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Abstract

The recent explosion in the amount of spatial data calls for special-
ized systems to handle big spatial data. In this survey, we summarize
the state-of-the-art work in the area of big spatial data. We categorize
the existing work in this area according to six different angles, namely,
approach, architecture, language, indexing, querying, and visualization.
(1) The approaches used to implement spatial query processing can be
categorized as on-top, from-scratch and built-in approaches. (2) The
existing works follow different architectures based on the underlying
system they extend such as MapReduce, key-value stores, or parallel
DBMS. (3) The high-level language of the system is the main inter-
face that hides the complexity of the system and makes it usable for
non-technical users. (4) The spatial indexing is the key feature of many
systems which allows them to achieve orders of magnitude performance
speedup by carefully laying out data in the distributed storage. (5) The
query processing is at the heart of all the surveyed systems as it defines
the types of queries supported by the system and how efficiently they
are implemented. (6) The visualization of big spatial data is how the
system is capable of generating images that describe terabytes of data
to help users explore them. This survey describes each of these com-
ponents, in detail, and gives examples of how they are implemented in
existing systems. At the end, we give case studies of real applications
that make use of these systems to provide services for end users.

A. Eldawy and M. F. Mokbel. The Era of Big Spatial Data: A Survey. Foundations
and TrendsR© in Databases, vol. 6, no. 3-4, pp. 163–273, 2013.
DOI: 10.1561/1900000054.
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1
Introduction

There has been a recent marked increase in the amount of spatial data
collected by new devices such as smart phones, space telescopes, and
medical devices, among others. For example, space telescopes gener-
ate up to 150 GB weekly of spatial data [67], medical devices pro-
duce spatial images (X-rays) at a rate of 50 PB per year [123], a
NASA archive of satellite earth images has more than 1 PB and in-
creases daily by 200 GB [75], while there are 10 Million geotagged
tweets created in Twitter every day as 2% of the whole Twitter fire-
hose [58, 114]. Meanwhile, various applications and agencies need to
process an unprecedented amount of spatial data. For example, the
Blue Brain Project [86, 111] studies the brain’s architectural and func-
tional principles through modeling brain neurons as spatial data. Epi-
demiologists use spatial analysis techniques to identify cancer clus-
ters [97], track infectious disease [15], and follow drug addiction [112].
Meteorologists study and simulate climate data through spatial analy-
sis [50, 51, 52]. News reporters use geotagged tweets for event detection
and analysis [100].

Due to this rise in the volume of spatial data, it becomes highly
desirable for researchers and developers to be able to process them

2
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3

using big data frameworks, such as MapReduce [31], Hadoop [63],
Hive [113], BigTable [29], HBase [65], Impala [70, 118], Dremel [88, 87],
Vertica [108], Dryad [68], AsterixDB [10], and Spark [129]. While these
systems are general purpose and can process spatial data, they provide
sub-par performance due to the lack of specialized components that are
designed for spatial data. In other words, they deal with spatial data
in the same way they do with any other data while largely ignoring the
inherent properties of spatial data and spatial query processing. For
example, it was shown in different systems that the use of spatial in-
dexes can provide orders of magnitude speedup to simple queries such
as range query and k nearest neighbor (kNN) [44, 122, 79, 124, 126].

To fill in the gap between spatial data processing and big data
frameworks, several research attempts have been made to extend these
frameworks to better handle and process spatial data, such as Hadoop-
GIS [4], SpatialHadoop [41, 44, 38, 43], MD-HBase [92, 91], Parallel
Secondo [76, 77, 78, 61, 90], and ESRI Tools for Hadoop [122]. In this
survey, we summarize the state-of-the-art techniques in processing Big
Spatial Data while highlighting open research problems and identify-
ing research trends. This survey aims to be very helpful for existing
researchers and developers working in the area of Big Spatial Data to
understand the existing work, as well as for future researchers who are
interested in pursuing research in this area.

Big data is usually characterized by its Volume, Velocity, Variety,
and Veracity, which all apply to spatial data. The volume of big data
is increasing tremendously due to the automated and continuous ac-
quisition of data and the high resolution of such data. For example,
the size of the LP DAAC archive [75] exceeded one petabyte with a
highest resolution of 250 meters while the European Space Agency
(ESA) has recently released data from the Sentinel-2 mission with up-
to 1 meter resolution data [102]. The velocity of spatial data has also
increased with the ubiquity of small devices capable of generating small
amounts of data at excessively high rates, such as GPS tracking, Face-
book comments, and POS transactions. These sources can generate at
least 1 petabyte per year [85]. The big variety of spatial data emerges
from the different data types, e.g., point, line, polygon, and raster im-
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4 Introduction

ages; different data formats, e.g., Shapefile, GeoJSON, and KML; and
various projections in the case of geographical data, e.g., WGS84 and
Sinusoidal. Combining these different data sources together imposes
huge challenges to applications that deal with big spatial data. Fi-
nally, there are different sources of low veracity associated with spatial
data including the inherent errors in localization techniques, e.g., GPS,
WiFi, and cellular triangulation, and the noise in the data collected by
satellites due to clouds and mis-alignment of satellite images.

This survey classifies existing work by considering six aspects of
big spatial data systems: (1) The implementation approach, which de-
fines whether it is implemented on-top of an existing system, built in-
side its core, or developed completely from scratch. (2) The under-
lying architecture, which describes the primary processing model of
the systems, such as parallel DBMS, Message Passing Interface (MPI),
MapReduce, key-value store, array DB, Resilient Distributed Datasets
(RDD), or Hyracks. (3) The high-level language of the system, if any
exists. (4) The existence of spatial indexes in the system and the types
of these indexes. (5) The types of queries supported by the system,
such as range query, spatial join, computational geometry, or spatial
data mining. (6) The support of big spatial data visualization in the
system.

Table 1.1 outlines the surveyed work in the area of big spatial data.
Each row represents a system or a body of work related to big spatial
data, while each column represents one of the six aspects that we will
discuss, namely, approach, architecture, language, indexing, querying,
and visualization. The following chapters in the survey will delve into
the details of each of these aspects (i.e., the table’s columns) to provide
more details about them.
Implementation Approach: As shown in the second column of Ta-
ble 1.1, the surveyed work can be categorized according to the imple-
mentation approach into three main categories, on-top, from-scratch,
and built-in. In the on-top approach, an existing system is used as a
black box while the logic of spatial data is provided as user-defined
functions (UDFs). While this approach is simple to implement and
portable to different releases of the underlying system, it usually suf-
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6 Introduction

fers from poor performance due to the underlying system being un-
aware of the properties of spatial data. The from-scratch approach is
the other extreme, where a new system is built from scratch to sup-
port big spatial data processing. This allows the system to achieve very
high performance on spatial queries as the core is customized for this
kind of data. However, it becomes very hard to maintain and might
be impractical if users wish to mix spatial with non-spatial query pro-
cessing. The built-in approach balances efficiency with simplicity as it
injects spatial data awareness inside an existing general-purpose sys-
tem. This makes it efficient since the internal system becomes aware
of spatial data and still it is not as complicated as building an entire
system from scratch. Besides, it is more practical for users who wish
to mix spatial and non-spatial workloads as it maintains the efficiency
of the system with non-spatial data. The main drawback is that if the
spatial extension is built on a side branch of the general-purpose sys-
tem’s code base, the built-in system then becomes tied to a specific
version of the underlying general-purpose system and cannot be easily
ported to newer versions. The three approaches are further described
in Chapter 2.
Architecture: The systems that are discussed in this survey typically
follow one of the standard approaches used in other big data systems,
such as parallel DBMS, key-value stores, array databases, message pass-
ing interface (MPI), MapReduce, resilient distributed datasets (RDD),
or Hyracks, as described in the third column of Table 1.1. Some of
these surveyed systems might modify the underlying system to better
support spatial data but they still preserve its architecture. The choice
of a specific architecture to use depends mainly on the type of appli-
cation that needs to be supported and the types of queries that will
run on it. For example, MapReduce is designed for lengthy analytic
queries that need to spill most of their intermediate data to disk, while
RDD is more geared towards iterative jobs that can afford storing all
of their data in main memory. The different architectures are described
in detail in Chapter 3.
Language: The fourth column of Table 1.1 shows examples of high
level languages supported in big spatial data systems. A high level
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language is extremely important, as it allows non-technical users to
easily interact with the system. There are some industry standards
for spatial data types and operations that are supported by existing
systems for spatial data including PostGIS [99], Oracle Spatial [71], and
ESRI ArcGIS [12]. It is highly desirable for big spatial data systems to
support these standards to make it easier to adopt for users who are
already familiar with them. The details of the high level languages are
given in Chapter 4.
Indexes: Spatial indexes define an efficient way for storing data such
that some queries run more efficiently. The fifth column of Table 1.1
shows the different types of indexes supported in the surveyed work.
While there are many in-memory and on-disk index structures used
in traditional systems, they cannot be used as-is in distributed sys-
tems due to the different storage and processing models used in such
systems. Most distributed systems follow a two-layer index design of
one global index, which partitions data across machines, and multiple
local indexes, which organize records inside each machine. By control-
ling how the global and local indexes are constructed, a wide range of
spatial indexes can be realized for big spatial data. Spatial indexes are
further described in Chapter 5.
Queries: The main functionality of big spatial data systems is query
processing, which performs spatial operations on the data. As shown
in the sixth column of Table 1.1, we categorize queries into five cate-
gories as follows: (1) Basic queries such as point queries, range queries,
and nearest neighbor queries. (2) Spatial join queries such as self-join,
binary join, multi-way join, and kNN join. (3) Computational geom-
etry queries such as polygon union, convex hull, skyline, and Voronoi
diagram construction. (4) Spatial data mining such as the k-means
and DBSCAN clustering algorithms. (5) Raster operations that deal
with raster data represented as two-dimensional arrays of values. More
details about query processing are given in Chapter 6.
Visualization: A highly desirable feature of data management in gen-
eral, and for spatial data in particular, is visualization, which is the
process of generating an image that describes an underlying dataset.
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8 Introduction

Visualization is an international communication language which allows
users to spot interesting patterns that are very hard to notice other-
wise. Some systems support only single-level image visualization that
produces a single image with a fixed resolution, while other systems
provide multi-level image visualization with the ability to interactively
zoom in or out to see more or less details. The seventh column of
Table 1.1 shows the types of visualization supported in each of the
surveyed systems. Visualization is further explained in Chapter 7.
Datasets: To help system and application developers, this survey also
provides references to several big spatial datasets that are publicly
available and can be used for benchmarking or testing the systems.
These datasets cover different types of data sources that can serve a
wide range of applications, such as rich maps for the whole world, real
trips made by taxi cabs in New York City, world-wide geo-tagged events
collected since 1979, and a 1 PB archive of daily satellite data for the
whole world over a period of 15 years. Details of the datasets will be
provided in Chapter 8.
Applications: To make it easier to comprehend the whole survey, we
provide several case studies of end-user applications that process big
spatial data. These include SHAHED [37, 45], a system for analyzing
satellite data using MapReduce, EarthDB [98], which uses SciDB for
processing satellite data, TAREEG [9, 8], a web-based system for ex-
tracting world-wide map information, Taghreed [83, 84], which analyzes
and visualizes geotagged tweets, AscotDB [115], a system for query-
ing and analyzing astronomical data using SciDB, and GISQF [6], a
MapReduce-based system for processing world-wide geotagged events.

It is important to mention that the above dimensions are not com-
pletely independent and they are usually application-driven. For ex-
ample, an application for analyzing historical data might prefer the
MapReduce architecture and support analytical queries, such as spa-
tial join or kNN join, while spatial indexes might be of less importance.
On the other hand, an application for exploring streaming data, e.g.,
geotagged tweets, would benefit from key-value stores that support fast
rates of insertion and deletion, with spatial indexes being an important
part of the system to efficiently answer interactive queries such as point
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and range selections. In this survey, we provide a few examples of ap-
plications that will help readers understand how these dimensions are
related.

The rest of this survey is organized as follows. Chapter 2 describes
the different implementation approaches. Chapter 3 discusses the var-
ious underlying architectures. Chapter 4 lays out the current work in
spatial languages for big spatial data systems. Chapter 5 provides the
details of big spatial data indexes. Chapter 6 describes the details of
query processing on big spatial data. Chapter 7 discusses recent work
in the area of big spatial data visualization. Chapter 8 provides some
references to real big spatial datasets. Finally, Chapter 9 concludes the
paper with several case studies of applications for big spatial data.
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