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Abstract. An equivariant version of Conley's homotopy index theory for flows is
described and used to find periodic solutions of a Hamiltonian system locally near
an equilibrium point which is at resonance.

1. Introduction
The aim of this paper is to give an alternative proof of an existence theorem for
periodic solutions of Hamiltonian equations, which is due to Fadell and Rabinowitz
[1]. It is based on an equivariant version of Conley's homotopy index theory for
flows. This theory replaces the mini-max arguments based on a cohomological index
theory for Lie group actions used in the original proof.

First, in order to recall the theorem, we consider a Hamiltonian vector field

" x = JVH(x), x<=U2n, (1.1)

where H e C2 is the Hamiltonian function and J e i?(R2") is the standard symplectic
structure. The aim is to find periodic solutions locally in a neighbourhood of an
equilibrium point, which we assume to be the origin OeK2", such that VH(0) = 0;
we may also assume that H(0) = 0. We are therefore dealing with a local problem;
we search for small periodic solutions in a neighbourhood of the origin assuming
only some knowledge of the linearized vector field at the equilibrium point:

x = Ax, A = JHxx(0)- (1-2)
Clearly the occurrence of purely imaginary eigenvalues of A is a necessary condition,
since otherwise the equilibrium point is hyperbolic and hence excludes small periodic
solutions.

If, for example, ax = ia>, a2 = -iio for some w ^ 0 is a pair of imaginary eigenvalues
with eigenvectors A(e, + ie2)=

= iw(el +ie2), then (1.2) has the family x(t):=
Re{c(e1 + /e2) e""'} of periodic solutions with period T = 2ir/(o, which fill out the
two-dimensional plane E = span {e,, e2}. A well known result due to Lyapunov [6]
guarantees periodic solutions of (I.I) close to these: if the plane E contains all the
periodic solutions of (1.2) with period T, then for every small e the energy surface
H(x) = e carries a periodic solution whose period is close to T. If there are several
pairs of imaginary eigenvalues of A, one finds several corresponding families of
periodic solutions for (I.I) having their periods close to the normal modes, provided
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that the eigenvalues satisfy appropriate non-resonance conditions. If these conditions
are not met, the Hamiltonian system may in fact have the equilibrium point as the
only periodic solution, as examples show.

It was relatively recently that Weinstein [10] discovered that the non-resonance
condition can be replaced by another condition on A. To describe it we recall
Moser's generalization [7] of his result and assume that

U2" = E®F (1.3)

splits into two invariant subspaces under A such that all solutions of (1.2) in E
have period T > 0 while none of the solutions in F\{0} has this period. If now

Hx x(0) |£>0, (1.4)

i.e. is definite, then for sufficiently small e > 0 every energy surface H(x) = e contains
at least \ dim E periodic solutions having periods close to T.

Observe that no non-resonance conditions are required, but instead Hxx(0) is
required to be definite on E. In the following we are interested in the situation
where (1.4) fails, in which case Hxx(0)\E is not definite. Assuming it is non-
degenerate, we abbreviate the signature of the Hessian by

signature Hxx(0)\E =2<r; (1.5)

it is always an even integer. In this case there are symplectic coordinates in the
symplectic subspace E such that the quadratic part H2 of the Hamiltonian has the
form

with Ij —^(pj + cfj) for 1 s j < «+ + n_. Moreover, dim E =2n+ + 2n_, \a\ = \n+ — n
and

kjO)j = 27r/T>0 forl<;<|dim£ (1.7)

with integers fc, > 0. Examples show [8] that the Hamiltonian system (1.1) may have
no periodic solutions except the trivial solution in the case o- = 0, i.e. n+ = n^. In
contrast, Fadell and Rabinowitz establish in the case cr 5̂ 0 at least \cr\ periodic
solutions with periods close to T in every neighbourhood %\{0} of the equilibrium
point:

#{periodic solutions with periods near T in ^XfO}} s |er|.

We formulate this result more precisely; it prescribes the periods of the required
periodic solutions and not their energies, in contrast to the existence results men-
tioned before.

THEOREM. Assume that U2"eE@F is an invariant splitting under A, so that all
solutions of (1.2) in E have period T> 0 while none of the solutions in F\{0} has this
period. Assume, moreover, that Hxx(0)\E is non-degenerate and denote its signature
by 2cr.

If {0} is an isolated T-periodic solution, there exist two non-negative integers k+ and
k_ with
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such that for every neighbourhood ^XJO} the following holds true: for every r e
[T—e, T+e] the number of r-periodic solutions of (1.1) in %\{0} is at least k+ if
T> Tand at least fe_ if r< T. Here e > 0 is a positive number depending on aU.

In order to outline the proof, we recall that there is a classical variational principle
for which the critical points are the required periodic solutions. Using the well
known Lyapunov-Schmidt reduction procedure, Fadell and Rabinowitz in their
proof reduce the problem of finding the critical points to that of finding the critical
points of a related function, say g, which is defined on the finite-dimensional space
E. This function is, moreover, invariant under an action of the group G = S\ which
stems from the fact that the Hamiltonian system is independent of time. The critical
points of g are then found by means of mini-max techniques based on a cohomologi-
cal index theory for S1-actions, generalizing earlier techniques based on the notion
of genus or category.

Our approach uses a different idea. We shall study the flow x = —Vg(x) of the
reduced functional using an equivariant version of Conley's homotopy index theory,
which was introduced in [5] and has already turned out to be useful in finding
global fixed points of symplectic maps.

To an isolated invariant set S of the gradient flow, which is also invariant under
the action of the group G, we associate a cohomological index /S(s) which is an
^-module over the ring R = //£({()}) = //*(CP°°). This index has the property to
be invariant under continuation. The required critical G-orbits constitute a Morse
decomposition of the set S of bounded solutions in a given neighbourhood of the
origin {0}. The origin is a G-fixed point and corresponds to the trivial periodic
solution at the equilibrium point. Those sets in the Morse filtration of S which
contain the fixed point of the action contain a free /?-submodule in their cohomologi-
cal index. The dimension of its generator adds information additional to the cohomo-
logical index of Fadell and Rabinowitz. In fact it allows us to estimate also the
number of critical orbits in the presence of a G-fixed point set and makes the
existence proof algebraic in nature.

We merely illustrate the idea in the special case at hand; the general equivariant
Morse theory will appear elsewhere.

2. The Lyapunov-Schmidt reduction
In this section we recall the Lyapunov-Schmidt reduction from [1], to which we
also refer for the details.

Normalizing the period to 1, we look for 1-periodic solutions of the equation

x = UVH(x), x(0) = x(l) (2.1)

for a constant A in the neighbourhood of A = fi, where ft = T. A solution x(t) of
(2.1) corresponds to the A-periodic solution y(t)'-= x(\~lt) of (1.1).

With the Hilbert spaces tf:= Hl(S
l,R2n) and L = L2(S\U2n) we define the

C'-mapping

Fk:H-*L:x-*Jx + kVH{x). (2.2)

Its zeros are the required periodic solutions of (2.1), since J2 = -id. By assumption
the plane E contains all the T-periodic solutions of the linearized system at the
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origin; we therefore conclude for the derivative d(Fx)(0), if A = /i,

kernel d(FM)(0)=: N = E. (2.3)

Since the cokernel coincides with N, the operator d(F^)(0) is a Fredholm operator
of index 0. Denote by TT and wx the orthogonal projections (with respect to the L2

inner product) onto N and onto its complement. Then the map

tfxR-»JVx, (z,A)->wx°FA(z) (2.4)

is a C'-mapping whose derivative in z is, at (z, A) = (0, fi), a surjective Fredholm
operator with kernel NxR. The implicit function theorem implies the existence of
a C1 -mapping

t-.NxM^N"- (2.5)

defined on an open neighbourhood £ x Vof (z, A) = (0, /JL) and satisfying ir±o FA(x +
ty(x, A)) = 0 for (x, A)€ B x V. It therefore remains to solve the equation

ir°Fx(x + tf>(x,\)) = 0 for(x,A)eBx VcNxR. (2.6)

In order to study the solutions of (2.6), we make use of the variational structure of
the problem. One verifies easily that zeH satisfies the equation FA(z) = 0 if and
only if it is a critical point of the function /A : H -* U defined by

-f
Jo

t (2.7)
Jo

Abbreviating <px(x) = x + i(f(x, A), we introduce the reduced functional

M * ) = / A ° < P A ( * ) , xeN. (2.8)

One verifies readily that x is a solution of (2.6) if and only if it is a critical point
of aA. It remains to find critical points of aA defined on B <= N other than the origin
{0},

VaA(0) = 0, (2.9)

which corresponds to the trivial periodic solution. Moreover, near x = 0 (with a
quadratic form Q)

= (A -/i)|<H«(0)x(0), x(0)> + o(|x|2). (2.10)

If A i* (i, the critical point x = 0 is therefore, by our assumption on Hxx(0)\E, a
hyperbolic critical point having Morse index 2/i+ if A > fi and 2n_ if A < fi. Since,
again by assumption, 2n+5^2n_, one concludes easily a critical point of aA other
than x = 0 either for A > n or A < /A. However, to find more critical points the
G-action is crucial.

Define the G-action, G = S\ on H by

LeZ(t) = z(t+8), 8eR/Z = S\ (2.11)

From the time independence of the Hamiltonian one concludes that/A(Lflz) =/A(z)
for z € H, from which it also follows that the function ax is invariant under this action:

aA(Ldx) = aA(x), xeN. (2.12)

Moreover, when restricted to N, the group action (2.11) has the origin {0} as the
only fixed point.
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Summarizing, it remains to find equilibrium points other than x = 0 of the gradient
flow

x = -VaA(x) onBcJV, (2.13)

which is equivariant with respect to a group action of G = S1 whose only fixed point
is the origin. Moreover, in a neighbourhood of the origin aA is of the form (2.10).

Since we assume in the following that the origin in R2" is an isolated T-periodic
solution of (1.1), we also know that x = 0 is an isolated critical point of the function
aA for A = (i.

3. Isolated invariant sets and the cohomological index
We denote by (p[ the family of flows of the gradient equation (2.13):

(3.1)

on Be N, and recall first some concepts of Conley's homotopy index theory from
[1], [2] and [5].

If Q <= B is a compact set, the maximal invariant set under the flow «pA in Q is
given by

SA = &«?) = {* e <?|?A(*)e<? for all *eR}. (3.2)

If the set SA (Q) is contained in the interior of Q, it is called an isolated invariant
set and Q is called an isolating set.

For an isolated invariant set SA there exists an index pair (X, A) such that
H*(X, A) does not depend on the particular choice of the index pair.

We now make use of the group action G and consider an isolated invariant set
S which is also G-invariant; then we find a G-invariant index pair for S by averaging
an index pair {X, A) over the group G:

{GX,GA)=\J (g-X,g-A), (3.3)

so that G-invariant index pairs do exist for any G-invariant and isolated invariant
set S. If (X, A) is a G-invariant index pair for such a set S = SX, we define an
equivariant cohomological index

n(S) = H*G(X,A), (3.4)

where H% is the equivariant Alexander cohomology with respect to the operation
of G with real coefficients. It is defined as the ordinary Alexander cohomology

HUX,A) = H*(XxE/o,AxE/c), (3.5)

where £ is a contractible topological space with a free continuous G-action and
where the operation of G on the product is diagonal: g- {x, e) = (g- x, g- e) for
geG. We note that /*(S) becomes a module of the ring

R = H%{0})^H*(E/a) (3.6)

as follows. We denote the G-equivariant retraction of N onto the G-invariant set
consisting of the origin {0} in N by

r :N^{0} . (3.7)
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The operation of H%({0}) on If(S) = H%(X, A) is then defined by

HU{0}) x H%(X, A) -» HUX, A),

(a,M)-»a*« = (rIX)*o:uu, (3.8)

where u denotes the equivariant cup product. In our special case in which G = S1

we have E/G =CP°°. Therefore

K=R[w], dimw=2 (3.9)

is the polynomial ring in one variable with real coefficients.
It is proved in theorem 1 of [5] that this module structure of /*(S) does not

depend on the choice of the index pair but is an invariant of the set S alone.

4. Proof of the theorem

LEMMA 1. For every A e V the origin x = {0} is a G-invariant and isolated invariant
set of the flow <pA. IfX^fx, there exists a uA e /*({0}) such that the map

/?^/*({0}):a^a*«A (4.1)

is an isomorphism. Moreover,

"A e /2A"+({0}) i fA> M ,

«A e /2A"-({0}) i f \< M , .

Proof. Any isolated critical point of a function is an isolated invariant set of the
gradient flow as one verifies easily. For A = fi the origin {0} is an isolated critical
point of a^ by assumption. For A ^ fi it is, in view of (2.10), even a non-degenerate
critical point of aK having Morse index 2n+ for A > / t and 2n_ for A</i . It is
therefore a hyperbolic invariant set of the gradient flow. With the equivariant
retraction (3.7) onto this hyperbolic invariant set we conclude from proposition 1
of [5] that there is indeed a uA 6 72n+({0}) if A > fi and wA € 72n({0}) if A < /t such
that the map

HUM) •* /?({0}):« •* a * uA = r*a u «A (4.2)

is an isomorphism of Abelian groups as claimed in the lemma. D

The most useful and crucial property of the cohomological index If(Sx) is its
invariance under deformations of the flow. This is in fact the main point in Conley's
definition of an index pair. In the equivariant case the proof can be found in theorem
1 of [5]. In particular if A, is near A, then there is an R- isomorphism /*(SA)-»/A

s
1(SA|).

From this we obtain the following:

LEMMA 2. IfQ is a G-invariant isolating neighbourhood ofx = 0 in B with S^((?) = {0},
then there is a neighbourhood <%1(/i)<= Voffi in U so that Q is isolating for the flows
<pA for all A e %,(^.). Moreover, there exist isomorphisms of R-modules

/ J (5A) = / J ( { 0 } ) (4.3)

withSk=SK(Q)-
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Recall next the definition of a Morse decomposition.

Definition. A Morse decomposition of an isolated invariant set S is a finite collection
{Mp}, p e P of disjoint compact and invariant subsets Mp <= S which can be ordered
{M, , . . . , Mk} such that for all x e S \ u M , there is a pair i <j of indices satisfying

«(x)eM ( , »*(x)eJM,,

where w (resp. w*) denotes the positive (resp. negative) limit set of x.

We consider in the following the isolated invariant and G-invariant set SA = SA (Q)
of lemma 2. It suffices, moreover, to consider those values of A for which SA contains '
only a finite number k = fcA of critical orbits. A critical orbit is necessarily a
G-invariant and isolated invariant set of the flow. We can order the critical orbits
Oj in SA by setting

ax(O,)^ax(Ok) for/a ft, (4.4)

so that the critical orbits

{00,Olt...,Ok}, k = k,

constitute an ordered Morse decomposition of SA. Define, moreover, a filtration of

5A,

S A c S i c . . . c S A = 5A, (4.5)

consisting of G-invariant isolated invariant sets as follows:

Sp
x={xeSi |a(x) and (o*(x)c€0uClu-• -uOp}. (4.6)

In particular {Sp~\ €p} is an ordered Morse decomposition of Sp and the cohomo-
logical indices of the sets Sp are related to those of the critical orbits Cp as follows:

LEMMA 3. There is an exact triangle of R-module homomorphisms

It(Cp)

(4.7)

where fp and gp are of degree 0 and where 8P is of degree 1, i.e. raises the dimension
by 1.

Proof. There exists, by theorem 3.1 in [2], compact sets X i c X 2 c X 3 in Q such
that (X3, X2) is an index pair of €p, (X2, X,) is an index pair of 5 P " ' and (X3, X,)
is an index pair of 5P. We can easily adapt the construction to the equivariant case
such that the compact sets X, are, in addition, G-invariant by replacing each X, by
GXj = {g • x | g e G and xe Xj}. The lemma then follows from the long exact sequence
for the triple of sets

where
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together with the following observations: the maps fp and gp are R-module homo-
morphisms since they are inclusion-induced. In fact, it suffices to show that the
equivariant cup product is natural with respect to equivariant maps. This statement
can be reduced to the naturality property of the ordinary cup product (see 5.6.8 of
[9]). Also Sp is an .R-module homomorphism. In order to see this, we apply 5.6.12
of [9] to the excisive (see p. 188 of [9]) couple of pairs {(X3, X2)a, (X2, X,)G}. For
u e H%(X2, X,) = /*(SP"1) we obtain

S*(a * u) = 8*(u u (rlx,)*a) = («•«) u (r]X2)*a = a * 8*(u).

This completes the proof of the lemma. •

In order to make use of lemma 3, we need some information about the cohomologi-
cal indices of the isolated critical orbits 6P. Since we do not assume the orbits to
be non-degenerate, we cannot calculate If(€p) explicitly. The following statement
however will be sufficient for our purpose:

LEMMA 4. Assume 6 is an isolated critical orbit which is not a fixed point for the
action of G. Then If(C) is a trivial R-module in the sense that for every u e 7*(C)
and every ae R with dim a > 0 we have

a*u = 0. (4.8)

Proof. By assumption, 0 is not a G-fixed point since G = Sl; the isotropy groups
in 0 are therefore finite and, since we are using real coefficients, there is an
isomorphism

HS(tf)^H*«?/ c) = H*({point}). (4.9)

Indeed this is lemma 6.11 in [3]. Assume now a * u^O for some ue / J (0 ) and
ae R with dim a > 0. Then it follows from proposition 2 in [5] that (ri0)*a ^ 0 in
H%(0), contradicting the statement (4.9). Consequently a * u = 0 as claimed. •

This statement will allow us to estimate the number fcA of critical orbits in SA by
purely algebraic means. We shall prove:

LEMMA 5. There is an integer m, which is independent of X, such that for X^fithe
number of critical orbits in SA can be estimated by

kx>\m-\dimux\, (4.10)

where uK is the generator of the free /^-module J*({0}) in lemma 1.

Postponing the proof, we first show that the theorem follows. From lemma 1 we
know that dim MA = 2n+ if A > /u. and dim uA = 2«_ if A < ft. Setting k+ = fcA for A > n
and k~ = kx for A</i, we therefore conclude from (4.10) that indeed fe+ + fc~>
|n+-n_| = |o-|.

For the proof of lemma 5 we need some further notation. For any R-module M
we define the torsion submodule by

T(M):={ueM|a * u = 0 for some a e R} (4.11)

and abbreviate the quotient

<D(M):=M/T(M), (4.12)
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which is a free /^-module, i.e.

0. (4.13)

Recall now that the critical orbits {Cj} for 0<j<k with k = kx constitute an
ordered Morse decomposition of the isolated invariant set SA ; recall also the filtration

Let the index / correspond to the distinguished critical orbit at the origin

0, = {0}, (4.14)

which is a fixed point of the action G.
In order to prove lemma 5 we shall study the quotients <&[/*(SA)] for 0<;<Jfc

and claim:

LEMMA 6

(i) *[/?(«)] = 0 /orO<p</; (4.15)

moreover it vanishes also in odd dimensions for I < p < k.
(ii) Denote by mp half the minimal dimension for which <I>[/*A(S$)] does not

vanish; then

jdim u A - / < m , < | d i m MX forp = l. (4.16)

(iii) m ^ s n i p S m p . i + l forl<p<k. (4.17)

Postponing the proof of the lemma, we first deduce lemma 5 from lemma 6.
If 5 dim wA am*, then in view of (ii) and (iii) we have mk >m,> |d im uk -I, so that

&> /s^dim uK — mk.

If on the other hand mk > \ dim uK, then in view of (iii) we find that mk < m, + (k - /),
so that by (ii)

k > mk — m, + / s mk +1-\ dim uk.

Combining the two estimates for k, we find

k>\mk-\d\muk\. (4.18)

Recall now that for j = k the integer mk does not depend on A since it is obtained
from the isomorphism class of 7f(SA), which is isomorphic to /*({0}) in view of
lemma 1 and therefore independent of A. Setting m.= mk, the statement of lemma
5 follows from (4.18). •

It finally remains to prove lemma 6 which we do by induction. We first prove that

up+1*I*(Sp
k) = 0 forO</></, (4.19)

where w generates the ring R = U[w] and dim <o = 2. In view of lemma 4 the statement
(4.19) is true for p = 0< /, since SA = 60 does not contain any fixed point of the
action of G. Moreover, if (4.19) is true for Sp~' with 0<p<l, then it also is true
for Sp. To see this, consider the exact triangle (4.7).

For any ueIf(S") we have/p(a>p * u) = a)p */p(u) = 0 in It(Sp~l) by induction
assumption. Hence by exactness we have <DP * u = gp(v) for some U G / * ( C P ) , but
u>*v = Q in view of lemma 4. Consequently wp+1 * w = w * gp(v) = gp(<o * v) = 0,
proving the claim (4.19).
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Consider next the exact triangle (4.7) for p = /, i.e.

(4.20)

We have shown in (4.19) that ^[/^(S'"1)] = 0, and since in view of lemma 1
is a free .R-module generated by «A, we conclude that 5=0 and g is injective. This
implies that 2m;<dim MA. Moreover, if u is a non-torsion element in /*(S') with
dim u = 2m,, then

f(a>'*u) = w' *f(u) = 0

by (4.19), so that a' * u = g(x) for some xe 7*({0}) by exactness of (4.20). Since
J*({0}) vanishes in odd dimensions, we therefore conclude that dim (&>' * u) is even,
and since It(W) is generated by MA, we also have

dim (a)' * «) = 2/ + dim u >dim (MA),

so that m, = \ dim u > \ dim MA - /.

Now let l<p<k and assume the statements of lemma 6 to hold true for Sp~l =
S$~\ Consider again the exact triangle

For every class 0 # [ u ] e $ [ I t ( S p ) ] we conclude 0*[ / («) ]e^I tCS"" 1 ) ] since
is of pure torsion in view of lemma 4. This shows, using the induction

assumption, that dim u is even and that 2mp Sr 2mp_,. If v e I%(Sp~l) is a non-torsion
element with dim v = 2ml,_], then

8(<o*v) = (o*S(v) = 0 inlf(ep)

by lemma 4. By exactness there is a non-torsion element u in 7A(SP) satisfying
f(u) = (o*v, so that dimM=2 + 2mp_, and we conclude that mp<mp_, + l. This
finishes the proof of lemma 6. •
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