THE EQUIVARIANT COHOMOLOGY OF WEIGHTED PROJECTIVE SPACES

TONY BAHRI, MATTHIAS FRANZ AND NIGEL RAY 08.08.07 WFR1.TEX

Abstract

Our main purpose is to compute the equivariant cohomology of weighted projective space, with integer coefficients and pairwise coprime weights; we work in the context of piecewise polynomials. We also outline aspects of the problem that place it within the realms of toric topology, on which we shall elaborate in a forthcoming article. These include relationships with weighted lens spaces, homotopy colimits, the Bousfield-Kan spectral sequence, and weighted face rings. By way of application, we describe the multiplicative structure in the integral cohomology ring of the weighted projectivisation of certain complex vector bundles; these have been determined additively by Al-Amrani.

1. Introduction

Let $\chi=\left(\chi_{0}, \ldots, \chi_{n}\right)$ be a vector of positive natural numbers. The associated weighted (sometimes known as twisted) projective space is the quotient

$$
\begin{equation*}
\mathbb{P}(\chi)=S^{2 n+1} / S^{1}\left\langle\chi_{0}, \ldots, \chi_{n}\right\rangle \tag{1.1}
\end{equation*}
$$

where the χ_{i} indicate the weights with which S^{1} acts on $S^{n+1} \subset \mathbb{C}^{n+1}$ via

$$
\begin{equation*}
g \cdot\left(x_{0}, \ldots, x_{n}\right)=\left(g^{\chi_{0}} x_{0}, \ldots, g^{\chi_{n}} x_{n}\right) \tag{1.2}
\end{equation*}
$$

Since this quotient does not change if all weights are multiplied by a constant, we may always assume that the greatest common divisor of the weights is equal to 1 . In this note we will make the stronger assumption that the weights are pairwise coprime; for $n \leq 2$, this is not a restriction.

Note that $\mathbb{P}(\chi)$ is equipped with an action of the n-dimensional torus

$$
\begin{equation*}
T=\left(S^{1}\right)^{n+1} / S^{1}\left\langle\chi_{0}, \ldots, \chi_{n}\right\rangle \tag{1.3}
\end{equation*}
$$

where the quotient is defined as before. Our aim is to describe $H_{T}^{*}(\mathbb{P}(\chi))$, the T-equivariant cohomology of $\mathbb{P}(\chi)$ with integer coefficients.

Kawasaki $[\mathrm{K}]$ has computed the ordinary cohomology ring of $\mathbb{P}(\chi)$ with integer coefficients. Additively, it is isomorphic to that of ordinary complex projective space, but multiplicatively, it is distinct. More precisely, if $c_{1} \in H^{2}(\mathbb{P}(\chi))$ is a generator, then $H^{*}(\mathbb{P}(\chi))$ is generated by $c_{0}=1 \in H^{0}(\mathbb{P}(\chi))$ and the elements

$$
\begin{equation*}
c_{m}=\frac{c_{1}}{\left(\chi_{0} \cdots \chi_{n}\right)^{m-1}} \in H^{2 m}(\mathbb{P}(\chi)) \tag{1.4}
\end{equation*}
$$

for $1 \leq m \leq n$, with the obvious multiplication. This result already uses our assumption that the weights are pairwise coprime.

Of course c_{1} is the first Chern class of a complex line bundle ψ over $\mathbb{P}(\chi)$. The circle bundle $S(\psi)$ is the weighted lens space

$$
\begin{equation*}
\mathbb{L}(\chi)=S^{2 n+1} / \mathbb{Z}\left\langle\chi_{0}, \ldots, \chi_{n}\right\rangle \tag{1.5}
\end{equation*}
$$

whose quotient by the free action of the circle $S^{1}\langle\chi\rangle$ is $\mathbb{P}(\chi)$. Kawasaki also proves that the integral cohomology group $H^{2 m}(\mathbb{L}(\chi))$ is isomorphic to the cyclic group $\mathbb{Z} /$? for $m \geq 2$, and is zero otherwise. Moreover, a simple geometric argument confirms that $\mathbb{L}(\chi)$ is homeomorphic to the double suspension $\Sigma^{2} \mathbb{L}\left(\chi^{\prime}\right)$, where ...

Our main result is Theorem 3.7, which presents $H_{T}^{*}(\mathbb{P}(\chi))$ in terms of generators and relations. The generators are 2 -dimensional elements ...

2. From equivariant cohomology to piecewise polynomials

Let $\iota: \mathbb{P}(\chi) \rightarrow \mathbb{P}(\chi)_{T}$ be an inclusion of the fibre into the Borel construction.
Lemma 2.1. $H_{T}^{*}(\mathbb{P}(\chi))$ is a free $H^{*}(B T)$-module. Moreover, as a ring it is generated by the image of $H^{2}(B T)$ in $H_{T}^{2}(\mathbb{P}(\chi))$ together with any subring $A \subset H_{T}^{*}(\mathbb{P}(\chi))$ which surjects onto $H^{*}(\mathbb{P}(\chi))$ under ι^{*}.
Proof. According to Kawasaki, $H^{*}(\mathbb{P}(\chi))$ is free over \mathbb{Z} and concentrated in even degrees. Hence, the Serre spectral sequence of the fibration $\mathbb{P}(\chi) \hookrightarrow \mathbb{P}(\chi)_{T} \rightarrow B T$ degenerates at the E_{2} level, and $H_{T}^{*}(\mathbb{P}(\chi)) \cong H^{*}(\mathbb{P}(\chi)) \otimes H^{*}(B T)$ as $H^{*}(B T)$ modules by the Leray-Hirsch theorem. This isomorphism is induced by any (additive) section to ι^{*}. Since we can assume this section to take values in A, our claim is proven.

The equivariant cohomology of ordinary complex projective space, which corresponds to the case of all weights being equal to 1 , is well-known. A convenient description of it comes from the theory of toric varieties.

To wit, the space $\mathbb{P}(\chi)$ is an n-dimensional projective toric variety. It is defined by any complete simplicial fan Σ spanned by vectors $v_{0}, \ldots, v_{n} \in N=\mathbb{Z}^{n}$ with the following properties:
(1) The vectors v_{0}, \ldots, v_{n} span N.
(2) They satisfy the relation

$$
\begin{equation*}
\chi_{0} v_{0}+\cdots+\chi_{n} v_{n}=0 . \tag{2.1}
\end{equation*}
$$

[mf: insert reference. maybe Fulton?]
The equivariant cohomology of ordinary projective n-space can be described as the integral Stanley-Reisner algebra of the fan Σ,

$$
\begin{equation*}
\mathbb{Z}[\Sigma]=\mathbb{Z}\left[a_{0}, \ldots, a_{n}\right] /\left(a_{0} \cdots a_{n}\right), \tag{2.2}
\end{equation*}
$$

where each generator a_{i} has cohomological degree 2. For the general case, we will give a similar description of $H_{T}^{*}(\mathbb{P}(\chi))$ as some kind of "weighted Stanley-Reisner algebra". Our main tool will be piecewise polynomials, to which we turn now.

A function $f: N_{\mathbb{Q}}=\mathbb{Q}^{n} \rightarrow \mathbb{Q}$ is called piecewise polynomial if on each cone $\sigma \in \Sigma$ it coincides with some (global) polynomial $g \in \mathbb{Z}[N]$. [ls it necessary to switch from N to $N_{\mathbb{Q}}$ here?]

Proposition 2.2. $H_{T}^{*}(\mathbb{P}(\chi))$ is isomorphic as $H^{*}(B T)$-algebra to the algebra of piecewise polynomials on Σ.

Under this isomorphism, the cup product corresponds to the usual pointwise multiplication of functions, and the canonical map $H^{*}(B T) \rightarrow H_{T}^{*}(\mathbb{P}(\chi))$ to the inclusion of (global) polynomials.

Proof. Since $H_{T}^{*}(\mathbb{P}(\chi))$ is free over $H^{*}(B T)$ and moreover all isotropy groups of $\mathbb{P}(\chi)$ are connected (as for any toric variety), the so-called Chang-Skjelbred sequence

$$
\begin{equation*}
0 \longrightarrow H_{T}^{*}(\mathbb{P}(\chi)) \xrightarrow{j^{*}} H_{T}^{*}\left(\mathbb{P}(\chi)^{T}\right) \xrightarrow{\delta} H_{T}^{*+1}\left(\mathbb{P}(\chi)_{1}, \mathbb{P}(\chi)^{T}\right) \tag{2.3}
\end{equation*}
$$

is exact (Franz-Puppe $[\mathrm{FP}]$). Here $\mathbb{P}(\chi)^{T}$ denotes the T-fixed points, $\mathbb{P}(\chi)_{1}$ the union of $\mathbb{P}(\chi)^{T}$ and all 1-dimensional orbits, j the inclusion $\mathbb{P}(\chi)^{T} \rightarrow \mathbb{P}(\chi)$ and δ the differential of the long exact cohomology sequence for the pair $\left(\mathbb{P}(\chi)_{1}, \mathbb{P}(\chi)^{T}\right)$.

The piecewise polynomials are a way to represent the kernel of the map δ. Write \mathcal{O}_{σ} for the orbit under the complexification $T_{\mathbb{C}}$ of T corresponding to $\sigma \in \Sigma$, and $\mathbb{Z}[\sigma]$ for the polynomials with integer coefficients on the linear hull of σ. Note that a polynomial on the linear hull of σ is uniquely defined by its restriction to σ.

We have for full-dimensional $\sigma \in \Sigma^{n}$

$$
\begin{equation*}
H_{T}^{*}\left(\mathcal{O}_{\sigma}\right)=H^{*}(B T)=\mathbb{Z}[\sigma], \tag{2.4}
\end{equation*}
$$

and in one dimension lower for $\tau \in \Sigma^{n-1}$

$$
\begin{equation*}
H_{T}^{*+1}\left(\overline{\mathcal{O}}_{\tau}, \partial \mathcal{O}_{\tau}\right) \cong H_{T}^{*+1}\left(\mathbb{C P}^{1},\{0, \infty\}\right), \tag{2.5}
\end{equation*}
$$

which after a choice of orientation of the interval \mathcal{O}_{τ} / T gives an isomorphism

$$
\begin{equation*}
H_{T}^{*+1}\left(\overline{\mathcal{O}}_{\tau}, \partial \mathcal{O}_{\tau}\right) \cong \mathbb{Z}[\tau] \tag{2.6}
\end{equation*}
$$

Moreover, it turns out that for a facet τ of σ the differential

$$
\begin{equation*}
H_{T}^{*}\left(\mathcal{O}_{\sigma}\right) \rightarrow H_{T}^{*+1}\left(\overline{\mathcal{O}}_{\tau}, \partial \mathcal{O}_{\tau}\right) \tag{2.7}
\end{equation*}
$$

is the canonical restriction $\mathbb{Z}[\sigma] \rightarrow \mathbb{Z}[\tau]$, multiplied by ± 1 depending on the chosen orientation of \mathcal{O}_{τ} / T.

As result we get that the differential δ from (2.3) is a signed sum of restrictions of polynomials,

$$
\begin{equation*}
\delta: \bigoplus_{\sigma \in \Sigma^{n}} \mathbb{Z}[\sigma] \rightarrow \bigoplus_{\tau \in \Sigma^{n-1}} \mathbb{Z}[\tau], \tag{2.8}
\end{equation*}
$$

where the component in $\mathbb{Z}[\tau]$ is the difference of the restrictions of the polynomials on the two full-dimensional cones having τ as their common facet. Hence, the kernel consists of those collections of polynomials on the full-dimensional cones which glue along their common facets. But this is the same as requiring that the polynomials collect along any intersection $\tau=\sigma \cap \sigma^{\prime}$ of two cones $\sigma, \sigma^{\prime} \in \Sigma$. The reason is that σ and σ are connected by a sequence of cones, each containing τ. (In other words, Σ is a hereditary fan, cf. [BR].) We therefore get that the kernel of δ are the piecewise polynomial functions on Σ, i.e., the functions which are polynomial on each $\sigma \in \Sigma$.

Remark 2.3. The integral equivariant cohomology of any smooth, not necessarily compact toric variety X_{Σ} is given by the integral Stanley-Reisner algebra of Σ or, equivalently, by the piecewise polynomials on Σ, cf. [BDCP], [DJ], [Br]. A canonical isomorphism between the Stanley-Reisner algebra of Σ and the algebra of piecewise polynomials on Σ can be defined by assigning the Courant function a_{ρ} associated with the ray ρ to the Stanley-Reisner generator corresponding to ρ. This function a_{ρ} is the piecewise linear function on Σ that assumes the value 1 on the generator of ρ and 0 on all other rays. It is well-defined because the smoothness of X_{Σ} implies that the rays of any cone in Σ can be completed to a basis of the lattice N.

Similarly, for a simplicial fan Σ the rational equivariant cohomology $H_{T}\left(X_{\Sigma} ; \mathbb{Q}\right)$ is given by the rational Stanley-Reisner algebra $\mathbb{Q}[\Sigma]$. [reference needed?]

3. Generators of the ring of piecewise polynomials

For $i=0, \ldots, n$ we will write $\sigma_{i} \in \Sigma$ for the full-dimensional cone spanned by all fan generators except v_{i}. Moreover, given a piecewise polynomial f, we will denote the unique polynomial which coincides with f on σ_{i} by $f^{(i)}$. We call a piecewise polynomial reduced if it is not divisible by any rational prime.

Let a_{i} be the (integral) Courant function corresponding to v_{i}. By this we mean the reduced piecewise linear function that assumes a positive value on v_{i} and vanishes on all v_{j} for $j \neq i$. Moreover, let $b_{i j}, i \neq j$, be the reduced linear function that assumes a positive value on v_{i} and vanishes on all $v_{k}, i \neq k \neq j$.

Lemma 3.1. $b_{i j}\left(v_{i}\right)=\chi_{j}$ and $b_{i j}\left(v_{j}\right)=-\chi_{i}$ for $i \neq j$.
Proof. Applying $b_{i j}$ to the relation (2.1) yields

$$
\begin{equation*}
\chi_{i} b_{i j}\left(v_{i}\right)=-\chi_{j} b_{i j}\left(v_{j}\right) . \tag{3.1}
\end{equation*}
$$

This implies the claim because v_{i} and v_{j} span $N / \operatorname{ker} b_{i j} \cong \mathbb{Z}$ and χ_{i} and χ_{j} are coprime.
Proposition 3.2. The functions $b_{i j}, i \neq j$, generate the linear functions.

Proof. For given i, let N_{i} be the span of the linear independent set $V_{i}=\left\{v_{j}: j \neq i\right\}$ and N_{i}^{\vee} its dual. By Lemma 3.1, the restriction of each $b_{i j}, j \neq i$, to N_{i} is divisible by χ_{i}, and $-b_{i j} / \chi_{i} \in N_{i}^{\vee}$ is an element of the basis dual to V_{i}.

Denote by M_{i} the sublattice generated by the $b_{i j}, j \neq i$, inside the dual N^{\vee} of N, and by M the one generated by all $b_{i j}, j \neq i$. We have

$$
\begin{equation*}
N_{i}^{\vee} / N^{\vee}=\left(N_{i}^{\vee} / M_{i}\right) /\left(N^{\vee} / M_{i}\right) \tag{3.2}
\end{equation*}
$$

Hence, the order of N^{\vee} / M_{i} divides that of N_{i}^{\vee} / M_{i}, which equals χ_{i}^{n} by what we have said so far. (In fact, $\left|N_{i}^{\vee} / N^{\vee}\right|=\left|N / N_{i}\right|=\chi_{i}$ and therefore $\left|N^{\vee} / M_{i}\right|=\chi_{i}^{n-1}$, but we won't need this.)

Since the order of N^{\vee} / M_{i} divides χ_{i}^{n}, the same applies to that of N^{\vee} / M because

$$
\begin{equation*}
N^{\vee} / M=\left(N^{\vee} / M_{i}\right) /\left(M / M_{i}\right) \tag{3.3}
\end{equation*}
$$

This implies that the order of N^{\vee} / M divides the greatest common divisor of all χ_{i}^{n}, which is 1 .

Lemma 3.3. Together with the linear functions, each a_{i} generates the piecewise linear functions.

Proof. Let f be piecewise linear. Then $f-f^{(i)}$ vanishes on σ_{i}, hence is a multiple of a_{i}.

Lemma 3.4. $a_{i}\left(v_{i}\right)=\prod_{j \neq i} \chi_{j}$ and $a_{i}^{(j)}=\prod_{i \neq k \neq j} \chi_{k} b_{i j}$ for $i \neq j$.
Proof. By Lemma 3.1 we get a well-defined piecewise linear function f by setting $f^{(i)}=0$ and $f^{(j)}$ as given above for $j \neq i$. This function is reduced and assumes a positive value on v_{i}. Hence, it is equal to a_{i}.

Lemma 3.5. We have

$$
\begin{equation*}
b_{i j}=\frac{a_{i}-a_{j}}{\prod_{i \neq k \neq j} \chi_{k}} \tag{3.4}
\end{equation*}
$$

for $i \neq j$.
Proof. We have $a_{i}^{(j)}=-a_{j}^{(i)}=\prod_{i \neq k \neq j} \chi_{k} b_{i j}$ by Lemma 3.4, and $a_{i}^{(i)}=-a_{j}^{(j)}=0$, hence, $\left(a_{i}-a_{j}\right)^{(i)}=\left(a_{i}-a_{j}\right)^{(j)}$. By Lemma 3.3, each piecewise linear function is the sum of a linear function and a multiple of a Courant function. For a Courant function a_{k}, the restrictions to any two maximal cones are distinct linear functions. Hence $a_{i}-a_{j}$ is in fact linear and divisible as claimed.

We now consider higher-degree analogues of the Courant functions a_{i}.
Lemma 3.6. For a subset $I \subset\{0, \ldots, n\}$ of size $m>0$, the function $\prod_{i \in I} a_{i}$ is divisible by $\prod_{i \in I} \chi_{i}^{m-1}$.

Proof. For a given $k \neq i$, all $a_{i}^{(j)}, i \neq j \neq k$, are divisible by χ_{k}.
Hence, for $I \subset\{0, \ldots, n\}$ with $|I|=m>0$ we may define the piecewise polynomial function

$$
\begin{equation*}
a_{I}=\frac{\prod_{i \in I} a_{i}}{\prod_{i \in I} \chi_{i}^{m-1}} \tag{3.5}
\end{equation*}
$$

of polynomial degree m (and cohomological degree $2 m$).
Theorem 3.7. The functions $a_{I}, I \neq \emptyset$, and $b_{i j}, i \neq j$, generate $H_{T}^{*}(\mathbb{P}(\chi))$ as a ring. The only relations are (3.4), (3.5) and $a_{0} \cdots a_{n}=0$.

Proof. Since there are no more relations between the a_{I} and the $b_{i j}$ in $H_{T}\left(X_{\Sigma} ; \mathbb{Q}\right)$, the same is true in $H_{T}\left(X_{\Sigma} ; \mathbb{Z}\right)$, which injects into $H_{T}\left(X_{\Sigma} ; \mathbb{Q}\right)$ because it is free over \mathbb{Z}. It remains to show that these elements are indeed ring generators.

By Proposition 3.2, the $b_{i j}$ generate the linear functions, which are the image of $H^{2}(B T)$ in $H_{T}^{2}(\mathbb{P}(\chi))$. Hence, by Lemma 2.1, it suffices to show that the ring generated by the a_{I} surjects onto $H^{*}(\mathbb{P}(\chi))$. In other words, we have to show that c_{m} lies in the span of $\left\{\iota^{*}\left(a_{I}\right):|I|=m\right\}$ for each $m \geq 1$.

For $m=1$, this is true by Lemma 3.3 because we know ι^{*} itself to be surjective. Moreover, Lemma 3.5 implies that all elements a_{i} are mapped to the same element of $H^{2}(\mathbb{P}(\chi))$. This must necessarily be a generator, which we can assume to be c_{1} (instead of $-c_{1}$).

For $1<m \leq n$, we get that

$$
\begin{equation*}
\iota^{*}\left(a_{I}\right)=\frac{\prod_{i \in I} \iota^{*}\left(a_{i}\right)}{\prod_{i \in I} \chi_{i}^{m-1}}=\frac{c_{1}^{m}}{\prod_{i \in I} \chi_{i}^{m-1}}=\frac{\left(\prod_{i=0}^{n} \chi_{i}^{m-1}\right) c_{m}}{\prod_{i \in I} \chi_{i}^{m-1}}=\left(\prod_{i \notin I} \chi_{i}^{m-1}\right) c_{m} . \tag{3.6}
\end{equation*}
$$

Because we assume the weights to be pairwise coprime, the above multiples of c_{m} generate $H^{2 m}(\mathbb{P}(\chi))$.
Remark 3.8. Note that one could do better by taking only some of the a_{I}. For example, for $|I|=2$, it would suffice to take a_{12}, a_{34} etc. But doing so would impose an ordering of the generators.

References

[BDCP] E. Bifet, C. De Concini, C. Procesi, Cohomology of regular embeddings, Adv. Math. 82 (1990), 1-34
[BR] L. J. Billera, L. L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), 485-497
[Br$]$ M. Brion. Piecewise polynomial functions, convex polytopes and enumerative geometry, in: P. Pragacz (ed.), Parameter spaces, Banach Cent. Publ. 36, Warszawa 1996, pp. 25-44
[DJ] M. W. Davis, T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), 417-451
[FP] M. Franz, V. Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transformation Groups 12 (2007), 65-76
[K] T. Kawasaki, Cohomology of twisted projective spaces and lens complexes, Math. Ann. 206 (1973), 243-248

Rider University, MORE
E-mail address: bahri@rider.edu
Fachbereich Mathematik, Universität Konstanz, 78457 Konstanz, Germany
E-mail address: matthias.franz@ujf-grenoble.fr
School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, England
E-mail address: nige@maths.manchester.ac.uk

