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Abstract. Our main purpose is to compute the equivariant cohomology of

weighted projective space, with integer coefficients and pairwise coprime weights;
we work in the context of piecewise polynomials. We also outline aspects of the

problem that place it within the realms of toric topology, on which we shall elab-

orate in a forthcoming article. These include relationships with weighted lens
spaces, homotopy colimits, the Bousfield-Kan spectral sequence, and weighted

face rings. By way of application, we describe the multiplicative structure in

the integral cohomology ring of the weighted projectivisation of certain com-
plex vector bundles; these have been determined additively by Al-Amrani.

1. Introduction

Let χ = (χ0, . . . , χn) be a vector of positive natural numbers. The associated
weighted (sometimes known as twisted) projective space is the quotient

(1.1) P(χ) = S2n+1/S1〈χ0, . . . , χn〉,
where the χi indicate the weights with which S1 acts on Sn+1 ⊂ Cn+1 via

(1.2) g · (x0, . . . , xn) = (gχ0x0, . . . , g
χnxn).

Since this quotient does not change if all weights are multiplied by a constant, we
may always assume that the greatest common divisor of the weights is equal to 1.
In this note we will make the stronger assumption that the weights are pairwise
coprime; for n ≤ 2, this is not a restriction.

Note that P(χ) is equipped with an action of the n-dimensional torus

(1.3) T = (S1)n+1/S1〈χ0, . . . , χn〉,
where the quotient is defined as before. Our aim is to describe H∗

T (P(χ)), the
T -equivariant cohomology of P(χ) with integer coefficients.

Kawasaki [K] has computed the ordinary cohomology ring of P(χ) with integer
coefficients. Additively, it is isomorphic to that of ordinary complex projective
space, but multiplicatively, it is distinct. More precisely, if c1 ∈ H2(P(χ)) is a
generator, then H∗(P(χ)) is generated by c0 = 1 ∈ H0(P(χ)) and the elements

(1.4) cm =
c1

(χ0 · · ·χn)m−1
∈ H2m(P(χ))

for 1 ≤ m ≤ n, with the obvious multiplication. This result already uses our
assumption that the weights are pairwise coprime.

Of course c1 is the first Chern class of a complex line bundle ψ over P(χ). The
circle bundle S(ψ) is the weighted lens space

(1.5) L(χ) = S2n+1/Z〈χ0, . . . , χn〉,
whose quotient by the free action of the circle S1〈χ〉 is P(χ). Kawasaki also proves
that the integral cohomology group H2m(L(χ)) is isomorphic to the cyclic group
Z/? for m ≥ 2, and is zero otherwise. Moreover, a simple geometric argument
confirms that L(χ) is homeomorphic to the double suspension Σ2L(χ′), where ...

Our main result is Theorem 3.7, which presents H∗
T (P(χ)) in terms of generators

and relations. The generators are 2–dimensional elements ...
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2. From equivariant cohomology to piecewise polynomials

Let ι : P(χ) → P(χ)T be an inclusion of the fibre into the Borel construction.

Lemma 2.1. H∗
T (P(χ)) is a free H∗(BT )-module. Moreover, as a ring it is gener-

ated by the image of H2(BT ) in H2
T (P(χ)) together with any subring A ⊂ H∗

T (P(χ))
which surjects onto H∗(P(χ)) under ι∗.

Proof. According to Kawasaki, H∗(P(χ)) is free over Z and concentrated in even
degrees. Hence, the Serre spectral sequence of the fibration P(χ) ↪→ P(χ)T → BT
degenerates at the E2 level, and H∗

T (P(χ)) ∼= H∗(P(χ)) ⊗ H∗(BT ) as H∗(BT )-
modules by the Leray–Hirsch theorem. This isomorphism is induced by any (addi-
tive) section to ι∗. Since we can assume this section to take values in A, our claim
is proven. �

The equivariant cohomology of ordinary complex projective space, which corre-
sponds to the case of all weights being equal to 1, is well-known. A convenient
description of it comes from the theory of toric varieties.

To wit, the space P(χ) is an n-dimensional projective toric variety. It is defined
by any complete simplicial fan Σ spanned by vectors v0, . . . , vn ∈ N = Zn with the
following properties:

(1) The vectors v0, . . . , vn span N .
(2) They satisfy the relation

(2.1) χ0v0 + · · ·+ χnvn = 0.

[mf: insert reference. maybe Fulton?]
The equivariant cohomology of ordinary projective n-space can be described as

the integral Stanley–Reisner algebra of the fan Σ,

(2.2) Z[Σ] = Z[a0, . . . , an]/(a0 · · · an),

where each generator ai has cohomological degree 2. For the general case, we will
give a similar description of H∗

T (P(χ)) as some kind of “weighted Stanley–Reisner
algebra”. Our main tool will be piecewise polynomials, to which we turn now.

A function f : NQ = Qn → Q is called piecewise polynomial if on each cone σ ∈ Σ
it coincides with some (global) polynomial g ∈ Z[N ]. [Is it necessary to switch from
N to NQ here?]

Proposition 2.2. H∗
T (P(χ)) is isomorphic as H∗(BT )-algebra to the algebra of

piecewise polynomials on Σ.
Under this isomorphism, the cup product corresponds to the usual pointwise mul-

tiplication of functions, and the canonical map H∗(BT ) → H∗
T (P(χ)) to the inclu-

sion of (global) polynomials.

Proof. SinceH∗
T (P(χ)) is free overH∗(BT ) and moreover all isotropy groups of P(χ)

are connected (as for any toric variety), the so-called Chang–Skjelbred sequence

(2.3) 0 −→ H∗
T (P(χ))

j∗−→ H∗
T (P(χ)T ) δ−→ H∗+1

T (P(χ)1,P(χ)T )

is exact (Franz–Puppe [FP]). Here P(χ)T denotes the T -fixed points, P(χ)1 the
union of P(χ)T and all 1-dimensional orbits, j the inclusion P(χ)T → P(χ) and δ
the differential of the long exact cohomology sequence for the pair (P(χ)1,P(χ)T ).

The piecewise polynomials are a way to represent the kernel of the map δ. Write
Oσ for the orbit under the complexification TC of T corresponding to σ ∈ Σ, and
Z[σ] for the polynomials with integer coefficients on the linear hull of σ. Note that
a polynomial on the linear hull of σ is uniquely defined by its restriction to σ.

We have for full-dimensional σ ∈ Σn

(2.4) H∗
T (Oσ) = H∗(BT ) = Z[σ],
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and in one dimension lower for τ ∈ Σn−1

(2.5) H∗+1
T (Ōτ , ∂Oτ ) ∼= H∗+1

T (CP1, {0,∞}),
which after a choice of orientation of the interval Oτ/T gives an isomorphism

(2.6) H∗+1
T (Ōτ , ∂Oτ ) ∼= Z[τ ].

Moreover, it turns out that for a facet τ of σ the differential

(2.7) H∗
T (Oσ) → H∗+1

T (Ōτ , ∂Oτ )

is the canonical restriction Z[σ] → Z[τ ], multiplied by ±1 depending on the chosen
orientation of Oτ/T .

As result we get that the differential δ from (2.3) is a signed sum of restrictions
of polynomials,

(2.8) δ :
⊕

σ∈Σn

Z[σ] →
⊕

τ∈Σn−1

Z[τ ],

where the component in Z[τ ] is the difference of the restrictions of the polynomials
on the two full-dimensional cones having τ as their common facet. Hence, the kernel
consists of those collections of polynomials on the full-dimensional cones which glue
along their common facets. But this is the same as requiring that the polynomials
collect along any intersection τ = σ ∩ σ′ of two cones σ, σ′ ∈ Σ. The reason is
that σ and σ are connected by a sequence of cones, each containing τ . (In other
words, Σ is a hereditary fan, cf. [BR].) We therefore get that the kernel of δ are
the piecewise polynomial functions on Σ, i.e., the functions which are polynomial
on each σ ∈ Σ. �

Remark 2.3. The integral equivariant cohomology of any smooth, not necessarily
compact toric variety XΣ is given by the integral Stanley–Reisner algebra of Σ or,
equivalently, by the piecewise polynomials on Σ, cf. [BDCP], [DJ], [Br]. A canonical
isomorphism between the Stanley–Reisner algebra of Σ and the algebra of piecewise
polynomials on Σ can be defined by assigning the Courant function aρ associated
with the ray ρ to the Stanley–Reisner generator corresponding to ρ. This function aρ

is the piecewise linear function on Σ that assumes the value 1 on the generator of ρ
and 0 on all other rays. It is well-defined because the smoothness of XΣ implies
that the rays of any cone in Σ can be completed to a basis of the lattice N .

Similarly, for a simplicial fan Σ the rational equivariant cohomology HT (XΣ; Q)
is given by the rational Stanley–Reisner algebra Q[Σ]. [reference needed?]

3. Generators of the ring of piecewise polynomials

For i = 0, . . . , n we will write σi ∈ Σ for the full-dimensional cone spanned by all
fan generators except vi. Moreover, given a piecewise polynomial f , we will denote
the unique polynomial which coincides with f on σi by f (i). We call a piecewise
polynomial reduced if it is not divisible by any rational prime.

Let ai be the (integral) Courant function corresponding to vi. By this we mean
the reduced piecewise linear function that assumes a positive value on vi and van-
ishes on all vj for j 6= i. Moreover, let bij , i 6= j, be the reduced linear function
that assumes a positive value on vi and vanishes on all vk, i 6= k 6= j.

Lemma 3.1. bij(vi) = χj and bij(vj) = −χi for i 6= j.

Proof. Applying bij to the relation (2.1) yields

(3.1) χi bij(vi) = −χj bij(vj).

This implies the claim because vi and vj span N/ ker bij ∼= Z and χi and χj are
coprime. �

Proposition 3.2. The functions bij, i 6= j, generate the linear functions.
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Proof. For given i, let Ni be the span of the linear independent set Vi = {vj : j 6= i}
and N∨

i its dual. By Lemma 3.1, the restriction of each bij , j 6= i, to Ni is divisible
by χi, and −bij/χi ∈ N∨

i is an element of the basis dual to Vi.
Denote by Mi the sublattice generated by the bij , j 6= i, inside the dual N∨ of N ,

and by M the one generated by all bij , j 6= i. We have

(3.2) N∨
i /N

∨ = (N∨
i /Mi)

/
(N∨/Mi).

Hence, the order of N∨/Mi divides that of N∨
i /Mi, which equals χn

i by what we
have said so far. (In fact, |N∨

i /N
∨| = |N/Ni| = χi and therefore |N∨/Mi| = χn−1

i ,
but we won’t need this.)

Since the order of N∨/Mi divides χn
i , the same applies to that of N∨/M because

(3.3) N∨/M = (N∨/Mi)
/

(M/Mi).

This implies that the order of N∨/M divides the greatest common divisor of all χn
i ,

which is 1. �

Lemma 3.3. Together with the linear functions, each ai generates the piecewise
linear functions.

Proof. Let f be piecewise linear. Then f − f (i) vanishes on σi, hence is a multiple
of ai. �

Lemma 3.4. ai(vi) =
∏

j 6=i χj and a(j)
i =

∏
i 6=k 6=j χk bij for i 6= j.

Proof. By Lemma 3.1 we get a well-defined piecewise linear function f by setting
f (i) = 0 and f (j) as given above for j 6= i. This function is reduced and assumes a
positive value on vi. Hence, it is equal to ai. �

Lemma 3.5. We have

(3.4) bij =
ai − aj∏
i 6=k 6=j χk

for i 6= j.

Proof. We have a(j)
i = −a(i)

j =
∏

i 6=k 6=j χkbij by Lemma 3.4, and a
(i)
i = −a(j)

j = 0,
hence, (ai − aj)(i) = (ai − aj)(j). By Lemma 3.3, each piecewise linear function is
the sum of a linear function and a multiple of a Courant function. For a Courant
function ak, the restrictions to any two maximal cones are distinct linear functions.
Hence ai − aj is in fact linear and divisible as claimed. �

We now consider higher-degree analogues of the Courant functions ai.

Lemma 3.6. For a subset I ⊂ {0, . . . , n} of size m > 0, the function
∏

i∈I ai is
divisible by

∏
i∈I χ

m−1
i .

Proof. For a given k 6= i, all a(j)
i , i 6= j 6= k, are divisible by χk. �

Hence, for I ⊂ {0, . . . , n} with |I| = m > 0 we may define the piecewise polyno-
mial function

(3.5) aI =
∏

i∈I ai∏
i∈I χ

m−1
i

of polynomial degree m (and cohomological degree 2m).

Theorem 3.7. The functions aI , I 6= ∅, and bij, i 6= j, generate H∗
T (P(χ)) as a

ring. The only relations are (3.4), (3.5) and a0 · · · an = 0.
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Proof. Since there are no more relations between the aI and the bij in HT (XΣ; Q),
the same is true in HT (XΣ; Z), which injects into HT (XΣ; Q) because it is free
over Z. It remains to show that these elements are indeed ring generators.

By Proposition 3.2, the bij generate the linear functions, which are the image
of H2(BT ) in H2

T (P(χ)). Hence, by Lemma 2.1, it suffices to show that the ring
generated by the aI surjects onto H∗(P(χ)). In other words, we have to show that
cm lies in the span of {ι∗(aI) : |I| = m} for each m ≥ 1.

For m = 1, this is true by Lemma 3.3 because we know ι∗ itself to be surjective.
Moreover, Lemma 3.5 implies that all elements ai are mapped to the same element
of H2(P(χ)). This must necessarily be a generator, which we can assume to be c1
(instead of −c1).

For 1 < m ≤ n, we get that

(3.6) ι∗(aI) =
∏

i∈I ι
∗(ai)∏

i∈I χ
m−1
i

=
cm1∏

i∈I χ
m−1
i

=

(∏n
i=0 χ

m−1
i

)
cm∏

i∈I χ
m−1
i

=
(∏

i/∈I

χm−1
i

)
cm.

Because we assume the weights to be pairwise coprime, the above multiples of cm
generate H2m(P(χ)). �

Remark 3.8. Note that one could do better by taking only some of the aI . For
example, for |I| = 2, it would suffice to take a12, a34 etc. But doing so would impose
an ordering of the generators.
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