim
e→0
ǫ→0

∫

ΓI1···Ir
×S(I1,n1)···(Ir,nr)

µQI1
···QIr

(5.127)

and B is the “boundary term” which we soon discuss. As noted in [37],

Θ{I1,··· ,Ir},η ≡
∏

J∈{I1,··· ,Ir}

Θ(QJ (δI1···Ĵ ···Ir
)) =

{
1 if η ∈ Cone(QI1 , · · · , QIr)

0 otherwise.
(5.128)

Meanwhile, by definition, ΓI1···Ir is an r-torus surrounding the point
⋂

s{QIs(D̂) = 0} in

complex D̂-space. Recalling the definition of µQI1
···QIr

(5.88), and the relation (5.83), i.e.,

Zk(σ̂, ¯̂σ, D̂ = 0) = Z1-loop
k (σ̂) , (5.129)

we arrive at
∫

ΓI1···Ir
×S(I1,n1)···(Ir,nr)

µQI1
···QIr

= (−4πi)r lim
e→0
ǫ→0

∫

S(I1,n1)···(Ir,nr)

Z1-loop
k (σ̂)drσ̂ (5.130)

when Is 6= ∞. Therefore we find that

ZS2
Ω
=

(4πi)r

|W |
∑

k

qk
∑

P={I1,··· ,Ir}✁∋∞

ΘP,η lim
e→0
ǫ→0

∫

S(I1,n1)···(Ir,nr)

Z1-loop
k (σ̂)drσ̂ +B . (5.131)
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It has been shown in [37] that the first term in the previous line can be identified with the

Jeffrey-Kirwan residue:

∑

P={I1,··· ,Ir}✁∋∞

ΘP,η lim
e→0
ǫ→0

∫

S(I1,n1)···(Ir,nr)

Zk(σ̂)d
rσ̂ = (2πi)r

∑

σ̂∗∈M̃k
sing

JK-Res
σ̂=σ̂∗

[Q(σ̂∗), η]Z1-loop
k (σ̂) .

(5.132)

M̃k
sing are the collection of codimension-r singular points of Z1-loop

k (σ̂) on M̃. We use

Q(σ̂∗) to denote the charge of the singular hyperplanes QI1 , · · · , QIs (s ≥ r) colliding at

σ̂∗. Note that when S(I1,n1)···(Ir,nr) is surrounding a non-degenerate codimension-r pole σ̂∗

of Z1-loop
k (σ̂), we get the iterated residue:

∫

S(I1,n1)···(Ir,nr)

Z1-loop
k (σ̂)drσ̂ = (2πi)r Res

σ̂=σ̂∗

Z1-loop
k (σ̂) . (5.133)

To arrive at the final result, let us show that condition (3) holds. As explained in [38],

the boundary term B is given by a linear combination of integrals of the form

lim
e→0

∫

ΓI1···Iq−1
×S(I1,n1)···(Iq−1,nq−1)∞

µQI1
···QIq−1Q∞ (5.134)

We take

Q∞ = ξUV
eff and η = ξUV

eff = ξ̃ +
1

2π
b0 lim

R→∞
logR . (5.135)

The precise definition of the R → ∞ limit is elaborated upon in sections 4.1 and 4.7. As

before, upon taking the limit e → 0, we also take the boundary radius to grow faster than

exp( 1
e2
) so that

R = |σ̂|e2 → ∞ . (5.136)

Now when restricted to the contour S(I1,n1)···(Iq−1,nq−1)∞, we find that

lim
e→0
R→∞

e−
e2D̂′2

2
+4πiξ̃(D̂′)Zk(σ̂, ¯̂σ, e

2D̂′) =

= lim
e→0
R→∞

e
4πi

[
ξ̃+ 1

2π
QI1,··· ,Iq−1

(1+ǫΩ
′α′

ǫΩ
) logR

]
(D̂′)Z1-loop

k (σ̂)

(5.137)

where

QI1,··· ,Iq−1 =
∑

QJ /∈P (QI1
,··· ,QIq−1

)

QJ . (5.138)

P (QI1 , · · · , QIq−1) is the plane in ih∗ spanned by QI1 , · · · , QIq−1 . This is because if QJ ∈
P (QI1 , · · · , QIq−1),

|(QJ (σ̂) +mF
I )(QJ (σ̂) +mF

I + ǫΩ)| ≤ O(µ0) , (5.139)

where µ0 is the macroscopic scale set by the masses of the theory. We thus find, for such

indices J that

lim
e→0

|σ̂|→∞

ZJ
k (σ̂, ¯̂σ, e2D̂) = ZJ

k (σ̂) . (5.140)
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Meanwhile, for QJ /∈ P (QI1 , · · · , QIq−1)

|(QJ (σ̂) +mF
I )(QJ (σ̂) +mF

I + ǫΩ)| ∼ O(|σ̂|) , (5.141)

and thus

lim
e→0
R→∞

ZJ
k (σ̂, ¯̂σ, e2D̂) = lim

e→0
R→∞

e2i(1+ǫΩ
′α′

ǫΩ
)(logR)QJ D̂ZJ

k (σ̂) , (5.142)

from the behavior of the ζ-regulated piece Zpos of the determinant explained in ap-

pendix C.2.1. We hence arrive at the result (5.137).

From (5.137), the D̂-integral of the terms (5.134) in B is of the form

lim
e→0
R→∞

∫

ΓI1···Iq−1

f(· · · , ξUV
eff (e2D̂′)) ∧ dξUV

eff (D̂′)

ξUV
eff (D̂′)

exp

[
4πi

(
ξ̃ +

1

2π
QI1···Iq−1(1 + ǫΩ

′α
ǫΩ

′) logR

)
(D̂′)

]
,

(5.143)

where f is a form that does not affect the asymptotics of the ξUV
eff (D̂)-integral. Let us

denote

ξ′ ≡ lim
R→∞

(
ξ̃ +

1

2π
QI1···Iq−1 logR

)
. (5.144)

By definition of the contours ΓI1···Iq−1 , the integration contour for the variable ξUV
eff (D̂) lies

within the plane

QI1(D̂) = · · · = QIq−1(D̂) = 0 (5.145)

in hC. We therefore find that on ΓI1···Iq−1 ,

ξUV
eff (D̂) = ξ′(D̂) , (5.146)

since

QJ (δI1···Iq−1)(D̂) = 0 for QJ ∈ P (QI1 , · · ·QIq−1) when D̂ ∈ ΓI1···Iq−1 . (5.147)

Thus the integral (5.143) may be rewritten as

lim
e→0
R→∞

∫

ΓI1···Iq−1

f(· · · , ξ′(e2D̂′)) ∧ dξ′(D̂′)

ξ′(D̂′)

· exp
[
4πi

(
ξ′ +

i

2π
b0O(|ǫΩ|) logR

)
(D̂′)

]
.

(5.148)

As before, we have absorbed the real part of (1 + ǫΩ
′α

ǫΩ
′) in to the definition of R, and

indicated the existence of a parametrically small real part to the exponent in (5.148).

Meanwhile, ΓI1···Iq−1 is situated within the plane (5.145) so that

Im ξ′(D̂) = Im ξUV
eff (D̂) = ξUV

eff (δI1···Iq−1) > 0 , (5.149)
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and thus the contour of integration is above the pole ξ′(D̂′) = 0 and the ξ′(D̂′)-integral

and can be deformed away to positive infinity in the ξ′(D̂) plane.24 Therefore the integral

at boundaries of M̃ \∆ǫ touching ∂M̃ vanish, given the choice (5.135) of η and Q∞:

lim
e→0
ǫ→0

∫

ΓI1···Iq−1∞
×S(I1,n1)···(Iq−1,nq−1),∞

µQI1
···QIq−1

(Q∞=ξUV
eff ) = 0 . (5.150)

As demonstrated in the previous section, the integral (5.91) does not depend on the

choice of η or Q∞ [37, 38]. Thus setting η = Q∞ = ξUV
eff and combining (5.131) with (5.132)

and (5.150), we arrive at:

ZS2
Ω
=

(−8π2)r

|W |
∑

k

qk
∑

σ̂∗∈M̃k
sing

JK-Res
σ̂=σ̂∗

[Q(σ̂∗), ξ
UV
eff ]Z1-loop

k (σ̂) . (5.151)

The physical correlators straightforwardly follow, leading to the main result (4.1).

The derivation given in this section does not rely much on the details we have assumed

about the localization saddles parametrized by the Coulomb branch coordinates σ̂ and ˜̂σ,
and the determinants ZI

k (σ̂,
˜̂σ, D̂). In fact, much of the effort in this section has been

geared toward proving that ZI
k (σ̂,

˜̂σ, D̂) satisfy certain desirable properties. The properties

needed to arrive at the formula (5.151) are given by the following:

• σ̂ and ˜̂σ are independent coordinates on the moduli space of Coulomb branch saddles.

• ZI
k (σ̂,

˜̂σ, D̂) factors into the function Z(0) defined in equation (5.17), and a function

Zpos whose poles with respect to D̂ safely lie in the upper-half of the complex D̂

plane for any σ̂ and ˜̂σ for small enough ǫΩ.

• The asymptotics of Zpos.

Let us end this section with a remark on the JK vector ξUV
eff . Note that while ξ̃ is not

the physical FI parameter, as explained below equation (5.34), it acts as a FI parameter

for the localizing Lagrangian (5.4). More precisely, the fictitious UV FI parameter ξUV
eff

determines the “phase” of the Higgs branch of the localizing Lagrangian. We thus expect

that the main formula (4.1) for the correlators to be a convergent series in q only when ξ

and ξUV
eff are aligned, i.e., when the phase of the localizing Lagrangian coincides with the

phase of the physical theory. Even when the physical FI parameter ξ is taken so that these

phases do not match, equation (4.1) still should produce a formally correct series expansion

of the correlators, although the series is not expected to be convergent for such values of ξ.

6 Quantum cohomology and recursion relations in ǫΩ

In this section, we investigate relations that expectation values of operators must satisfy

from a general perspective, while the correlators of specific theories are computed explicitly

24When b0 6= 0, the definition of ΓI1···Iq−1
must be such that its projection to the ξ′(D̂) plane is bent

slightly upwards with angle O(|ǫΩ|). This slight modification to the definition of ΓI1···Iq−1
does not affect

its position with respect to any of the poles of the integrand.
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in the following sections. In particular, when the ǫΩ parameter is turned on, the correlators

of the theory satisfy certain recursion relations that can be used to efficiently compute them.

Such relations are more easily derivable in abelian theories — for each gauge group factor

U(1)a of an abelian theory, we find that
〈
O(N)(σN )O(S)(σS)

∏

i, Qa
i >0

Qa
i −1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]〉

(6.1)

= qa ·
〈
O(N)(σN− ǫΩδ(a))O(S)(σS)

∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]〉

,

assuming that all the singularities of Z1-loop
k are projective.25 We have defined the vector

δ(a) ∈ ih by

δ(a)b = δab . (6.2)

As before, the index i labels the chiral fields of the theory. The product on the left-hand

side of this equation is over the chiral fields i with positive charge under U(1)a, while the

product over i on the right-hand side is over chiral fields that have negative charge. For

sake of brevity, we focus on recursion relations for operator insertions at the north pole,

with the south pole insertion O(S)(σS) in (6.1) as a spectator (relations for operators at the

south pole are obtained by replacing N ↔ S and ǫΩ ↔ −ǫΩ). It is immediate to see that

the identity (6.1) reduces to the quantum cohomology ring relations in the limit ǫΩ → 0,

where we obtain the A-twisted theory.

The relations (6.1) can be summarized efficiently by considering the generating function

F (z) ≡
〈
ez

bσb |N
〉

(6.3)

for the operator insertions at the north pole. Equation (6.1) can be straightforwardly

translated as a set of differential equations for F (z):

∏

i, Qa
i >0

Qa
i −1∏

l=0

[
Qb

i∂zb +mF
i + ǫΩ

(ri
2
+ l
)]
F (z)

= qae
−zaǫΩ

∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qb

i∂zb +mF
i + ǫΩ

(ri
2
+ l
)]
F (z) .

(6.4)

We investigate abelian GLSMs in section 6.1 and present a proof for the formula (6.1).

This relation follows from the structure of the function Z1-loop
k . We verify the quantum

restriction formula of [10, 13], and derive its ǫΩ-deformed version in a similar fashion.

An elegant presentation of the recursion relations for non-abelian theories is still lacking,

although expectation values of gauge invariant operators of the theory can be computed

using the associated Cartan theory. In section 6.2, we restrict ourselves to discussing how

to verify the quantum cohomology relations of correlators of the A-twisted variables for

U(Nc) theories with fundamental and anti-fundamental matter.

25These relations can be violated, given that there exist non-projective singularities of Z1-loop
k in the

theory. Explicit examples are presented in the following sections.
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6.1 Abelian GLSMs

Let us consider abelian GLSMs with G = U(1)rk(G) and matter Φi carrying charge Qa
i

under the gauge group U(1)a. We normalize the gauge fields so that the charges, and

hence the fluxes, are quantized to be integers. Let us now derive some relations between

vacuum expectation values of operators that follow from the properties of the one-loop

determinant Z1-loop
k (σ̂; ǫΩ). We focus, for sake of simplicity, on the case when operators

are inserted at the north pole of the sphere. Insertions on the south pole can be treated in

a similar fashion.

For abelian theories, the one-loop determinant may be written as

Z1-loop
k (σ̂; ǫΩ) =

∏

i


ǫΩ

ri−Qi(k)−1
Γ(

Qi(σ̂)+mF
i

ǫΩ
+ ri−Qi(k)

2 )

Γ(
Qi(σ̂)+mF

i
ǫΩ

− ri−Qi(k)
2 + 1)


 (6.5)

One may explicitly verify the identity

Z1-loop
k (σ̂; ǫΩ)

∏

i, Qa
i >0

Qa
i −1∏

l=0

[
Qb

i

(
σ̂b −

ǫΩkb
2

)
+mF

i + ǫΩ

(ri
2
+ l
)]

= Z1-loop
k−δ(a)(σ̂ +

ǫΩδ(a)

2
; ǫΩ)

·
∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qb

i

(
σ̂b + ǫΩ

δab
2

− ǫΩ(ka − δab)

2

)
+mF

i + ǫΩ

(ri
2
+ l
)]

(6.6)

for each a, where we have defined the vector δ(a) ∈ ih by

δ(a)b = δab . (6.7)

Now the JK residue

∑

k

qk JK-Res
[
ξUV
eff

]
Z1-loop
k (σ̂; ǫΩ)O(N)

(
σ̂ − ǫΩ

k

2

)
O(S)

(
σ̂ + ǫΩ

k

2

)

·
∏

i, Qa
i >0

Qa
i −1∏

l=0

[
Qb

i

(
σ̂b −

ǫΩkb
2

)
+mF

i + ǫΩ

(ri
2
+ l
)] (6.8)

yields the vacuum expectation value
〈
O(N)(σN )O(S)(σS)

∏

i, Qa
i >0

Qa
i −1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]〉

. (6.9)

We choose to neglect the volume form dσ̂1 ∧ · · · ∧ dσ̂rk(G) in the residue formulae such

as (6.8) to avoid clutter. Meanwhile, the sum

∑

k

qkJK-Res
[
ξUV
eff

]
Z1-loop
k−δ(a)

(
σ̂ +

ǫΩδ(a)

2
; ǫΩ

)
O(N)

(
σ̂ − ǫΩ

k

2

)
O(S)

(
σ̂ + ǫΩ

k

2

)

·
∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qb

i

(
σ̂b + ǫΩ

δab
2

− ǫΩ(ka − δab)

2

)
+mF

i + ǫΩ

(ri
2
+ l
)] (6.10)
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can be massaged into

qa
∑

k

qkJK-Res
[
ξUV
eff

]
Z1-loop
k (σ̂; ǫΩ)O(N)

(
σ̂ − ǫΩ

k

2
− ǫΩδ(a)

)
O(S)

(
σ̂ + ǫΩ

k

2

)

·
∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qb

i

(
σ̂b −

ǫΩka
2

)
+mF

i + ǫΩ

(ri
2
+ l
)] (6.11)

by shifting σ̂ → σ̂ − 1
2ǫΩδ(a) and k → k + δ(a). This expression is equal to

qa ·
〈
O(N)(σN− ǫΩδ(a))O(S)(σS)

∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]〉

. (6.12)

We thus arrive at the desired relation:

〈
O(N)(σN )O(S)(σS)

∏

i, Qa
i >0

Qa
i −1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]〉

(6.13)

= qa ·
〈
O(N)(σN− ǫΩδ(a))O(S)(σS)

∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]〉

.

Using these relations, the correlation functions involving operators of degree

max


 ∑

i,Qa
i >0

Qa
i ,

∑

i,Qa
i <0

|Qa
i |


 (6.14)

in σ inserted at the north pole of the sphere can be written in terms of correlators with

operators of lower degree. In special cases, the relation (6.13) may simplify further, by

replacing O(N)(σN ) by O(N)(σN )/f(σN ) for some polynomial f , given that f(σN ) divides

∏

i, Qa
i >0

Qa
i −1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]

(6.15)

and f(σN − ǫΩδ(a)) divides

∏

i, Qa
i <0

|Qa
i |−1∏

l=0

[
Qi(σN ) +mF

i + ǫΩ

(ri
2
+ l
)]

. (6.16)

This applies, for example, to the quintic GLSM studied in section 7.3.

Now in deriving (6.13) we have assumed that the operation JK-Res
[
ξUV
eff

]
is well-

defined. Thus, the formula (6.13) may fail in the presence of non-projective singularities

of the differential forms of (6.8) or (6.10). In those cases, the non-projective singularities

must be tamed by introducing additional twisted masses to the theory and expectation

values must be computed by first doing the computation in the deformed theory and by
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gradually turning off the twisted masses. The expectation values with vanishing twisted

masses obtained this way are not guaranteed to satisfy the recursion relations (6.13).

Let us conclude the discussion of abelian theories by showing that the quantum re-

striction formula of [10, 13] for abelian GLSMs is naturally realized as a property of the

one-loop determinant Z1-loop
k . The quantum restriction formula is relevant to computing

quantum correlators of complete intersections in compact toric varieties. Let us review the

presentation of the formula following [13]. A compact toric variety X is engineered by an

abelian GLSM with gauge group G = U(1)rk(G) with chiral fields Φi whose charges Qa
i

lie within a half-plane of ih∗. We would like to understand the GLSM that engineers the

non-linear sigma model of a complete intersection manifold M defined by the equations

Gβ(Φi) = 0 , β = 1, · · · , ℓ (6.17)

in the toric variety in the infra-red limit. The Gβ(Φi) are charge daβ-operators. We now

introduce the fields Pβ with charge −daβ to the theory, and add the superpotential

W =

ℓ∑

β=1

PβGβ(Φi) . (6.18)

In this theory, which we denote TM , the R-charges of the Φi fields are taken to be 0, while

those of the P -fields are taken to be 2. This theory engineers the desired manifold M in the

IR in the ξ > 0 phase [4]. Meanwhile, we can also consider the theory TV , that engineers

the non-compact toric variety defined by the fields Φi and Pβ together. In this theory, all

the R-charges of the fields are set to zero. The quantum restriction formula relates the

expectation values of A-twisted operators of theory TM and theory TV (with vanishing

twisted masses) by

〈O(σ)〉TM ,0 = (−1)ℓ

〈
O(σ)

ℓ∏

β=1

dβ(σ)
2

〉

TV ,0

. (6.19)

The subscript “0” in equation (6.19) signifies that the expectation value is taken in the

A-twisted theory.

The relation (6.19) is a natural consequence of the properties of Z1-loop
k (σ̂; ǫΩ). Let us

denote the one-loop determinant in flux sector k of the theory TM and TV as Z1-loop
M,k (σ̂; ǫΩ)

and Z1-loop
V,k (σ̂; ǫΩ), respectively. It then follows that

Z1-loop
M,k (σ̂; ǫΩ) = Z1-loop

V,k (σ̂; ǫΩ)
ℓ∏

β=1

(
dβ(σ)

2 − ǫΩ
dβ(k)

2

4

)
. (6.20)

We thus arrive at the deformed quantum restriction formula:

〈O(σN )O(σS)〉TM
= (−1)ℓ

〈
O(σN )O(σS)

∏

β

(dβ(σN )dβ(σS))

〉

TV

, (6.21)

where the sign (−1)ℓ follows from the prescription of section 4.5. This equation reduces to

the relation (6.19) in the A-twisted theory.
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6.2 Non-abelian GLSMs

Let us now discuss the quantum cohomology of theories with non-abelian gauge symmetry.

While the correlators of gauge invariant operators of the theory can be efficiently computed

using the recursion relations (6.13) by utilizing the associated Cartan theory, these relations

have not yet been written in an elegant way comparable to the quantum cohomology

relations that can be found, for example, in [50, 52, 65, 66].

We can check in certain examples that the correlation functions computed using local-

ization techniques satisfy the required quantum cohomology relations. The representative

example is a U(Nc) theory with Nf fundamental and Na antifundamental chiral fields. Let

us also make the technical assumption that the R-charges of the fields are favorable, so

that equation (4.74) is applicable. Turning on generic twisted masses −mF
1 , · · · ,−mF

Nf
for

the fundamentals and m̃F
1 , · · · , m̃F

Na
for the antifundamentals, the A-twisted correlators of

the theory can be written as

〈O(σ)〉0 =N

∮

∂M̃




Nc∏

a=1

dσ̂a
2πi

Nf∏

i=1

(σ̂a −mF
i )

ri−1
Na∏

ĩ=1

(−σ̂a + m̃F
ĩ
)r̃̃i−1




·
∏

a<b

(σ̂a − σ̂b)
2 · e2πir

a
0∂σ̂aŴeff

∏
a(1− e2πi∂σ̂aŴeff)

· O(σ̂) .

(6.22)

for some integers ra0 . We can be cavalier about the overall normalization constant N for

the purposes of this section, as we are interested in verifying the quantum cohomology

relations.

Now let us insert any quantum cohomology relation of the form

f(σ) = 0 (6.23)

in the expectation value, where f can be written as a Weyl-invariant polynomial of the vari-

ables σa. For generic twisted masses, the quantum cohomology relations are the relations

that the isolated solutions (σa) to

e2πi∂σaŴeff = 1, σa 6= σb for a 6= b (6.24)

satisfy [52]. That is, f(σ0) = 0 for any solution σ0 of (6.24). Assuming that generic twisted

masses are turned on, the integral (6.22) is given by the sum of residues of the integrand

located precisely at the solutions of equation (6.24). Note that the non-degeneracy condi-

tion of the solutions is enforced by the Vandermonde determinant in the integral (6.22).

Thus we find that

〈f(σ)O(σ)〉0 = 0 (6.25)

for any quantum cohomology relation f . This proof is expected to extend to a large class

of examples, including quiver gauge theories. It would be interesting to lift some of the

simplifying assumptions we have made in this section and see if the quantum cohomology

relations still can be derived.
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7 Examples: correlators with Ω-deformation

In this section, we apply the Coulomb branch localization formula (4.51) to some abelian

gauge theories and we compute correlators with all the insertions at the north pole. (This

is for simplicity of presentation. Considering insertions at both the north and south poles

is straightforward.) These correlation functions satisfy the finite difference equations (6.1),

that may be used to compute them recursively. We also study generating functions of

north pole correlators, which satisfy differential equations of Picard-Fuchs type [11] due to

the finite difference equations (6.1).

7.1 The abelian Higgs model

The abelian Higgs model is a U(1) gauge theory with a single chiral multiplet Φ of charge

Q, which we assume to be positive in the following with no loss of generality. The effective

FI parameter in the UV is ξUV
eff = +∞, forcing a non-vanishing VEV for Φ. The vacuum

moduli space consists of Q points related by a residual ZQ gauge symmetry. In the UV

geometric phase where Φ takes VEV, the JK residue JK-Res
[
ξUV
eff

]
is a sum of residues at

the poles of the 1-loop determinant of Φ,

ZΦ
k (σ̂; ǫΩ) =





Qk∏
p=0

(Qσ̂ + (p−Qk
2 )ǫΩ)

−1 Qk ≥ 0

1 Qk = −1
−Qk−2∏
p=0

(Qσ̂ + (1 +Qk
2 + p)ǫΩ) Qk ≤ −2

. (7.1)

ZΦ
k has poles only for k ≥ 0 if Q > 0, therefore the sum over k in (4.51) reduces to

k ≥ 0. This is the first instance of a general phenomenon that we explained in section 4.7

and that we will encounter repeatedly: the summation over k effectively reduces to the

closure (4.67) of the cone dual to the cone in FI parameter space that defines the UV

phase of the GLSM, up to finite shifts due to the R-charge. This general structure arises

naturally in the approach of [10] to the sum over instantons and it is satisfying to see it

appear also in our formalism. In the case of the abelian Higgs model, the GLSM is in the

phase ξ > 0 in the UV: correspondingly, the sum over k reduces to k ≥ 0.

Inserting twisted chiral operators only at the north pole and shifting the integration

variable σ̂ → σ̂ + k
2ǫΩ (in other words, the new σ̂ is σ̂N ), the localization formula (4.51)

becomes

〈σnN 〉 =
∞∑

k=0

qk
Qk∑

ℓ=0

Res
σ̂=− ℓ

Q
ǫΩ

σ̂n

Qk∏
p=0

(Qσ̂ + pǫΩ)

= −
∞∑

k=0

qk Res
σ̂=∞

σ̂n

Qk∏
p=0

(Qσ̂ + pǫΩ)

. (7.2)

From the latter expression in (7.2) it is straightforward to obtain the first few expectation

values

〈1〉 = 1

Q
, 〈σnN 〉 = 0 (n = 1, . . . , Q− 1) , 〈σQN 〉 = 1

QQ+1
q . (7.3)

– 66 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

Higher correlators can be computed from the first expression in (7.2), which yields

〈σnN 〉 = (−ǫΩ)
n

Qn+1

∞∑

k=0

(qǫΩ
−Q)k

Qk∑

l=0

(−1)lln

(Qk − l)!l!
, (7.4)

or alternatively using the identity (6.1)

〈O(σN )

Q−1∏

p=0

(QσN + pǫΩ)〉 = q〈O(σN − ǫΩ)〉 , (7.5)

which follows directly from (7.2). Eq. (7.5) is the ǫΩ-deformed version of the twisted chiral

ring (or quantum cohomology) relation (Qσ)Q = q, and allows to compute recursively the

higher correlators 〈σnN 〉 with n ≥ Q from the lower ones.26

The finite difference equation (7.5) can be recast into a differential equation in z for

the generating function

F (z) = 〈ezσN 〉 =
∞∑

n=0

zn

n!
〈σnN 〉 (7.6)

of twisted chiral correlators inserted at the north pole:


Q−1∏

p=0

(Q∂z + pǫΩ)− qe−zǫΩ


F (z) = 0 . (7.7)

Changing variable at non-vanishing ǫΩ from z to

qz = qe−zǫΩ(−ǫΩ)
−Q , (7.8)

the differential equation (7.7) can be written in the standard Picard-Fuchs form



Q−1∏

p=0

(QΘ− p)− qz


F (z) = 0 , (7.9)

where Θ ≡ qz
∂

∂qz
. In this case the generating function F (z) has the simple closed form

F (z) =
1

Q2

Q∑

m=1

exp
(
2πi

(
Ŵm(qz)− Ŵm(q0)

))
(7.10)

in terms of the on-shell twisted effective superpotential in the m-th vacuum

Ŵm(q) =
1

2πi
q1/Qe

2πim
Q , m = 1, . . . , Q . (7.11)

Here {exp(2πiŴm(qz))}Qm=1 is a basis of solutions of (7.7) or (7.9), and the coefficients are

fixed by the initial condition F (z) = 1
Q +O(zQ) around z = 0, according to (7.3).

26A similar formula holds for insertions at the south pole, with σN → σS and ǫΩ → −ǫΩ. More generally,

one can consider insertions at the north and south pole. Then operators inserted at one pole are spectators

in the recursion relation for operators inserted at the other pole.
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In the A-model limit ǫΩ → 0, the generating function reduces to

F (z)ǫΩ=0 = 〈ezσ〉0 =
1

Q2

Q∑

m=1

exp

(
1

Q
e

2πim
Q q1/Qz

)
, (7.12)

while the correlators (7.2) are most easily computed from

〈σn〉0 =
∞∑

k=0

qk Res
σ̂=0

σ̂n

(Qσ̂)Qk+1
=





1
Q

(
q1/Q

Q

)n
n ∈ QZ

0 n /∈ QZ

. (7.13)

or equivalently by resumming the instanton series:

〈σn〉0 = −
∞∑

k=0

qk Res
σ̂=∞

σ̂n

(Qσ̂)Qk+1
= − Res

σ̂=∞

(Qσ̂)Q−1σ̂n

(Qσ̂)Q − q
=

=

Q∑

m=1

Res
σ̂= 1

Q
e
2πim
Q q

1
Q

(Qσ̂)Q−1σ̂n

(Qσ̂)Q − q
=





1
Q

(
q1/Q

Q

)n
n ∈ QZ

0 n /∈ QZ

.

(7.14)

7.2 CP
Nf−1

The gauged linear sigma model for the projective space CP
Nf−1 is a U(1) gauge theory

with Nf chiral multiplets Xi of charge 1 [4]. We will consider Nf ≥ 2 in the following. The

effective FI parameter ξeff → +∞ in the UV, where the vacuum moduli space is precisely

CP
Nf−1 with homogeneous coordinates Xi. If twisted masses mi are introduced for the

matter fields, with
∑Nf

i=1mi = 0, the vacuum moduli space reduces to the Nf fixed points

of the toric U(1)Nf−1 action (the maximal torus of the SU(Nf ) flavor symmetry).

In the UV geometric phase where Xi take VEV, the JK residue is a sum of residues

at the poles of the 1-loop determinants of Xi,

ZXi
k (σ̂,mi; ǫΩ) =





k∏
p=0

(σ̂ −mi + (p− k
2 )ǫΩ)

−1 k ≥ 0

1 k = −1
−k−2∏
p=0

(σ̂ −mi + (1 + k
2 + p)ǫΩ) k ≤ −2

. (7.15)

Due to the pole structure of (7.15), the sum over k reduces to the closure k ≥ 0 of the cone

dual to ξ > 0.

Inserting twisted chiral operators only at the north pole and shifting the integration

variable σ̂ → σ̂ + k
2ǫΩ as before, the localization formula (4.51) becomes

〈σnN 〉 =
∞∑

k=0

qk
Nf∑

i=1

k∑

li=0

Res
σ̂=mi−liǫΩ

σ̂n

Nf∏
j=1

k∏
lj=0

(σ̂ −mj + ljǫΩ)

=

= −
∞∑

k=0

qk Res
σ̂=∞

σ̂n

Nf∏
j=1

k∏
lj=0

(σ̂ −mj + ljǫΩ)

.

(7.16)
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From the latter expression in (7.16) we easily obtain the lowest expectation values

〈σnN 〉 = 0 (n ≤ Nf − 2) , 〈σNf−1
N 〉 = 1 , 〈σNf

N 〉 =
Nf∑

i=1

mi = 0 . (7.17)

Higher correlators can be computed from the first expression in (7.16), which yields

〈σnN 〉 =
∞∑

k=0

(qǫΩ
−1)k

Nf∑

i=1

k∑

li=0

(−1)li(mi − liǫΩ)
n

(k − li)!li!
Nf∏
j=1

k∏
lj=0

(mi −mj − (li − lj)ǫΩ)1−δij

,
(7.18)

or alternatively using the identity (6.1), that in this case reads

〈O(σN )

Nf∏

j=1

(σN −mj)〉 = q〈O(σN − ǫΩ)〉 (7.19)

and that allows to compute the correlators 〈σnN 〉 with n ≥ Nf recursively from lower ones.

More explicitly, writing the characteristic polynomial

Nf∏

j=1

(σ −mj) = σNf +

Nf∑

k=2

sk(m)σNf−k (7.20)

in terms of the symmetric polynomials of the twisted masses

sk(m) = (−1)k
∑

i1<···<ik

mi1 . . .mik , k = 2, . . . , Nf , (7.21)

the finite difference equation (7.19) determines iteratively

〈σr+Nf

N 〉 = −
Nf∑

k=2

sk(m)〈σr+Nf−k
N 〉+ q

r∑

h=0

(
r

h

)
(−ǫΩ)

h〈σr−h
N 〉 . (7.22)

The difference equation (7.19) can again be recast into a differential equation for the

generating function F (z) = 〈ezσ|N 〉 of twisted chiral correlators inserted at the north pole:




Nf∏

j=1

(∂z −mj)− qe−zǫΩ


F (z) = 0 . (7.23)

Changing variable at non-vanishing ǫΩ from z to

qz = qe−zǫΩ(−ǫΩ)
−Nf , (7.24)

the differential equation (7.23) takes the Picard-Fuchs form




Nf∏

j=1

(
Θ+

mj

ǫΩ

)
− qz


F (z) = 0 , (7.25)
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where Θ ≡ qz
∂

∂qz
. The general solution of this Picard-Fuchs equation is given in terms of

generalized hypergeometric functions as

Nf∑

j=1

cj(−qz)−
mj
ǫΩ 0FNf−1



{
1 +

mi −mj

ǫΩ

}Nf

i=1
i 6=j

∣∣∣qz


 (7.26)

but it seems difficult to determine the coefficients cj as functions of the twisted masses and

ǫΩ such that F (z) = z
Nf−1

(Nf−1)! + O(zNf ) in accord with (7.17). We leave this problem to

future work.

In the A-model limit ǫΩ → 0, correlators are given by the formula

〈σn〉0 =
∞∑

k=0

qk
Nf∑

j=1

Res
σ̂=mj

σ̂n

∏Nf

i=1(σ̂ −mi)k+1
= − Res

σ̂=∞

σ̂n

∏Nf

i=1(σ̂ −mi)− q
(7.27)

and can be computed recursively from (7.17) using the twisted chiral ring operator relation∏Nf

i=1(σ −mi) = q, which implies

〈σr+Nf 〉0 = −
Nf∑

k=2

sk(m)〈σr+Nf−k〉0 + q〈σr〉0 . (7.28)

If the twisted masses mi vanish, the only non-vanishing correlators are

〈σNf (h+1)−1〉0 = qh , h = 0, 1, 2, . . . , (7.29)

and the generating function is

F (z)ǫΩ=0 =
zNf−1

(Nf − 1)!
0FNf−1

({
1 +

j

Nf

}Nf−1

j=1

∣∣∣q zNf

Nf
Nf

)
. (7.30)

7.3 The quintic

The quintic Calabi-Yau threefold can be engineered using a U(1) GLSM with 5 fields

Xi of gauge charges Q = 1 and R-charges r = 0, and one field P of charge Q = −5

and r = 2, subject to a superpotential W = PF (X), with F (X) a homogeneous quintic

polynomial in Xi [4]. The GLSM flows to a nontrivial CFT, and correspondingly the FI

parameter ξ is marginal, therefore ξUV
eff = ξ. The detailed form of the Coulomb branch

localization formula (4.51) is sensitive to the phase of the GLSM, even though the final

result is independent of the phase, being analytic in q. Before discussing the two phases of

the GLSM, corresponding to positive or negative FI parameter ξ, we list for future reference

– 70 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

the 1-loop determinants of the matter fields:

ZXi
k (σ̂; ǫΩ) =





k∏
p=0

(σ̂ + (p− k
2 )ǫΩ)

−1 k ≥ 0

1 k = −1

−k−2∏
p=0

(σ̂ + (1 + k
2 + p)ǫΩ) k ≤ −2

(i = 1, . . . , 5) (7.31)

ZP
k (σ̂; ǫΩ) =





5k∏
j=0

(−5σ̂ + (52k − j)ǫΩ) k ≥ 0

−5k−2∏
j=0

(−5σ̂ + (52k + 1 + j)ǫΩ)
−1 k ≤ −1 .

(7.32)

7.3.1 Geometric phase

For ξ > 0 the GLSM is in the geometric phase: the positively charged fields Xi are forced

to take VEV by the D-term equation, whereas the vev of P vanishes by the F -terms

provided F (X) is generic. Modding out by the U(1) gauge symmetry, Xi are homogeneous

coordinates of CP4. Finally, the F -term equation F (X) = 0 associated to P cuts out the

quintic hypersurface in CP
4.

In the geometric phase ξ > 0 where Xi take VEV, the JK residue JK-Res [ξ] is a sum

of residues at the poles of the 1-loop determinants of Xi. We see from the poles of (7.31)

that the sum over k reduces to the dual cone k ≥ 0. Inserting twisted chiral operators

only at the north pole and shifting the integration variable σ → σ + k
2ǫΩ, the localization

formula (4.51) becomes

〈σnN 〉 = −
∞∑

k=0

qk
k∑

l=0

Res
σ̂=−lǫΩ

5k∏
j=0

(−5σ̂ − jǫΩ)

k∏
p=0

(σ̂ + pǫΩ)5
σ̂n =

=

∞∑

k=0

qk Res
σ̂=∞

5k∏
j=0

(−5σ̂ − jǫΩ)

k∏
p=0

(σ̂ + pǫΩ)5
σ̂n = ǫΩ

n−3
∞∑

k=0

qk Res
z=∞

5k∏
j=0

(−5z − j)

k∏
p=0

(z + p)5
zn ,

(7.33)

where we inserted an overall minus sign because of the field P of R-charge 2, as explained
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in section 4.5. By explicit computation, we find the correlators

〈σnN 〉 = 0 (n = 0, 1, 2)

〈σ3N 〉 = 5

1 + 55q

〈σ4N 〉 = ǫΩ
2 · 56q

(1 + 55q)2

〈σ5N 〉 = ǫΩ
2 5

5q(−17 + 13 · 55q)
(1 + 55q)3

〈σ6N 〉 = ǫΩ
3 2 · 55q(13− 125000q + 68359375q2)

(1 + 55q)4

...

(7.34)

In the A-model limit ǫΩ = 0, the only non-vanishing correlator is the Yukawa coupling

〈σ3〉0 = 5
1+55q

computed using the GLSM description in [10] and originally in [11]. The

higher correlators, which become non-trivial with the Omega deformation, can again be

computed recursively using the identity (6.1), which here reads

〈O(σN )σ5N 〉 = q〈O(σN − ǫΩ)
5∏

j=1

(−5σN + jǫΩ)〉 . (7.35)

In fact, since division by σN does not introduce extra poles, we can safely substitute

O(σN ) → O(σN )/σN to obtain the more general identity

〈O(σN )σ4N 〉 = −5q〈O(σN − ǫΩ)
4∏

j=1

(−5σN + jǫΩ)〉 , (7.36)

which allows to compute the higher correlators 〈σ3+j
N 〉 recursively from 〈σ3N 〉 = 〈σ3〉0 and

the vanishing lower correlators.

The difference equation (7.36) translates into a differential equation for the generating

function F (z) = 〈ezσN 〉 of twisted chiral correlators inserted at the north pole:


∂4z + 5qe−zǫΩ

4∏

j=1

(5∂z − jǫΩ)


F (z) = 0 . (7.37)

Changing variable at non-vanishing ǫΩ from z to

qz = −qe−zǫΩ , (7.38)

the differential equation (7.37) becomes the celebrated Picard-Fuchs equation

Θ4F = 5qz

4∏

j=1

(5Θ + j)F , (7.39)

for the mirror of the quintic [11].
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7.3.2 Landau-Ginzburg phase

For ξ < 0, the charge −5 field P is forced to take VEV by the D-term equation, whereas the

charge 1 fields Xi vanish by the F -term equations. The low energy physics is described by

a Landau-Ginzburg orbifold for the 5 Xi fields, with a homogeneous quintic superpotential

W (X) = 〈P 〉F (X) and a residual Z5 gauge symmetry. For this reason this non-geometric

phase is called Landau-Ginzburg phase.

In the ξ < 0 phase, JK-Res [ξ] is a sum of residues at the poles of the 1-loop determinant

of P . We see from (7.32) that the sum over k reduces to the shifted dual cone −5k−2 ≥ 0,

hence k ≤ −1. Inserting twisted chiral operators only at the north pole and shifting the

integration variable σ → σ + k
2ǫΩ, the localization formula (4.51) becomes

〈σnN 〉 =
−1∑

k=−∞

qk
−5k−2∑

l=0

Res
σ̂= 1

5
(l+1)ǫΩ

−k−2∏
p=0

(σ̂ + (p+ k + 1)ǫΩ)
5

−5k−2∏
j=0

(−5σ̂ + (j + 1)ǫΩ)

σ̂n =

= −
−1∑

k=−∞

qk Res
σ̂=∞

−k−2∏
p=0

(σ̂ + (p+ k + 1)ǫΩ)
5

−5k−2∏
j=0

(−5σ̂ + (j + 1)ǫΩ)

σ̂n ,

(7.40)

where we adopted the short-hand notation that
∏−k−2

p=0 (. . . ) = 1 for k = −1. We have

checked explicitly at low n that the correlators (7.40) computed in the LG phase match

those (7.33) computed in the geometric phase, giving (7.34). Note that while correlators

computed in the geometric phase ξ > 0 are given by a Taylor series in q, correlators

computed in the LG phase ξ < 0 are given by a Taylor series in q−1. Showing that the

two computations agree requires resumming the Taylor series to an analytic function as

in (7.34). In fact, it is easy to see that the correlators 〈σnN 〉 computed in the two phases

are equal for any n. This follows from the equality for n = 0, 1, 2, 3 together with the fact

that the identity (7.36) holds for correlators computed in any of the two phases.

7.4 The resolved WCP
4
1,1,2,2,2

The last example of this section is a U(1)2 GLSM with six chiral fields: Xi (i = 1, 2), Yj
(j = 1, 2, 3), and Z. All the chiral multiplets have vanishing vanishing R-charge, and their

gauge charges and twisted masses are given in table 3. This abelian GLSM was studied in

detail in [10]. For ξ1 > 1, ξ2 > 0, it engineers a toric variety of dimension 4, obtained by

blowing up the curve of Z2 singularities inside WCP
4
1,1,2,2,2 (the size of the blown-up curve

is given by ξ2). For 2ξ1+ ξ2 > 0 and ξ2 < 0, we obtain the unresolved space instead. These

so-called geometric and orbifold phases are depicted in figure 8, in FI parameter space. We

have b10 = 4 > 0 and b20 = 0, so that ξUV
eff = (+∞, ξ2).

The flavor symmetry group is SU(2) × SU(3) × U(1). For simplicity, we only turn

on twisted masses in the SU(2) × SU(3) subgroup, which we denote by mX
i and mY

j (see

table 3). It is also convenient to define the Casimirs un(m
X) =

∑2
i=1(m

X
i )n, un(m

Y ) =
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X1 X2 Y1 Y2 Y3 Z FI

U(1)1 0 0 1 1 1 1 ξ1

U(1)2 1 1 0 0 0 −2 ξ2

mF −mX
1 −mX

2 −mY
1 −mY

2 −mY
3 0

Table 3. U(1)2 charges and twisted masses of the chiral multiplets in the GLSM for the (resolved)

projective space WCP
4
1,1,2,2,2.

ξ1

ξ2

Geometric

Orbifold

Y (1,0)

X (0,1)

Z (1,-2)

Figure 8. The two phases of the (resolved) WCP
4
1,1,2,2,2 toric variety.

∑3
j=1(m

Y
j )

n, with u1(m
X) = u1(m

Y ) = 0. Let us introduce the notation:

Fm1,m2 ≡ 〈σm1
1 σm2

2 〉N . (7.41)

The subscript N denotes a north pole insertion. By the selection rule (3.31), we have

Fm1,m2 ∼ (ǫΩ)
jΛ4k1

1 (mF )l Fc(q2) , m1 +m2 = 4k1 + 4 + j + l , (7.42)

with j ≥ 0. Here Λ4
1 = q1, setting the energy scale µ = 1 as in the rest of the article.

Because the target space is compact, the massless limit is nonsingular and we must also

– 74 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

have l ≥ 0. The one-loop determinants of the matter fields are:

ZXi
k (σ̂; ǫΩ) =





k2∏
p=0

(
σ̂2 −mX

i +
(
p− k2

2

)
ǫΩ

)−1
, k2 ≥ 0 ,

1 , k2 = −1 ,
−k2−2∏
p=0

(
σ̂2 −mX

i +
(
1 + k2

2 + p
)
ǫΩ

)
, k2 ≤ −2 ,

(i = 1, 2) (7.43)

Z
Yj

k (σ̂; ǫΩ) =





k1∏
p′=0

(
σ̂1 −mY

j +
(
p′ − k1

2

)
ǫΩ

)−1
, k1 ≥ 0 ,

1 , k1 = −1 ,
−k1−2∏
p′=0

(
σ̂1 −mY

j +
(
1 + k1

2 + p′
)
ǫΩ

)
, k1 ≤ −2 ,

(j = 1, 2, 3) (7.44)

ZZ
k (σ̂; ǫΩ) =





k1−2k2∏
p′′=0

(
σ̂1 − 2σ̂2 +

(
p′′ − k1

2 + k2

)
ǫΩ

)
, k1 − 2k2 ≥ 0 ,

1 , k1 − 2k2 = −1 ,
−k1+2k2−2∏

p′′=0

(
σ̂1 − 2σ̂2 +

(
1 + k1

2 − k2 + p′′
)
ǫΩ

)
, k1 − 2k2 ≤ −2 .

(7.45)

The singular hyperplanes from (7.43)–(7.45) are:

H i,pX
X =

{
σ̂2 −mX

i + (pX − k2
2
)ǫΩ = 0

}
, pX = 0, · · · , k2 ,

Hj,pY
Y =

{
σ̂1 −mY

j + (pY − k1
2
)ǫΩ = 0

}
, pY = 0, · · · , k1 ,

HpZ
Z =

{
σ̂1 − 2σ̂2 + (pZ − k1

2
+ k2)ǫΩ = 0

}
, pZ = 0, · · · , k1 − 2k2 .

(7.46)

The elementary singularities that contribute to the JK residues are

ωQXQY
=
dσ̂1 ∧ dσ̂2
σ̂1σ̂2

, ωQXQZ
=

dσ̂1 ∧ dσ̂2
σ̂2(σ̂1 − 2σ̂2)

, ωQY QZ
=

dσ̂1 ∧ dσ̂2
σ̂1(σ̂1 − 2σ̂2)

, (7.47)

from the intersections HX ∩HY , HX ∩HZ , and HY ∩HZ , respectively. From the defini-

tion (4.62), one finds:

JK-Res σ̂=0

[
ξUV
eff ∈ Geometric

]
f(σ̂)dσ̂1 ∧ dσ̂2 = Res

σ̂1=0
Res
σ̂2=0

f(σ̂) ,

JK-Res σ̂=0

[
ξUV
eff ∈ Orbifold

]
f(σ̂)dσ̂1 ∧ dσ̂2 = Res

σ̂2=0
Res

σ̂1=2σ̂2

f(σ̂) .
(7.48)

Note that the order of the residues in (7.48) is crucial. Each residue is taken with the

remaining integration variable generic and away from the hyperplanes. The JK residue at

any of the singularities in M̃ is given by (7.48) after a translation. The singularities are

always projective. For generic twisted masses, they are also all regular.
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7.4.1 The geometric phase with mF 6= 0

In the geometric phase, the only fluxes that contribute to the JK residue are in the window

k1 ≥ 0, k2 ≥ 0, and we have

Fm1,m2 =

∞∑

k1,k2=0

qk11 q
k2
2 Uk1,k2,m1,m2 . (7.49)

Consider first the case of generic twisted masses mX
i ,m

Y
j . Each factor Uk1,k2,m1,m2 splits

into contributions from HX ∩HY and HX ∩HZ :

Uk1,k2,m1,m2 = UXY
k1,k2,m1,m2

+ UXZ
k1,k2,m1,m2

. (7.50)

The HY ∩HZ singularities do not contribute to the JK residue in the geometric phase, in

line with the absence of vacua where Y and Z take VEV while X vanishes.

The contribution from HX ∩HY reads:

UXY
k1,k2,m1,m2

= (7.51)

2∑

i=1

3∑

j=1

k2∑

pX=0

k1∑

pY =0

Res
σ̂1=0

Res
σ̂2=0

(IXY )
pX ,pY ,i,j
k1,k2

(σ̂1 +mY
j − pY ǫΩ)

m1(σ̂2 +mX
i − pXǫΩ)

m2 ,

where we shifted the integration variables σ̂a in each summand so that the singularity is

always at σ̂a = 0. Here we defined

(IXY )
pX ,pY ,i,j
k1,k2

=

2∏

i′=0

k2∏

p=0

1

σ̂2 − (mX
i′ −mX

i ) + (p− pX)ǫΩ

×
3∏

j′=1

k1∏

p′=0

1

σ̂1 − (mY
j′ −mY

j ) + (p′ − pY )ǫΩ
(7.52)

×





k1−2k2∏
p′′=0

(σ̂1 − 2σ̂2 +mY
j − 2mX

i + (p′′ − pY + 2pX)ǫΩ)

1
−k1+2k2−−2∏

p′′=0

(σ̂1 − 2σ̂2 +mY
j − 2mX

i + (p′′ − pY + 2pX + k1 − 2k2 + 1)ǫΩ) ,

where the three cases in the third line are like in (7.45). The contribution from HX ∩HZ

reads

UXZ
k1,k2,m1,m2

= (7.53)

2∑

i=1

k2∑

pX=0

k1−2k2∑

pZ=0

Res
σ̂1=0

Res
σ̂2=0

(IXZ)
pX ,pZ ,i
k1,k2

(σ̂1 +mX
i −(pZ + 2pX)ǫΩ)

m1(σ̂2 +mX
i − pXǫΩ)

m2 ,

with (IXZ)
pX ,pZ ,i
k1,k2

an expression similar to (7.52).
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From the expression (7.49)–(7.50), one can compute the correlation functions Fm1,m2

explicitly, at least at low order in m1,m2 and q2. Let us define L = m1 +m2, the “level”

of Fm1,m2 . The first non-trivial correlation functions occur at level 4:

Fm1,m2 = 0 , ∀m1,m2 : m1 +m2 ≤ 3 ,

F4,0 = 2 , F3,1 = 1 ,

F2,2 = − 2q2
1− 4q2

, F1,3 =
q2(1 + 4q2)

(1− 4q2)2
, F0,4 = −2q22(3 + 4q2)

(1− 4q2)3
.

(7.54)

These exact resummed expressions are more easily obtained in the mF = 0, ǫΩ = 0 limit

of the Coulomb branch formula, which we discuss below.

7.4.2 Recursion relations

The explicit expression (7.49)–(7.50) is unwieldy but perfectly general.27 Fortunately,

the recursion relations (6.1) discussed in the previous section allow us to compute (7.41)

recursively. In our model, (6.1) reads

〈σl11 σl22 (σ1 − 2σ2)
3∏

j=1

(σ1 +mY
j )〉N = q1〈(σ1 − ǫΩ)

l1σl22 〉N , (7.55)

〈σl11 σl22
3∏

i=1

(σ2 +mX
i )〉N = q2〈(σ1 − 2σ2)(σ1 − 2σ2 + ǫΩ)σ

l1
1 (σ2 − ǫΩ)

l2〉N ,

with l1, l2 ≥ 0. it is easy to check that (7.54) indeed satisfies these relations. At any level

L = m1 +m2, (7.55) provides 2L − 4 linear relations between the level L and lower level

correlators . (We have L − 3 relations from the first line of (7.55), and L − 1 relations

from the second one.) This gives an overdetermined set of recursion relations for the

L ≥ 5 correlators (at each level, there are 2L − 4 equations for L + 1 undetermined

correlators). Therefore, any correlation function can be determined recursively with the

initial data (7.54). This is easily implemented on a computer. At level L = 5, one finds:

F5,0 = F4,1 = F3,2 = 0 , F2,3 =
3q2ǫΩ

(1− 4q2)2
,

F1,4 = −2q2(1 + 12q2)ǫΩ
(1− 4q2)3

, F0,5 =
30q22(1 + 4q2)ǫΩ

(1− 4q2)4
.

These correlators are proportional to ǫΩ, in agreement with (7.42). At level L = 6, we find:

F6,0 = 8u2(m
X) + 2u2(m

Y ) = 2F5,1 , F4,2 = 2u2(m
X)− q2u2(m

Y )

1− 4q2
,

F3,3 = u2(m
X) +

q2(1 + 4q2)u2(m
Y )

(1− 4q2)2
,

F2,4 = −4q2(1− 2q2)u2(m
X)

(1− 4q2)2
− 2q22(3 + 4q2)u2(m

Y ) + 2q2(2 + 7q2)ǫΩ
2

(1− 4q2)3
,

27That is, given that the twisted masses are generic. For special values, some singularities from HX ∩HY

and HX ∩HZ can coincide, and one must be careful not to over-count.
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F1,5 =
2q2(1+6q22−8q32)u2(m

X)

(1− 4q2)3
+
q22(1+24q2+16q22)u2(m

Y ) + q2(3+95q2+140q22)ǫΩ
2

(1− 4q2)4
,

F0,6 = −2q22(9+16q2−16q22)u2(m
X)

(1− 4q2)4
− 2q32(5+40q2+16q22) + 2q22(51+515q2+420q22)ǫΩ

2

(1− 4q2)5
.

At this order, we have ǫΩ
2 terms and the first appearance of the mass terms, as expected.

One can continue this process level by level indefinitely. The dependence on q1 = Λ4
1 kicks

in at level 8.

7.4.3 Geometric and orbifold phases in the ǫΩ = 0 and mF = 0 limit

In the ǫΩ = 0 limit, we have some considerable simplifications. In order to compare to [10],

we also take mX
i = mY

j = 0. Consider first the geometric phase. We have (7.49) with:

Uk1,k2,m1,m2 = Res
σ̂1=0

Res
σ̂2=0

σ̂m1
1 σ̂m2

2

σ
2(k2+1)
2 σ

3(k1+1)
1 (σ1 − 2σ2)k1−2k2+1

. (7.56)

This expression is very easy to evaluate analytically, to obtain:28

Uk1,k2,m1,m2 = (−2)2k2−m2+1

(
−k1 + 2k2 − 1

2k2 + 1−m2

)
δm1+m2,4k1+4 . (7.57)

This matches precisely the results of [10]. Summing the q2 series for m1 + m2 = 4, we

obtain (7.54). In the orbifold phase, instead, we have the expansion

Fm1,m2 =
∑

k1≥0, k1−2k2≥0

qk11 q
k2
2 U

orb
k1,k2,m1,m2

, (7.58)

where the sum is over the fluxes in the dual cone to Cone(QY , QZ). The JK residue (7.48)

gives

Uorb
k1,k2,m1,m2

= Res
σ̂2=0

Res
σ̂1=2σ̂2

σ̂m1
1 σ̂m2

2

σ
2(k2+1)
2 σ

3(k1+1)
1 (σ1 − 2σ2)k1−2k2+1

,

= 22k2−4k1+m1−3

(
−3k1 − 3 +m1

k1 − 2k2

)
δm1+m2,4k1+4 .

(7.59)

The correlation functions agree as analytic functions across the phases, as expected. For

instance, upon resumming

Fm1,4−m1 =
∑

k2≤0

qk2Uorb
0,k2,m1,4−m1

, (7.60)

in the orbifold phase, we recover (7.54).

28Here the binomial coefficient

(
m

n

)
is understood to be equal to zero if n < 0.
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X1 X2 Y Z W FI

U(1)1 1 1 1 −N −1 ξ1
U(1)2 0 0 1 1 −2 ξ2

Table 4. Gauge charges of matter fields and FI parameters in the C
3/Z(2N+1)(2,2,1) GLSM.

8 Examples: correlators of A-twisted GLSMs

In this section we switch off the Omega-deformation parameter ǫΩ and compute correlators

in some interesting examples of A-twisted gauged linear sigma models. The correlation

functions no longer depend on the location of the operators on the sphere and thus the

subscripts denoting the insertion points are dropped.29

In the abelian case, we consider a GLSM for a non-compact orbifold studied in [15].

The authors of [15] found some puzzling violations of the quantum cohomology relations

in that model. In our formalism, this is expected due to the presence of non-projective

singularities in the Coulomb branch integrand. Physically, this signals a singular behavior

of some correlation functions as the twisted masses are sent to zero.

In the non-abelian case, we restrict for simplicity to unitary gauge groups, although

our formalism applies generally. We compute twisted chiral correlators involving Casimir

invariants of the form Tr(σj), where σ is an adjoint matrix of a unitary gauge group factor.

For correlators involving only dimension-one Casimirs (j = 1), which lead to Yukawa

couplings in the Calabi-Yau models, we successfully compare our formulas with available

results obtained using Picard-Fuchs equations and mirror symmetry [67]. Our formalism

also allows us to compute correlators involving higher Casimir invariants, which, to our

knowledge, could not be computed with previous techniques.

8.1 C
3/Z(2N+1)(2,2,1)

Here we consider the GLSM for the non-compact orbifold C
3/Z(2N+1)(2,2,1) studied in [68].

We will compare genus zero topological correlators computed in our formalism with the

results of [15, 68], fixing an ambiguity for certain constant correlators that violate the

quantum cohomology relations of the theory with vanishing twisted masses.

The GLSM in question has U(1)2 gauge group and 5 chiral multiplets of zero R-charge

and gauge charges as in table 4. We consider N > 2, so that the axial R-symmetry has a

mixed anomaly with the U(1)1 gauge group: consequently the effective FI parameters in

the UV are ξUV
eff = (−∞, ξ2).

The classical phase diagram of the model is shown in figure 9 [15]. Recall that in our

formalism we are only interested in the phases that are probed by the GLSM in the UV,

once quantum corrections to the FI parameters are included. Since ξUV
eff = (−∞, ξ2), the

GLSM only probes the so called geometric phase −2ξ1+ ξ2 > 0, −ξ1−Nξ2 > 0 in the UV,

out of the four classical phases. In the geometric phase the fields Z and W are forced to

29In this section, we thus utilize the variables N and S to denote numerical parameters of the theory.

These variables should not be confused with subscripts indicating the insertion locus of operators.
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ξ1

ξ2

"Mixed B"

"Mixed C"

"Mixed A"

"Geometric"

X (1,0)

Y (1,1)Z (-N,1)

W (-1,-2)

Figure 9. The classical phase diagram of the C
3/Z(2N+1)(2,2,1) GLSM.

acquire VEVs by the D-term equations, breaking the gauge group to Z2N+1 and leaving a

C
3/Z(2N+1)(2,2,1) orbifold, with C

3 parametrized by X1, X2 and Y .

Let σ1 and σ2 be the complex scalars in the vector multiplets associated to the gauge

groups U(1)1 and U(1)2. We wish to compute the correlators

Fa,b = 〈σa1σb2〉0 (8.1)

of this GLSM for vanishing twisted masses and compare to the results of [15, 68]. The

selection rule for the anomalous axial R-symmetry implies that the topological correlator

Fa,b vanishes unless a+ b = 3 + (2−N)k1, where k1 is the flux of the U(1)1 gauge group.

Therefore F3+(2−N)n−b,b ∝ qn1 .

In defining and computing the Jeffrey-Kirwan residue, we face the technical complica-

tion that the arrangement of hyperplanes meeting at σ1 = σ2 = 0 is not projective. We

remedy this as in [37, 69] by turning on a small common twisted mass m for the mat-

ter fields. This splits the multiple intersection at the origin into 6 simple intersections of

pairs of hyperplanes at separate points, which are projective arrangements. We will define

JK-Res
[
ξUV
eff

]
in the presence of the twisted mass m, which we take to zero at the end of

the computation. With m turned on, the 1-loop determinants of the matter fields are

ZXi
k = (σ̂1 +m)−(k1+1) ZY

k = (σ̂1 + σ̂2 +m)−(k1+k2+1)

ZZ
k = (−Nσ̂1 + σ̂2 +m)−(−Nk1+k2+1) ZW

k = (−σ̂1 − 2σ̂2 +m)−(−k1−2k2+1) .
(8.2)

The Jeffrey-Kirwan residue in the UV geometric phase is a residue at the intersection

of the hyperplanes associated to Z and W , namely the point (σ̂1, σ̂2) = ( 3
2N+1m,

N−1
2N+1m).

It takes the form

JK-Res
[
ξUV
eff

]
f(σ̂1, σ̂2,m)dσ̂1 ∧ dσ̂2 = Res

σ̂1=
3

2N+1
m

Res
σ̂2=

1
2
(−σ̂1+m)

f(σ̂1, σ̂2,m) . (8.3)
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Since the residue only picks the poles of ZZ
k and ZW

k , the summation over k is effectively

reduced to the dual cone −Nk1 + k2 ≥ 0, −k1 − 2k2 ≥ 0. The localization formula for the

topological correlators in the vanishing twisted mass limit is therefore

Fa,b = lim
m→0

∑

k∈Z2

qk11 q
k2
2 Res

σ̂1=
3

2N+1
m

Res
σ̂2=

1
2
(−σ̂1+m)

(σ̂a1 σ̂
b
2Z

X1
k ZX2

k ZY
k Z

Z
k Z

W
k ) . (8.4)

Using (8.4), we can compute all the correlators of non-negative axial R-charge, RA =

2(a + b − 3) ≥ 0. The correlators of negative RA-charge diverge like ma+b−3. Instead,

correlators of non-negative RA-charge have a finite m → 0 limit. As we now explain,

correlators of positive axial RA-charge behave differently from correlators of zero axial

RA-charge.

To understand the difference, let us consider a näıve version of the localization formula

with vanishing twisted masses, where the order of the m→ 0 limit and the residue in (8.4)

is reversed. When applied to F3+(2−N)n−b,b with n ≤ 0, this näıve formula reproduces the

result of [15].30 For n < 0 we find that our formula (8.4) gives the same result: limit and

residue commute.31 It was also argued in [15] that their naive formula is incorrect for the

n = 0 correlators F3−b,b. Note that the formula follows from n < 0 correlators and quantum

cohomology relations at vanishing twisted masses. Instead, the F3−b,b correlators must be

quantum cohomology violating constants (with respect to q1 and q2), that could not be

determined using their methods. Applying our localization formula (8.4) to the correlators

in question, we indeed obtain the constants:

F3−b,b =
32−b

4

(N − 1)b

(N + 1)(N + 2)2(2N + 1)
, b = 0, 1, 2, 3. (8.5)

We are led to conclude that the m→ 0 limit and the residue do not commute even for the

finite and RA-neutral correlators F3−b,b.

Let us emphasize that the proper quantum cohomology relations do hold in the massive

theory, in agreement with the discussion of section 6. The violation of the näıve relations

in the massless theory are a symptom of the fact that the theory is singular (albeit in a

mild fashion: only a finite number of correlators diverge) when we send the twisted mass

to zero.

8.2 Calabi-Yau complete intersections in Grassmannians

In [51], Hori and Tong studied a U(N) gauge theory with Nf chiral multiplets Φi in

the fundamental representation and S chiral multiplets Pα transforming in the det−Qα

representation of the gauge group, with Qα > 0 (see table 5). We will focus on the case

Nf =
∑

αQα, so that the axial R-symmetry is anomaly-free and the vacuum moduli space

is a noncompact Calabi-Yau manifold of complex dimension (Nf −N)N +S. For ξ > 0 the

30In particular, the contour integral formula for correlators in the geometric phase presented in [15] can

be obtained by summing the instantons in the näıve version of our formula (8.4).
31The statement extends to all Fa,b correlators of positive axial R-charge (a+b > 3). Those which violate

the m = 0 selection rule for the axial R-symmetry vanish in the m → 0 limit.
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Φa
i Pα FI

U(N) N det−Qα ξ

U(1)R 0 2

Table 5. U(N) gauge representations and vector R-charges of the chiral multiplets in the GLSM

for complete intersections in Grassmannians.

vacuum moduli space is the total space of ⊕αO(−Qα) → G(N,Nf ). To obtain a compact

Calabi-Yau, the superpotential

W =

S∑

α=1

PαGα(B) , (8.6)

is introduced, where Gα are generic degree Qα polynomials in the baryons

Bi1...iN = ǫa1...aNΦ
a1
i1
. . .ΦaN

iN
. (8.7)

The vector R-symmetry assigns charge 2 to Pα and 0 to Φi.

For ξ > 0, the fundamentals acquire VEV and the F -term equations are solved by

Pα = 0 and Gα(B) = 0. The GLSM is in a geometric phase: the low energy theory

is a nonlinear sigma model on a compact Calabi-Yau XQ1,...,QS
⊂ G(N,Nf ), which is the

complete intersection of the hypersurfaces Gα(B) = 0 in the Grassmannian G(N,Nf ). The

compact Calabi-Yau has complex dimension N(Nf −N)− S. Excluding abelian examples

which give hypersurfaces in projective spaces, there are six threefolds in this class, which

were studied from a geometric viewpoint in [67] and from a physical viewpoint in [51]. We

will list them and compute their topological correlators below. In the ξ < 0 phase, Pα

acquire VEV while the fundamentals vanish, leaving a residual PSU(N) gauge group.

Let us now focus on the geometric phase ξ > 0. As we will explain better in sec-

tion 8.2.1, there is no need to use the associated Cartan theory to define the localization

formula in this case. The reason is that the non-abelian gauge group is completely broken

in this phase, and the instanton sums are absolutely convergent. Hence the topological

correlators in the geometric phase are simply given by

〈O(σ)〉0 =(−1)
N(N−1)

2
+S 1

N !

∞∑

ka=0

((−1)N−1q)
∑N

a=1 ka

∮

(σ̂a=0)

N∏

a=1

dσ̂a
2πi

∏

1≤a<b≤N

(σ̂a − σ̂b)
2

S∏
α=1

(−Qα

N∑
a=1

σ̂a)
1+Qα

∑
a ka

N∏
a=1

σ̂
Nf (ka+1)
a

O(σ̂) ,

(8.8)

where we inserted the sign (−1)S due to the S fields of R-charge 2, to obtain positive

intersection numbers.

In the CY case Nf =
∑S

α=1Qα, the selection rule for the axial R-symmetry implies

that the correlator vanishes unless O(σ) is a homogeneous polynomial of degree equal to

the complex dimension d = N(Nf − N) − S of the CY. This result is also easily derived

from the previous formula.
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The instanton series in (8.8) can be resummed to give

〈O(σ)〉0 =(−1)
N(N−1)

2
1

N !

∮ N∏

a=1

dσ̂a
2πi

∏

1≤a<b≤N

(σ̂a − σ̂b)
2 ·

·

S∏
α=1

(Qα

N∑
a=1

σ̂a)

N∏
a=1

[
σ̂
Nf
a + (−1)Nq

S∏
α=1

(−Qα

N∑
b=1

σ̂b)Qα

] O(σ̂) ,

(8.9)

where the contour integral is now around poles in σ̂a proportional to positive powers of

q. The contour picks all the zeros of the denominator, namely all the solutions of the

vacuum equations e2πi∂σ̂aW̃eff(σ̂) = 1. (We will be more precise about the details at the

end of the section.) This expression manifests the connection with the twisted chiral ring

relations and the quantum Coulomb branch vacua of the theory. Note in particular that the

correlators diverge along the singular locus in moduli space where a noncompact Coulomb

branch arises [10, 51, 70], because then the poles in σ (i.e. the quantum Coulomb vacua)

are no longer isolated. We will indeed see that the correlators are rational functions in q

with poles along the singular locus ∆(q) = 0.

We now list the twisted chiral correlators for the Hori-Tong GLSM that engineer CY3
complete intersections in Grassmannians, and compare our results to the Yukawa couplings

obtained in [67] using mirror symmetry. In the following we use the notation

uj(σ) ≡ Tr(σj) (8.10)

for the Casimir invariants of σ.

• X4 ⊂ G(2, 4): the correlators are

〈u1(σ)3〉 =
8

1− 210q
, 〈u2(σ)u1(σ)〉 = 0 . (8.11)

The denominator shows that the singular locus is q = 2−10.

• X3,12 ⊂ G(2, 5): the correlators are

〈u1(σ)3〉 =
15

1 + 11 (33q)− (33q)2

〈u2(σ)u1(σ)〉 =
3(1− 54q)

1 + 11 (33q)− (33q)2
.

(8.12)

〈u1(σ)3〉 agrees with the Yukawa coupling computed in [67], with q = −z.

• X22,1 ⊂ G(2, 5): the correlators are

〈u1(σ)3〉 =
20

1 + 11 (24q)− (24q)2

〈u2(σ)u1(σ)〉 =
4(1− 32q)

1 + 11 (24q)− (24q)2
.

(8.13)

〈u1(σ)3〉 agrees with the Yukawa coupling computed in [67], with q = −z.
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• X2,14 ⊂ G(2, 6): the correlators are

〈u1(σ)3〉 =
28

(1 + 22q) (1− 27 (22q))

〈u2(σ)u1(σ)〉 =
8(1 + 18q)

(1 + 22q) (1− 27 (22q))
.

(8.14)

〈u1(σ)3〉 agrees with the Yukawa coupling computed in [67], with q = z.

• X17 ⊂ G(2, 7): the correlators are

〈u1(σ)3〉 =
14(3 + q)

1 + 57q − 289q2 − q3

〈u2(σ)u1(σ)〉 =
14(1− 9q)

1 + 57q − 289q2 − q3
.

(8.15)

〈u1(σ)3〉 agrees with the Yukawa coupling computed in [67], with q = −z. This is

the celebrated Rødland Calabi-Yau [71].

• X16 ⊂ G(3, 6): the correlators are

〈u1(σ)3〉 =
42

(1− q)(1− 64q)

〈u2(σ)u1(σ)〉 = 0

〈u3(σ)〉 = − 6(1− 8q)

(1− q)(1− 64q)

(8.16)

〈u1(σ)3〉 agrees (up to a typo) with the Yukawa coupling computed in [67], with

q = z.

8.2.1 The associated Cartan theory and the ξ < 0 phase

As we have explained, the proper way to deal with a non-abelian GLSM, which has fewer

FI parameters than the rank of the gauge group, is to consider the associated Cartan

theory [64] (see also [33]). This procedure is necessary to discuss phases of the non-abelian

GLSM where the gauge group is not Higgsed to a finite group, as is the case in the ξ < 0

phase of the models of Hori and Tong.

The Cartan theory associated to the non-abelian U(N) GLSM is a GLSM with gauge

group the maximal torus U(1)N , with the same chiral matter as in the U(N) theory plus

extra chiral multiplets of vector R-charge 2 associated to the W -bosons of U(N). As we

have explained, the chiral multiplets originating from W -bosons do not contribute poles

to the 1-loop determinants, because of a cancellation between opposite roots ±α. They

are spectators in the following analysis of the phase diagram, the pole structure of the

integrand and the JK residue.

The advantage of the Cartan theory is to have FI parameters (ξ1, . . . , ξN ) belonging

to the dual of the Cartan subalgebra of U(N). The presence of as many FI parameters

as the rank of the gauge group ensures that in the interior of each chamber in FI space
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that defines a phase, the gauge group is Higgsed completely (up to a finite group) and

the instanton sums are absolutely convergent. We will therefore formulate the localization

formula in the associated Cartan model with FI parameters ~ξ = (ξ1, . . . , ξN ) in the dual

of the Cartan subalgebra and correspondingly instanton factors ~q = (q1, . . . , qN ), and take

the physical limit ~q = (q1, . . . , qN ) → q(1, . . . , 1) at the end of the computation:

〈O(σ)〉0 = lim
~ξ→ξ(1,...,1)
~q→q(1,...,1)

(−1)
N(N−1)

2
+S 1

N !

∑

~k∈ZN

N∏

a=1

((−1)N−1qa)
ka

JK-Res
[
~ξ
]
dN σ̂

∏

1≤a<b≤N

(σ̂a − σ̂b)
2

S∏
α=1

(−Qα

N∑
a=1

σ̂a)
1+Qα

∑
a ka

N∏
a=1

σ̂
Nf (ka+1)
a

O(σ̂) .

(8.17)

To specify the JK residue, we need to discuss the phase structure of the Cartan theory.

The charge vectors of the chiral multiplets that originate from the fundamentals Φa and

the determinant fields Pα define N + 1 rays generating N + 1 chambers in FI space R
N .

Therefore the Cartan theory has N + 1 phases, which we now discuss.

If ξa > 0 for all a = 1, . . . , N , then all the fields Φa, a = 1, . . . , N , take VEV. The JK

residue is an iterated residue at the poles of the 1-loop determinants of fields Φa, namely

σ̂a = 0 for all a:

JK-Res
[
~ξ
]
f(σ̂)dN σ̂ = Res

σ̂N=0
. . . Res

σ̂1=0
f(σ̂) . (8.18)

The instanton sum reduces to the dual cone ka ≥ 0 for all a = 1, . . . , N , therefore it is a

Taylor series in q1, q2, . . . , qN . We call this phase the 0-th phase.

If −ξā > 0 and ξa − ξā > 0 for all a = 1, . . . , N different from ā, then the fields Pα

and all the fields Φa except for Φā take VEV. There is a total of N phases of this kind,

depending on the choice of ā. The JK residue is a residue at the poles of the corresponding

1-loop determinants, given by

JK-Res
[
~ξ
]
f(σ̂)dN σ̂ = − Res

σ̂N=0
. . . Res

σ̂ā+1=0
Res

σ̂ā−1=0
. . . Res

σ̂1=0
Res

σ̂ā=−
∑N

a=1
a 6=ā

σ̂a

f(σ̂) .
(8.19)

Taking into account that R[Pα] = 2, the instanton sum reduces to the shifted dual cone

defined by −∑N
b=1 kb ≥ 1 and ka ≥ 0 for all a 6= ā: it is therefore a Taylor series in 1/qā

and in qa/qā for all a 6= ā. We call this phase the ā-th phase.

Note that thanks to the R-charge 2 of the determinant fields Pα, for any dual cone in
~k-space only N types of 1-loop determinants out of N + 1 can simultaneously have poles,

reflecting the previous phase structure. The corresponding arrangement of hyperplanes is

therefore projective in each phase.

Let us now discuss the physical limit ~q = (q1, . . . , qN ) → q(1, . . . , 1). If |q| < 1, that is

if we are in the geometric phase ξ > 0, the FI parameter ξ(1, . . . , 1) is in the interior of the

0-th phase described above. Correspondingly, the instanton sum is absolutely convergent.
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ξ1

ξ2

Phase 0

Phase 2

Phase 1

P (-4,-4)

Φ1 (1,0)

Φ2 (0,1)

Figure 10. The phase diagram of the Cartan theory associated to the X4 ⊂ G(2, 4) GLSM.

This explains why we did not need to use the Cartan theory to discuss the geometric phase

of the Hori-Tong GLSM.

If instead |q| > 1, that is if we are in the phase ξ < 0, the FI parameter ξ(1, . . . , 1)

lies along a generator of the cone of the Cartan theory, the common boundary of phases

1, 2, . . . , N . At this boundary only Pα and none of the Φa fields acquire VEV. In the

non-abelian theory, U(N) is only broken to PSU(N). In the Cartan theory, N − 1 out of

the N U(1) gauge factors are not broken. Correspondingly, N −1 out of N instanton sums

in the Hori-Tong GLSM are at the radius of convergence. Moving to the Cartan theory

and perturbing the FI parameter (ξ1, . . . , ξN ) away from ξ(1, . . . , 1) so that it enters one

of the N phases above, the instanton series falls within its radius of convergence and can

be safely resummed. We can finally take the physical limit ~q = (q1, . . . , qN ) → q(1, . . . , 1),

which is non-singular.

Let us exemplify this discussion in the case of X4 ⊂ G(2, 4), which is based on a U(2)

gauge theory. The phase diagram of the associated Cartan theory is shown in figure 10.

The correlators (8.17) are given by a Taylor series in q1, q2 in the 0th phase ξ1 > 0, ξ2 > 0,

by a Taylor series in q−1
1 , q2q

−1
1 in the 1st phase −ξ1 > 0,−ξ1 + ξ2 > 0, and by a Taylor

series in q−1
2 , q1q

−1
2 in the 2nd phase −ξ2 > 0, ξ1 − ξ2 > 0.

Resumming the Taylor series in any of the three phases, the correlators of Casimir

invariants in the Cartan theory (the arguments of the limit in (8.17)) are found to be

〈u1(σ)3〉Cartan =
8(1 + 1536(q1 + q2)− 720896(q21 + q22)− 2752512q1q2)

∆(q1, q2)

〈u2(σ)u1(σ)〉Cartan =
2097152(q1 − q2)

2(−3 + 256(q1 + q2))

∆(q1, q2)
,

(8.20)

where

∆(q1, q2) = Resultantx
(
1 + 256q1(1 + x)4, x4 + 256q2(1 + x)4

)
(8.21)
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is a quartic polynomial whose vanishing gives the singular locus of the Cartan theory. The

independence of the correlators on the phase is due to their analyticity in q1, q2. In the

physical limit (q1, q2) → q(1, 1), (8.20) reduce to the correlators (8.11) that we computed

previously in the geometric phase of the non-abelian theory.

8.2.2 Resumming the instantons and phase independence of correlators

The correlators (8.17) can be argued to be independent of the phase of the associated

Cartan theory by resumming the instanton series as follows. We first rewrite

I(σ̂, q) ≡
∑

~k

N∏

a=1


(−1)N−1qa

S∏
α=1

(
−Qα

N∑
a=1

σ̂a

)Qα

σ̂
Nf
a




ka

=
∑

~k

e2πi
∑N

a=1 ka∂aŴeff(σ̂) (8.22)

where Ŵeff(σ) is the effective twisted superpotential

Ŵeff(σ̂) = 2πi
N∑

a=1

τaσ̂a − πi
N∑

a=1

(N + 1− 2a)σ̂a+

−Nf

N∑

a=1

σ̂a(log σ̂a − 1)−
S∑

α=1

(
−Qα

N∑

a=1

σ̂a

)(
log

(
−Qα

N∑

a=1

σ̂a

)
− 1

)
.

(8.23)

In the 0-th phase where ξa > 0 for all a = 1, . . . , N , the instanton sum is over ka ≥ 0

for all a = 1, . . . , N . Performing the summation, (8.22) becomes

I0(σ̂, q) =

N∏

a=1

1

1− e2πi∂aŴeff(σ̂)
. (8.24)

In the ā-th phase where −ξā > 0 and ξa − ξā > 0 for all a = 1, . . . , N different from

ā, the instanton sum is over
∑N

b=1 kb ≤ −1 and ka ≥ 0 for all a 6= ā. Performing the

summation, (8.22) becomes

Iā(σ̂, q) =
e−2πi∂āŴeff(σ̂)

1− e−2πi∂āŴeff(σ̂)

N∏

a=1
a 6=ā

1

1− e2πi(∂a−∂ā)Ŵeff(σ̂)
=

= − 1

1− e2πi∂āŴeff(σ̂)

N∏

a=1
a 6=ā

1

1− e2πi(∂a−∂ā)Ŵeff(σ̂)

(8.25)

After resummation, the JK residues (8.18) and (8.19) become iterated residues at the

poles of the previous expressions, which are the quantum Coulomb branch vacua that solve

{ σ̂ : e2πi∂aŴeff(σ̂) = 1 ∀a = 1, . . . , N }.32 Even though (8.24) and (8.25) are different, they

coincide at their poles, i.e. on-shell in the twisted chiral ring.33 This shows the equality of

the correlators across all phases.

32We are glossing over a subtlety here: when quantum Coulomb vacua exist, they are not isolated but

instead form a non-compact one-dimensional Coulomb branch [51]. This happens when q is at the singular

locus. We will be more precise on the definition of the residue in the next subsection.
33The relative minus sign between (8.25) and (8.24) is compensated by the relative minus sign be-

tween (8.18) and (8.19) when computing the residue.
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8.2.3 Resumming the instantons and the general residue formula

In this section we elaborate on (8.9) and the previous discussion, and present a simple

residue formula that allows to compute the topological correlators in all Hori-Tong models.

We consider the physical limit qa = q for all a = 1, . . . , N to simplify some of the following

formulas. The generalization to the associated Cartan theory is straightforward, though

no longer necessary after resumming the instanton series.

We have seen that after resumming the instantons the quantum Coulomb branch vac-

uum equations naturally appear in the integrand. (We will refer for definiteness to for-

mula (8.25) and take ā = N with no loss of generality.) It is important to note that the

quantum Coulomb branch vacua, when they exist, are not isolated [51]: given a solution

(σ̂1, . . . , σ̂N ) to the vacuum equations, the rescaled λ(σ̂1, . . . , σ̂N ) is also a solution for any

λ ∈ C. This is a general property of RA-anomaly-free GLSM, that flow to non-trivial fixed

points: the quantum Coulomb branch vacuum equations are invariant under complexified

U(1)A transformations, that is a common rescaling of all the σ̃ variables. In the case at

hand, the vacuum equations are therefore N equations for N−1 variables, which only have

solutions if q is at the singular locus ∆(q) = 0 where the equations become dependent. In

that case the rescaling mode parametrizes a non-compact Coulomb branch and the CFT

is singular.

Let us then change variables from (σ̂1, . . . , σ̂N ) to (x1, . . . , xN−1, y), where

xa =
σ̂a
σ̂N

(a = 1, . . . , N − 1) , y =
N∏

a=1

σ̂1/Na , (8.26)

so that the rescaling (σ̂1, . . . , σ̂N ) 7→ λ(σ̂1, . . . , σ̂N ) translates to y 7→ λy with xa fixed.

In these new variables, using the notation xN = 1 and keeping σ̂N = y
∏N−1

a=1 x
1/N
a

temporarily to shorten some formulas, we obtain

IN (x, q) = − 1

1− (−1)N−Nf−1q
S∏

α=1
QQα

α

( N∑
a=1

xa

)Nf

N−1∏

a=1

1

1− x
−Nf
a

, (8.27)

Z1-loop(x, σ̂N ; 0) = (−1)
N(N−1)

2

∏

1≤a<b≤N

(xa − xb)
2 ·

S∏

α=1

Qα ·

(∑N
a=1 xa

)S

∏N−1
a=1 x

Nf
a

σ̂−N−d
N , (8.28)

where d = N(Nf −N)− S is the complex dimension of the compact Calabi-Yau. Finally,

the dimension d inserted operator is

O(σ̂) = σ̂dNO(x) (8.29)

and the integration measure is

dN σ̂ = σ̂NN
dy

y

N−1∏

a=1

dxa . (8.30)

Collecting all these ingredients together, we see that the factors of σ̂N cancel out. Next,

we see that the integral over the non-compact mode y decouples, giving
∮ dy

2πiy = 1. This is
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because the quantum Coulomb branch vacuum equations do not involve the rescaling mode

y, as is visible from (8.27). The integral over y simply imposes the U(1)A selection rule.

We are left with N − 1 contour integrals over xa, a = 1, . . . , N − 1. The contour encircles

the poles that solve the independent vacuum equations x
Nf
a = 1 for all a = 1, . . . , N − 1,

which are given by

xa = ωma
Nf

, ma = 0, . . . , Nf − 1 (8.31)

for all a = 1, . . . , N − 1, where ωNf
= e2πi/Nf denotes an Nf -th root of unity. In summary,

the correlators of the Hori-Tong GLSMs are given by the residue formula

〈O(σ)〉0 =
S∏

α=1

Qα · (−1)
N(N−1)

2

N !

∑

(m1,...,mN−1)∈Z
N−1
Nf

Res
xN−1=ω

mN−1
Nf

. . . Res
x1=ω

m1
Nf

[ ∏
1≤a<b≤N

(xa − xb)
2

]
·
( N∑

a=1
xa

)S
· O(x)

[
N−1∏
a=1

(x
Nf
a − 1)

] [
1 + (−1)N−Nf q

S∏
α=1

QQα
α

( N∑
a=1

xa

)Nf
] ,

(8.32)

where again xN = 1 is understood.

Formula (8.32) immediately reproduces the correlators computed using formula (8.8)

and presented in section 8.2 for Calabi-Yau threefolds. It can also be easily applied to

GLSMs that engineer higher-dimensional Calabi-Yau manifolds.

The residue formula (8.32) for twisted chiral correlators is closely related to the analysis

of the quantum Coulomb branch carried out in [51] using the effective twisted superpo-

tential that arises from integrating out all massive fields at a generic Coulomb branch

vacuum.34 The authors of [51] therefore considered all the quantum Coulomb branch

vacua around which all matter fields and W -bosons are massive, that is σ̂a 6= 0 for all a,∑N
a=1 σ̂a 6= 0, and σ̂a 6= σ̂b for all a 6= b. These conditions are implemented automatically

in (8.32): there are no poles at xa = 0,∞, whereas poles such that
∑N

a=1 xa = 0 or xa = xb
for some a 6= b have vanishing residue thanks to the numerator.

8.3 The Gulliksen-Neg̊ard CY3

The computations of the previous subsection can be repeated for the PAX/PAXY gauged

linear sigma models introduced in [70] to describe determinantal Calabi-Yau varieties.

PAX and PAXY models are related by the duality of [72]. In this subsection we compute

topological correlators in the PAX model of the Gulliksen-Neg̊ard Calabi-Yau threefold [73].

The matter content of the PAX model for the Gulliksen-Neg̊ard CY3 of [70] is listed

in table 6. The gauge group is U(1) × U(2), with complex scalars σ and Σ in the adjoint

representation of U(1) and U(2) respectively. There are 8 chiral multiplets Φα of charge

+1 under U(1), 4 chiral multiplets P i in the bifundamental representation of U(2)×U(1),

and 4 chiral multiplets Xi in the antifundamental representation of U(2), subject to a

superpotential

W = tr(PA(Φ)X) , (8.33)

where A(Φ) =
∑8

α=1A
αΦα and Aα are 8 constant 4× 4 matrices.

34The integers na introduced in [51] are related to ours by (n1, . . . , nN−1, nN ) = (m1, . . . ,mN−1, 0).
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Φα P i Xi FI

U(1)σ +1 −1 0 ξ0
U(2)Σ 1 2 2 ξ

U(1)R 0 0 2

Table 6. Gauge representations and vector R-charges of the chiral multiplets in the PAX GLSM

for the determinantal Gulliksen-Neg̊ard CY3.

For simplicity we will work in phase I of the GLSM of [70], corresponding to the cone

ξ0 + 2ξ > 0, ξ > 0 in FI space. Here ξ0 and ξ are FI parameters for the U(1) and U(2)

gauge groups respectively. In this phase the fields Φ and Pa acquire VEV, whereas Xa do

not (a = 1, 2 is a U(2) gauge index). In the associated Cartan theory, with FI parameters

(ξ1, ξ2) for the Cartan of U(2), the phase where Φ and Pa acquire VEV is given by the

chamber ξ0 + ξ1 + ξ2 > 0, ξ1 > 0, ξ2 > 0. Phase I of the non-abelian GLSM is obtained

when ξ1 = ξ2 = ξ > 0 and lies in the interior of this cone. Therefore the instanton sum

over the closure of the dual cone k0 ≥ 0, k1 − k0 ≥ 0, k2 − k0 ≥ 0 is convergent even for

physical values of the instanton expansion factor for U(2), q1 = q2 = q, to which we restrict

in the following.

The topological correlators are given by

〈O(σ,Σ)〉0 = −
∞∑

k0=0

∞∑

k1=k0

∞∑

k2=k0

qk00 (−q)k1+k2 Res
σ̂=0

Res
Σ̂2=σ

Res
Σ̂1=σ̂

1

2
(Σ̂1 − Σ̂2)

2·

· σ̂−8(k0+1)
2∏

a=1

[
(−Σ̂a)

4(ka+1)(−σ̂ + Σ̂a)
−4(−k0+ka+1)

]
O(σ̂, Σ̂) .

(8.34)

To compare with the notation of [33], we introduce z = q0q
2 and w = −q, so that the

above formula expresses the correlator as a Taylor series in z and w. By the selection rule

for the axial RA-symmetry, only correlators cubic in σ, Σ do not vanish.

We can obtain a simple alternative formula for the correlators by resumming the

instantons as in the previous section. Changing variables to x1 = Σ̂1/σ̂, x2 = Σ̂2/σ̂,

y = (Σ̂1Σ̂2σ)
1/3 and resumming the instanton series, we reach the residue formula

〈O(σ,Σ)〉0 = −1

2

3∑

m1,m2=0

Res
xa=

1

1−imaw1/4

(x1 − x2)
2(x1x2)

4O(1, x)

[1− z(x1x2)4]
2∏

a=1
[(xa − 1)4 − wx4a]

. (8.35)

Using the notation

σs ≡ σ , σt ≡ tr Σ− 2σ , (8.36)

for the linear combinations of σ, tr Σ conjugate to τ0 + 2τ and τ , the correlators read

〈σ3s〉 =
Nsss

∆
, 〈σ2sσt〉 =

Nsst

∆
, 〈σsσ2t 〉 =

Nstt

∆
, 〈σ3t 〉 =

Nttt

∆
,

〈σsu2(Σ)〉 =
Ns2

∆
, 〈σtu2(Σ)〉 =

Nt2

∆
, 〈u3(Σ)〉 =

N3

∆
, (8.37)
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where the denominator

∆(z, w) =
[
(1− w)4 − 2(1 + 6w + w2)z + z2

]
· [(1− w)8 − 4(1− w)4·

· (1− 34w + w2)z + 2(3 + 372w + 1298w2 + 372w3 + 3w4))z2+

− 4(1− 34w + w2)z3 + z4)]

(8.38)

determines the singular locus, in agreement with [33, 70], and the numerators are

Nsss =4(1− 2w + w2 − z)(1− 2w + w2 + z)·
· (5− 20w + 30w2 − 20w3 + 5w4 + 54z + 212wz + 54w2z + 5z2)

Nsst =4(5− 20w + 140w3 − 350w4 + 420w5 − 280w6 + 100w7 − 15w8+

+ 12z + 380wz − 480w2z − 840w3z + 1420w4z − 372w5z − 120w6z+

− 34z2 − 60wz2 + 60w3z2 + 34w4z2 + 12z3 + 212wz3 + 96w2z3 + 5z4)

Nstt =16(1 + 2w − 22w2 + 34w3 + 20w4 − 106w5 + 118w6 − 58w7 + 11w8+

− 2z + 62wz + 476w2z − 564w3z − 474w4z + 438w5z + 64w6z+

− 34wz2 − 94w2z2 − 94w3z2 − 34w4z2 + 2z3 − 30wz3 − 40w2z3 − z4)

Nttt =8(1 + 16w − 20w2 − 112w3 + 230w4 − 16w5 − 276w6 + 240w7+

− 63w8 − 4z − 64wz + 1380w2z + 4224w3z − 2332w4z − 2944w5z+

− 260w6z + 6z2 + 80wz2 + 564w2z2 + 688w3z2 + 198w4z2+

− 4z3 − 32wz3 + 124w2z3 + z4)

(8.39)

and

Ns2 =4(19− 52w − 88w2 + 556w3 − 970w4 + 836w5 − 368w6 + 68w7+

− w8 + 136z + 1412wz − 604w2z − 2904w3z + 1296w4z + 660w5z+

+ 4w6z − 74z2 + 148wz2 + 688w2z2 + 268w3z2 − 6w4z2+

− 80z3 + 28wz3 + 4w2z3 − z4)

Nt2 =8(9 + 16w − 124w2 + 64w3 + 350w4 − 624w5 + 404w6 − 96w7 + w8+

+ 4z + 768wz + 3604w2z − 96w3z − 3476w4z − 800w5z − 4w6z+

− 34z2 − 304wz2 − 532w2z2 − 160w3z2 + 6w4z2+

+ 20z3 + 32wz3 − 4w2z3 + z4)

N3 =4(21 + 132w − 912w2 + 1844w3 − 1630w4 + 524w5 + 88w6 − 68w7+

+ w8 + 160z + 3596wz + 6668w2z − 4776w3z − 5160w4z − 484w5z+

− 4w6z − 126z2 + 220wz2 + 1032w2z2 + 404w3z2 + 6w4z2+

− 56z3 + 148wz3 − 4w2z3 + z4) .

(8.40)

The cubic correlation functions given by the first line of (8.37) and (8.39) are Yukawa cou-

plings, which can be computed from mirror symmetry using standard techniques [11, 74].

In order to provide an independent check of our results, we performed that computation

using the Picard-Fuchs operators in [33], and we found perfect agreement. The correlation

functions given by the second line of (8.37) and (8.40) are intrinsically non-abelian, and,

to the best of our knowledge, their computation is a genuinely new result.
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9 Higgs branch localization and vortices

In this final section, we consider an alternative localization argument. For simplicity, we

only consider the special case of an abelian gauge group,

G = H =
n∏

a=1

U(1)a , (9.1)

with chiral multiplets Φi of R-charges ri, gauge charges Qa
i , and twisted masses mF

i . We

shall also assume that theory has isolated Higgs vacua. None of these assumptions are

strictly necessary. The generalization to a non-abelian G could be carried out similarly,

using the auxiliary Cartan theory, while the case of a continuous Higgs branch could be

dealt with like in [10]. Our main objective, here, is to explain how the structure of the

Coulomb branch formula can be understood as a more familiar sum over vortices [10].

Along the way, we introduce a simple ǫΩ-deformation of the vortex equations, which might

be of independent interest.

9.1 Localizing on the Higgs branch

Consider the localization Lagrangian:

Lloc =
1

e2
(LYM + LH) +

1

g2
L

Φ̃Φ
, (9.2)

where we introduced the (δ + δ̃)-exact term [26]:35

LH =
(
δ + δ̃

)(λa − λ̃a
2i

Ha(Ã,A)

)

= (D − 2if11̄ + iǫΩ(V1D1̄ − V1̄D1)σ̃)aH
a(Ã,A) + (fermions) ,

(9.3)

with Ha(Ã,A) some gauge-invariant function of the matter fields A, Ã. Note that this

localizing action is invariant under δ + δ̃ instead of δ and δ̃ separately, but this does not

cause any difficulty. The equation of motion for σ̃ is simply DµD
µσ̃ = O( e

2

g2
). We take a

double scaling limit where e2, g2 → 0 and e2

g2
→ 0, so that σ̃ is constant on any saddle. The

D integral is Gaussian and imposes

D + iǫΩ(V1D1̄ − V1̄D1)σ̃ = e20H(Ã,A) . (9.4)

We denote by Msusy the field configurations that satisfy the supersymmetry equa-

tions (2.47) and (2.48), as before. On the intersection with (9.4), we obtain

σ̃ = constant , 2if11̄ = e20H(Ã,A) ,

(Qi(σ) +mF
i )Ai = iǫΩL(a)

V Ai , Dz̄A = 0 ,
(9.5)

and

LV σ = 0 , D1σ + iǫΩV1 (2if11̄) = 0 . (9.6)

35See also [75–77] for further generalizations.
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Here e20 is the “bare” dimensionful YM coupling appearing in (2.34), to be distinguished

from the dimensionless e2 in (9.2). One can check that any solution to (9.5)–(9.6) also

solves the equation of motion of σ. From now on, we choose

Ha(Ã,A) =
∑

i

Qa
i ÃiAi − ξ̃a . (9.7)

Note that σ is not constant on the supersymmetric saddles, which allows for contribu-

tions from nontrivial topological sectors. The parameters ξ̃a in (9.7) are naturally identified

with the τ̃ couplings entering in (2.45), with τ̃a = −2iξ̃a/e2 like in (4.11). Unlike the phys-

ical FI parameters ξa, we can fix the couplings ξ̃a to our convenience. Their purpose is to

localize on supersymmetric configurations similar to the Higgs branch vortices in flat space.

We choose ξ̃a in a specific cone so that the vortex configurations, with A 6= 0, Higgses the

gauge group to a finite subgroup.

If A = Ã = 0, however, the localizing action (9.2) with (9.7) is the same as the

Coulomb branch localizing action (4.15), and one should worry that some Coulomb branch-

like configurations with the zero mode σ̂ turned on might contribute. We expect that these

additional configurations can be suppressed by sending ξ̃ → ∞ before taking the e2 → 0

limit. This scaling limit is also necessary to allow for vortices of arbitrarily large topological

number, as we review below.

The fluctuation determinants of massive chiral multiplets in the vortex background

can be computed by an index theorem (see appendix C and references therein). Note that

we are taking a double scaling limit (9.2), first sending e2 → 0 to localize on the vortex

saddles, and then sending g2 → 0 to compute the fluctuations determinants.

9.2 Vortex equations on S2
Ω

It is instructive to first study the vortex equations (9.5) in the special case G = U(1) with

a single chiral multiplet Φ of charge Q, R-charge r and twisted mass mF . The vortex

equations read36

2if11̄ = e20

(
Q|A|2 − ξ̃

)
,

(
∂z̄ − i

r

2
ωz̄ − iQaz̄

)
A = 0 ,

(
Qσ +mF +

r

2
ǫΩ

)
A = iǫΩV

µ (∂µ − iQaµ)A ,

(9.8)

together with the remaining supersymmetry equations (9.6). Let us consider a given topo-

logical sector with flux:

k =
1

2π

∫

S2

d2x
√
g(−2if11̄) , (9.9)

for the gauge field aµ. The field A can be viewed as a holomorphic section of

K r
2 ⊗O(k)Q ∼= O(Qk − r) , (9.10)

36Note that we take A and its complex conjugate Ã = A† in the frame basis.
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by virtue of the second equation in (9.8). Such sections exist if and only if Qk− r ≥ 0, and

they have Qk− r+1 simple zeros. On the S2
Ω background, these zeros must be partitioned

between the north and south poles by rotational invariance. The section A has a non-trivial

transition function, with

A(N) =
(z
z̄

) 1
2
(Qk−r)

A(S) , (9.11)

between the northern and southern hemispheres.37 (We write A = A(N), by default.)

Let us choose Q > 0 and ξ̃ > 0, for definiteness. Then, k is bounded from above

according to Qk − r ≤ Qe20ξ̃ vol(S
2)/2π. We consider a formal limit ξ̃ → ∞ such that all

vortex numbers are allowed. Consider the ansatz

A = ef1+if2 , (9.12)

where f1, f2 are real functions. Let us introduce the azimuthal angle φ with z = |z|eiφ. By
rotational symmetry, we have f1 = f1(|z|2), and f2 a linear function of φ. From (9.11), we

see that f
(N)
2 = f

(S)
2 + (Qk − r)φ. Using the second equation in (9.8), we can solve for a

real gauge field,

Qaµdx
µ +

r

2
ωµdx

µ = i(dz∂z − dz̄∂z̄)f1 + df2 . (9.13)

Plugging back into (9.8), we find an ordinary second order differential equation for f1(|z|2),
4

Qe20
√
g
∂|z|2

(
|z|2∂|z|2

(
f1 +

r

8
log g

))
= Qe2f1 − ξ̃ . (9.14)

Solutions of this equation are known to exist [78]. The two integration constants can be

taken to be the orders of the zeros ofA at the poles. Due to the topological constraint (9.11),

we really have a single integer parameter p:

A(N) ∼ zp , A(S) ∼
(
1

z

)−p+Qk−r

, p = 0, · · · , Qk − r . (9.15)

This is equivalent to

f
(N)
1 =

p

2
log |z|2 + · · · , f

(S)
1 =

p−Qk + r

2
log |z|2 + · · · . (9.16)

We therefore find a vortex configuration, schematically pictured in figure 11. There are

Qk − r + 1 distinct solutions for each flux k, labelled by the integer p in (9.15).

Finally, the third equation in (9.8) determines the profile of σ = σ(|z|2) in terms of

f1(|z|2):
Qσ = −mF − r

2
ǫΩ − 2ǫΩ|z|2∂|z|2

(
f1 +

r

8
log g

)
. (9.17)

We are only interested in the values of σ at the poles, which follow from (9.16):

QσN +mF = ǫΩ

(
−r
2
− p
)
, QσS +mF = ǫΩ

(
−r
2
− p+Qk

)
. (9.18)

Of course, (9.18) satisfies the supersymmetry relation (2.53), σS − σN = ǫΩk.

37Recall that a section ϕ of O(n) transforms as ϕ(N) = znϕ(S) between patches. Thus, more precisely,

A is a section of the U(1) line bundle, with first Chern class Qk − r, canonically associated to O(Qk − r).

Correspondingly, the gauge field aµ can be chosen real.
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ξ̂

|z|2=0 |z|2=∞

-2if11-Q|A|2

Figure 11. The profile of Q|A|2 and of the gauge field flux (−2if11̄) on the sphere (with

e20 = 1). The flux is localized near the poles (|z|2 = 0 and |z|2 = ∞), where |A|2 vanishes, with size

proportional to 1/(e0ξ̃
1/2).

9.3 Higgs branch localization formula

Consider an abelian GLSM with gauge charges Qa
i , as above. We denote by (H) a solution

of the equations

∑

i

Qa
i |Ai|2 = ξ̃a (∀a) ,

(
Qi(σ) +mF

i +
ri
2
ǫΩ

)
Ai = 0 (∀i) , (9.19)

such that at least n distinct fields Aj , with linearly independent charges Qj ∈ h∗, get a

VEV, fully Higgsing the gauge group to a discrete subgroup. We further restrict ourselves

to the case when the “Higgs vacua” (H) are isolated: that is, the VEVs of Aj cannot be

varied continuously. This can be achieved by turning on generic twisted masses mF , if there

are no chiral fields with the same quantum numbers. In that case, exactly n fields Aj get a

VEV in a given Higgs vacuum. Let us introduce J = {j1, · · · , jn} labeling the n fields Aj

that get a VEV in (H). For each such (H), there exist n distinct types of vortices behaving

like in (9.15) — that is, one has a tower of vortices indexed by (kH , pH) for each j ∈ J , with

Qj(kH) − rj ≥ 0 ∀j ∈ J . Here kH = (kH,a)
n
a=1 are the fluxes of the vortex configuration,

and pH = (pH,j)j∈J with 0 ≤ pH,j ≤ Qj(kH)− rj are the orders of zeros of A(N)
j .

The values of σN and σS on the Higgs vacuum (H) are determined by (9.18). More

precisely, one needs to solve the linear system

Qj(σN |H) +mF
j = ǫΩ

(
−rj

2
− pH,j

)
∀j ∈ J (9.20)

to determine σN |H in terms of the twisted masses, R- and gauge charges, and pH . Then

σS |H = σN |H + kHǫΩ by supersymmetry.

From the previous discussions, it is clear that the Higgs branch localization formula

takes the form of a sum over vortices:

〈
O(N)(σN )O(S)(σS)

〉
=
∑

(H)

∑

kH

qk
∑

pH

Zvortex
kH ,pH

Zmassive
kH ,pH

O(N)(σN |H)O(S)(σS |H) . (9.21)
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Here, we have defined the vortex contribution

Zvortex
kH ,pH

= Res
σN→σN |H

∏

j∈J

ǫΩ
rj−1−Qj(kH)

Γ

(
Qj(σN )+mF

j

ǫΩ
+

rj
2

)

Γ

(
Qj(σN+kHǫΩ)+mF

j

ǫΩ
+

2−rj
2

) , (9.22)

which correspond to the fluctuations of the chiral multiplets Aj , j ∈ J , with the mass-

less modes indexed by pH,j removed. We used the one-loop determinant (C.7) and the

supersymmetry condition σS = σN +kHǫΩ, and removed the massless modes by taking the

(multi-dimensional) residue. Eq. (9.22) depends on pH through the solution σN |H to (9.20).

The remaining contribution is from all the chiral multiplets which do not participate

in the vortices of (H):

Zmassive
kH ,pH

=
∏

i/∈J

ǫΩ
ri−1−Qi(kH)

Γ
(
Qi(σN |H)+mF

i
ǫΩ

+ ri
2

)

Γ
(
Qi(σN |H+kHǫΩ)+mF

i
ǫΩ

+ 2−ri
2

) . (9.23)

As expected, the residues picked up by the Coulomb branch formula (4.51) correspond

precisely to the vortices discussed here. The singularities of the integrand (4.50) occur

wherever some chiral multiplet has a massless mode, corresponding to the existence of

holomorphic sections for A. By our assumption of isolated Higgs vacua, these singularities

correspond to regular hyperplane arrangements, and the JK residue becomes an iterated

residue.

9.4 Elementary examples

Let us illustrate (9.21) with some elementary examples. The simplest example is the

abelian Higgs model discussed in section 7.1. In that case, there is a single field with a

single Higgs vacuum with residual ZQ gauge symmetry, and the vortex solutions are the

ones of subsection 9.2, with r = 0. The Higgs branch formula (9.21) reads

〈
O(N)(σN )O(S)(σS)

〉
=
∑

k≥0

qk
Qk∑

p=0

Zvortex
k,p O(N)

(
− p

Q
ǫΩ

)
O(S)

((
− p

Q
+ k

)
ǫΩ

)
, (9.24)

with the vortex contribution

Zvortex
k,p =

1

Q ǫΩ
Qk

(−1)p

p!(Qk − p)!
. (9.25)

This obviously agrees with (7.4). The “S2
Ω vortex partition function” (9.25) can be under-

stood as a simple gluing of flat-space vortex partition functions computed in [79].

Another simple example is the CP
N−1 model discussed in section 7.2, with generic

twisted masses mF
i = −mi. We have N distinct vacua (H) labelled by i, with a single Ai

taking VEV in each. Therefore, (9.21) gives a sum over n vacua, where in each vacuum

i we have a contribution Zvortex
ki,pi

equal to (9.25) with Q = 1, and σN |H = mi − piǫΩ,

σS |H = mi + (ki − pi)ǫΩ. This precisely reproduces (7.18).
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A Notations and conventions

We closely follow the notations of [3], but we shall make a few convenient field redefinitions.

Moreover, we have ǫΩ equal to −iǫ[CC]
Ω in [3], and the sign of our FI parameter ξ is opposite

to the one of [3].

Let us consider the Riemann sphere with complex coordinates z, z̄, which cover the

whole S2 except for the south pole at z = z̄ = ∞. We consider a metric

ds2 = 2gzz̄(z, z̄)dzdz̄ , (A.1)

with a real Killing vector V = iz∂z − iz̄∂z̄, but otherwise arbitrary. We work in the

canonical frame

e1 = g
1
4dz , e1̄ = g

1
4dz̄ , (A.2)

with
√
g = 2gzz̄ by definition. Throughout the paper, we generally work with fields of

definite spin, which can be obtained from geometric objects by multiplication with the

vielbein. For instance, an holomorphic one-form Xz will be written as a spin 1 field

X1 = ez1Xz, in term of the inverse vielbein ez1 = g−
1
4 . The spin connection is given by

ωz = − i

4
∂z log g , ωz̄ =

i

4
∂z̄ log g . (A.3)

Note that, in our conventions, the Ricci scalar R is negative on the round sphere. The

covariant derivative on a field of spin s ∈ 1
2Z is

Dµϕ(s) = (∂µ − isωµ)ϕ(s) . (A.4)

We generally write down derivatives in the frame basis as well: D1ϕ(s) = ez1Dzϕ(s) and

D1̄ϕ(s) = ez̄
1̄
Dz̄ϕ(s). The Lie derivative along V of a field of definite spin reads:

LV ϕ(s) = [V µDµ + 2s(D1V1̄)]ϕ(s) . (A.5)

One can check that it is independent of the metric. Note that D1V1̄ = −D1̄V1 by the Killing

equation. We refer to appendix A of [3] for more details on our curved-space conventions.
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A.1 A-twisted fields

It is very convenient to use field variables adapted to the supersymmetries of S2
Ω. These

variables are the so-called “A-twisted” variables (or rather an ǫΩ-deformation thereof).

They are given by a simple field redefinition in terms of the “physical” variables discussed

in [3].

Let us denote by ϕ[CC] any physical field ϕ in the notation of [3]. For the bosonic

components of the vector multiplet V, we define:

aµ = a[CC]
µ +

1

2
ǫΩσ̃

[CC]Vµ ,

σ = σ[CC] +
1

4
ǫΩ

2σ̃[CC]V µVµ ,

σ̃ = σ̃[CC] ,

D = D[CC] − iǫΩ(V1D1̄ − V1̄D1)σ̃
[CC] .

(A.6)

This ǫΩ-dependent redefinition simplifies many formulas. For the fermionic components of

V, we define38

Λ1 = ζ̃−

(
λ
[CC]
− − iǫΩλ

[CC]
+ V1

)
,

Λ̃1̄ = ζ+

(
λ̃
[CC]
+ + iǫΩλ̃

[CC]
− V1̄

)
,

λ = ζ̃−λ
[CC]
+ ,

λ̃ = ζ+λ̃
[CC]
− ,

(A.7)

in terms of the Killing spinors (2.7). By construction, the A-twisted fields have vanishing

R-charge and “twisted spin” s = s0 +
r
2 . (For instance, the gaugino λ

[CC]
+ has r = 1 and

s0 = −1
2 , giving us the scalar gaugino λ.)

Similarly, for the chiral multiplet Φ of R-charge r and the antichiral multiplet Φ̃ of

R-charge −r, we introduce the A-twisted variables

A = (p̃z)
r
2 φ[CC] , Ã = (pz̄)

r
2 φ̃[CC] ,

B =
√
2(p̃z)

r
2 (ζ+ψ

[CC]
− − ζ−ψ

[CC]
+ ) , B̃ = −

√
2(pz̄)

r
2 (ζ̃+ψ̃

[CC]
− − ζ̃−ψ̃

[CC]
+ ) ,

C =
1√
2
(p̃z)

r
2 pz̄ ζ̃−ψ

[CC]
+ , C̃ =

1√
2
(pz̄)

r
2 p̃z ζ+ψ̃

[CC]
− ,

F = (p̃z)
r
2 pz̄ F

[CC] , F̃ = (pz̄)
r
2 p̃z F̃

[CC] .

(A.8)

Here we defined

pz̄ = −g 1
4 (ζ+)

2 , p̃z = g
1
4 (ζ̃−)

2 , (A.9)

which are nowhere vanishing sections of K̄ ⊗ L2 and K ⊗ L−2, respectively, with L the

U(1)R line bundle for fields of R-charge 1.

For the twisted chiral multiplet Ω, we define

ω = ω[CC] , Hz =
1√
2
g

1
4 ζ̃−η

[CC]
− , H̃z̄ =

1√
2
g

1
4 ζ+η̃

[CC]
+ , G = G[CC] , (A.10)

38All these definitions of the A-twisted fields are written modulo powers of ζ̃−ζ+ = 1, which do not affect

the discussion of the spin and vector R-charge, but matter if we want to keep track of the axial R-charge.
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while for the twisted antichiral multiplet Ω̃:

ω̃ = ω̃[CC] , h̃ =
1√
2
ζ+η̃

[CC]
− , h =

1√
2
ζ̃−η

[CC]
+ , G̃ = G̃[CC] . (A.11)

Note that all these “A-twisted fields” are given by a simple change of variables on a

particular supersymmetric curved-space background. As emphasized in [81] in a closely

related context, the “topological twist” and “rigid supersymmetry” approaches to super-

symmetry on curved space should be considered as two faces of the same coin.

B More about supersymmetry multiplets

For completeness, let us discuss the case of a general multiplet whose lowest component is

a scalar C of vanishing R- and Z, Z̃-charges, A-in twisted notations:

S =
(
C , χ , χ̃ , χ1̄ , χ̃1 , M1̄ , M̃1 , aµ , σ , σ̃ , Λ1 , λ , Λ̃1̄ , λ̃ , D

)
. (B.1)

The lower components of (B.1) are related to the ones of [3] by:

C = C [CC] , χ = ζ+χ
[CC]
− − ζ−χ

[CC]
+ , χ̃ = ζ̃−χ̃

[CC]
+ − ζ̃+χ̃

[CC]
− ,

χ1̄ = ζ+χ
[CC]
+ , χ̃1 = ζ̃−χ̃

[CC]
− , M1̄ = ζ+ζ+M

[CC] , M̃1 = ζ̃−ζ̃−M
[CC] , (B.2)

and the higher components are defined as in (A.6)–(A.7). The supersymmetry variations

are given by

δC = iχ , δ̃C = −iχ̃ ,
δχ = 0 , δ̃χ = −σ + ǫΩV

µaµ − iǫΩLV C ,

δχ̃ = −σ + ǫΩV
µaµ + iǫΩLV C , δ̃χ̃ = 0 ,

δχ1̄ =M1̄ , δ̃χ1̄ = 2D1̄C + 2ia1̄ ,

δχ̃1 = 2D1C − 2ia1 , δ̃χ̃1 = M̃1 ,

δM1̄ = 0 , δ̃M1̄ = 2Λ̃1̄ − 4iD1̄χ+ 2ǫΩLV χ1̄ ,

δM̃1 = 2Λ1 + 4iD1χ̃+ 2ǫΩLV χ̃1 , δ̃M̃1 = 0 ,

(B.3)

δa1 = D1χ , δ̃a1 = −iΛ1 +D1χ̃ ,

δa1̄ = iΛ̃1̄ +D1̄χ , δ̃a1̄ = D1̄χ̃ ,

δσ = 2iǫΩV1Λ̃1̄ , δ̃σ = −2iǫΩV1̄Λ1 ,

δσ̃ = −2λ̃ , δ̃σ̃ = −2λ ,

δΛ1 = −4iǫΩV1(D1a1̄ −D1̄a1) + 2iD1σ , δ̃Λ1 = 0 ,

δΛ̃1̄ = 0 , δ̃Λ̃1̄ = −4iǫΩV1̄(D1a1̄ −D1̄a1)

− 2iD1̄σ ,

δλ = iD + (D1a1̄ −D1̄a1)− 2ǫΩV1D1̄σ̃ , δ̃λ = 0 ,

δλ̃ = 0 , δ̃λ̃ = −iD − 2(D1a1̄ −D1̄a1)

− 2ǫΩV1̄D1σ̃ ,

δD = −2D1Λ̃1̄ + 4iǫΩV1D1̄λ̃ δ̃D = −D1̄Λ1 − 4iǫΩV1̄D1λ ,

(B.4)

which realize the algebra (2.8) with vanishing central charge.
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The vector multiplet V is a particular instance of (B.1), with the gauge invariance

parameterized by chiral and antichiral multiplets of vanishing charges. In WZ gauge, it

reduces to (2.10). As one can readily check, the twisted chiral multiplet (2.22) is also em-

bedded in (B.1), by the constraint χ = χ̃ = 0, while the twisted antichiral multiplet (2.24)

is embedded in (B.1) by the constraint χ1̄ = χ̃1 = 0 [3].

A D-term supersymmetric Lagrangian is obtained from any neutral general multi-

plet (B.1):

LD = D − σ̃H . (B.5)

This is supersymmetric by virtue of (B.4). Note also that (B.5) is always δ-, δ̃-exact, since

LD = δδ̃

(
i

2
σ̃

)
, (B.6)

up to a total derivative. The equations (2.33) and (2.33) are instances of this relation. The

FI parameter term in (2.46) is not in this class because the vector multiplet is not gauge

invariant.

C One-loop determinants

In this appendix, we collect some details on the computation of the needed one-loop deter-

minants, for the chiral and vector multiplets in the background of a supersymmetric vector

multiplet configuration.

C.1 Chiral multiplet determinant

Consider a chiral Φ of R-charge r and gauge charge Q under a U(1) vector multiplet V.
(The generalization to the general case is immediate.) On any supersymmetric configura-

tion (2.47) of V (and setting all the gaugini to zero), the chiral multiplet Lagrangian (2.35)

becomes

L
Φ̃Φ

= Ã∆bosA+ (B̃, C̃)∆fer

(
B
C

)
− F̃F , (C.1)

∆bos = −4D1D1̄ − Qσ̃
(
−Qσ + iǫΩL(a)

V

)
,

∆fer = −2i

(
1
4Qσ̃ −D1

D1̄ −Qσ + iǫΩL(a)
V

)
. (C.2)

Due to supersymmetry, the bosonic and fermionic operators are related by39

− 2i∆fer

(
−Qσ + iǫΩL(a)

V 0

−D1̄ 1

)
=

(
∆bos 4D1

0 −4
(
−Qσ + iǫΩL(a)

V

)
)
. (C.3)

The operator D1̄ naturally maps between two Hilbert spaces for the fields of spin r
2 and

r
2 − 1 (with r = r −Qk):

D1̄ : H r

2
→ H r−2

2
. (C.4)

39One needs to use
[
D1̄ , −Qσ + iǫΩL

(a)
V

]
= 0, which can be proven using (2.47).
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With some linear algebra, one finds

ZΦ =
det∆fer

det∆bos
=

detcokerD1̄
(−Qσ + iǫΩL(a)

V )

detkerD1̄
(−Qσ + iǫΩL(a)

V )
, (C.5)

up to an overall normalization. The kernel of (C.4) on S2 is spanned by holomorphic

sections of O(−r). Not coincidentally, this pairing between bosonic and fermionic modes

works exactly like in [48].

Consider first the case of a constant supersymmetric background for V, so that σ = σ̂,

σ̃ = ˜̂σ are constant, and aµ = 0 with k = 0. Then (C.5) can be computed very explicitly

and one finds

ZΦ = Z(r)(Qσ; ǫΩ) , (C.6)

with the function Z defined in (4.41). More generally, consider a supersymmetric back-

ground with U(1) flux k and a non-trivial profile of σ(|z|2), with values σN and σS at the

poles. Following [26, 82], we can use the equivariant index theorem to show that

ZΦ =

∞∏

n=0

QσS +
(
2−r
2 + n

)
ǫΩ

QσN +
(
r
2 + n

)
ǫΩ

= ǫΩ
r−Qk−1

Γ
(
Q(σN )
ǫΩ

+ r
2

)

Γ
(
Q(σS)
ǫΩ

+ 2−r
2

) , (C.7)

where we used that σS − σN = ǫΩk on a supersymmetric background. On the Coulomb

branch saddle (4.28), this leads to (4.42).

Note that only a finite number of modes ever contribute to (C.5). Consequently, the

one-loop determinant (C.7) is perfectly finite. The only regularization ambiguity is a sign

ambiguity, which we have fixed in agreement with [10].

C.2 Chiral multiplet determinant with D̂ 6= 0

In the Coulomb branch localization approach with saddle (4.28), we also need to consider

the case of a chiral multiplet in the background of a zero-mode multiplet (4.30). In such a

background, the Lagrangian (2.35) reads

L
Φ̃Φ

= Ã
(
∆bos + iQD̂

)
A+ (B̃, C̃)∆fer

(
B
C

)
− F̃F + iBλ̃A+ ÃλB , (C.8)

with the kinetic operators defined in (C.2). The Gaussian integral with Lagrangian (C.8)

is supersymmetric, and leads to a superdeterminant ZΦ(σ̂, ˜̂σ, λ, λ̃, D̂). We are really inter-

ested in

ZΦ(σ̂, ˜̂σ, λ, λ̃, D̂) = ZΦ(σ̂, ˜̂σ, 0, 0, D̂) . (C.9)

This has to be computed without the help of supersymmetry, unfortunately. We will thus

consider a round metric of unit radius and restrict ourselves to the vanishing flux sector,

r = r, with constant background σ = σ̂, σ̃ = ˜̂σ. On the round S2, we find:

∆bos = ∆r
S2 +

r

2
−Q˜̂σ (−Qσ̂ + iǫΩLV ) ,

∆fer = −i 6∇r
S2 +

(
− i

2Q
˜̂σ 0

0 −2i
(
−Qσ̂ + iǫΩL(a)

V

)
)
.

(C.10)
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Here ∆r
S2 is the scalar Laplacian in a monopole background of charge r:

∆r
S2 = −(1 + zz̄)2∂z∂z̄ −

r

2
(1 + zz̄)

(
z∂z − z̄∂z̄ −

r

2

)
− r2

4
. (C.11)

and −i 6∇r
S2 is the Dirac operator in that same background, acting on (B, C)T :40

− i 6∇r
S2 = −i

(
0 (1 + zz̄)∂z̄ +

1
2(r− 2)z

(1 + zz̄)∂z − 1
2rz̄ 0

)
. (C.12)

The spectrum of these operators is well-known — see [48] and references therein. Let us

define

j0(r) =
|r− 1|

2
− 1

2
. (C.13)

The generic eigenvalues of ∆bos are

Λj,m = j(j + 1)− r

2
(
r

2
− 1) +Q˜̂σ(Qσ̂ +mǫΩ) , (C.14)

with j = j0 + 1, j0 + 2, · · · , and m = −j,−j + 1, · · · , j, for any r. Similarly, the generic

eigenvalues of ∆fer come in pairs, λ
(+)
j,m and λ

(−)
j,m, with −λ(+)

j,mλ
(−)
j,m = Λj,m. For r 6= 0, there

are unpaired eigenvalues corresponding to zero modes. If r < 1, there is some additional

bosonic mode of momentum j = j0, which is only partially paired with a single fermionic

zero mode. If r > 1, there is an unpaired fermionic zero mode with j = j0.

The final answer for the one-loop determinant is the infinite product:

ZΦ(σ̂, ˜̂σ, D̂) = Z(0)(σ̂, ˜̂σ, D̂)·
∏

|m|≤j

j>j0(r)

Q˜̂σ(Qσ̂ + ǫΩm) + j(j + 1)− r
2(

r
2 − 1)

iQD̂ +Q˜̂σ(Qσ̂ + ǫΩm) + j(j + 1)− r
2(

r
2 − 1)

. (C.15)

where

Z(0)(σ̂, ˜̂σ, D̂) =





∏r/2−1
m=−r/2+1(Qσ̂ + ǫΩm) if r > 1 ,

1 if r = 1 ,
∏|r|/2

m=−|r|/2

˜̂σ
˜̂σ(Qσ̂+ǫΩm)+iD̂

if r < 1 ,

(C.16)

is the zero-mode contribution. Note that (C.15) holds up to a possible sign ambiguity.

For D̂ = 0, this reproduces the holomorphic result (4.42). For ǫΩ = 0, it is easy to

see that (C.15) also holds in the presence of flux, whose only effect is to shift r = r to

r = r−Qk. From there, it is a small leap of faith to our claiming that (C.15) is the correct

answer in the general case.

C.2.1 The large σ̂ limit of the one-loop determinant

In section 5, we consider the large |σ̂| limit of the determinant (C.15). Let us consider the

large-|σ̂| limit of

f(σ̂, ie2D̂′) =
∞∏

j=0

j∏

m=−j

|σ̂|2 + ǫΩm¯̂σ + C + j(j + 1)

ie2D̂′ + |σ̂|2 + ǫΩm¯̂σ + C + j(j + 1)
, (C.17)

40We are closely following appendix A of [48], to which we refer for more details. Beware that the analog

of our fermionic fields B and C is denoted there by C and B, respectively.
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where C is an arbitrary constant. We are interested in the limit where |σ̂| is taken to

infinity as e is taken to zero so that

e → 0, R = |σ̂|1/e2 → ∞ . (C.18)

Here, we provide evidence that

lim
e→0
R→∞

f(σ̂, ie2D̂′) ≈ exp
(
2i(1 + ǫΩ

′α)D̂′ logR
)
, (C.19)

where α
ǫΩ

′ is function of

ǫΩ
′ ≡

¯̂σ

|σ̂|ǫΩ (C.20)

that is well behaved in a neighborhood of ǫΩ = 0. In particular, α
ǫΩ

′ is regular at ǫΩ = 0

and thus

lim
e→0
R→∞

f(σ̂, ie2D̂′)|ǫΩ=0 ≈ exp
(
2iD̂′ logR

)
. (C.21)

The symbol ≈ is used to imply that the proportionality constant of the left and the right

hand side of the equation asymptotes to unity.

We use the fact that the asymptotics of f(σ̂, ie2D̂′) is well estimated by

f̃(σ̂, ie2D̂′) =

∞∏

j=0

j∏

m=−j

|σ̂|2 + ǫΩj ¯̂σ + C + j(j + 1)

ie2D̂′ + |σ̂|2 + ǫΩj ¯̂σ + C + j(j + 1)

=

∞∏

j=0

(
|σ̂|2 + ǫΩj ¯̂σ + C + j(j + 1)

ie2D̂′ + |σ̂|2 + ǫΩj ¯̂σ + C + j(j + 1)

)2j+1

.

(C.22)

This follows from the fact that for ∆ much smaller than |σ̂|, and small ǫΩ,

g(−j) ≤ g(m) ≤ g(j) (C.23)

for

g(m) ≡ |σ̂|2 + ǫΩm¯̂σ + C + j(j + 1)

∆ + |σ̂|2 + ǫΩm¯̂σ + C + j(j + 1)
(C.24)

when ǫΩσ̂ is real and (∆¯̂σǫΩ) is a positive real number.

f̃(σ̂, ie2D̂′) can be computed using ζ-function regularization. In particular, it is simple

to obtain

log f̃(σ̂, ie2D̂′) = 2ζ ′(−1, ã+)− 2ζ ′(−1, a+) + 2ζ ′(−1, ã−)− 2ζ ′(−1, a−)

+ (1− 2ã+)ζ
′(0, ã+)− (1− 2a+)ζ

′(0, a+)

+ (1− 2ã−)ζ
′(0, ã−)− (1− 2a−)ζ

′(0, a−) .

(C.25)

where ζ(s, a) is the Hurwitz zeta function:

ζ(s, a) =
∞∑

n=0

1

(n+ a)s
, ζ ′(s, a) = ∂sζ(s, a) . (C.26)
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We have defined

a± = −ǫΩσ̂ + 1

2
±
√(

ǫΩσ̂ + 1

2

)2

− (|σ̂|2 + C)

ã± = −ǫΩσ̂ + 1

2
±
√(

ǫΩσ̂ + 1

2

)2

− (|σ̂|2 + C + ie2D̂) .

(C.27)

Using the asymptotic expansions of the Hurwitz zeta function,

ζ ′(0, a) =

(
a− 1

2

)
log a− a+O(a−1) ,

ζ ′(−1, a) =

(
1

2
a2 − 1

2
a− 1

12

)
log a− 1

4
a2 +

1

12
+O(a−2) ,

(C.28)

we find that

log f̃(σ̂, ie2D̂′) ≈ 2ie2D̂

(
1− ǫΩ

′

√
ǫΩ

′2 − 4

)
ln |σ̂| (C.29)

up to terms that vanish in the limit (C.18). Thus

lim
e→0
R→∞

f̃(σ̂, ie2D̂′) ≈ exp

(
2iD̂

(
1− ǫΩ

′

√
ǫΩ

′2 − 4

)
R

)
. (C.30)

Since (ǫΩ
′2−4)−1/2 behaves regularly in a small enough neighborhood of ǫΩ

′ = 0, assuming

that the asymptotic behavior of f̃(σ̂, ie2D̂′) approximates that of f(σ̂, ie2D̂′) well, our

assumption (C.19) is justified.

C.3 Gauge-fixing of the SYM Lagrangian

Consider a non-abelian vector multiplet on S2
Ω with the SYM Lagrangian (2.34). It is

invariant under the gauge group G. We can introduce BRST ghosts and auxiliary fields

c, c̃, b in the adjoint of g = Lie(G), in the standard way. The BRST transformations on

ordinary fields are

saµ = Dµc , sϕb = i[c, ϕb] , sϕf = i{c, ϕf} , (C.31)

where s denotes the BRST symmetry generator, and ϕb,f stand for the bosonic and

fermionic fields in the vector multiplet except aµ. We also have

sc =
i

2
{c, c} , sc̃ = −b , sb = 0 . (C.32)

One easily checks that s2 = 0 using the Jacobi identity for g. Moreover, s anticommutes

with supersymmetry:

{s, δ} = 0 , {s, δ̃} = 0 , (C.33)

given that δ, δ̃ act trivially on c̃, c and b. One can then define the new supersymmetry

transformations δ′ = δ + s and δ̃′ = δ̃ + s. All gauge invariant Lagrangians are still
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invariant under δ′, δ̃′. The standard gauge-fixing action is a BRST-exact term. More

precisely, we take

Lgf =
1

2
(δ′ + δ̃′)

(
c̃(Ggf +

ξgf
2
b)

)
= s

(
c̃(Ggf +

ξgf
2
b)

)
+

1

2
c̃(δ + δ̃)Ggf , (C.34)

for some gauge-fixing function Ggf of the physical fields. The additional term in the

r.h.s. of (C.34) is needed for supersymmetry but does not affect the one-loop answer [82].

Integrating out b, we obtain

Lgf =
1

2ξgf
(Ggf )

2 +Dµc̃D
µc+ · · · . (C.35)

On S2, the ghost c itself has a shift symmetry, which can be gauged-fixed as in [82]. (We

will be glib about it and simply remove the constant mode of c by hand.) We shall consider

a convenient gauge-fixing function,

Ggf = Dµa
µ +

i

2
ξgf [σ, σ̃] +

√
ξgf
2

ǫΩL(a)
V σ̃ , (C.36)

which is particularly adapted to the Coulomb branch.

C.4 Vector multiplet one-loop determinant

Let us consider the algebra g in the Cartan-Weyl basis Eα, Ha, where a runs over the

Cartan subalgebra and α denotes the non-vanishing roots. We have

[Ha, Eα] = αaEα , [Ha, Hb] = 0 , [Eα, E−α] =
2

|α|2αaHa . (C.37)

One can expand the gauged-fixed Yang-Mills Lagrangian,

LYM + Lgf , (C.38)

in this basis, with ϕ = ϕaHa +ϕαEα for every field. For simplicity, consider a background

where σ, σ̃ take constant values, σa = σ̂a and σ̃a = ˜̂σa. Expanding at second order in

the fluctuations around σ̂, ˜̂σ, a straightforward computation shows that, if we choose the

gauge-fixing function (C.36) and the Feynman-like gauge ξgf = 1, the kinetic term be-

comes diagonal between aµ and σ, σ̃, up to terms that do not contribute to the one-loop

determinant. We then obtain a simple contribution

LYM + Lgf ⊃ 1

2
Dµσ̃D

µσ +Dµc̃D
µc , (C.39)

so that the ghost determinant completely cancels the determinant from σ, σ̃. The fluctu-

ations along the Cartan of g can be shown to give a trivial contribution. The remaining

terms come from the W -bosons and their fermionic partners, leading to:

LYM + Lgf ⊃
∑

α

Tr

(
2a

(−α)

1̄
∆

(α)
bos a

(α)
1 +

1

2

(
2Λ̃

(−α)

1̄
, λ̃(−α)

)
∆

(α)
fer

(
2Λ

(α)
1

λ(α)

))
, (C.40)

– 105 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

up to terms which cannot contribute to the one-loop determinants. Here we defined

∆
(α)
bos = −4D1D1̄−α(˜̂σ) (α(σ̂) + iǫΩLV ) , ∆

(α)
fer = −2i

(
α(˜̂σ)
4 −D1

D1̄ −α(σ̂) + iǫΩLV

)
. (C.41)

This shows that the supersymmetric W -boson contributes exactly like a chiral multiplet

of R-charge r = 2 on S2
Ω, with a1, a1̄ playing the role of the fields A, Ã in the chiral and

antichiral multiplets (in particular, A = a1 has the correct spin r
2 = 1). To generalize this

argument, we just note that the fermionic kinetic term for the fluctuations, as computed

from (2.34), is of the same form as ∆fer in (C.2) (with r = 2) for any supersymmetric

background V. This leads to (4.44). (More precisely, it strongly suggests it. One can also

check that answer with an index theorem computation.)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Topological Sigma Models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE]

[2] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP

06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

[3] C. Closset and S. Cremonesi, Comments on N = (2, 2) supersymmetry on two-manifolds,

JHEP 07 (2014) 075 [arXiv:1404.2636] [INSPIRE].

[4] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042] [INSPIRE].

[5] P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B

125 (1977) 1 [INSPIRE].

[6] F. Englert and P. Windey, Quantization Condition for ’t Hooft Monopoles in Compact

Simple Lie Groups, Phys. Rev. D 14 (1976) 2728 [INSPIRE].

[7] L.C. Jeffrey and F.C. Kirwan, Localization for nonabelian group actions, Topology 34 (1995)

291.

[8] M. Brion and M. Vergne, Arrangements of hyperplanes I: Rational functions and

Jeffrey-Kirwan residue, math/9903178.

[9] A. Szenes and M. Vergne, Toric reduction and a conjecture of Batyrev and Materov, Invent.

Math. 158 (2004) 453 [math/0306311].

[10] D.R. Morrison and M.R. Plesser, Summing the instantons: Quantum cohomology and mirror

symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].

[11] P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as

an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].

[12] P.S. Aspinwall, B.R. Greene and D.R. Morrison, The Monomial divisor mirror map,

alg-geom/9309007 [INSPIRE].

[13] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].

– 106 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/BF01466725
http://inspirehep.net/search?p=find+J+CMPHA,118,411
http://dx.doi.org/10.1007/JHEP06(2011)114
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
http://dx.doi.org/10.1007/JHEP07(2014)075
http://arxiv.org/abs/1404.2636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2636
http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://arxiv.org/abs/hep-th/9301042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9301042
http://dx.doi.org/10.1016/0550-3213(77)90221-8
http://dx.doi.org/10.1016/0550-3213(77)90221-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B125,1
http://dx.doi.org/10.1103/PhysRevD.14.2728
http://inspirehep.net/search?p=find+J+Phys.Rev.,D14,2728
http://arxiv.org/abs/math/9903178
http://dx.doi.org/10.1007/s00222-004-0375-2
http://dx.doi.org/10.1007/s00222-004-0375-2
http://arxiv.org/abs/math/0306311
http://dx.doi.org/10.1016/0550-3213(95)00061-V
http://arxiv.org/abs/hep-th/9412236
http://inspirehep.net/search?p=find+EPRINT+hep-th/9412236
http://dx.doi.org/10.1016/0550-3213(91)90292-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B359,21
http://arxiv.org/abs/alg-geom/9309007
http://inspirehep.net/search?p=find+EPRINT+alg-geom/9309007
http://arxiv.org/abs/hep-th/0002222
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002222


J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

[14] A. Losev, N. Nekrasov and S.L. Shatashvili, The Freckled instantons, hep-th/9908204

[INSPIRE].

[15] I.V. Melnikov and M.R. Plesser, A-model correlators from the Coulomb branch,

hep-th/0507187 [INSPIRE].

[16] J. Guffin and E. Sharpe, A-twisted Landau-Ginzburg models, J. Geom. Phys. 59 (2009) 1547

[arXiv:0801.3836] [INSPIRE].

[17] N.A. Nekrasov and S.L. Shatashvili, Bethe/Gauge correspondence on curved spaces, JHEP

01 (2015) 100 [arXiv:1405.6046] [INSPIRE].

[18] C. Vafa, Topological Landau-Ginzburg models, Mod. Phys. Lett. A 6 (1991) 337 [INSPIRE].

[19] A.B. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Notices 13 (1996)

613.

[20] A. Givental, A mirror theorem for toric complete intersections, in Topological field theory,

primitive forms and related topics, Kyoto Japan (1996), Progr. Math. 160 (1998) 141.

[21] A. Givental, The mirror formula for quintic threefolds, in Amer. Math. Soc. Transl. Series 2.

Vol. 196: Northern California Symplectic Geometry Seminar, AMS Press, Providence U.S.A.

(1999).

[22] D. Honda and T. Okuda, Exact results for boundaries and domain walls in 2d

supersymmetric theories, arXiv:1308.2217 [INSPIRE].

[23] F. Benini and D.S. Park, unpublished.

[24] K. Hori and M. Romo, Exact Results In Two-Dimensional (2,2) Supersymmetric Gauge

Theories With Boundary, arXiv:1308.2438 [INSPIRE].

[25] S. Sugishita and S. Terashima, Exact Results in Supersymmetric Field Theories on Manifolds

with Boundaries, JHEP 11 (2013) 021 [arXiv:1308.1973] [INSPIRE].

[26] F. Benini and S. Cremonesi, Partition Functions of N = (2, 2) Gauge Theories on S2 and

Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].

[27] N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric

Gauge Theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].

[28] S. Pasquetti, Factorisation of N = 2 Theories on the Squashed 3-Sphere, JHEP 04 (2012)

120 [arXiv:1111.6905] [INSPIRE].

[29] C. Beem, T. Dimofte and S. Pasquetti, Holomorphic Blocks in Three Dimensions, JHEP 12

(2014) 177 [arXiv:1211.1986] [INSPIRE].

[30] M. Bullimore, H.-C. Kim and P. Koroteev, Defects and Quantum Seiberg-Witten Geometry,

JHEP 05 (2015) 095 [arXiv:1412.6081] [INSPIRE].

[31] Y. Cooper and A. Zinger, Mirror Symmetry for Stable Quotients Invariants,

arXiv:1201.6350.

[32] S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys. B 367 (1991) 359

[INSPIRE].

[33] H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Two-Sphere Partition

Functions and Gromov-Witten Invariants, Commun. Math. Phys. 325 (2014) 1139

[arXiv:1208.6244] [INSPIRE].

– 107 –

http://arxiv.org/abs/hep-th/9908204
http://inspirehep.net/search?p=find+EPRINT+hep-th/9908204
http://arxiv.org/abs/hep-th/0507187
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507187
http://dx.doi.org/10.1016/j.geomphys.2009.07.014
http://arxiv.org/abs/0801.3836
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3836
http://dx.doi.org/10.1007/JHEP01(2015)100
http://dx.doi.org/10.1007/JHEP01(2015)100
http://arxiv.org/abs/1405.6046
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6046
http://dx.doi.org/10.1142/S0217732391000324
http://inspirehep.net/search?p=find+J+Mod.Phys.Lett.,A6,337
http://dx.doi.org/10.1155/S1073792896000414
http://dx.doi.org/10.1155/S1073792896000414
http://dx.doi.org/10.1007/978-1-4612-0705-4_5
http://arxiv.org/abs/1308.2217
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2217
http://arxiv.org/abs/1308.2438
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2438
http://dx.doi.org/10.1007/JHEP11(2013)021
http://arxiv.org/abs/1308.1973
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1973
http://dx.doi.org/10.1007/s00220-014-2112-z
http://arxiv.org/abs/1206.2356
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2356
http://dx.doi.org/10.1007/JHEP05(2013)093
http://arxiv.org/abs/1206.2606
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2606
http://dx.doi.org/10.1007/JHEP04(2012)120
http://dx.doi.org/10.1007/JHEP04(2012)120
http://arxiv.org/abs/1111.6905
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6905
http://dx.doi.org/10.1007/JHEP12(2014)177
http://dx.doi.org/10.1007/JHEP12(2014)177
http://arxiv.org/abs/1211.1986
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1986
http://dx.doi.org/10.1007/JHEP05(2015)095
http://arxiv.org/abs/1412.6081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6081
http://arxiv.org/abs/1201.6350
http://dx.doi.org/10.1016/0550-3213(91)90021-O
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B367,359
http://dx.doi.org/10.1007/s00220-013-1874-z
http://arxiv.org/abs/1208.6244
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6244


J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

[34] J. Gomis and S. Lee, Exact Kähler Potential from Gauge Theory and Mirror Symmetry,

JHEP 04 (2013) 019 [arXiv:1210.6022] [INSPIRE].

[35] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2

gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465

[arXiv:1305.0533] [INSPIRE].

[36] A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP 03 (2014) 080

[arXiv:1305.0266] [INSPIRE].

[37] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d N = 2 Gauge

Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].

[38] K. Hori, H. Kim and P. Yi, Witten Index and Wall Crossing, JHEP 01 (2015) 124

[arXiv:1407.2567] [INSPIRE].

[39] A. Bawane, G. Bonelli, M. Ronzani and A. Tanzini, N = 2 supersymmetric gauge theories on

S2 × S2 and Liouville Gravity, arXiv:1411.2762 [INSPIRE].

[40] M. Sinamuli, On N = 2 supersymmetric gauge theories on S2 × S2, arXiv:1411.4918

[INSPIRE].

[41] D. Rodriguez-Gomez and J. Schmude, Partition functions for equivariantly twisted N = 2

gauge theories on toric Kähler manifolds, JHEP 05 (2015) 111 [arXiv:1412.4407] [INSPIRE].

[42] F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional

supersymmetric theories, arXiv:1504.03698 [INSPIRE].

[43] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

[44] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,

hep-th/0306238 [INSPIRE].

[45] S. Shadchin, On F-term contribution to effective action, JHEP 08 (2007) 052

[hep-th/0611278] [INSPIRE].

[46] T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP 08

(2012) 141 [arXiv:1205.1115] [INSPIRE].

[47] C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of

Supersymmetric Partition Functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].

[48] C. Closset and I. Shamir, The N = 1 Chiral Multiplet on T 2 × S2 and Supersymmetric

Localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].

[49] M. Honda and Y. Yoshida, Supersymmetric index on T 2 × S2 and elliptic genus,

arXiv:1504.04355 [INSPIRE].

[50] E. Witten, The Verlinde algebra and the cohomology of the Grassmannian, hep-th/9312104

[INSPIRE].

[51] K. Hori and D. Tong, Aspects of Non-Abelian Gauge Dynamics in Two-Dimensional

N = (2, 2) Theories, JHEP 05 (2007) 079 [hep-th/0609032] [INSPIRE].

[52] N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys.

Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].

[53] E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353

[INSPIRE].

– 108 –

http://dx.doi.org/10.1007/JHEP04(2013)019
http://arxiv.org/abs/1210.6022
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6022
http://dx.doi.org/10.1007/s11005-013-0673-y
http://arxiv.org/abs/1305.0533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0533
http://dx.doi.org/10.1007/JHEP03(2014)080
http://arxiv.org/abs/1305.0266
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0266
http://dx.doi.org/10.1007/s00220-014-2210-y
http://arxiv.org/abs/1308.4896
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4896
http://dx.doi.org/10.1007/JHEP01(2015)124
http://arxiv.org/abs/1407.2567
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2567
http://arxiv.org/abs/1411.2762
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2762
http://arxiv.org/abs/1411.4918
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.4918
http://dx.doi.org/10.1007/JHEP05(2015)111
http://arxiv.org/abs/1412.4407
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.4407
http://arxiv.org/abs/1504.03698
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03698
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
http://arxiv.org/abs/hep-th/0306238
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306238
http://dx.doi.org/10.1088/1126-6708/2007/08/052
http://arxiv.org/abs/hep-th/0611278
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611278
http://dx.doi.org/10.1007/JHEP08(2012)141
http://dx.doi.org/10.1007/JHEP08(2012)141
http://arxiv.org/abs/1205.1115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1115
http://dx.doi.org/10.1007/JHEP01(2014)124
http://arxiv.org/abs/1309.5876
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5876
http://dx.doi.org/10.1007/JHEP03(2014)040
http://arxiv.org/abs/1311.2430
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2430
http://arxiv.org/abs/1504.04355
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04355
http://arxiv.org/abs/hep-th/9312104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9312104
http://dx.doi.org/10.1088/1126-6708/2007/05/079
http://arxiv.org/abs/hep-th/0609032
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609032
http://dx.doi.org/10.1016/j.nuclphysBPS.2009.07.047
http://dx.doi.org/10.1016/j.nuclphysBPS.2009.07.047
http://arxiv.org/abs/0901.4744
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4744
http://dx.doi.org/10.1007/BF01223371
http://inspirehep.net/search?p=find+J+CMPHA,117,353


J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

[54] E. Witten, Mirror manifolds and topological field theory, hep-th/9112056 [INSPIRE].

[55] E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the

Zamolodchikov Metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].

[56] A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality,

Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

[57] T. Pantev and E. Sharpe, Notes on gauging noneffective group actions, hep-th/0502027

[INSPIRE].

[58] T. Pantev and E. Sharpe, String compactifications on Calabi-Yau stacks, Nucl. Phys. B 733

(2006) 233 [hep-th/0502044] [INSPIRE].

[59] T. Pantev and E. Sharpe, GLSM’s for Gerbes (and other toric stacks), Adv. Theor. Math.

Phys. 10 (2006) 77 [hep-th/0502053] [INSPIRE].

[60] S. Hellerman, A. Henriques, T. Pantev, E. Sharpe and M. Ando, Cluster decomposition,

T-duality and gerby CFT’s, Adv. Theor. Math. Phys. 11 (2007) 751 [hep-th/0606034]

[INSPIRE].

[61] N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity,

JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].

[62] M. Blau and G. Thompson, On diagonalization in map(M,G), Commun. Math. Phys. 171

(1995) 639 [hep-th/9402097] [INSPIRE].

[63] M. Blau and G. Thompson, Localization and diagonalization: a review of functional integral

techniques for low dimensional gauge theories and topological field theories, J. Math. Phys.

36 (1995) 2192 [hep-th/9501075] [INSPIRE].

[64] J. Halverson, V. Kumar and D.R. Morrison, New Methods for Characterizing Phases of 2D

Supersymmetric Gauge Theories, JHEP 09 (2013) 143 [arXiv:1305.3278] [INSPIRE].

[65] A. Givental and B.-s. Kim, Quantum cohomology of flag manifolds and Toda lattices,

Commun. Math. Phys. 168 (1995) 609 [hep-th/9312096] [INSPIRE].

[66] A. Astashkevich and V. Sadov, Quantum cohomology of partial flag manifolds f(n1 . . . n(k)),

Commun. Math. Phys. 170 (1995) 503 [hep-th/9401103] [INSPIRE].

[67] V.V. Batyrev, I. Ciocan-Fontanine, B. Kim and D. van Straten, Conifold transitions and

mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nucl. Phys. B

514 (1998) 640 [INSPIRE].

[68] I.V. Melnikov and M.R. Plesser, The Coulomb branch in gauged linear σ-models, JHEP 06

(2005) 013 [hep-th/0501238] [INSPIRE].

[69] D.S. Park and J. Song, The Seiberg-Witten Kähler Potential as a Two-Sphere Partition

Function, JHEP 01 (2013) 142 [arXiv:1211.0019] [INSPIRE].

[70] H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Nonabelian 2D Gauge

Theories for Determinantal Calabi-Yau Varieties, JHEP 11 (2012) 166 [arXiv:1205.3192]

[INSPIRE].

[71] E.A. Rødland, The Pfaffian Calabi-Yau, its Mirror, and their Link to the Grassmannian

G(2, 7), Compos. Math. 122 (2000) 135 [math/9801092].

[72] K. Hori, Duality In Two-Dimensional (2, 2) Supersymmetric Non-Abelian Gauge Theories,

JHEP 10 (2013) 121 [arXiv:1104.2853] [INSPIRE].

– 109 –

http://arxiv.org/abs/hep-th/9112056
http://inspirehep.net/search?p=find+EPRINT+hep-th/9112056
http://dx.doi.org/10.1007/JHEP11(2014)001
http://arxiv.org/abs/1405.7271
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7271
http://dx.doi.org/10.1103/PhysRevD.74.025005
http://arxiv.org/abs/hep-th/0501015
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501015
http://arxiv.org/abs/hep-th/0502027
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502027
http://dx.doi.org/10.1016/j.nuclphysb.2005.10.035
http://dx.doi.org/10.1016/j.nuclphysb.2005.10.035
http://arxiv.org/abs/hep-th/0502044
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502044
http://dx.doi.org/10.4310/ATMP.2006.v10.n1.a4
http://dx.doi.org/10.4310/ATMP.2006.v10.n1.a4
http://arxiv.org/abs/hep-th/0502053
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502053
http://dx.doi.org/10.4310/ATMP.2007.v11.n5.a2
http://arxiv.org/abs/hep-th/0606034
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606034
http://dx.doi.org/10.1007/JHEP07(2010)070
http://arxiv.org/abs/1005.0002
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.0002
http://dx.doi.org/10.1007/BF02104681
http://dx.doi.org/10.1007/BF02104681
http://arxiv.org/abs/hep-th/9402097
http://inspirehep.net/search?p=find+EPRINT+hep-th/9402097
http://dx.doi.org/10.1063/1.531038
http://dx.doi.org/10.1063/1.531038
http://arxiv.org/abs/hep-th/9501075
http://inspirehep.net/search?p=find+EPRINT+hep-th/9501075
http://dx.doi.org/10.1007/JHEP09(2013)143
http://arxiv.org/abs/1305.3278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3278
http://dx.doi.org/10.1007/BF02101846
http://arxiv.org/abs/hep-th/9312096
http://inspirehep.net/search?p=find+EPRINT+hep-th/9312096
http://dx.doi.org/10.1007/BF02099147
http://arxiv.org/abs/hep-th/9401103
http://inspirehep.net/search?p=find+EPRINT+hep-th/9401103
http://dx.doi.org/10.1016/S0550-3213(98)00020-0
http://dx.doi.org/10.1016/S0550-3213(98)00020-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B514,640
http://dx.doi.org/10.1088/1126-6708/2005/06/013
http://dx.doi.org/10.1088/1126-6708/2005/06/013
http://arxiv.org/abs/hep-th/0501238
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501238
http://dx.doi.org/10.1007/JHEP01(2013)142
http://arxiv.org/abs/1211.0019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0019
http://dx.doi.org/10.1007/JHEP11(2012)166
http://arxiv.org/abs/1205.3192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3192
http://arxiv.org/abs/math/9801092
http://dx.doi.org/10.1007/JHEP10(2013)121
http://arxiv.org/abs/1104.2853
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2853


J
H
E
P
0
6
(
2
0
1
5
)
0
7
6

[73] T.H. Gulliksen and O.G. Neg̊ard, Un complexe résolvant pour certains idéaux
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