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With the rapid development of new technologies, including artificial intelligence and

genome sequencing, radiogenomics has emerged as a state-of-the-art science in the

field of individualized medicine. Radiogenomics combines a large volume of quantitative

data extracted frommedical images with individual genomic phenotypes and constructs a

prediction model through deep learning to stratify patients, guide therapeutic strategies,

and evaluate clinical outcomes. Recent studies of various types of tumors demonstrate

the predictive value of radiogenomics. And some of the issues in the radiogenomic

analysis and the solutions from prior works are presented. Although the workflow criteria

and international agreed guidelines for statistical methods need to be confirmed,

radiogenomics represents a repeatable and cost-effective approach for the detection of

continuous changes and is a promising surrogate for invasive interventions. Therefore,

radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the

prognosis in patients with tumors in the routine clinical setting. Here, we summarize the

integrated process of radiogenomics and introduce the crucial strategies and statistical

algorithms involved in current studies.
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BACKGROUND

Advances in genomics and the far-reaching effects of precision medicine have synergistically

accelerated research by integrating the individual characteristics of patients (1). Compared with

conventional medical treatment, the concept of precision medicine follows a “one-size-fits-one”
philosophy and sets out a tailored therapeutic plan according to the genotypic and phenotypic data

of individual patients (2).
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Cancer is a disease that involves genetic abnormalities caused

by hereditary or environmental factors. When genes undergo the

error-prone process of replication and alterations, such as

nucleotide substitution, insertions, deletions, and chromosomal

rearrangements, the activation of oncogenes and loss of tumor

suppressor genes may induce oncogenesis (3). Moreover,
epigenetic alterations, including histone modification, DNA

methylation, and altered expression levels of non-coding

RNAs, have also been confirmed to be important contributors

to the development of cancer (4). Over recent decades, there have

been major advances in our understanding of the genetic

alterations involved in oncogenesis. For example, mutations of
the Kirsten rat sarcoma viral oncogene (KRAS), epidermal

growth factor receptor (EGFR), and anaplastic lymphoma

kinase (ALK) genes have been identified to be common

oncogenic drivers (5). These abnormalities of specific

molecular and signaling pathways can be used as genomic

biomarkers that provide personalized information about
diagnosis, treatment, and prognosis, and contribute to selection

of the optimal therapeutic strategy.

Access to genomic information in conventional clinical

procedures is based mainly on biopsy of focal tissue samples

and microarray genetic analysis. Histopathological examination

is feasible to decipher mutational signatures and genomic

information, but these data can only reflect the status of a
tumor at the time of biopsy or resection. Moreover, gene

expression profiling of only a fraction of the tumor tissue

cannot reflect the heterogeneity of the entire tumor. The

spatial and temporal variables of gene expression may

cause changes in various biological processes in the tumor,

including apoptosis, cellular proliferation, growth patterns,
and angiogenesis. These alterations occur at the molecular and

cellular levels and, to a large extent, are shown as heterogeneous

imaging features, which can be transformed into varying degrees

of signals in different imaging platforms using radiological

technology (6).

Technological progress in microarrays, automated DNA and

RNA sequencing, mass spectrometry, and comparative genomic

hybridization are essential for exploration of tumor biomarkers and

more accurate assessment of disease status in patients, as shown in
pancreatic cancer (7). Nowadays, large databases that are suitable

for elucidating the relationship between gene expression and clinical

features exist. When combined with artificial intelligence, treatment

options and survival could be predicted by the performance of

individuals in models based on big data (8). Currently, non-invasive

detection and monitoring of diseases can be performed repeatedly
without causing harm and has become a hotspot in cancer research.

The huge diversity of phenotypes can be demonstrated by non-

invasive radiological imaging (9), which reveals many characteristics

of tumors in both subjective and qualitative ways (10). Recent

advances in image acquisition, standardization, and image analysis

have allowed identification of objective and precise imaging features,
including prognostic and predictive biomarkers (11). Although

imaging examinations are often performed repeatedly during

treatment, it is still impractical to obtain dynamic genomic or

proteomic data. Fortunately, this problem can be solved by

analyzing computer-processed images to find underlying

predictive and prognostic information (12). Radiomics refers to

the qualitative and quantitative extraction of data from clinical
images and clinical information as well as the methodology used to

convert these features in a way that supports decision-making.

Radiogenomics, a new computational discipline, is an emerging area

within radiomics and is a combination of the words “radiology” and

“genomics” (13). The advent of radiogenomics reflects a shift in the

focus of radiology-pathology research from the gross anatomical
level to the genetic level. Moreover, radiogenomics aims to

investigate the correlation between the integrated hierarchical

analysis of a massive number of imaging characteristics and

corresponding gene expression profiles and to identify optimal

radiomic biomarkers, so as to allow more reliable prediction of

prognosis and response to treatment.

ADVANCES IN METHODOLOGY,
TECHNOLOGY, AND WORKFLOW IN
RADIOGENOMICS

The enormous amount of imaging data collected has resulted in a

large-scale database that is both diverse and complex. Therefore,

advanced frameworks, techniques, algorithms, and analytics are

needed to mine significant and valuable radiomic information

from the imaging database (8).
The birth and development of radiogenomics relies on high-

throughput computing and machine learning, both of which are

good methods for managing and analyzing a very large number of

variables for different samples and procedures. For example,

although the image of a tumor region is typically assessed by a

radiologist using functional or morphological features, the imaging

actually contains more complicated information that can be
extracted and processed effectively using radiogenomic approaches.

Abbreviations: ADC, apparent diffusion coefficient; ALK, anaplastic

lymphoma kinase; ATRX, alpha thalassemia/mental retardation X-linked

gene; BAP1, BRCA1-associated protein 1; BOLD-MRI, blood oxygen level-

dependent MRI; CBV, cerebral blood volume; ccRCC, clear cell renal cell

carcinoma; CEST, chemical exchange saturation transfer; CIN, chromosomal

instability; CNNs, convolutional neural networks; CRC, colorectal cancer;

EGFR, epidermal growth factor receptor; EML4, echinoderm microtubule-

associated protein-like 4; FDG, fluorodeoxyglucose; GBM, glioblastoma

multiforme; GCGMM, GrowCut with cancer-specific multiparametric

Gaussian Mixture Model; HBV, hepatitis B virus; HCC, hepatocellular

carcinoma; HGSOC, high-grade serous ovarian cancer; HNSCCs, head and

neck squamous cell cancers; HOTAIR, homeobox transcript antisense

intergenic RNA; HRV, high-risk volume; IBSI, Image Biomarker

Standardization Initiative; ICC, intrahepatic cholangiocarcinoma; IDH,

isocitrate dehydrogenase; KRAS, Kristen rat sarcoma viral oncogene; MGMT,

O6-methylguanine-DNA-methyltransferase; MRI, magnetic resonance

imaging; NF-ĸB, nuclear factor kappa-light-chain-enhancer of activated B-

cells; NSCLC, non-small cell lung cancer; PET-CT, positron emission

tomography-computed tomography; RCC, renal cell carcinoma; ROC,
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related transcription factor-3 gene; SCLC, small cell lung cancer; SPECT,
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factor-alpha; TRIPOD, Transparent Reporting of a multivariable prediction

model for Individual; Prognosis Or Diagnosis.
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The workflow of radiogenomics mainly includes data

acquisition and pre-processing, tumor segmentation, feature
extraction, analysis, and modeling (Figure 1). The standardized

operating procedure of radiogenomics is a basic assurance of the

quality of studies to reduce avoidable errors, particularly in

multicenter studies. Along these lines, the Image Biomarker

Standardization Initiative consortium, standardized 169 radiomics

features in two phases, most of which showed high reproducibility

in the third phase and can be applied in different radiomics software
(15). Below we provide a brief overview of a feasible imaging

protocol for radiogenomics.

DEVELOPMENT OF RADIOMICS
PREDICTION MODELS

Acquisition of Raw Images
In oncology, multimodality imaging, such as positron emission

tomography (PET)-computed tomography (CT) and single-

photon emission CT, can describe both the anatomical and

functional features of tumors in great detail. However, recent

efforts have focused on a combination of quantitative functional
assessments, such as multiple PET tracers, various magnetic

resonance imaging (MRI) contrast mechanisms, and PET-MRI,

thereby revealing multidimensional features of the tumor

phenotype (16–18). For instance, diffusion-weighted MRI is

capable of reflecting tumor density and cellularity, and can
therefore be used to monitor the response to cytotoxic

treatment (19). Furthermore, fluorodeoxyglucose (FDG)-PET

is a molecular imaging tool that is frequently used to

characterize changes in metabolic activity within a tumor. The

rate of uptake, metabolism, and accumulation of FDG can be

used to assess the therapeutic effects and disease progression (16,

20, 21). Different parameters can be acquired using different
radiological imaging technologies. Therefore, selection of

imaging equipment or technology is important for acquisition

of desirable parameters.

Pre-Processing of Information
Raw imaging data need to be pre-processed in order to maintain

homogenous and reliable traits. One optional step is filtering the

imaging signals within the region of interest (ROI). Manual
segmentation is the most widely used method but requires

clinicians to have sufficient experience to be able to delineate

the optimal ROI. If the ROI is too small, it cannot provide

sufficient information about voxels for analysis, and if it is too

large, it may be easily biased by the heterogeneity of the tumor.

However, full manual segmentation may have some limitations,
being time-consuming and showing inter-observer variability

(22, 23). Although automatic segmentation is superior to manual

delineation in terms of precision and efficiency, its performance

FIGURE 1 | The general radiomics study workflow. Step 1: image acquisition. Step 2: region of interest identification and segmentation. Step 3: quantitative image

feature extraction. Step 4: data mining and informatics analysis. The figure was reprinted by ref (14) with permission from the publisher.
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depends on the accuracy of the algorithm used and its ability to

differentiate ROIs from surrounding tissues.

The critical issues of the robustness of quantitative features

with respect to imaging variations and inter-institutional

variability need to be investigated further. Currently, there are

several advanced machines equipped with deep learning-
based algorithms aimed at contour functions, including

the 3DSlicer (24–26), DeepMind (Google) (27), and Project

InnerEye (Microsoft) (https://www.microsoft.com/en-us/

research/project/medical-image-analysis/).

An increasing number of studies have proven that the

preferred mode for imaging pre-processing is semi-automatic
segmentation, which makes use of both manual intervention and

software automation (28). Tixier et al. (29) compared the

robustness of 108 radiomic features from five categories

using a semi-automatic and an interactive segmentation

method by two raters. The results demonstrated that the

interactive method produced more robust features than
the semi-automatic method; however, the robustness of the

radiomic features varied by categories. Um et al. (30) used five

image pre-processing techniques: 8-bit global rescaling, 8-bit

local rescaling, bias field correction, histogram standardization,

and isotropic resampling to extract a total of 420 features

from 161 cases. Of the examined techniques, histogram

standardization was concluded to contribute the most in
reducing radiomic feature variability, since it was shown to

reduce the covariate shift for three feature categories and to be

capable of discriminating patients into groups based on their

survival risks. Veeraraghavan et al. (31) developed a novel semi-

automatic approach that combines GrowCut (GC) with cancer-

specific multiparametric Gaussian Mixture Model (GCGMM) to
produce accurate and reproducible segmentations. Segmentation

performance using manual and GCGMM segmentations was

compared in a sample of 75 patients with invasive breast

carcinoma. GCGMM’s segmentations and the texture features

computed from those segmentations were shown to be more

reproducible than manual delineations and other analyzed

segmentation methods.

Extraction of Features
The critical component of radiomics is the extraction of high-

dimensional feature sets to quantitatively describe the attributes
of oncological phenotypes. These extracted quantitative data

reflect the crucial part of the establishment of radiomics

prediction models. In practice, 50 to 5,000 radiomic features

processed by specific software, including PyRadiomics (32, 33),

CERR (34, 35) or IBEX (36, 37), are usually divided into

morphological, intensity-based, and dynamic features (14)
(Figure 2). Morphology-based features can collect three-

dimensional (3D) shape characteristics, including volume,

surface area, and sphericity. Intensity-based features can

evaluate the gray-level distribution inside the ROI, which can

characterize the overall variability in intensity (first-order) and

the local distribution (second-order, also referred to as “texture

features”). In terms of oncological pathology, both tumors and
precancerous lesions have highly heterogeneous cell populations

with normal stromal and inflammatory cells. Compared with

conventional pathology, which only reveals underlying biological

information in subregions, advanced texture analysis is emerging

as a novel medical imaging tool for assessment of intratumoral

heterogeneity. Texture analysis is used to describe the association
between the gray-level intensity of pixels or voxels and their

position within ROIs. Texture analysis usually consists of four

steps: extraction, texture discrimination, texture classification,

and shape reconstruction. Moreover, previous studies have

demonstrated that non-uniform staining intensity within

tumors may predict more aggressive behavior, poorer response

to treatment, and worse prognosis (14, 38).
Furthermore, dynamic features derived from dynamic

contrast-enhanced CT or MRI and metabolic PET (which can

FIGURE 2 | The classifications and corresponding examples of quantitative radiomics features. The figure was reproduced according to ref (14). with permission

from the publisher.
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be one or more voxels within the ROI) are widely used to

quantify enhancement of or uptake in tumors over time.

Evaluating these extracted dynamic features can uncover

relationships with molecular subclassifications of tumors and

the prognosis (39).

An even more extensive range of features is expected. These
radiomics features provide additional data associated with tumor

pathophysiology that cannot be achieved by typical radiological

interpretation. Therefore, creation of more easily interpretable

models will be key to establishing a correlation between

radiography and radiomics features in the future. Moreover,

the stability and accuracy of features should be validated by test-
retest datasets, and any that are volatile or unreliable should

be excluded.

Data Analysis
The variables and features collected during extraction are often

redundant and may contain unnecessary information that leads

to overfitting. Therefore, selection or dimensional limitation of

the basic data is essential to maintain the selected significant
imaging characteristics that show a strong correlation with

clinical events.

The common selection methods can be classified into three

categories: filter, wrapper, and embedded methods. Groups of

highly correlated radiomics features can be identified via

clustering. Filter methods evaluate features without involving
the model in a univariate or multivariate way, which means

the rank criterion depends only on the relevance of the feature or

use of a weighted sum to maximize relevance and minimize

redundancy. Features can then be generated and evaluated using

the model with wrapper methods. Finally, a feature subset is

proposed and evaluated during construction of the model with

embedded methods.

Deep Learning and Convolutional Neural Networks
Deep learning is a machine learning algorithm that is

characterized by utilization of neural networks with multiple

layers (40). It is regarded as a semi-theoretical and semi-

empirical modeling method that can be used to construct a

holistic architecture on the basis of mathematical knowledge or
computing algorithms, correlate training data to large-scale

computing ability, adjust internal parameters, and consequently

solve target problems. Convolutional neural networks (CNNs) are

typically used in deep learning and combine imaging filters with

artificial neural networks through a series of successive linear and

nonlinear layers (41). CNNs use local connections and weights to
analyze the input images, followed by pooling operations to obtain

spatially invariant features (42). Furthermore, a fully connected

network created at the end of the CNN could convert the final

two-dimensional layers into a one-dimensional feature vector (43).

After obtaining sufficient training data, deep learning algorithms

can determine the optimal feature set and the relative importance

of each feature. They can then classify images by utilizing
combinations of features. Therefore, machine learning has

become a fitting approach for selection and classification of

features (44).

Outcome Modeling Through Machine
Learning
Once the feature set is obtained, a prediction model is needed to

connect the features selected with the genetic information of the

diseases in order to prospectively identify subgroups of patients

who may benefit from specific treatment. However, without

interpretability, these quantitative descriptors are inconvenient
and difficult to apply when using radiogenomics in clinical

practice. Therefore, interpretable models are required to

establish correlations between quantitative formula-derived

radiomics features and genetic subtypes. Representative

classification methods include conventional logistic regression

(45) and advanced machine learning techniques (46), such as

decision trees and random forests, support vector machines, and
deep neural networks (47), which are able to emulate human

intelligence by acquiring knowledge of the surrounding

environment from the input data and detect nonlinear

complex patterns in the data.

Machine learning can build prediction models in several ways

and includes unsupervised, supervised, and semi-supervised
approaches. Unsupervised analysis divides the data into

subgroups based on the similarity between samples. In the

unsupervised model, a distance measurement is used to

determine similarity, and similar training samples are stratified

into the same group. Moreover, a clinical label is not required to

train an unsupervised model that can be applied in more

situations. In contrast, supervised learning is used when the
endpoints of the treatments such as tumor control or toxicity

grades are known, which requires a large amount of training

samples to avoid overfitting. Unsupervised methods, such as

clustering methods or the use of principal component analysis,

provide means to reduce the learning problem curse of

dimensionality through feature extraction, and to aid in the
visualization of multivariable data and the selection of the

optimal learning method parameters for supervised learning

methods (48). Each method has its own merits and pitfalls

(49). Deep learning is the preferred method when a large

amount of data are included in the cohort. Creating a highly

complex deep learning model that provides performances similar

to simpler statistical tests or machine learning algorithm is
redundant (50).

As mentioned earlier, a radiomics model could be validated

repeatedly to confirm its potential value for clinical application.

Generally, external validation is considered to be a stronger test

for a model than an internally validated prediction model

because it produces more credible and robust results (51).
Many methods have been used successfully to evaluate the

performance of radiomics models; the receiver-operating

characteristic (ROC) curve is the method most commonly

utilized for discrimination analysis and the concordance index

is usually used for validation of survival analysis (52).

Radiogenomics Approach
A radiogenomics study may be exploratory or hypothesis-driven.
In exploratory studies, a common approach is multiple

hypotheses testing, whereby the features extracted are tested
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against a mass of genomic variables. Accurate conclusions can be

reached from exploratory analyses but statistical correction to

the significance level is required. The false discovery rate is

the optimal metric for controlling the expected proportion of

“discovery” that is false when conducting multiple comparisons.

Furthermore, hierarchical cluster analysis has proved to be a
useful tool for exploratory analysis of gene expression data,

which is an algorithm that groups similar objects into clusters

that are distinct from each other. Moreover, a type of tree

diagram, known as a dendrogram, is usually used to

show hierarchical relationships between different clusters. In

contrast, when using the hypothesis-driven approach,
researchers collect a sufficient number of imaging phenotypes

and then investigate them with a specific hypothesis in mind. For

example, Konstantinidis et al. used this method in a prospective

clinical trial and confirmed a previous hypothesis that MRI can

act as an imaging biomarker for prediction of the response to

chemotherapy in patients with unresectable intrahepatic
cholangiocarcinoma (ICC) (53).

Current Application of Radiogenomics in
Oncology
Radiogenomics takes advantage of big data analysis approaches

that explore meaningful information for decision-making
in the diagnosis and treatment of cancer (54). Furthermore,

radiogenomics provides an in-depth understanding of tumor

biology and captures imaging biomarkers with relevant

implications. These approaches have been validated in a variety

of tumors (55). Here we summarize the known and potential

imaging features of corresponding genotypes in various types of
tumors and their value and feasibility in clinical practice.

Glioblastoma
Glioblastoma multiforme (GBM) is considered to be the most

common life-threatening brain cancer, accounting for 45% of

primary central nervous system tumors with an average overall

survival of only 15 months (56, 57). This dismal prognosis is

mainly due to the invasiveness of the tumor, which responds
variably to treatment, and the infiltrative ability of tumor cells

that cannot be detected with the current imaging technologies.

Heterogeneity exists not only at the patient level but also at the

level of a single tumor, indicating that GBM includes a wide

range of genetic abnormalities and regional transformations in

response to microenvironmental cues (58). In general, the most
reliable diagnostic imaging method is MRI because of its

excellent soft tissue contrast (59). With progress in the genetic

understanding of GBM, multiple strategies are being developed

to associate the radiological features of GBM with genomic

phenotypes, for prediction of the therapeutic response and

clinical prognosis.

GBM also shows biological heterogeneity and includes
proneural, neural, classical, and mesenchymal subtypes (60).

Studies have demonstrated that imaging-based biomarkers not

only allow prognostic stratification of individual patients but also

have an important role in disease diagnosis (61–63). For

example, Zinn et al. (64) identified a causal link between

radiomic texture features and periostin expression levels, an

important gene involved in GBM invasion and recurrence (65).

The results provide evidence for the potential use of non-invasive

interventions as predictors of disease prognosis in future clinical

trials (66).

IDH Mutation
One of the best known molecular biomarkers in GBM

development is the mutation status of isocitrate dehydrogenase

(IDH) 1/2 (67). This enzyme is found to regulate the citric acid
cycle (68) and increase angiogenesis (69). A retrospective study

of 176 patients with GBM conducted in Korea (70) revealed a

significant association between the MRI features and

corresponding genomic profiles, demonstrating that these

imaging characteristics can be used to predict IDH mutation

status. Specifically, this study found that a higher proportion of
insular involvement, larger tumor volumes, a higher volume

ratio on T2-weighted and contrast-enhanced T1-weighted

images (solid enhancing portion on the contrast-enhanced T1-

weighted volume), and a higher apparent diffusion coefficient

(ADC) were more prevalent in patients with IDH mutation.

Similarly, Mazurowski et al. (63) analyzed the imaging data of

110 patients with lower-grade gliomas from The Cancer Genome
Atlas (TCGA). They found a strong association between a

quantitative feature, angular standard deviation (ASD), which

measures irregularity of the tumor boundary, and the IDH-1p/

19q subtype (p < 0.0017). Higher ASD is generally considered a

predictor of poorer outcomes.

ATRX Loss
The alpha thalassemia/mental retardation X-linked gene (ATRX)

is involved in chromatin remodeling and maintenance of

telomeres. ATRX mutations are mainly associated with diffuse

astrocytomas and gliomas with higher sensitivity to treatment.

Tumors with loss of ATRX have been shown to a great extent to

harbor a sharper hypersignal intensity area margin and a higher

ADC value of the T2 hyperintense lesion compared with tumors
that contain wild-type ATRX, which suggests a better prognosis

in patients with this GBM subtype (70).

TP53 Mutations
TP53 is an important gene that suppresses tumorigenesis by

inducing cell cycle arrest and is frequently altered in diffuse

gliomas and particularly in astrocytomas. Mutation of p53 results
in proliferation and invasion of tumor cells, which is a prognostic

marker for diffuse glioma. Preoperative MRI examinations found

a specific correlation of p53 with the tumor location and

enhancement pattern in lower-grade glioma. Li et al. (61)

indicated that Maximum_6 and Median_6 values (signals of

microvessel counts on T2-weighted images) are higher in tumors

with mutant than in those with wild-type p53. Furthermore, they
showed that Uniformity_4, a radiological parameter indicating

the consistency of the image, could predict the mutation status of

p53 (61). This observation may reflect the fact that p53 mutation

increases the aggressiveness and heterogeneity of a tumor,

leading to disparity of uniformity.
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O6-Methylguanine-DNA-Methyltransferase

Methylation
The association between epigenomic clusters and MRI traits was

also uncovered by research that created predictive machine

learning-based classification models. The status of DNA

methylation using O6-methylguanine-DNA-methyltransferase

(MGMT) promoter methylation status and the tumor’s copy

number variation profile can be used to classify glioblastoma in
various subgroups (71). Due to the function of MGMT in

promoting DNA repair and reducing the efficacy of alkylating

events, epigenetic silencing of the MGMT DNA repair gene

through promoter methylation leads to irreparable DNA damage

and cell death and increased sensitivity to alkylating chemotherapy.

In a study, MGMT methylation was mainly observed in tumors
with a higher percentage of contrast-enhancing tumor volume to

complete tumor volume, higher Gaussian-normalized relative

cerebral blood volume (nrCBV) and nrCBV in the contrast-

enhanced and total tumor volumes (72). The indicator relative

cerebral blood volume (rCBV) is widely utilized and can reflect

tumor hypoxia and angiogenesis, which can be evaluated more

precisely by imaging of vessel size. The methylated MGMT
promoter is also related to the presence of pseudoprogression.

Therefore, increases in enhancement within 3 months after

completion of radiotherapy in patients with MGMT methylation

are regarded as treatment-related effects (pseudoprogression) rather

than progressive disease. Tixier et al. (73) investigated the

combination of the MGMT status with radiomics and found that
a feature named edge descriptor was significantly correlated with

MGMTmethylation and predicted better survival of GBM patients.

Phosphatidylinositol 3-Kinase -Akt-Mammalian

Target of Rapamycin Pathway
Identification of a marked correlation between expression of the

mammalian target of rapamycin (mTOR) and the maximum rCBV
in the enhanced GBM (62) has paved the way for prediction of

mTOR status from images. Given that mTOR inhibitors can

improve the response of GBM to temozolomide, this prediction

model may facilitate identification of a suitable patient population.

Furthermore, Cui el at has shown that the high-risk volume

(HRV) was higher in GBMs with mutations in either Nuclear
Factor I (NF1) or PIK3CA than in those that were wild type (72).

These two genes play a critical role in the progression of GBM. It

has been shown that mutations of NF1, a tumor suppressor

gene, are quite common in the mesenchymal molecular subtype,

which has a very poor prognosis due to aggressive biological

behavior (60, 74). Patients with GBM who have an activated

phosphatidylinositol 3-kinase (PI3K) signaling pathway also
have poorer outcomes than those who do not (75). Inhibitors

targeting the PI3K pathway are under active development and

offer hope for patients with GBM.

Epidermal Growth Factor Receptor Amplification
Another study (76) identified compelling imaging connections

for six oncogenes or tumor suppressor genes (EGFR, PDGFRA,
PTEN, CDKN2A, RB1, and TP53) in 48 biopsies collected from

13 tumors. By establishing multivariate predictive models for

each gene, the investigators found a significant association

between amplification of EGFR and local binary patterns

texture on rCBV maps.

Apart from a single gene mutation, advanced high-

throughput measurement of, for example, a change in mRNA

expression and DNA copy number variation could also enable
identification of correlations between individual genes or loci

and particular imaging features. Jamshidi et al. (77) created a

multilevel radiogenomics association map to highlight genes that

showed concordant mRNA expression and gene dose changes

and their links with MRI features. That study identified 34 gene

loci, including LTBP1, RUNX3, and KLK3, as biomarkers
of GBM.

Breast Cancer
Breast cancer is the most common malignancy in women and is

regarded as a heterogeneous and complex disease. Breast cancer
can be classified into luminal A, luminal B, human epidermal

growth factor receptor 2 (HER2), and basal molecular subtypes

(78). Specific molecular subtypes are shown to have different

patterns of initial disease presentation, different relapse-free

survival rates, and distinct variations in response to treatment.

Conventional imaging techniques, including mammography,
ultrasound, and MRI, are used to detect malignant lesions and

monitor disease progression.

Gene Expression
Women with BRCA1/2 gene mutation are considered as being at

a higher risk of developing breast and/or ovarian cancer (79). Li

et al. (80) found that computerized mammographic assessment

of breast density and parenchymal patterns (phenotypes of
coarseness and contrast) from radiographic texture analysis

could together be used to distinguish BRCA1/2 gene-mutation

carriers from low-risk women.

Molecular Subclassification
Several studies have attempted to delineate the correlation

between findings on breast MRI and molecular subtype. For
example, Grimm et al. (81) identified two dynamic imaging

features that were independent predictors of the luminal A and

luminal B subtypes: 1) the ratio of enhancement of the tumor to

that of the fibroglandular tissue at two time points; 2) the

sequence number at which peak enhancement occurs.

Meanwhile, Blaschke et al. (82) found that HER2-positive

cancers showed more rapid early uptake of contrast compared
to other subtypes, and Mazurowski et al. (83) demonstrated that

the imaging features of luminal B had a higher tumor

enhancement ratio. Moreover, Zhu et al. (84) developed three

deep learning models to distinguish between breast cancer

subtypes by analyzing dynamic contrast-enhanced MRI scans.

However, they found that the best area under the curve of the
models was only 0.65, indicating that deep learning can help the

research of radiogenomic correlations, but is still limited.

In another study, the MRI phenotype with a heterogeneous

enhancement pattern was proven to be significantly associated

with immune-related genes characterizing the interferon-rich
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subtype, most of which is part of triple-negative breast cancer

(85). In 10 patients with breast cancer, radiogenomics analysis

showed that 12 dynamic contrast-enhanced MRI-specific traits

were significantly associated with high expression of immune-

related genes, including STAT1, CXCL9, and IFIT1 (85).

Signaling Pathways
The tumor necrosis factor-alpha (TNF-a)/NF-kappaB/Snail

pathway is one of the critical molecular pathways in breast

cancer and is involved in many activities related to the tumor

cell, including epithelial-mesenchymal transition (86),

proliferation (87), angiogenesis (88, 89), invasion, and

metastasis (90). Wu et al. analyzed 10 quantitative imaging
characteristics related to enhancement patterns in the tumor-

adjacent region and found an association between the TNF

signaling pathway and parenchymal imaging features in breast

cancer, which are of prognostic value (91).

Janus kinases (JAK) belong to the family of non-receptor

tyrosine kinases and centrally involved in activation of

signal transducer and activator of transcription proteins (STAT)
proteins in breast cancer (92). The JAK/STAT pathway is a rapid

cytoplasmic to nuclear signaling pathway and leads to the activation

of genes through a process called transcription (93). Disrupted JAK-

STAT signaling could induce carcinogenesis. Yeh et al. (94)

intended to perform quantitative radiomic analysis on 47 invasive

breast cancers and obtained gene expression data on corresponding
fresh frozen tissue samples. Gene set enrichment analysis was used

to identify significant associations between the 186 gene pathways

and the 38 image-based features. As a result, they found that tumors

with higher expression of JAK/STAT and VEGF pathways appeared

to have positive correlation with contrast, difference variance, and

entropy, and negative correlation with homogeneity and

image linearity.

RNA Sequencing
The Oncotype Dx Recurrence Score (ODxRS), which

incorporates the mRNA expression of 21 genes, is used

clinically to predict the prognosis of early-stage invasive breast

cancer (95). Sutton et al. (96) aimed to illustrate the relationship

between ODxRS and morphological and texture-based image
features extracted from MRI imaging of 95 breast cancer

patients. Two MRI-derived image features, kurtosis and

histologic nuclear grade, were found to be significantly

correlated with the ODxRS.

Long noncoding RNAs, defined as the noncoding transcript,

are a crucial group of regulatory RNAs that have been implicated

in the development of numerous types of solid tumors. The
emergence of next-generation sequencing technologies

has provided a good opportunity for increasingly rapid

development of RNA sequencing, shedding light on novel and

undiscovered transcriptional and epigenetic regulators in breast

cancer. Yamamoto et al. (97) performed a radiogenomics

analysis to determine the association between the enhancing
rim fraction and the expression of 14,880 long noncoding RNAs.

Interestingly, the enhancing rim fraction score was found to be

correlated with a known predictor of tumor metastasis, HOTAIR

(homeobox transcript antisense intergenic RNA). These findings

prompted the development of radiogenomics in breast cancer,

which has the potential to become an alternative to

genetic testing.

Renal Cell Carcinoma
Renal cell carcinoma (RCC) constitutes 2%–3% of all cancers in

adults worldwide and has an increasing incidence (98). Clear cell
RCC (ccRCC) is the most common subtype and accounts for

70%–80% of all RCCs, followed by papillary RCC and

chromophobe RCC (99). Percutaneous biopsy is widely used

for preoperative diagnosis of RCC; however, its use is

controversial because of potential complications and sampling

errors. Recently, radiomics techniques that focus on changes at
the molecular level have become an effective way of screening

quantitative features for accurate diagnosis of these tumors and

prognostic assessment.

Von Hippel–Lindau Mutation
Previous studies have shown that loss or mutation of Von

Hippel-Lindau tumor suppressor (VHL) is a critical driver of

ccRCC and is believed to occur at an early stage in renal cancer
(100). According to our current understanding of the

tumorigenesis of ccRCC, alteration of VHL promotes the

expression of hypoxia-inducible factors, which are believed to

be the central event in upregulation of angiogenesis-related

factors. There is mounting evidence of radiogenomic

associations between subtype-discriminative CT features and
VHL mutation status, possibly arising from a previous finding

of significant associations between ccRCC with VHL mutation

and clear tumor margins, nodular enhancement, and an

intratumoral vasculature on enhanced CT images (101). Li

et al. (102) developed a radiomics model with all eight

minimum redundancy maximum relevance features from CT

images of 170 RCC patients and found it to be significantly
associated with VHL mutation.

Polybromo 1 Mutation
The second most frequent mutation in ccRCC is in Polybromo 1

(PBRM1), which, like VHL mutation, becomes mutated in the

early stage of tumorigenesis. A meta-analysis that included 2942

patients reported that a lower PBRM1 expression level is
correlated with a dismal prognosis, advanced clinical stage, and

a higher Fuhrman nuclear grade in ccRCC as well as

responsiveness to immune checkpoint inhibitors (103). Kocak

et al. found that high-dimensional quantitative CT texture

analysis was potentially able to identify ccRCC with and

without PBRM1 mutations using the artificial neural network

(ANN) and random forest (RF) algorithms as machine learning
classifiers; RF outperformed ANN in that study (95.0% vs

88.2%) (104).

Runt-Related Transcription Factor-3 Methylation
The runt-related transcription factor-3 (RUNX3) gene, a noted
tumor suppressor gene, regulates gene expression in some

dominant developmental pathways and has antitumor activity

in various types of tumors (105). RUNX3 is reportedly

inactivated in numerous types of tumors and is involved in
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various biological tumor processes, including epithelial-

mesenchymal transition, adhesion, migration, and invasion.

Therefore, the methylation level of RUNX3 can also influence

tumor cell phenotype. For example, Cen et al. (105)

reported a significant relationship between a high level of

RUNX3 methylation and shorter survival. Meanwhile, high
intratumoral vascularity, unclear margins, and a left-sided

tumor can be used to predict high RUNX3 methylation

level (106).

BRCA1-Associated Protein 1 Mutation
The BAP1 (BRCA1-associated protein 1) gene mutation, which is

present in 15% of ccRCCs, has been associated with Fuhrman
grade 3 or 4 tumors and poor survival, as well as greater

sensitivity to radiotherapy and mTOR blockade (107).

Shinagare et al. (108) identified ill-defined margins and the

presence of calcification to be critical predictors of BAP1

mutation in patients with ccRCC.

Liver Cancer
One of the most aggressive malignancies is primary liver cancer,
the most common types of which are hepatocellular carcinoma

(HCC) and ICC (109). HCC is the most clinically prevalent

subtype and is characterized by high morbidity and mortality

rates worldwide (110). Over the past several decades, there is

strong evidence of a link between HCC and chronic hepatitis B

virus (HBV) infection (111). At present, several imaging
modalities for HCC screening/surveillance and diagnosis are

endorsed by the international guidelines, including

ultrasonography, CT, and MRI, which can provide essential

information about tumor staging and are used to assess the

treatment response. So far, there have been few radiogenomics

studies in HCC.

Early in 2007, Kuo et al. (112) performed a radiogenomics
analysis to mine the relationship between imaging features in

HCC and expression of 313 liver-specific genes. CYP27A1 and

CYP4V2, which belong to the cytochrome p450 superfamily,

were found to be responsible for drug metabolism and

detoxification and to be significantly associated with the tumor

margin score. In a series of studies, Banerjee et al. identified a CT
biomarker called radiogenomic venous invasion, which was

found to be a strong predictor of microvascular invasion in

HCC (113). Moreover, the presence of radiogenomic venous

invasion has been associated with tumor recurrence and a

shorter survival time (113). Xia et al. (114) reported several

methodological benefits of the association between CT imaging

features and gene expression profiles when deciphering non-
invasive surrogate biomarkers for HCC. They constructed

different gene modules according to their prognostic

significance and identified enrichment of the MEred gene

module in the biological functions and pathways involved in

virus-related RNA transcription that were significantly

associated with the determined prognostic geometry features.
For example, hepatitis B can greatly increase the risk of liver

cirrhosis and HCC. Furthermore, functional enrichment of the

MEyellow gene module promotes lipid metabolism and

complement activation. Interestingly, an earlier study

demonstrated alterations in fatty metabolism in HCC that

could promote dedifferentiation of tumor cells. Miura et al.

(115) retrospectively performed clinicopathological and

global gene expression analyses and found that SLCO1B3

was upregulated in HCC cases with a higher intensity lesion

in the hepatobiliary phase on gadolinium-ethoxybenzyl-
diethylenetriamine pentaacetic acid-enhanced MRI.

Taouli et al. (116) analyzed dozens of qualitative and

quantitative imaging traits seen in preoperative CT or MRI

data and found some to be correlated with aggressive genomic

signatures of HCC. For example, the “infiltrative pattern”

showed the strongest associations with gene signatures
representing enhanced cellular proliferation and vascular

invasion while “presence of macrovascular invasion” was also

an important imaging feature that showed a significant

correlation with the molecular signatures of vascular invasion,

distant metastases, and TNM staging in HCC.

ICC is a relatively rare but lethal primary liver cancer
originating from the intrahepatic bile duct epithelium. ICC has

high expression levels of EGFR and vascular endothelial growth

factor gene (VEGF) as well of pro-angiogenic and hypoxia

markers. Sadot et al. (117) investigated the relationship

between imaging phenotypes and molecular profiling of ICC

by visually analyzing imaging features and performing texture

analysis with immunohistochemical assessment of molecular
markers in 25 patients with ICC. Linear regression analysis

showed that the correlation texture feature was significantly

associated with expression of VEGF, whereas correlation and

entropy texture features were significantly related to expression

of EGFR.

Colorectal Cancer
Colorectal cancer (CRC) is the third most common cancer
worldwide and is characterized by substantial spatial

phenotypic and genotypic variations (118). The development

of colon cancer involves multiple steps with a continuous

cumulative effect of genetic mutation in tumor suppressors and

oncogenes. CT and MRI, as well as 18F-FDG-PET imaging, are

widely used for the diagnosis, monitoring of therapeutic
response, and prognosis of CRC (119). Recently, there has

been an increasing number of investigations on whether or not

conventional imaging techniques can predict critical gene

mutations in CRC without the need for an invasive procedure.

KRAS Mutation
Mutation of the KRAS gene is found in nearly two fifths of CRCs

and is regarded as an independent prognostic factor for survival
and a downstream marker of tumor resistance to anti-EGFR-

targeted therapy. Lubner et al. (120) found that skewness, a

texture parameter that can measure asymmetry of the pixel

histogram on CT, showed a negative correlation with KRAS

mutation status. Furthermore, Shin et al. (121) demonstrated

that a higher prevalence of KRAS mutations was significantly
associated with a more advanced nodal stage and the presence of

polypoid tumors. Rectal cancers with KRAS mutations have a

higher axial tumor length and a larger ratio of axial to

longitudinal tumor dimensions on rectal MRI. Miles et al.
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(122) analyzed multiparametric PET-CT imaging phenotypes

using a recursive decision-tree to integrate measurements of 18F-

FDG uptake, CT texture, and perfusion. This methodology

identified KRAS mutations with high accuracy and a low false-

positive rate. However, Chen et al. (123) found that an increased

accumulation of FDG measured using a 40% threshold level for
maximal uptake of CT-based tumor width was an independent

predictor of KRAS mutations.

Other Gene Mutations
A preliminary study (124) that sought to identify other frequent

gene mutations in CRC found a significant correlation of tumor

location with APC and RASA1mutation, a significant association

of absence of lymph node metastasis with BRCA2 mutation, and

a correlation of tumor size with FLT4 mutation, as well as a

higher frequency of ATM mutation in patients with a positive

circumferential resection margin. However, the results of
multiple comparisons were not significant. Therefore, large-

scale studies are needed for additional evaluation and to

validate these early observations.

Gastric Cancer
Gastric cancer is one of the most common and aggressive solid

tumors worldwide and has its highest incidence and mortality

rate in Eastern Asia (125). Approximately 20%–40% of patients

who receive standard treatment develop recurrent disease (126).

Based on the gene expression profile of gastric cancer, there are

four molecular subtypes: Epstein-Barr virus-positive,
microsatellite unstable, chromosomal instability (CIN), and

genomically stable (127). Previous studies have shown that the

CIN subtype of gastric cancer has a distinct prognosis. For

example, Sohn et al. found that patients with the CIN subtype

obtained the greatest benefit from adjuvant chemotherapy (128).

CT is regarded as the routine preoperative evaluation modality.
Furthermore, Lai et al. (129) investigated the relationship

between CT imaging features and CIN status and found that

an acute tumor transition angle was the most accurate imaging

feature of the CIN subtype of gastric cancer, which provides

additional prognosis-related information.

Lung Cancer
Lung cancer is another common cancer with a high mortality

rate and accounts for 13% of all newly diagnosed cancers (98).

Histologically, lung cancer can be divided into non-small cell

lung cancer (NSCLC) and small cell lung cancer (SCLC). Nearly

85% of patients with lung cancer have NSCLC (130).
NSCLC is a group of distinct diseases with genetic and cellular

heterogeneity due to different mutations in oncogenic signaling

pathways. Conventional imaging methods include radiography

and CT, which can provide valuable information for diagnosis,

clinical staging, and treatment decisions. Invasive biopsy plays a

central role in the pathological diagnosis; however, only a small
portion of tissue is generally obtained and cannot completely

reflect the properties of the whole tumor. Therefore,

radiogenomics mapping is being increasingly used to solve the

growing demand for prognostic image-based biomarkers.

There is an urgent need to identify high-risk patients who are

more likely to relapse and require more extensive follow-up or

aggressive treatment. Invasion of lung cancer into the visceral

pleura is a frequent pathological phenomenon (131). Tumors

with visceral invasion are classified as T2a and have a bleak

prognosis. Lee et al. (132) defined a quantitative pleural contact
index, which is the ratio of the tumor-pleura contact length to the

maximum tumor length on CT images, and investigated its

prognostic value as well as the molecular background of

pleural invasion. They found that the pleural contact index was

associated with remodeling of the extracellular matrix and that

related genes also acted as independent predictors of overall
survival in patients with NSCLC. Fave et al. (133) calculated the

radiomic features from images of 107 patients with stage III

NSCLC and found that texture-strength measured at the end of

treatment significantly predicted the risk of local recurrence.

Zhou et al. (134) established a radiogenomics map that

integrated CT imaging features and gene expression profiles in
patients with NSCLC. By summarizing gene functional

enrichment and CT characteristics, they identified a cluster of

co-expressed genes involved in the epidermal growth factor

pathway that had a significant relationship with the degree of

ground-glass opacity and irregular nodules or nodules with

poorly defined margins.

BRAF Mutation
BRAF is a serine/threonine-protein kinase that belongs to the

Ras/mitogen-activated signaling pathway family. BRAF

mutations occur in 2%–5% of NSCLCs; they are responsible

for phosphorylation of MEK and ultimately promote cell

proliferation and survival (135). Halpenny et al. compared the

CT features of BRAF-mutated lung carcinomas with those of

lung carcinomas with wild-type BRAF and found no significant
difference between BRAF lesions and non-BRAF lesions (136).

Nuclear Factor Kappa-Light-Chain-Enhancer of

Activated B-CellActivation
Nuclear factor kappa-light-chain-enhancer of activated B-cells

(NF-ĸB) is an important transcription factor that regulates
multiple signaling cascades and is a positive mediator of cell

growth and proliferation (137). Therefore, NF-ĸB and its target

genes are involved in the process of tumorigenesis. Nair et al.

(138) found a relationship between NF-ĸB expression and tumor

glucose metabolism on FDG-PET that could be a potential

prognostic biomarker.

Epidermal Growth Factor Receptor Mutation
EGFR belongs to a family of receptor tyrosine kinases and is

expressed in more than 60% of NSCLCs (139). Most EGFR

mutations involving exons 18, 19, and 21 are considered to

predict a favorable response to treatment with an EGFR tyrosine

kinase inhibitor (140). Gevaert et al. (141) confirmed that

ground-glass opacities and nodule margins are indicative of the
presence of EGFR mutations. Aerts et al. (142) collected high-

resolution CT imaging of 47 patients with early-stage NSCLC

before and after gefitinib therapy to investigate if radiomics can

identify a gefitinib response-phenotype. Changes in features
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between two scans, delta volume and delta maximum diameter,

were strongly predictive of EGFR mutation status and of the

associated gefitinib response.

Anaplastic Lymphoma Kinase Rearrangement
The ALK gene encodes a tyrosine kinase transmembrane protein,

a member of the superfamily of insulin receptors, which are

responsible for 3%–7% of NSCLCs and often undergo fusion

with echinoderm microtubule-associated protein-like 4 (143).

Crizotinib and two other ATP-competitive ALK inhibitors,
ceritinib and alectinib, have achieved improved outcomes in

this subset of patients. A meta-analysis (144) that summarized

the imaging features from 12 studies that included 2,210 patients

with NSCLC found that the presence of ALK rearrangement in a

primary tumor showed distinct imaging characteristics,

including a likelihood of being solid and being less likely to

show cavitation and air bronchograms.

Ovarian Cancer
Ovarian cancer is the deadliest malignancy of the female genital

tract and has five major histopathological subtypes. Ninety

percent of ovarian cancers are high-grade serous ovarian
cancer (HGSOC), which has the least favorable prognosis

(145). Previous studies have demonstrated the genomic

complexity and heterogeneity of ovarian cancer (146). Genetic

heterogeneity, including copy number variant, transcriptome

analysis, and methylation array, has been discovered in

HGSOC, which may explain its drug resistance and open up
new avenues for targeted molecular-based treatment. CT is an

indispensable imaging examination for patients with HGSOC

and can allow staging evaluation for preoperative planning and

determination of surgical resectability. Several studies have

shown that the CT features can predict critical molecular

alteration events in HGSOC, which may have substantial
prognostic and therapeutic implications at the time of

diagnosis (147).

BRCA Mutation
Approximately 15%–20% of HGSOC cases are inherited. BRCA1
and BRCA2 mutations are the most commonly identified

germline mutations, whereas 6% of these tumors harbor

somatic BRCA mutations (148). Previous cohort studies have

determined that BRCA1/2 mutations are associated with

improved long-term survival in patients with ovarian cancer

(149, 150). A retrospective study assessed the preoperative CT

scans of 108 patients with HGSOC and found qualitative CT
features that could distinguish the BRCA mutation status

of HGSOC. Multiple regression analysis showed that

the pattern of peritoneal disease, presence of peritoneal disease

in the gastrohepatic ligament, and supradiaphragmatic

lymphadenopathy were associated with HGSOC harboring

BRCA mutation, whereas the presence of peritoneal disease in
the lesser sac and left upper quadrant, mesenteric involvement,

and lymphadenopathy in the supradiaphragmatic and

suprarenal para-aortic regions were correlated with wild-type

BRCA (147).

Inter-Site Heterogeneity
Inter-site heterogeneity describes a phenomenon whereby tumor

cells from different metastatic sites in the same patients can show
distinct morphological and phenotypic characteristics. This

phenomenon is found in ovarian cancer and is informative for

the prognosis and treatment decisions. Vargas et al. (151)

provided valuable data indicating that CT texture-based

measures can be utilized to evaluate spatial heterogeneity

across multiple metastatic lesions and to predict clinical
outcomes in patients with HGSOC. In particular, patients with

amplification of the cyclin E1 gene exhibited more inter-site

texture heterogeneity on CT imaging.

BRAF Mutation
Recent studies have demonstrated mutations of BRAF or KRAS in

approximately 60% of serous borderline tumors and low-grade

serous carcinomas (152). The presence of BRAF mutation in a
serous borderline tumor is a favorable prognostic factor and may

inhibit progression to low-grade serous cancer (153). A

retrospective study by Nougaret et al. showed that the presence of

bilateral ovarian masses, peritoneal lesions, and higher solid tumor

volumes was significantly associated with wild-type BRAF (154).

Prostate Cancer
Prostate cancer is the most prevalent malignancy in men in the

United States. An epidemiological investigation in 2015 showed that

1.6 million men were diagnosed with prostate cancer and that there

had been a 66% increase in its incidence over the previous

decade (155).

Currently, the National Comprehensive Cancer Network risk

stratification system, which is mainly based on pathological grading
from a biopsy sample, prostate serum antigen levels, and T staging, is

widely used (156). Even though its prognostic precision has been

reproduced in various settings, numerous studies have shown that

the impact of adverse pathology is unavoidably underestimated in

about 38%–46% of patients (157), partly because of the spatial

heterogeneity in tumor growth patterns. Imaging examination can
overcome the sampling bias resulting from prostate biopsy;

therefore, the properties of the entire tumor can be assessed using

a non-invasive platform. Multiparametric MRI is the most accurate

imaging modality for detection and localization of prostate cancer

lesions and provides both functional tissue information and

anatomical information (158). Stoyanova et al. (159) first identified

a significant association between quantitative multiparametric MRI
features and gene expression in multiparametric MRI-guided biopsy

samples. The identified gene clusters related to radiomic features

were used for gene ontology analysis and were correlated with

distinct biological processes, including immune response,

metabolism, cell, and biological adhesion.

PTEN Deletion
The PTEN gene encodes for the phosphatase and tensin homolog

and is a tumor suppressor gene on chromosome 10 in region

10q23 that is mutated or deleted throughout the human cancer

spectrum (160). Deletion of PTEN has been confirmed to be an

important event in prostate carcinogenesis due to activation of

the PI3K/Akt signaling pathway. Furthermore, loss of PTEN has
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been shown to confer a seven-fold increased mortality risk from

prostate cancer (161). McCann et al. (162) analyzed the

preoperative multiparametric MRI scans of 45 peripheral zone

cancer foci and found weak correlations of the reverse reflux rate

constant between the extracellular space and the plasma and of

the Gleason score with PTEN expression in prostate cancer.
However, further investigation and validation of this finding

is needed.

Retinoblastoma
Retinoblastoma originates from immature retinal cells. It is the

most prevalent intraocular malignancy in children, with 95% of

cases diagnosed by the age of 5 years. Most bilateral tumors are

caused by germline mutations in the RB1 gene whereas the

majority of unilateral retinoblastomas are associated with the

presence of somatic RB1 mutations (163). Furthermore,
amplification of MYCN was identified in wild-type RB1

retinoblastomas, suggesting that amplification of this gene can

trigger tumorigenesis in the background of a functional

retinoblastoma protein. Jansen et al. (164) assessed the

association between imaging features and the genome-wide

mRNA expression profiles of 60 patients with retinoblastoma

and found a correlation between a lower photoreceptor gene
signature and advanced-stage imaging features, including

multiple lesions and a large eye size. Moreover, expression of

MYCN was associated with subretinal seeding, while differential

expression of SERTAD3 was significantly associated with diffuse

growth, a plaque-shape, and multifocality.

Head and Neck Squamous Cell Cancer
Head and neck squamous cell carcinoma (HNSCC) is the sixth

most common cancer worldwide (165). The Cancer Genome

Atlas (TCGA) has revealed that human papillomavirus-

associated tumors are accompanied by PIK3CA mutations, loss

of TRAF3, and amplification of E2F1, whereas smoking-related

HNSCCs exhibit a higher frequency of TP53 mutations and

CDKN2A copy number alterations. Furthermore, mutations of
the chromatin modifier NSD1 and the Wnt pathway genes

AJUBA and FAT1 were also detected in a subgroup of

HNSCCs (166). Zwirner et al. (167) followed a hypothesis-

driven approach for finding associations between radiomic

heterogeneity and genetic aberrations and found that FAT1

somatic mutations were associated with reduced radiomic
measures of tumor heterogeneity, possibly clarifying the reason

for the previously described better prognosis of patients with

human papillomavirus-negative, FAT1-mutated HNSCC.

Unresolved Issues/Limitations
Convincing evidence has emerged showing that there is a

moderate association between imaging characteristics and

genomic or related characteristics of various kinds of cancers

(Table 1). However, adoption of this work into common clinical
practice needs to overcome significant challenges.

The foremost limitation of current radiogenomics models is

their repeatability and reproducibility (168). Researchers

should not overlook the variability arising from use of

different equipment and different software or that arising at

different clinics. These problems lead to results that are difficult

to reproduce, which has largely impeded the progress of

radiogenomics models. Therefore, implementation of

standard practice guidelines is a critical step to ensure the

accuracy and reliability of analytic results in radiogenomics

studies (169).
First, differences in acquisition radiomics parameters and

variations in contrast enhancement protocols due to different

machines and patient conditions are major issues during image

acquisition and reconstruction. Therefore, establishment of

standardized protocols for each modality is an essential step to

avoid this situation. Second, reproducibility and reliability are
crucial in the tumor segmentation process. The variability among

different readers in delineation of ROIs depends on the methods

of segmentation used. It has been shown that semi-automatic

delineation not only has machine-like precision, but also can be

manually corrected. With regard to feature extraction, a wide

range of voxel intensities and image noise needs to be filtered to
preserve the desirable signal and reduce unwanted noise;

variation in discretization methods also leads to different

results. A suitable solution would be to adopt absolute

discretization with fixed bin sizes, which have better

repeatability and stability (170). Finally, feature nomenclature,

algorithms, methodology, and software have also varied between

the different studies, which can jeopardize the accuracy and
performance of the models (52). Therefore, the lack of

conformity between the above aspects must be elucidated and

unified to eliminate differences as much as possible in the process

of feature extraction.

On the other hand, there are still some shortcomings in the

design and construction of radiogenomics studies. Firstly, most
studies are retrospective with small sample sizes and a lack of

prospective validation cohorts. The main restriction for deep

learning radiogenomics is the limited size of the available

datasets. The insufficiency of the required volume of data can

lead to inadequate stratification (171–173) among training,

validation and testing datasets, compromising the model

adaptation, optimization, and evaluation process, respectively.
In addition, quantitative descriptors with interpretability are also

important in clinical practice. Therefore, interpretable models

combined with open-access, curated and high-quality public

benchmark databases with complete genomic and imaging data

across disease types are urgently needed. Only in this way can we

perform better investigations to address tumor heterogeneity. All
these deficiencies are prone to produce statistical issues related to

overfitted data and multiple testing.

Another drawback is the lack of multicenter studies, which

raises doubts that the findings to date would be reproducible by

difference in readers, imaging equipment, and radiologists in

different fields. Due to the technological imperfections, there is a

significant mismatch between the perceived capabilities and the
actual capabilities of artificial intelligence in current studies.

Future Direction
To eliminate the inconsistency and uncertainty of different

studies, the most critical matter is to formulate a standardized

workflow and internationally agreed methods to guide the
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TABLE 1 | Specifications of radiomic studies in different cancers.

Studies Study

type

No. of specimen Inclusion cri-

teria

No. and type of Radiomic features Image

Modality

Clinical Characteristics Statistical analysis

Brain cancer

Li et al. (61) Retrospective

study

Validation: 84 from

TCGA 272(training:

validation= 182:92)

Grade II or III

glioma

431 (intensity, shape, texture, and wavelet) T2-weighted

MRI

p53 status Gene ontology (GO) analysis,

LASSO Cox regression, SVM

classifier, ROC curve analysis

Liu et al. (62) Retrospective

study

41 patients II or III glioma,

GBM

_ MRI ki-67, TP53 and IDH mutation,

EGFR amplification, mTOR

activation

hazards regression, Cox

proportional hazards model

Mazurowski

et al. (63)

Retrospective

study

110 patients

(TCGA)

Grade 5(shape) FLAIR

sequence MRI

IDH mutation, 1p/19q co-deletion Univariate Cox proportional

Zinn et al. (64) Retrospective

study

93 patients (TCGA/

TCIA/REMBR/

ANDT)

GBM 310 (intensity, shape, texture, and wavelet) MRI Periostin expression LASSO Cox regression

Hong et al. (70) Retrospective

study

176 patients GBM _ MRI IDH 1/2 mutation, ATRX loss,

MGMT promoter methylation

Univariate/multi-variate analysis,

Cox regression

Kickingereder

et al. (71)

Retrospective

study

152 patients GBM 31 (intensity, shape, texture, and wavelet) MRI Global DNA methylation

subgroups, MGMT promoter

methylation status, and CDKN2A

loss, EGFR amplification

Univariate analysis, stochastic

gradient, boosting machine,

random forest, penalized logistic

regression classifiers

Cui et al. (72) Retrospective

study

108 patients (TCIA) GBM High-risk volume (HRV) MRI MGMT methylation status, NF1

and PIK3CA mutation

Cox regression analysis,

Hu et al. (76) Exploratory

study

48 tissue of 13

patients

GBM 256 (240 MRI-texture features + 16 raw features

[mean, SD])

MRI Image-guided biopsy Univariate/multi-variate analysis,

decision-tree models, chi-square

test

Jamshidi et al.

(77)

Retrospective

study

23 patients GBM 6(contrast enhancement, necrosis, contrast-to-

necrosis ratio, infiltrative versus edematous T2

abnormality, mass effect, subventricular zone

involvement)

MRI messenger RNA expression,

DNA copy number variation

(CNV)

global gene set enrichment

approach, gene set enrichment

analysis, Pearson correlation

algorithm

Breast cancer

Li et al. (80) Retrospective

study

453 breast cancer Coarseness, contrast, percent density, radiographic

texture analysis

full-field digital

mammograms

BRCA1/2 mutation Pearson correlation algorithm,

ROC analysis

Grimm et al.

(81)

Retrospective

study

275 patients breast cancer 56 (size and shape, gradient, texture, dynamic) DCE MRI ER, PR, HER2 status binary multivariate, logistic

regression model

Mazurowski

et al. (83)

Retrospective

study

48 patients breast cancer 23 (morphologic, textural, dynamic) MRI ER, PR, HER2 status logistic regression, likelihood ratio

tests

Zhu et al.

(84)

Exploratory study 270 patients breast cancer 45-56 DCE MRI ER, PR, HER2 status off-the-shelf deep features

approach, three neural network

structures

Yamamoto

et al. (97)

Retrospective

study

70 patients breast cancer 47 (geometric, statistical, spatiotemporal) DCE MRI ER, PR, p53, HER2 status,

lncRNA transcripts

Cox regression analysis, log-rank

Mantel-Cox test

Renal cell carcinoma

Karlo et al.

(101)

Retrospective

study

233 patients Clear cell RCC 8 quantitative features CT VHL, PBRM1, SETD2, KDM5C,

or BAP1 genes

Fleiss k, Fisher exact test, t test

Li et al.

(102)

Retrospective

study

255 patients Clear cell RCC 156 CT VHL mutations random forest based wrapper

algorithm(Boruta),Wilcoxon rank-

sum test

Kocak et al.

(104)

Retrospective

study

45 patients (TCGA) Clear cell RCC 828 (first-order, texture, and wavelet) CT PBRM1 mutation artificial neural network (ANN)

algorithm, random forest

(Continued)
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TABLE 1 | Continued

Studies Study

type

No. of specimen Inclusion cri-

teria

No. and type of Radiomic features Image

Modality

Clinical Characteristics Statistical analysis

Cen et al.

(106)

Retrospective

study

106 patients Clear cell RCC 9 (tumor architecture margin, intratumoral

calcifications, collecting system invasion, necrosis,

renal vein invasion, enhancement, gross evidence of

intratumoral vascularity, long diameter

CT RUNX3 methylation level chi-square test, univariate/

multivariate logistic regression

analysis

Shinagare

et al. (108)

Retrospective

study

103 patients ccRCC size, margin, composition, necrosis, growth pattern,

and calcification

CT mutational status (VHL, BAP1,

PBRM1, SETD2, KDM5C, and

MUC4)

Pearson’s v2 test, the Mann-

Whitney U test

Liver cancer

Kuo et al.

(112)

Retrospective

study

30 HCC 6 (Internal arteries, texture heterogeneity, Wash-

in_max, Washout_maxi, Necrosis, Tumor margin

score)

CT cDNA microarray analysis (8,364

genes)

Hierarchical clustering, false

discovery rates analysis

Xia et al.

(114)

Retrospective

study

371 patients HCC 37(intensity, geometry, and texture) CECT RNA Seq Cox’s proportional hazard model,

Spearman rank correlations.

Miura et al.

(115)

Retrospective

study

77 patients HCC 4 EOB-MRI RNA Seq Mann-Whitney

U test,

Taouli et al.

(116)

Retrospective

study

39 patients HCC 11+4 (size, enhancement ratios, wash-out ratio, tumor-

to-liver contrast ratios)

CECT 13 HCC gene signatures logistic

regression analysis

Sadot et al.

(117).

Retrospective

study

25 patients ICC 13 (first-order, texture) CT hypoxia markers (EGFR, VEGF,

CD24, P53, MDM2, MRP-1, HIF-

1a, CA-IX, and GLUT1)

univariate analysis

test, multiple linear regressions

Colorectal cancer

Vlachavas

et al. (119)

Retrospective

study

30 patients CRC kinetic parameters k1, k2, k3 and k4 and influx 18F-FDG PET RNA-seq samples Spearman correlation analysis,

LASSO Cox regression

Lubner et al.

(120)

Retrospective

study

77 patients hepatic

metastatic

CRC

6 CECT tumor grade, baseline serum

CEA, KRAS mutation

Cox proportional hazards models

Shin et al.

(121)

Retrospective

study

275 patients Rectal cancer 22 (intensity, geometry, and texture) MRI KRAS mutation chisquared test, Wilcoxon rank-

sum test, Fisher’s exact test

Miles et al.

(122)

Retrospective

study

33 patients CRC 3 (SUVmax, MPP, blood flow) 18F-FDG PET HIF-1a score, KRAS mutation,

MCM-2

recursive decision-tree, Monte

Carlo analysis

Chen et al.

(123)

Retrospective

study

103 patients CRC 7 18F-FDG PET TP53, KRAS, APC, BRAF, and

PIK3CA alteration

Mann-Whitney U test, logistic

regression analysis

Horvat et al.

(124)

Retrospective

study

65 patients RC 34 (intensity, textures) MRI APC, TP53, KRAS,CRM, ATM,

BRCA2

Fisher’s Exact test, the K-means

algorithm, univariate analysis

Lung cancer

Lee et al. (132) Retrospective

study

117+88 patients Stage I

NSCLC

6 CT gene expression microarray data Spearman correlation coefficient,

Cox proportional hazard

regression model

Zhou et al.

(134)

Retrospective

study

113 patients NSCLC 35 (shape, margin, texture, tumor environment, and

overall lung characteristics)

CT RNA sequencing the Spearman correlation metric,

Pearson correlation coefficients,

univariate Cox proportional

hazards regression

Halpenny et al.

(136)

Retrospective

study

188 patients NSCLC 15 CT BRAF mutation Cochran Mantel-Haenszel test,

logistic regression

Nair et al.

(138)

Retrospective

study

355 patients NSCLC _ 18F-FDG PET NF-ĸB mutation Student’s t-test or Wilcoxon test,

Cox proportional

hazards (CPH) analysis

(Continued)
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TABLE 1 | Continued

Studies Study

type

No. of specimen Inclusion cri-

teria

No. and type of Radiomic features Image

Modality

Clinical Characteristics Statistical analysis

Gevaert et al.

(141)

Retrospective

study

186 patients NSCLC 85 CT EGFR and KRAS mutations decision tree modeling, univariate

analysis

Ovarian cancer

Nougaret

et al. (147)

Retrospective

study

108 patients HGSOC 16 qualitative features CT BRCA mutation logistic regression, Cox

proportional hazards regression

Vargas et al.

(151)

Retrospective

study

38 patients HGSOC 12 inter-site tumor heterogeneity texture metrics CT cyclin E1 gene (CCNE1) LASSO regression

Nougaret

et al. (154)

Retrospective

study

59 patients SBT LGSC 3 CT KRAS and BRAF hot-spot

mutations

univariate/multivariate logistic

regression analysis

Prostate cancer

Stoyanova

et al. (159)

Retrospective

study

37 patients grade 2

prostate

tumor

49 features MRI 3 prognostic signatures (Polaris

Cell Cycle Progression, Decipher,

Genomic Prostate Score)

Pearson correlation distances,

two-way hierarchical

clustering, GO analysis

McCann

et al. (162)

Retrospective

study

45 foci of 30

patients

peripheral

zone prostate

cancer

3 groups: DWI-based, T2-weighted, and DCE-MRI-

based image features.

MRI PTEN expression Spearman rank correlation

coefficient

Other tumors

Lai et al.

(129)

Retrospective

study

40+18 (testing

+validation)

Gastric cancer 14 qualitative and 2 quantitative imaging traits CT Chromosomal instability status the chi-square or Fisher’s exact

test,Mann-Whitney U test, logistic

regression

Jansen

et al. (164)

Retrospective

study

60 patients retinoblastoma 25 imaging features MRI PAX2, MYCN mutation generalized linear modeling

Zwirner

et al. 167

Retrospective

study

20 patients HNSCC 3 CT TP53, FAT1 and KMT2D Mann-Whitney U test, robust

linear regression

IDH, isocitrate dehydrogenase; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; FLAIR, fluid-attenuated inversion recovery; EGFR, epidermal growth factor receptor; mTOR, mammalian target of

rapamycin; DCE-MRI, dynamic contrast material enhanced MRI; RCC,clear cell renal cell carcinoma; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; CRC, colorectal cancer; MPP, mean value of the tumor pixels with

positive values; SAM, Significance Analysis of Microarrays; NSCLC, nonsmall cell lung cancer; LGSCs, low-grade serous carcinomas; SBTs, serous borderline tumors; HGSOC, high-grade serous ovarian cancer; HNSCC, head and neck

squamous cell carcinoma.
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implementation of efficient studies. Several consortia have

been developed worldwide for this purpose. One is the

Image Biomarker Standardization Initiative (IBSI) (35), which

was established to reach consensus and provide a standard

for calculation of the frequently used radiomics features

and for the image processing needed before extraction of the
radiomics features. It shall also provide guidelines for

summarizing comprehensive information on radiomics

experiments (174). The TRIPOD (Transparent Reporting of a

multivariable prediction model for Individual Prognosis Or

Diagnosis) statement is a guideline for reporting studies with

development or validation of a multivariable prediction model
(175). Generally, the standardization of radiomics methods is a

prerequisite for subsequent clinical translation, and the workflow

and benchmarked values defined by the noted consortia,

represent advancement to calibrate future investigations

of radiogenomics.

Some additional details on the quality of radiomics studies are
being developed, notably for standardization of radiogenomics

protocols and quality assurance. High-quality research is key to

progress in this field. Researchers should insist on following the

“FAIR (findability, accessibility, interoperability, and reusability)

guiding principles” by ensuring that all research objectives are

traceable, accessible, interoperable, and recyclable, thus enabling

independent validation and quality assurance (176). In the near
future, international cooperative efforts will be required to confirm

the added value of promising quantitative models compared to

existing methods (177). Concerted efforts are required to provide a

thorough understanding of the relationship between dataset sizes,

possible confounders, and the performance of outcome prediction.

Consequently, large-scale multicenter prospective studies are
needed to generate machine learning-based models.

Fusing imaging modalities (24) with no a priori knowledge or

evidence about their optimal combination for the targeted therapy

can lead to unnecessary, redundant analysis with a negative effect on

the final decision. Thus, clinicians should provide insight and

participate in cooperation with the data science engineers

regarding specific lesion attributes concerning the followed
diagnosis protocols. Other types of clinical information, including

laboratory exam results, anthropometricorphic (height and weight),

demographic (age and sex) and supplementary imaging modalities

can introduce diversity and complementarity toward achieving

better problem formulation, improved predictive power, and a

robust decision support process (178).
Moreover, future advances in imaging technology, post-

processing techniques, and computer-aided diagnostic technology,

including sophisticated functional imaging techniques such as 23Na-

MR imaging, chemical exchange saturation transfer (CEST), blood

oxygen level-dependent (BOLD) MRI, and hybrid PET-MRI, may

reinforce the role of radiogenomics in tumor classification and

treatment. Development of a pool of labeled metabolites has

triggered further insight into cellular activity and provides a

potential tool for identification of correlations between imaging

features and tumor genotype.

CONCLUSION

In conclusion, radiogenomics is an inevitable outcome following the

trend of precision medicine nowadays. With three main advantages,

including lower cost than conventional genome sequencing,

availability of whole tumor information as opposed to a limited

biopsy specimen, and increased spatial resolution, a comprehensive

radiomics-based approach may reflect the spatial variation and
heterogeneity of voxel intensities within a tumor and generate

predictive and prognostic information (179). Applying a mass of

automatic extraction of characterized data algorithms and

combining them with clinical information into open databases,

radiogenomics has emerged as a bridge between the phenotype and

genotype of tumors (180).
It is expected that the role of radiogenomics will extend to

every aspect of cancer management, from calibrating detection

and diagnosis to predicting the therapeutic response, to risk

surveillance. Furthermore, input of imaging data directly into the

discovery engine rather than using radiomics feature sets

previously developed or recognized and constructing a

customized sequence through deep learning architecture has
encouraged further exploratory radiogenomics studies (14).

In the future, it is expected that the data acquired from

imaging examinations will be transformed into quantitative

data and interfaced with existing databases to offer diagnostic

and prognostic evidence for supporting clinical decision-making.
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