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Abstract. In the theory of transformation groups, it is important to know what kind
of isotropy subgroups of G do occur at points of the space upon which the given group
G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction
Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed
isotropy subgroups around the G-fixed point sets. In Theorem 0.1, we restate Oliver’s
result about manifolds M and G-vector bundles over M that occur, respectively, as the
G-fixed point sets and their equivariant normal bundles for smooth G-actions on disks.
In Theorems 0.2 and 0.3, we prove the corresponding results for smooth G-actions on
disks with prescribed isotropy subgroups around M . In Theorems 0.4 and 0.5, for large
classes of finite groups G, we explicitly describe manifolds M that occur as the G-fixed
point sets for such actions on disks. These actions are expected to be useful for answering
the question of which manifolds occur as the G-fixed points sets for smooth G-actions on
spheres.

0. Introduction. In the theory of transformation groups, it often hap-
pens that a solution of a particular problem depends on the family of the
isotropy subgroups that we allow to occur at points in the space upon which
a given group G acts. In [O4], for a finite group G not of prime power order,
Oliver describes necessary and sufficient conditions under which a smooth
manifold M occurs as the G-fixed point set and a smooth G-vector ν over
M stably occurs as the equivariant normal bundle of M in D (resp., E) for a
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smooth action of G on a disk D (resp., Euclidean space E). The conditions
include two bundle conditions: a triviality condition and a condition dic-
tated by the Smith Theory (see Theorem 0.1 for a more precise statement
of Oliver’s result in the case of actions on disks). The articles [EL], [P1],
[P2] present some related partial results.

The main goal of the present article is to show that for actions on disks,
Oliver’s result remains true when we prescribe the family of isotropy sub-
groups that occur around the G-fixed point set DG = M (Theorems 0.2
and 0.3). The main new ingredient that allows us to prescribe the family of
isotropy subgroups is the Equivariant Bundle Subtraction Theorem (Theo-
rem 2.2). Roughly speaking, given a G-vector bundle ξ over a finite G-CW
complex X and a real G-module V with isotropy subgroups that we want
to avoid around DG in the construction of action of G on D, Theorem 2.2
describes circumstances under which we are able to subtract from ξ the prod-
uct G-vector bundle εVX over X with fiber V , and as a result, to obtain a
new G-vector bundle over X with a prescribed family of isotropy subgroups.
The subtraction is done by killing homotopy groups of the space InjH(V,W )
of H-linear injections of V into H-modules W for subgroups H of G, where
each W contains the same (suitably chosen) stabilization summand.

For a prime p dividing the order |G| of G, denote by Pp(G) the family of
all subgroups P of G of order pa with a ≥ 0. We make use of the following
two bundle conditions imposed on the Whitney sum τM ⊕ ν, where τM is
the tangent bundle of M . The conditions hold for τM ⊕ ν if and only if they
hold for τM ⊕ ν ⊕ εWM , where W is a real G-module.

(B1) Product Bundle Condition. The bundle τM⊕ν is nonequivariantly a
product bundle, perhaps after adding some product bundle, which amounts
to saying that in the reduced KO-theory K̃O(M) of M , [τM⊕Res G{e}(ν)] = 0
for the trivial subgroup {e} of G.

(B2) Smith Theory Condition. For each prime p | |G| and each P ∈
Pp(G), in the reduced P -equivariant KO-theory K̃OP (M) of M , the class
[τM ⊕ResGP (ν)] is of finite order not divisible by p, which amounts to saying
that [τM ⊕ ResGP (ν)] = 0 in K̃OP (M)(p).

Theorem 0.1 (Oliver [O4]). Let G be a finite group not of prime power
order. Let M be a smooth manifold and let ν be a smooth G-vector bundle
over M with dim νG = 0. Then the following two statements are equivalent :

(1) There exists a smooth action of G on a disk D such that DG = M
and νM⊂D ∼= ν ⊕ εWM for a real G-module W with dimWG = 0.

(2) M is compact , χ(M) ≡ 1 (mod nG), and τM ⊕ ν satisfies (B1)
and (B2).
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The integer nG has been determined and computed by Oliver (cf. [O1],
[O2], and [O3]) in the context of his work on the G-fixed point sets of finite
contractible G-CW complexes for a finite group G not of prime power order
(see [O4, Theorem 0.3] for a summary of computation of nG). The integer
nG is defined as the unique nonnegative integer such that

nG · Z = {χ(XG)− 1 | X is a finite contractible G-CW complex}
by showing that the set is a subgroup of Z (cf. [O4, p. 597]). Theorem 0.1
allows us to answer the question of which manifolds M occur as the G-fixed
point sets for smooth actions of G on disks (cf. [O4, Theorem 0.2]).

For a finite group G, we denote by S(G) the family of all subgroups of
G. Each family of subgroups of G that we consider is invariant under the
action of G on S(G) given via conjugation. Set

P(G) =
⋃
p

Pp(G).

Thus, P(G) is the family of subgroups P of G such that P ⊂ Gp for a Sylow
p-subgroup Gp of G. For each prime p, define the Dress subgroup Gp of G
of type p as the smallest normal subgroup of G such that G/Gp is a p-group
or the trivial group. Let Lp(G) be the family of subgroups L of G such that
L ⊃ Gp. Define the family of large subgroups of G by

L(G) =
⋃
p

Lp(G).

As in [LM], set M(G) = S(G) r L(G) (see [LM, Proposition 1.2 and The-
orem 1.3] for more information). Clearly, P(G) ⊂ M(G) if and only if
P(G)∩L(G) = ∅, and the latter condition means that no large subgroup of
G has prime power order.

Following [LM], a finite group G is called an Oliver group if G is not
of prime power order and nG = 1, which (by [O1]) amounts to saying that
G has no normal series of the form P E H E G, where P nad G/H are
of prime power order and H/P is cyclic. For a finite Oliver group G, the
families P(G) and L(G) are disjoint.

In this article, we adopt the following notion. A finite group G is called
a Dress–Oliver group if each Dress subgroup of G is an Oliver group. In
particular, no Dress (and thus no large) subgroup of G has prime power
order; that is, P(G) and L(G) are disjoint.

If G is a finite Dress–Oliver group, then each large subgroup of G is an
Oliver group because for any two subgroups H ⊂ K of G, nH = 1 implies
nK = 1. Hence, any finite Dress–Oliver group is an Oliver group.

Let G be a finite nonsolvable group. Then nG = 1 (cf. [O2]). Let Gsol

be the smallest normal subgroup of G such that G/Gsol is solvable. Since
Gsol is a nontrivial perfect group, Gsol ⊂ Gp for any Dress subgroup Gp of



282 M. Morimoto and K. Pawa lowski

G. Thus, Gp is nonsolvable and nGp = 1. Therefore, any finite nonsolvable
group G is a Dress–Oliver group.

A finite group G is nilpotent if and only if G is the product of its Sylow
subgroups (equivalently, all Sylow subgroups of G are normal subgroups
of G). It follows that a finite nilpotent group G is an Oliver group (resp.,
Dress–Oliver group) if and only if G has three (resp., four) or more noncyclic
Sylow subgroups.

For a G-space X, we denote by Fiso(G;X) the family of the isotropy
subgroups Gx that occur at points x ∈ X. For a G-invariant subspace A
of X, we say that the action of G on X is without large isotropy subgroups
around A if there exists a G-invariant open neighborhood U of A in X such
that Fiso(G;U rA) ⊂M(G).

In this article, a real G-module V is called L(G)-free if dimV L = 0
for each L ∈ L(G). Accordingly, a G-vector bundle ν over a manifold M
(with the trivial action of G) is called L(G)-free if dim νL = 0 for each
L ∈ L(G). For a smooth G-manifold D with DG = M , set ν = νM⊂D. By
the Equivariant Tubular Neighborhood Theorem, the action of G on D is
without large isotropy subgroups around M if and only if ν is L(G)-free.

Theorem 0.2. Let G be a finite group such that P(G) ∩ L(G) = ∅. Let
M be a smooth manifold and let ν be a smooth L(G)-free G-vector bundle
over M . Assume nG > 1 and M has a connected component of dimension
> 1 (resp., nG = 0). Then the following two statements are equivalent :

(1) There exists a smooth action of G on a disk D such that DG = M
and νM⊂D ∼= ν ⊕ εWM for a real G-module W . Moreover , the action of G on
D is without large isotropy subgroups around M (resp., in D rM).

(2) M is compact , χ(M) ≡ 1 (mod nG), and τM ⊕ ν satisfies (B1) and
(B2).

Theorem 0.3. Let G be a finite Oliver group (resp., a finite Dress–
Oliver group). Let M be a smooth manifold and let ν be a smooth L(G)-free
G-vector bundle over M . Then the following two statements are equivalent :

(1) There exists a smooth action of G on a disk D such that DG = M
and νM⊂D ∼= ν⊕ εWM for a real G-module W . Moreover , the action of G on
D is without large isotropy subgroups around M (resp., in D rM).

(2) M is compact and τM ⊕ ν satisfies (B1) and (B2).

In Theorems 0.2 and 0.3, (1) implies (2) by Theorem 0.1, and (2) im-
plies (1) by our arguments in Section 3. Our construction of action (described
in Theorem 3.2) yields a stabilization summand εWM due to the equivariant
bundle extension procedure which we apply here. The procedure goes back
to [O4, Theorem 2.4]. In the present article, we use that procedure under cir-
cumstances described in the Equivariant Bundle Extension Theorem (The-
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orem 2.1). The Equivariant Bundle Subtraction Theorem (Theorem 2.2)
allows us to control the isotropy subgroups in the G-module W to the effect
that

Fiso(G;W r {0}) =M(G).

Using the Equivariant Thickening Theorem (Theorem 3.1), we construct a
smooth action of G on a disk D without large isotropy subgroups around
DG (Theorem 3.2).

Let CN be the class of finite groups G with a normal subgroup N such
that G/N ∼= Zn, where Zn is the cyclic group of order n = pqr for some
three distinct primes p, q, r. Clearly, P(G)∩L(G) = ∅ for each G ∈ CN . The
class CN contains all finite nilpotent groups G whose order is divisible by
three or more distinct primes. For example, CN contains the abelian groups
G = Zpqr and Zpqr × Zp both with nG = 0, G = Zpqr × Zpqr with nG = 1,
and G = Zpqr × Zpq with nG = pq for three distinct primes p, q, r.

Let DN be the class of finite groups G with a normal subgroup N such
that G/N is a perfect group with a subquotient isomorphic to the dihedral
group of order 2pq for two relatively prime integers p, q ≥ 2. Clearly, such
a group G is a nonsolvable group, and thus G is a Dress–Oliver group. In
particular, P(G) ∩ L(G) = ∅.

Recall a smooth manifold M is called stably complex if the tangent bun-
dle τM admits a complex structure, perhaps after adding a product bundle,
which amounts to saying that M has a smooth embedding into some Eu-
clidean space, such that the normal bundle of the embedding admits a com-
plex structure. In particular, the manifold M is orientable and the connected
components of M all have the same parity.

Theorem 0.4. Let G be a finite group in CN such that G has a normal
Sylow 2-subgroup. Let M be a smooth manifold. Assume nG > 1 and M
has a connected component of dimension > 1 (resp., nG = 0). Then the
following three statements are equivalent :

(1) There exists a smooth action of G on a disk D such that DG = M .
(2) M is compact , χ(M) ≡ 1 (mod nG), and M is stably complex.
(3) There exists a smooth action of G on a disk D such that DG = M

and the action of G on D is without large isotropy subgroups around M
(resp., in D rM).

Theorem 0.5. Let G be a finite group in CN such that G has a normal
Sylow 2-subgroup and nG = 1 (resp., let G be a finite group in DN ). Let M
be a smooth manifold. Then the following three statements are equivalent :

(1) There exists a smooth action of G on a disk D such that DG = M .
(2) M is compact and stably complex (resp., M is compact).
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(3) There exists a smooth action of G on a disk D such that DG = M
and the action of G on D is without large isotropy subgroups around M
(resp., in D rM).

In Theorems 0.4 and 0.5, (1) and (2) are equivalent by making use of
Theorem 0.1. This is already pointed out in [O4] for larger classes of finite
groups G. By our arguments in Section 3, (2) implies (3). Clearly, (3) im-
plies (1).

The main motivation for the work presented in this article is as follows.
By applying and developing the equivariant surgery from [BM] and [M1]–
[M3], we expect to convert smooth actions of G on disks (constructed in
Theorems 0.2–0.5) into smooth actions of G on spheres with prescribed G-
fixed point sets (cf. [LMP], [LM], and [P3]). In fact, in a subsequent article
for some classes of finite groups G, we convert smooth actions of G on disks
D (without large isotropy subgroups around DG) into smooth actions of G
on spheres S such that SG = DG. As a result, we answer the question of
which manifolds M occur as the G-fixed point sets for smooth actions of G
on spheres.

We refer to [Br], [tD], and [K] for background material on transformation
groups that we use in this article. In a number of arguments, we make use
of the fact that for a subgroup H of G, the H-fixed point set XH is the
sum of

X=H := {x ∈ X | Gx = H} and X>H := {x ∈ X | Gx > H},
where Gx > H means that Gx ⊃ H and Gx 6= H.

1. L(G)-free G-vector bundles. Let G be a finite group. By a real
(resp., complex) G-module V we mean a finite-dimensional real (resp., com-
plex) vector space V with an orthogonal (resp. unitary) action of G. We
write D(V ) and S(V ), respectively, for the unit invariant disk and sphere
in V . For a G-submodule W of V , V −W denotes the G-orthogonal com-
plement of W in V .

Using the canonical embedding R[G/Gp] → R[G] of the real regular
G/Gp-module R[G/Gp] into the real regular G-module R[G] for each Dress
subgroup Gp of G, the article [LM] defines and makes a crucial use of the
following real G-module:

V (G) = (R[G]− R)−
⊕

Gp

(R[G/Gp]− R),

where the summand R subtracted from R[G], as well as from R[G/Gp], has
the trivial action of G. By [LM, Theorem 2.3], Fiso(G,V (G)r{0}) =M(G).
In particular, V (G) is L(G)-free, and so is lV (G) for any integer l ≥ 1. When
l is even, lV (G) is the realification of the complex G-module (l/2)U(G),
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where

U(G) = (C[G]− C)−
⊕

Gp

(C[G/Gp]− C).

We refer to U(G) and V (G), respectively, as to the complex and real regular
L(G)-free G-modules. The G-modules U(G) and V (G) are faithful.

Oliver’s result recalled in Theorem 0.1 allows us to answer the question
of which compact smooth manifolds M with χ(M) ≡ 1 (mod nG) occur as
the G-fixed point sets for smooth actions of G on disks. The answer is just a
restatement of Theorem 0.1, obtained in terms of the existence of a smooth
G-vector bundle ν over M , and it reads as follows.

Theorem 1.1 (Oliver [O4]). Let G be a finite group not of prime power
order. Let M be a compact smooth manifold with χ(M) ≡ 1 (mod nG).
Then the following two statements are equivalent :

(1) There exists a smooth action of G on a disk D such that DG = M .
(2) There exists a smooth G-vector bundle ν over M with dim νG = 0

such that τM ⊕ ν satisfies the bundle conditions (B1) and (B2).

Similarly, in terms of the existence of a smooth L(G)-free G-vector bun-
dle ν over M , we can answer the question of which compact smooth man-
ifolds M with χ(M) ≡ 1 (mod nG) occur as the G-fixed point sets for
smooth actions of G on disks without large isotropy subgroups around M .
The related restatements of Theorems 0.2 and 0.3 read as follows.

Theorem 1.2. Let G be a finite group such that P(G)∩L(G) = ∅. Let M
be a compact smooth manifold with χ(M) ≡ 1 (mod nG). Assume nG > 1
and M has a connected component of dimension > 1 (resp., nG = 0). Then
the following two statements are equivalent :

(1) There exists a smooth action of G on a disk D such that DG =
M and the action is without large isotropy subgroups around M (resp., in
D rM).

(2) There exists a smooth L(G)-free G-vector bundle ν over M such that
τM ⊕ ν satisfies the bundle conditions (B1) and (B2).

Theorem 1.3. Let G be a finite Oliver group (resp., Dress–Oliver group).
Let M be a compact smooth manifold. Then the following two statements are
equivalent :

(1) There exists a smooth action of G on a disk D such that DG =
M and the action is without large isotropy subgroups around M (resp., in
D rM).

(2) There exists a smooth L(G)-free G-vector bundle ν over M such that
τM ⊕ ν satisfies the bundle conditions (B1) and (B2).
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Theorems 1.2 and 1.3 call for constructions of smooth L(G)-free G-vector
bundles ν over M such that τM ⊕ ν satisfies the bundle conditions (B1) and
(B2).

Lemma 1.4. Let G be a finite group and let (V,W ) be a pair of real (resp.,
complex ) G-modules V and W such that the following two conditions hold :

(1) ResGP (V ) ∼= ResGP (W ) for each P ∈ P(G).
(2) dimV L = 1 and dimWL = 0 for each L ∈ L(G).

Let M be a compact smooth manifold (resp., compact stably complex smooth
manifold). Then there exists a smooth L(G)-free G-vector bundle ν over M
such that τM ⊕ ν satisfies the bundle conditions (B1) and (B2).

P r o o f. Take a real (resp., complex) stable tangent bundle τ st
M and a

real (resp., complex) stable normal bundle νst
M of M . Similarly to [O4, the

proof of Lemma 3.2(a)], consider the real (resp., complex) G-vector bundle
over M :

η = (τ st
M ⊗ εVM )⊕ (νst

M ⊗ εWM ).

Then, as real (resp., complex) G-vector bundles, η ∼= τ st
M ⊕ ν with

ν = (τ st
M ⊗ εV−V

G

M )⊕ (νst
M ⊗ εWM ).

It follows that ν is L(G)-free and τ st
M ⊕ ν satifies the bundle conditions (B1)

and (B2). Hence, τM ⊕ ν also satisfies (B1) and (B2).

Example 1.5. Let p, q, r be three distinct primes. Set n = pqr and write
ζn for the primitive nth root of unity. Let G = Zn = 〈a | an = 1〉. Let
V = V1 ⊕ V2 ⊕ V3 and W = W1 ⊕W2 ⊕W3, where Vi and Wi (i = 1, 2, 3)
are the irreducible 1-dimensional complex G-modules with characters

χV (a) = χV1(a) + χV2(a) + χV3(a) = 1 + ζn + ζn,

χW (a) = χW1(a) + χW2(a) + χW3(a) = ζxn + ζyn + ζzn,

and the integers x, y, and z are chosen so that the following holds:

x ≡ 0 (mod p), x ≡ 1 (mod q), x ≡ 1 (mod r),

y ≡ 1 (mod p), y ≡ 0 (mod q), y ≡ 1 (mod r),

z ≡ 1 (mod p), z ≡ 1 (mod q), z ≡ 0 (mod r).

Then it follows that ResGP (V ) ∼= ResGP (W ) for each P ∈ P(G). Moreover,
dimV L = 1 and dimWL = 0 for each L ∈ L(G).

Proposition 1.6. Let G be a finite group in CN . Let M be a compact
stably complex smooth manifold. Then there exists a smooth L(G)-free G-
vector bundle ν over M such that τM⊕ν satisfies the bundle conditions (B1)
and (B2).
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P r o o f. Since G ∈ CN , there exists a normal subgroup H of G such that
G/H ∼= Zn, where n = pqr for some three distict primes p, q, r. Take the
pair (V,W ) of complex Zn-modules V and W constructed in Example 1.5.
Via the epimorphism G → G/H ∼= Zn, consider V and W as complex
G-modules. Then it follows that ResGP (V ) ∼= ResGP (W ) for each P ∈ P(G),
and also one gets dimV L = 1 and dimWL = 0 for each L ∈ L(G). Now,
Lemma 1.4 (the complex case) completes the proof.

Example 1.7. Let G = Dpq, the dihedral group of order 2pq for two
relatively prime integers p, q ≥ 2. Then there exists a pair (V,W ) of real
G-modules V and W such that ResGP (V ) ∼= ResGP (W ) for each P ∈ P(G),
and such that dimV G = 1 and dimWG = 0. More generally, if G is a finite
group with a subgroup H such that H/N ∼= Dpq for a normal subgroup
N of H, then G has a similar pair of real G-modules. In fact, first take
the appropriate Dpq-modules V and W , and (via the epimorphism H →
H/N ∼= Dpq) consider V and W as H-modules. Then take the induced
G-modules IndGH(V ) and IndGH(W ) to obtain the required pair of real G-
modules (cf. [O4, the proof of Lemma 3.1(b)].

Proposition 1.8. Let G be a finite group in DN . Let M be a compact
smooth manifold. Then there exists a smooth L(G)-free G-vector bundle ν
over M such that τM ⊕ ν satisfies the bundle conditions (B1) and (B2).

P r o o f. Since G ∈ DN , there exists an epimorphism G → H onto a
perfect group H which has a subquotient isomorphic to the dihedral group
of order 2pq for two relatively prime integers p, q ≥ 2. By Example 1.7, there
exists a pair (V,W ) of real H-modules V and W such that ResHP (V ) ∼=
ResHP (W ) for each P ∈ P(H), dimV H = 1 and dimWH = 0. Via the
epimorphism G→ H, consider V and W as real G-modules. Then it follows
that ResGP (V ) ∼= ResGP (W ) for each P ∈ P(G). Since H is perfect, Hp = H
for each Dress subgroup Hp of H. Hence, L(H) = {H} and the epimorphism
G → H maps each L ∈ L(G) onto H. Thus, dimV L = 1 and dimWL = 0
for each L ∈ L(G). Now, Lemma 1.4 (the real case) completes the proof.

In the proof of Proposition 1.6 (resp., 1.8), the G-modules V and W are
not faithful when H 6= G. However, by adding to V and W the complex
(resp., real) regular L(G)-free G-module U(G) (resp., V (G)), we obtain a
similar pair of complex (resp., real) faithful G-modules. As already noted,
according to [LM, Theorem 2.3],

Fiso(G;S(V (G))) = Fiso(G;V (G)r {0}) =M(G).

For each H ∈M(G), we estimate dimV (G)H in terms of the index |G : H|
of H in G.
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Proposition 1.9. Let G be a finite group not of prime power order , and
let H ∈ M(G). If |G : H| = pa1

1 . . . pann for distinct primes p1, . . . , pn with
n ≥ 2 and a1, . . . , an ≥ 1, then

dimV (G)H ≥ (pa1
1 − 1) . . . (pann − 1).

If |G : H| is a power of a prime p, then dimV (G)H ≥ p− 1 and for p = 2,
dimV (G)H > 2. Hence, in each case of |G : H|, dimV (G)H ≥ 2, and thus
dimS(V (G))H ≥ 1.

P r o o f. For any prime p, HGp 6= H because HGp = H implies H ⊃ Gp,
which means that H 6∈ M(G), a contradiction. According to the definition
of the G-module V (G),

(∗) dimV (G)H = (|G : H| − 1)−
∑

Gp

(|G : HGp| − 1)

(cf. [LM, (2.2)]). Assume |G : H| = pa1
1 . . . pann for distinct primes p1, . . . , pn

with n ≥ 2 and ai ≥ 1 for i = 1, . . . , n. As noted above, HGpi 6= H, and
thus |G : HGpi | = pbii for some 0 ≤ bi < ai. For p 6= pi, G = HGp, and thus
|G : HGp| = 1. Hence, by using (∗),

dimV (G)H = (pa1
1 . . . pann − 1)− [(pb11 − 1) + . . .+ (pbnn − 1)]

≥ (pa1
1 . . . pann − 1)− [(pa1

1 − 1) + . . .+ (pann − 1)]

≥ (pa1
1 − 1) . . . (pann − 1) ≥ 2.

Assume |G : H| = pa for a prime p and a ≥ 1. If pa = 2 (that is, p = 2 and
a = 1), then H is a normal subgroup of G, and thus H ⊃ G2, which means
that H 6∈ M(G), a contradiction. Therefore, pa ≥ 3 and for some 0 ≤ b < a,
by using (∗) as above,

dimV (G)H = (pa − 1)− (pb − 1) = (pa−b − 1) pb ≥ p− 1 ≥ 2

for p ≥ 3. For p = 2, we have a ≥ 2 (as 2a ≥ 3), and thus dimV (G)H =
(2a−b − 1) 2b ≥ 2. Moreover, dimV (G)H ≥ 3 for b = 0, dimV (G)H ≥ 4 for
b ≥ 2, and dimV (G)H ≥ 6 for a ≥ 3 and b = 1. Now, assume a = 2 and
b = 1 (with p = 2). Note that the integer

q := |HG2 : H| = |G2 : (H ∩G2)|
divides 4. SinceHG2 6= H, it follows that q > 1. For q = 2,H∩G2 is a normal
subgroup of G with 2-power index. This implies that H ⊃ H ∩ G2 ⊃ G2,
and thus H 6∈ M(G), a contradiction. For q = 4, we have b = 0, which
contradicts the assumption b = 1. Thus, the case a = 2 and b = 1 (with
p = 2) is impossible. Therefore, dimV (G)H > 2 for p = 2.

2. The Equivariant Bundle Subtraction Theorem. In order to
construct G-vector bundles over finite contractible G-CW complexes, we
make use of the equivariant bundle extension procedure described by Oliver
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[O4]. For a finite G-CW complex Y with nonempty G-fixed point set F ,
take the wedge

YF = (Y/F ) ∨ F
of the quotient space Y/F and F with respect to the base point F ∈ Y/F
and a chosen base point x0 ∈ F . For a G-vector bundle η over F , consider
the fiber V0 of η over x0 as a real G-module. We show that the following
theorem is a special case of the result from [O4, Theorem 2.4].

Theorem 2.1 (The Equivariant Bundle Extension Theorem). Let G
be a finite group not of prime power order. Let Y , F , x0, and V0 be as
above. Assume that Y is contractible and [Res G

{e}(η)] = 0 in K̃O(F ), and

[ResGP (η)] = 0 in K̃OP (F )(p) for each P ∈ Pp(G) and each prime p | |G|.
Then there exist a finite contractible G-CW complex X and a G-vector bun-
dle ξ over X such that the following three conditions hold :

(1) X ⊃ YF as a G-invariant subcomplex.
(2) Fiso(G;X r YF ) ⊂ P(G), and thus XG = F .
(3) ξ|F ∼= η ⊕ εVF and ξ|Y/F ∼= εV0⊕V

Y/F for a real G-module V .

If Y P is simply connected for some P ∈ Pp(G) and a prime p | |G|, then the
fundamental group π1(XP ) is a finite abelian group of order prime to p.

P r o o f. Let η be the G-vector bundle over YF that restricts to η over F
and the productG-vector bundle over Y/F with fiber V0. For each P ∈ P(G),
let ξP be the product P -vector bundle over Y with fiber ResGP (V0). The
constant map Y/F → Y into the base point x0 ∈ F and the inclusion
F → Y piece together to a G-map ϕ : YF → Y . Since [Res G{e}(η)] = 0 in

K̃O(F ), and [ResGP (η)] = 0 in K̃OP (F )(p),

[ϕ∗(ξ{e})] = [Res G{e}(η)] and [ϕ∗(ξP )] = [ResGP (η)]

respectively, in K̃O{e}(YF ) and K̃OP (YF )(p) for each nontrivial P ∈ Pp(G)
and p | |G|. Therefore, it follows from [O4, Theorem 2.4, finite case] that we
can combine η and all ξP to construct a finite contractible G-CW complex
X and a G-vector bundle ξ over X such that X ⊃ YF as a G-invariant
subcomplex,

Fiso(G;X r YF ) ⊂ P(G) and ξ|YF ∼= η ⊕ εVYF
for a real G-module V . The essential part of the proof of [O4, Theorem 2.4,
finite case] follows from [O4, Proposition 2.3, finite case], whose proof con-
sists of two steps. The first step is made up of equivariant cell attachment
of isotropy type (P ) with nontrivial P ∈ P(G), and equivariant bundle ex-
tension arguments. The second step is made up of attachment of free cells
and equivariant bundle extension arguments. In particular, one extends the



290 M. Morimoto and K. Pawa lowski

G-map ϕ to a G-map ϕ : X → Y that is a (nonequivariant) homotopy equiv-
alence. The main part of the proof of the first step follows by the arguments
given in the proof of [O4, Lemma 2.2, finite case]. The arguments include
the claim that for each P ∈ Pp(G) and p | |G|, the kernel

Ker[π1(ϕP ) : π1(XP )→ π1(Y P )]

is a finite abelian group of order prime to p. Therefore, if Y P is simply
connected, then π1(XP ) is a finite abelian group of order prime to p.

As follows from [O4, Theorem 2.4], the G-module V in Theorem 2.1 can
be taken to be lR[G] or l (R[G] − R) for a sufficiently large integer l. In
particular, all (proper) subgroups of G do occur as the isotropy subgroups
in S(V ). Now, we present a procedure which allows us to choose the stabi-
lization summand V so that S(V ) is without large isotropy subgroups. More
specifically,

Fiso(G;S(V )) = S(G)r L(G) =M(G).
Let G be a finite group and let H be a subgroup of G. Denote by Irr(H)

the set of the isomorphism classes of real irreducible H-modules, and for a
real H-module W , denote by Irr(H;W ) the set of the isomorphism classes
of the real irreducible H-modules which occur as H-submodules of W . A
real G-module V is called H-complete if

Irr(H) = Irr(H; ResGH(V )),

which amounts to saying that ResGH(V ) contains (up to H-isomorphism)
each irreducible H-module with positive multiplicity. For a family H of
subgroups of G, a real G-module V is called H-complete if V is H-complete
for each H ∈ H.

Theorem 2.2 (The Equivariant Bundle Subtraction Theorem). Let G
be a finite group. Let V be a real G-module and let V ′ be a real H-complete
G-module for a family H of subgroups of G. Let (X,Y ) be a pair of fi-
nite G-CW complexes such that X ⊃ Y as a G-invariant subcomplex , and
Fiso(G;X r Y ) ⊂ H. Let ξ and η be G-vector bundles over X and Y ,
respectively , such that

ξ|Y ∼= η ⊕ εVY ⊕ εlV
′

Y for an integer l ≥ 1.

If l is sufficiently large, then there exists a G-subbundle θ of ξ such that
θ ∼= εVX and (ξ−θ)|Y ∼= η⊕εlV ′Y , where ξ−θ is the G-orthogonal complement
of θ in ξ.

P r o o f. Choose a filtration Y = X0 ⊂ X1 ⊂ . . . ⊂ Xn = X of X such
that Xj is obtained from Xj−1 by attaching just one equivariant cell of type
(H) ⊂ H for j = 1, . . . , n. It suffices to prove the result for n = 1 because
then, for any n ≥ 1, the general case follows by applying the arguments
successively to each pair (Xj , Xj−1).
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So, assume that X is obtained from Y by attaching a G-cell of the form
G/H ×Dk with k ≥ 0 and (H) ⊂ H. In particular, V ′ is H-complete; that
is, ResGH(V ′) contains each irreducible H-module with positive multiplicity.
Since ξ|Y ∼= η⊕εVY ⊕εlV

′
Y , there exists a G-subbundle ζ of ξ|Y isomorphic to

εVY . We claim that if l is sufficiently large, ζ extends to a G-subbundle θ of ξ
isomorphic to εVX . Once the claim is proven, we subtract θ from ξ; that is, we
take the G-orthogonal complement ξ−θ of θ in ξ. Then (ξ−θ)

∣∣
Y
∼= η⊕εlV ′Y .

Thus it suffices to prove the claim.
First, assume k = 0. Then we have to deal with G-vector bundles over

G/H, or equivalently, H-modules over the point {eH}. If l is sufficiently
large, ResGH(lV ′) contains ResGH(V ) by assumption, and the claim follows.

Assume k > 0. Set Dk = {eH} × Dk and Sk−1 = {eH} × Sk−1. Let
f : Sk−1 → Y and h : Dk → X be, respectively, the restrictions of an
attaching map and a characteristic map of the equivariant cell G/H ×Dk

such that f = h|Sk−1 . Let W be the H-module determined on the fiber of ξ
over the origin h(0) of the attached disk h(Dk) ⊂ X. Since ζ ∼= εVY and h∗ξ
is a product H-vector bundle over Dk, there exist H-trivializations

τ : Sk−1 × V → E(f∗ζ) and σ : Dk ×W → E(h∗ξ)

of the induced H-vector bundles f∗ζ and h∗ξ. The trivializations τ and σ
differ over Sk−1 by a map

dτ,σ : Sk−1 → InjH(V,W )

from Sk−1 into the space of H-linear injections of V into W . Once dτ,σ
extends over Dk, f∗ζ extends to an H-subbundle of h∗ξ isomorphic to the
product H-vector bundle over Dk with fiber ResGH(V ), which amounts to
saying that ζ extends to a G-subbundle θ of ξ isomorphic to εVX . Therefore,
to complete the proof of the claim, it suffices to show that dτ,σ does extend
over Dk. To do this, let us analyse the space InjH(V,W ). Let {Wi}i∈I be a
complete (finite) set of irreducible real H-modules. Then, as H-modules,

ResGH(V ) ∼=
⊕

i∈I
niWi and ResGH(V ′) ∼=

⊕

i∈I
n′iWi

for some integers ni, n′i ≥ 0. Since V ′ is H-complete, n′i > 0 for each i ∈ I.
Recall that ξ|Y ∼= η ⊕ εVY ⊕ εlV

′
Y . Hence, W ⊃ ResGH(V ⊕ lV ′) as an H-

submodule, and thus

W ∼=
⊕

i∈I
(ni + li)Wi with li = ln′i + ci

for some integers ci ≥ 0. For each i ∈ I, put Ei = EndH(Wi). Then Ei ∼= R,
C, or H. Clearly,

εniWi

Sk−1
∼= εniEi

Sk−1 ⊗Ei εWi

Sk−1 and ε
(ni+li)Wi

Dk
∼= ε

(ni+li)Ei
Dk

⊗Ei εWi

Dk
.
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For each i ∈ I, it follows from Schur’s lemma that an H-linear injection
V →W maps niWi into (ni + li)Wi. Therefore,

InjH(V,W ) ∼=
∏

i∈I
InjH(niWi, (ni + li)Wi).

Let On(Ei) denote the group of metric-preserving automorphisms of the
n-fold Eni of Ei for a given integer n ≥ 1; that is, On(R) = O(n), On(C) =
U(n), and On(H) = Sp(n). For each i ∈ I, choose an orthonormal ni-frame
in Eni+lii to obtain a splitting

InjH(V,W ) ∼=
∏

i∈I
Oni+li(Ei)/Oli(Ei).

Put ei = 1, 2, or 4 when Ei ∼= R,C, or H, respectively. Choose l large enough
to ensure that k − 1 ≤ (li + 1)ei − 2 for each i ∈ I (recall li = ln′i + ci).
It follows that πk−1(Oni+li(Ei)/Oli(Ei)) = 0 (cf. [H, Theorem 5.1, p. 95]).
Thus, the homotopy class

ω := [dτ,σ] ∈ πk−1(InjH(V,W ))

vanishes; that is, ω = 0, which shows that dτ,σ extends over Dk, proving the
claim and hence the theorem.

Proposition 2.3. For a finite group G, the real regular L(G)-free G-
module V (G) is M(G)-complete, where M(G) = S(G)r L(G).

P r o o f. Let H ∈ M(G). It suffices to show that ResGH(V (G)) ⊇ R[H].
Clearly, H ⊆ HGp for any prime p. If H = HGp for a prime p, then
H ⊇ Gp; that is, H ∈ L(G), which gives a contradiction. Thus, for each
prime p, H 6= HGp. By the definition of V (G),

ResGH(V (G)) = ResGH(R[G]− R)−
⊕

p | |G|
ResGH(R[G/Gp]− R).

By Frobenius reciprocity, ResGH(R[G]) = |G/H|R[H] and for each prime p,

ResGH(R[G/Gp]) = |G/HGp|R[H/(H ∩Gp)].
Note that the group H/(H ∩Gp) is a p-group, R[H] ⊇ R[H/(H ∩Gp)], and

R[H]− R ⊇
⊕

p | |G|
(R[H/(H ∩Gp)]− R).

Let n denote the number of distinct primes dividing |G|. Then it follows
that

ResGH(V (G)) = (|G/H|R[H] + (n− 1)R)−
⊕

p||G|
|G/HGp|R[H/(H ∩Gp)]

⊇ (|G/H| −m)(R[H]− R),
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where m = max{|G/HGp| | p divides |G|}. Since dimV (G)H > 0, we have
ResGH(V (G)) ⊇ R, and since H 6= HGp, it follows that |G/H| − m > 0.
Therefore, ResGH(V (G)) ⊇ R[H].

Remark 2.4. Let G be a finite group. Let V be a real G-module and let
W be a G-submodule of V such that W ⊃ V L for each L ∈ L(G); possibly,
W = V . Then the G-orthogonal complement V −W of W in V is L(G)-free.
By Proposition 2.3, V (G) is M(G)-complete. Hence, (V −W ) ⊕ V (G) is
both M(G)-complete and L(G)-free. In particular, if V is L(G)-free, then
V ⊕ V (G) is both M(G)-complete and L(G)-free.

3. Constructions of smooth G-actions on disks. In order to con-
struct smooth G-actions on disks, we employ the equivariant thickening
procedure described in [P2] for any compact Lie group G. Roughly saying,
given a finite G-CW complex X, a compact smooth G-manifold M such that
X ⊃ M , and a smooth G-vector bundle ν over M , the procedure allows us
to build up X into a compact smooth G-manifold D of the G-homotopy
type of X, such that D ⊃ M as a G-submanifold with equivariant normal
bundle νM⊂D stably isomorphic to ν. This is done by making use of an
appropriate G-vector bundle ξ over X which stably extends τM ⊕ ν. In this
article, we apply the equivariant thickening procedure for a finite group G,
and we restate the results in the form convenient for our applications.

Theorem 3.1 (The Equivariant Thickening Theorem). Let G be a finite
group. Let (M,ν) be a pair consisting of a compact smooth G-manifold M
and a smooth G-vector bundle ν over M . Let (X, ξ) be a pair consisting of
a finite G-CW complex X and a G-vector bundle ξ over X such that the
following three conditions hold :

(1) X ⊃M as a G-invariant subcomplex.
(2) Fiso(G;XrM)⊂Fiso(G;S(V )) for a real G-module V with dimV > 0.
(3) ξ|M ⊕ εWM ∼= τM ⊕ ν ⊕ εWM , where W = lV for an integer l ≥ 1.

If l is sufficiently large, there exists a compact smooth G-manifold D
such that D ⊃M as a G-submanifold , νM⊂D ∼= ν⊕εWM as G-vector bundles,
and

Fiso(G;D rM) = Fiso(G;S(ν)) ∪ Fiso(G;S(V ))
when Fiso(G;S(V )) is closed under taking subgroups. Moreover , D ⊃ X as a
G-invariant subcomplex , and there exists a strong G-deformation retraction
f : D → X such that τD ∼= f∗(ξ) ⊕ εWD . In particular , τD|X ∼= ξ ⊕ εWX . If
X is (nonequivariantly) contractible, then D can be chosen to be the disk of
dimension n = dim(τM ⊕ ν) + l dimV ≥ 6.

P r o o f. Let X0 be the sum of M and all equivariant 0-cells G/H in
XrM . Extend τM ⊕ν to a smooth G-vector bundle νX0 over X0 by letting
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νX0 be G×H Fx(ξ) over any equivariant 0-cell G/H in X rM , where Fx(ξ)
is the fiber of ξ over x = eH ∈ G/H, considered as an H-module. Recall
W = lV for an integer l ≥ 1, and note that

(ξ ⊕ εWX )|X0
∼= τX0 ⊕ νX0 ⊕ εWX0

.

Thus, the Normal Bundle Condition (NB) of [P2, p. 279] holds for ξ ⊕ εWX
and νX0 ⊕ εWX0

. Since Fiso(G;V ) is closed under taking intersections, V and
W have the same isotropy subgroups and the assumption Fiso(G;XrM) ⊂
Fiso(G;S(V )) implies that

Fiso(G;X rX0) ⊂ Fiso(G;S(νX0 ⊕ εWX0
)).

Thus, the Isotropy Subgroup Condition (IS) of [P2, p. 279] holds for νX0 ⊕
εWX0

. Moreover, the General Position Condition (GP) of [P2, p. 279] holds
for νX0 ⊕ εWX0

when l is sufficiently large. In fact, each isotropy subgroup H
that occurs in X rX0 occurs also in S(W ) and for each isotropy subgroup
H that occurs in S(W ), we can make both

dimWH and dimWH − dimW>H

as large as we wish by taking l sufficiently large.
Choose a filtration X0 ⊂ X1 ⊂ . . . ⊂ Xk = X of X such that Xj+1

is obtained from Xj by attaching just one equivariant cell. Using (NB),
(IS), and (GP), one constructs a sequence D0 ⊂ D1 ⊂ . . . ⊂ Dk of smooth
G-manifolds Dj such that Dj ⊃ Xj for j = 0, 1, . . . , k. One also constructs
strong G-deformation retractions fj : Dj → Xj such that fj+1|Dj = fj .
The idea of the construction is to take D0 and the bundle projection f0 :
D0 → X0, where D0 is the total space D(νX0 ⊕ εWX0

) of the invariant unit
disk bundle of νX0 ⊕ εWX0

over X0. Then, in a way prescribed by ξ ⊕ εWX ,
one replaces each m-cell G/H ×Dm in X rX0 by an equivariant m-handle
(G ×H D(U)) × Dm for an H-module U (cf. [P2, Proposition 2.3]). By
setting D = Dk and f = fk, one obtains a compact smooth G-manifold D
and a strong G-deformation retraction f : D → X such that D ⊃ M as a
G-submanifold, νM⊂D ∼= ν⊕εWM , and τD ∼= f∗(ξ)⊕εWD (cf. [P2, Theorem 2.4
and Remark 2.6]).

Note that X0 is obtained from M by adding equivariant 0-cells G/H,
and D0 is obtained from D(ν ⊕ εWM ) by replacing each G/H in X0 r M
by the equivariant 0-handle G×H D(Ux) with Ux = Fx(ξ)⊕ResGH(W ) and
x = eH ∈ G/H. In the inductive step of the construction, we replaced
an equivariant m-cell of type (H) by an equivariant m-handle of type (H)
for m ≥ 1. For m ≥ 0, the m-handle is a disk bundle over the m-cell.
Thus, each isotropy subgroup in the handle of type (H) is a subgroup of a
conjugate of H. Let H be the family of the isotropy subgroups occurring in
the added handles. If Fiso(G;S(V )) is closed under taking subgroups, then
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H ⊂ Fiso(G;S(V )) and it follows that

Fiso(G;D rM) = Fiso(G;S(ν)) ∪ Fiso(G;S(V )).

If X is (nonequivariantly) contractible, then so is D. By the construction,
the boundary ∂D is simply connected. Thus, by the h-cobordism theorem,
D can be chosen to be the disk of dimension n = dim(τM ⊕ν) + l dimV ≥ 6
(cf. [P2, Remark 2.5]).

Theorem 3.2. Let G be a finite group such that P(G) ∩ L(G) = ∅. Let
M be a smooth manifold and let ν be a smooth L(G)-free G-vector bundle
over M . Assume M is compact , χ(M) ≡ 1 (mod nG), and τM ⊕ ν satisfies
the bundle conditions (B1) and (B2). Assume also that the following two
statements are true:

(1) E is a finite contractible G-CW complex such that EG = M and K
is a family of subgroups of G such that K ⊃ L(G) and for each K ∈ K, each
connected component of EK either coincides with a connected component of
M or is disjoint from M .

(2) B =
⋃
K∈KE

K rM , N is a compact smooth G-manifold such that
N ⊃ B as a strong G-deformation retract , and when B is nonempty , the
tangent bundle τN of N is the product bundle over N whose fiber is the
trivial G-module of dimension dimV G0 for the fiber V0 of τM ⊕ ν over a
point x0 ∈M .

Then there exists a smooth action of G on a disk D such that DG = M
and νM⊂D ∼= ν⊕εWM for W = lV (G) and a sufficiently large integer l ≥ 1. In
particular , the action of G on D is without large isotropy subgroups around
M . The dimension of the disk D equals

dimD = dimV0 + l
(

(|G| − 1)−
∑

Gp

(|G/Gp| − 1)
)
.

Moreover , D ⊃ N as a G-submanifold disjoint from M and Fiso(G;D r
(M ∪N)) =M(G). In addition to (1) and (2), assume that

(3) For each P ∈ P(G), EP is simply connected.

Then the action of G on D can be constructed in such a way that for each
prime p | |G| and each P ∈ Pp(G), π1(DP ) is a finite abelian group of order
prime to p.

P r o o f. Let Y = E ∪B N be the sum of E and N along B. Then Y has
the structure of a finite contractible G-CW complex such that Y G = M .
Consider the quotient space Y/M = (E ∪B N)/M and form the wedge

YM = (Y/M) ∨M
of Y/M and M with respect to the base points M ∈ Y/M and x0 ∈M . The
G-module V0 is the fiber of τM ⊕ ν over x0 ∈M . Set η = τM ⊕ ν and define
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a G-vector bundle η over YM by letting η be η over M and the product
G-vector bundle over Y/M with fiber V0. Since τM ⊕ ν satisfies the bundle
conditions (B1) and (B2), it follows from Theorem 2.1 that there exist a
finite contractible G-CW complex X and a G-vector bundle ξ over X such
that X ⊃ YM as a G-invariant subcomplex,

Fiso(G;X r YM ) ⊂ P(G) and ξ|YM ∼= η ⊕ εVYM ⊕ εWYM
for a real G-module V and W = lV (G) for an integer l ≥ 1. By Proposi-
tion 2.3, the G-module V (G) is M(G)-complete, and thus P(G)-complete.
According to Theorem 2.2, if l is sufficiently large, there exists aG-subbundle
θ of ξ such that

θ ∼= εVX and (ξ − θ)|YM ∼= η ⊕ εWYM .
By the construction, M∪N ⊂ YM ⊂ X and Fiso(G;YMr(M∪N)) ⊂M(G)
because M(G) = S(G) r L(G) and L(G) ⊂ K. Since P(G) ⊂ M(G), it
follows that
Fiso(G;X r (M ∪N)) = Fiso(G;X r YM ) ∪ Fiso(G;YM r (M ∪N))

⊂M(G) = Fiso(G;S(V (G))).

Now, set

νM = ν ⊕ εWM and νN = ε
V0−V G0
N ⊕ εWN .

Then (ξ − θ)|M ∼= τM ⊕ νM and (ξ − θ)|N ∼= τN ⊕ νN . Theorem 3.1 applied
for the pairs (M ∪N, νM ∪ νN ) and (X, ξ − θ) asserts now that there exists
a compact smooth G-manifold D of the G-homotopy type of X, such that
D ⊃M ∪N as a G-submanifold whose equivariant normal bundle restricts
to νM over M and νN over N provided l is sufficiently large. In particular,
νM⊂D ∼= ν⊕εWM and the action of G on D is without large isotropy subgroups
around M ∪N . By [LM, (2.2)],

dimV (G) = (|G| − 1)−
∑

Gp

(|G/Gp| − 1).

Since X is (nonequivariantly) contractible, D can be chosen to be the disk
of dimension n = dimV0 +l dimV (G) ≥ 6. The familyM(G) is closed under
taking subgroups, and thus Fiso(G;S(νM ∪ νN )) =M(G). Hence,

Fiso(G;D r (M ∪N)) = Fiso(G;S(νM ∪ νN )) ∪Fiso(G;S(V (G))) =M(G).

If for each P ∈ P(G), EP is simply connected, then so is Y P because Y and
E have the same G-homotopy type. By Theorem 2.1, for each P ∈ Pp(G)
and p | |G|, π1(XP ) is a finite abelian group of order prime to p, and the same
is true for π1(DP ) because D and X have the same G-homotopy type.

In order to construct smooth G-actions on disks D without large isotropy
subgroups around DG (using Theorem 3.2), we need to construct finite con-
tractible G-CW complexes with suitable properties. The following lemma
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is a partial result of [O4, Proposition 2.3]. Since the proof of [O4, Proposi-
tion 2.3] uses much deeper arguments than we need here, we include a more
elementary proof of the lemma.

Lemma 3.3. Let G be a finite group not of prime power order. Let X
be a finite G-CW complex such that XG is nonempty and let Y be a finite
contractible G-CW complex such that

χ(XH) = χ(Y H)

for each H ∈ S(G) r P(G). Then there exists a finite contractible G-CW
complex E ⊃ X such that Fiso(G;E rX) ⊂ P(G) and EP is simply con-
nected for each P ∈ P(G).

P r o o f. By attaching a number of equivariant cells of isotropy types in
P(G), we can modify X so as to get dimX ≥ 2 and χ(XH) = χ(Y H) for
each nontrivial H ∈ S(G). By taking, if necessary, the unreduced double
suspension of Y , we may assume that Y G is nonempty. Let f : X → Y
be a constant G-map. By attaching a number of equivariant cells again of
isotropy types in P(G) and extending f over the attached cells, we can
modify X further so as to get XP simply connected. We also get in this
way a modified G-map f : X → Y such that fP : XP → Y P is a mod
p homology equivalence for each p | |G| and each nontrivial P ∈ Pp(G),
and f is n-connected for n = dimX. Hence, the resulting G-CW complex
X is (n − 1)-connected. According to Nakayama–Rim theory ([N], [R] and
[O4, Lemma A.10]), Hn(X;Z) is a projective Z[G]-module. Since Y is con-
tractible, Hn(X;Z) ∼= Hn+1(Zf , X;Z), where Zf is the mapping cyclider of
f . By [O4, Lemma A.11], there exists a finite G-CW complex T such that
TH = pt for eachH ∈ S(G)rP(G), T is (d−1)-connected for d = dimT ≥ 2,
and Hd(T ;Z) ∼= Hn(X;Z). By taking, if necessary, the reduced suspension
of T , we may assume that n− d ≡ 1 (mod 2). Now, by attaching a number
of free equivariant cells, we can build up the wedge X ∨ T into a finite con-
tractible G-CW complex E. By the construction, Fiso(G;T r pt) ⊂ P(G),
and thus Fiso(G;E rX) ⊂ P(G).

Lemma 3.4. Let G be a finite group not of prime power order. Let F
be a finite nonempty CW complex with χ(F ) ≡ 1 (mod nG). Then there
exists a finite contractible G-CW complex E with EG = F such that EP is
simply connected for each P ∈ P(G), and for each H ∈ S(G)r P(G), each
connected component of EH either coincides with a connected component of
F or is disjoint from F , and then it has dimension ≤ 1 (moreover , it can
be chosen to be a wedge of circles or a point).

P r o o f. By the assumption χ(F ) ≡ 1 (mod nG). According to [O1,
Corollary on p. 167], there exists a finite contractible G-CW complex Y
such that Y G = F . It follows that χ(Y G) = 1 + knG for an integer k, and
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for each H ∈ S(G)r {G}, we have

χ(Y H) = 1+
∑

K≥H
χ(Y K , Y >K) and χ(Y H , Y >H) ≡ 0 (mod |NG(H)/H|)

(cf. [O1, Lemma 2]). Thus, by taking the disjoint union of F and a number
of equivariant 0-cells G/H, and attaching a number of equivariant 1-cells
G/H × D1 to the added 0-cells for all (H) ⊂ S(G) r {G}, we can obtain
a finite G-CW complex X such that XG = F and χ(XH) = χ(Y H) for all
H ∈ S(G). In particular, each 1-cell G/H×D1 can be attached via a G-map
from G/H × S0 that is constant on each copy {gH} × S0 of the sphere S0.
According to Lemma 3.3, there exists a finite contractible G-CW complex
E ⊃ X such that Fiso(G;E r X) ⊂ P(G) and EP is simply connected
for each P ∈ P(G). Therefore, EG = XG = F and EH = XH for each
H ∈ S(G)rP(G). By the construction, for each H ∈ S(G)rP(G), we have
dim(XrF ) ≤ 1 and each connected component of EH either coincides with
a connected component of F or is disjoint from F , and then it has dimension
≤ 1 and can be chosen to be a wedge of circles or a point.

A finite group G is called a pseudocyclic group if G has a normal subgroup
P ∈ P(G) such that G/P is cyclic. Let CP be the class (denoted by G1 in
[O1]) of all finite pseudocyclic groups. For a finite group G, let CP(G) denote
the family of pseudocyclic subgroups of G. For a finite group G not of prime
power order, nG = 0 if and only if G ∈ CP (cf. [O1, Corollary on p. 171]). For
a prime p and an integer q ≥ 2 such that p does not divide q, the abelian
group G = Zpq × Zp is a pseudocyclic group that is neither cyclic nor of
prime power order.

Lemma 3.5. Let G be a finite group not of prime power order , and as-
sume nG = 0. Let F be a finite nonempty CW complex with χ(F ) = 1. Then
there exists a finite contractible G-CW complex E with EG = F such that
Fiso(G;E r F ) ⊂ P(G) and EP is simply connected for each P ∈ P(G).

P r o o f. According to [O1, Corollary on p. 167], there exists a finite
contractible G-CW complex Y such that Y G = F . Since nG = 0, we have
nH = 0 for each H ∈ S(G) r P(G), and it follows that χ(Y H) = 1 for
each H ∈ S(G). Set X = F and consider the trivial action of G on X.
Then χ(XH) = χ(Y H) for each H ∈ S(G), and Lemma 3.3 yields a finite
contractible G-CW complex E with EG = F such that Fiso(G;E r F ) ⊂
P(G) and EP is simply connected for each P ∈ P(G).

Lemma 3.6. Let G be a finite group not of prime power order , and as-
sume nG > 0. Let F be a finite nonempty CW complex with χ(F ) ≡ 1
(mod nG). Then there exists a finite contractible G-CW complex E with
EG = F such that EP is simply connected for each P ∈ P(G), and for each
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H ∈ S(G)r CP(G), each connected component of EH either coincides with
a connected component of F or is a point outside F .

P r o o f. Set B(G) = S(G)r (CP(G)∪{G}). According to [O1, Corollary
on p. 167], there exists a finite contractible G-CW complex YG such that
YG ⊃ F as the G-fixed point set and for each (H) ⊂ B(G), there exists a
finite contractible H-CW complex Y(H) whose H-fixed point set consists of
exactly nH + 1 points. Since H is not a pseudocyclic group, nH > 0. Hence,
the H-fixed point set of Y(H) consists of two or more isolated points. Choose
a base G-fixed point yG in YG and for each (H) ⊂ B(G), choose a base
H-fixed point y(H) in Y(H) and an integer b(H) > 0. Now, form the wedge

Y = YG ∨
∨

(H)⊂B(G)

( b(H)∨

i=1

(G×H Y(H))/(G×H {y(H)})
)
.

Then Y is a finite contractible G-CW complex such that Y G = F , and it
follows that χ(Y G) = 1 + knG for an integer k. Moreover, for each H ∈
S(G)r {G},
χ(Y H) = 1+

∑

K≥H
χ(Y K , Y >K) and χ(Y H , Y >H) ≡ 0 (mod |NG(H)/H|)

(cf. [O1, Lemma 2]). Choose the integers b(H) so that χ(Y H , Y >H) > 0 for
(H) ⊂ B(G). For each (H) ⊂ S(G), set c(H) = χ(Y H , Y >H)/|NG(H)/H|
and

j(H) =
{

0 for c(H) ≥ 0,
1 for c(H) < 0.

Note that c(H) > 0 and thus j(H) = 0 for each (H) ⊂ S(G)rCP(G). For any
H ∈ S(G), set Σ0(G/H)+ = (G/H)+ = G/H q pt and write Σ1(G/H)+

for the reduced suspension of (G/H)+. Form the wedge

X = F ∨
∨

(H)⊂S(G), c(H) 6=0

( |c(H)|∨

i=1

Σj(H)(G/H)+
)
.

Then X is a finite G-CW complex such that XG = F and χ(XH) = χ(Y H)
for eachH ∈ S(G). According to Lemma 3.3, there exists a finite contractible
G-CW complex E ⊃ X such that Fiso(G;ErX) ⊂ P(G) and EP is simply
connected for each P ∈ P(G). By the construction, EG = XG = F and
EH = XH for each H ∈ S(G) r P(G). Moreover, for each (H) ⊂ B(G),
E=H is the disjoint union of c(H) copies of (G/H)=H . Hence, for each H ∈
S(G) r CP(G), each connected component of EH either coincides with a
connected component of F or is a point outside F .

Let G be a finite Oliver group (that is, nG = 1). Then P(G) ⊂ CP(G) ⊂
M(G) (cf. [LM, Proposition 1.2]), and thus CP(G) ∩ L(G) = ∅; that is, no
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large subgroup of G is pseudocyclic. Hence, if in Lemma 3.6 we assume that
G is a finite Oliver group, then there is no Euler characteristic restriction
on EG = F and for each L ∈ L(G), each connected component of EL either
coincides with a connected component of F or is a point outside F . It turns
out that if G is a finite Dress–Oliver group, we can construct E in such a
way that EL = F for each L ∈ L(G).

Lemma 3.7. Let G be a finite Dress–Oliver group. Let F be a finite
nonempty CW complex. Then there exists a finite contractible G-CW com-
plex E such that EL = F for each L ∈ L(G), and EH is simply connected
for each H ∈M(G).

P r o o f. Consider all different Dress subgroups Gp1 , . . . , Gpk of G. By
the assumption, nGpi = 1 for i = 1, . . . , k, and by [O1], there exists a finite
contractible Gpi-CW complex Yi such that Y G

pi

i = ∅. Consider the induced
G-space Xi = IndGGpi (Yi) of all Gpi-maps G→ Yi with the action of G given
by (gϕ)(g′) = ϕ(g′g−1) for any Gpi-map ϕ : G→ Yi and all g, g′ ∈ G. Then
Xi has the structure of a finite contractible G-CW complex with XGpi

i = ∅.
Consider the cartesian product X = X1× . . .×Xk with the diagonal action
of G. Then X is a finite contractible G-CW complex with XL = ∅ for each
L ∈ L(G). Now, consider the join E = F ∗X ∗S(V (G)) with the join action
of G. Then EL = F for each L ∈ L(G). Moreover, for each H ∈ M(G),
dimS(V (G))H ≥ 1 by Proposition 1.9, and since EH = F ∗XH ∗S(V (G))H ,
EH is simply connected.

Proof of Theorems 0.2 and 0.3. As noted in the Introduction, in Theo-
rems 0.2 and 0.3, (1) implies (2) by Theorem 0.1. Now, we show the converse
implication. Let G be a finite group such that P(G) ∩ L(G) = ∅. Let M be
a smooth manifold and let ν be a smooth L(G)-free G-vector bundle over
M . Assume M is compact, χ(M) ≡ 1 (mod nG), and τM ⊕ ν satisfies the
bundle conditions (B1) and (B2).

The case nG = 0 (G is a pseudocyclic group). In this case χ(M) = 1.
Assume M has a connected component of dimension > 1 or M is the disjoint
union of the disk D1 and a number k ≥ 0 of copies of the circle S1. Since
M has the structure of a finite CW complex, Lemma 3.5 yields a finite
contractible G-CW complex E such that EG = M and Fiso(G;E rM) ⊂
P(G). Set

K = S(G)r P(G) and B =
⋃

H∈K
EH rM.

Then K ⊃ L(G) and B = ∅. Set N = ∅ and note that the statements
(1) and (2) in Theorem 3.2 are true. According to Theorem 3.2, there ex-
ists a smooth action of G on a disk D such that DG = M and νM⊂D ∼=
ν ⊕ εWM for W = lV (G) and a sufficiently large integer l ≥ 1. Moreover,
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Fiso(G;DrM) =M(G). Clearly, in the case where M = Dn for n ≥ 0, one
may set D = D(ν) to get the proof with Fiso(G;D rM) ⊂M(G), and set
D = D(ν ⊕ εWM ) with W = V (G) to get Fiso(G;D rM) =M(G).

To complete the argument for nG = 0, it remains to consider the case
where M is the disjoint union of a point and a number k > 0 of copies of
S1. The bundle conditions (B1) and (B2) then imply that G has two real
G-modules V and W such that dimV G = 1, dimWG = 0, and ResGP (V ) ∼=
ResGP (W ) for each P ∈ P(G). By [O4], such G-modules V and W exist if
and only if G has a subquotient isomorphic to the dihedral group of order
2pq for two coprime integers p, q ≥ 2. Since G is pseudocyclic, G does not
have such a subquotient, and thus this case is impossible.

The case nG = 1 (G is an Oliver group). In this case, there is no re-
striction on χ(M). Moreover, P(G) ⊂ CP(G) ⊂ M(G), and hence CP(G) ∩
L(G) = ∅. Now, Lemma 3.6 yields a finite contractible G-CW complex E
such that EG = M and for each H ∈ S(G)rCP(G), each connected compo-
nent of EH either coincides with a connected component of M or is a point
outside M . Set

K = S(G)r CP(G) and B =
⋃

H∈K
EH rM.

Then K ⊃ L(G) and B is a discrete space. Let V0 be the fiber of τM ⊕ ν
over a base point x0 ∈ M . For n = dimV G0 and b ∈ B, take a copy Dn

b

of the disk Dn and identify b with the origin of Dn
b . Let N be the disjoint

union of the disks Dn
b taken for all b ∈ B. Then N admits the structure of a

smooth G-manifold and the statements (1) and (2) in Theorem 3.2 are true.
According to Theorem 3.2, there exists a smooth action of G on a disk D
such that DG = M , νM⊂D ∼= ν⊕ εWM for W = lV (G) and a sufficiently large
integer l ≥ 1, and Fiso(G;D r (M ∪N)) =M(G).

If G is a finite Dress–Oliver group, that is, nL = 1 for each L ∈ L(G),
then Lemma 3.7 yields a finite contractible G-CW complex E such that
EL = M for each L ∈ L(G). Set

K = S(G)rM(G) and B =
⋃

H∈K
EH rM.

Then K = L(G) and B = ∅. Set N = ∅ and note that, as above, the result
follows by using Theorem 3.2. In particular, Fiso(G;D rM) =M(G).

The case nG > 1 (G is neither a pseudocyclic group nor an Oliver group).
Since M has the structure of a finite CW complex, Lemma 3.4 yields a
finite contractible G-CW complex E such that EG = M and for each H ∈
S(G) r P(G), each connected component of EH either coincides with a
connected component of M or is disjoint from M , and then it has dimension
≤ 1 (moreover, it can be chosen to be a wedge of circles or a point). Set
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K = S(G)r P(G) and B =
⋃

H∈K
EH rM.

Then K ⊃ L(G) and each connected component of B has dimension ≤ 1.
Choose a base point x0 ∈ M and write V0 for the fiber of τM ⊕ ν over
x0. Then dimV G0 = dimM0, where M0 is the connected component of M
containing x0. Now, assume M has a connected component of dimension
> 1, so that we can assume that dimM0 > 1. As a result, there exists a
compact smooth G-manifold N such that N ⊃ B as a strong G-deformation
retract and the tangent bundle τN is the product bundle over N whose fiber
is the trivial G-module of dimension dimV G0 . Since the statements (1) and
(2) in Theorem 3.2 are true, once again Theorem 3.2 yields the required
action of G on a disk D.

Proof of Theorems 0.4 and 0.5. In Theorems 0.4 and 0.5, (1) implies (2)
by [O1] and [EL]. In fact, for a smooth action of G on a disk D, it follows
from [O1, Corollary on p. 167] that χ(M) ≡ 1 (mod nG), and according
to [EL, (3.1) and (3.2)], DG is stably complex when G has a normal Sylow
2-subgroup. In order to show that (2) implies (3), we argue as follows. Propo-
sition 1.6 (resp., Proposition 1.8) asserts that given G ∈ CN (resp., G ∈ DN )
and a compact stably complex smooth manifold M (resp., a compact smooth
manifold M), there exists a smooth L(G)-free G-vector bundle ν over M
such that τM⊕ν satisfies the bundle conditions (B1) and (B2). Thus, by ap-
plying Theorem 0.2 in the proof of Theorem 0.4 and applying Theorem 0.2
(resp., Theorem 0.3) in the proof of Theorem 0.5, (2) implies (3). Clearly,
(3) implies (1) in Theorems 0.4 and 0.5.

Remark 3.8. In the proof of Theorems 0.2 and 0.3, the G-CW complex
E can always be chosen so that EP is simply connected for each P ∈ P(G)
(see Lemmas 3.4–3.7). Hence, in Theorem 3.2, the statement (3) is true and
so the construction of the action of G on a disk D can be done in such a
way that for each P ∈ Pp(G) and p | |G|, π1(DP ) is a finite abelian group of
order prime to p. As a result, we may assume that in all statements about
actions of G on disks D in Theorems 0.2–0.5, π1(DP ) is a finite abelian
group of order prime to p.
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