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Platelets are anucleate cells produced by megakaryocytes. In recent years, a robust

body of literature supports the evolving role of platelets as key sentinel and effector

cells in infectious diseases, especially critical in bridging hemostatic, inflammatory,

and immune continuums. Upon intravascular pathogen invasion, platelets can directly

sense viral, parasitic, and bacterial infections through pattern recognition receptors

and integrin receptors or pathogen: immunoglobulin complexes through Fc and

complement receptors—although our understanding of these interactions remains

incomplete. Constantly scanning for areas of injury or inflammation as they circulate in the

vasculature, platelets also indirectly respond to pathogen invasion through interactions

with leukocytes and the endothelium. Following antigen recognition, platelets often

become activated. Through a diverse repertoire of mechanisms, activated platelets

can directly sequester or kill pathogens, or facilitate pathogen clearance by activating

macrophages and neutrophils, promoting neutrophil extracellular traps (NETs) formation,

forming platelet aggregates and microthrombi. At times, however, platelet activation

may also be injurious to the host, exacerbating inflammation and promoting endothelial

damage and thrombosis. There are many gaps in our understandings of the role of

platelets in infectious diseases. However, with the emergence of advanced technologies,

our knowledge is increasing. In the current review, we mainly discuss these evolving roles

of platelets under four different infectious pathogen infections, of which are dengue,

malaria, Esterichia coli (E. coli) and staphylococcus aureus S. aureus, highlighting the

complex interplay of these processes with hemostatic and thrombotic pathways.
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INTRODUCTION

Infectious diseases remain a leading cause of morbidity and mortality worldwide. Low platelet
number, termed thrombocytopenia, is common in infectious diseases (also referred to at times as
sepsis). The mechanisms are often multifactorial, but increased platelet clearance and/or decreased
platelet production are common. Sepsis-associated thrombocytopenia has been recognized for
many years and is a predictor of adverse outcomes.
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Until more recently, the involvement of platelets in the
pathogenesis of acute infectious diseases has been less often
studied. Part of the reason might be the traditional dogma that
platelets are primary effectors of hemostasis and thrombosis,
rather than participating in host immune responses against
infections. With the expansion of our knowledge in the last
decade or so, it is increasingly recognized that hemostasis,
thrombosis, and inflammation are tightly interconnected
processes and that platelets are often the cell that bridge these
three processes.

Classically, hemostasis is referred to as the process of
clot formation under normal physiological situations to stop
bleeding upon blood vessel damage (e.g., wound). Thrombosis
is defined as clot formation under pathological situations (e.g.,
atherosclerosis plaque rupture, deep vein thrombosis, pulmonary
embolism, and stroke – among other examples). Infections,
particularly when acute, are known to increase the risk of
thrombosis. For example, Kaplan et al. identified a cohort
of septic patients, that approximately one-third of patients
developed a deep vein thrombosis and/or pulmonary embolism
(1–3). Although the reasons that infection trigger thrombosis
are multifactorial and incompletely understood, inflammation
is thought to be a contributing factor. In particular, there is
increasing recognition that inflammation may directly activate
the hemostatic systems, resulting in thrombosis (4, 5).

Inflammation is generally considered a process of various
immune responses that causes clinical symptoms include heat,
pain, redness, and swelling. Similar to thrombosis, inflammation
can also be triggered by wounds, tissue damage, and pathogen
invasion. The traditional separation of “thrombosis” and
inflammation,” while helping to understand the key physiological
processes upon injury or infection, may hinder an understanding
of the complete picture. Moreover, pursuits of novel therapeutics
too focused on one aspect of the diseasemay not be successful (6).

In recent years, words like “thromboinflammation,”
“immunothrombosis,” and “immunohemostasis” have been
used to describe responses/mechanisms that are involved in
both thrombosis and inflammation (7–11). To our knowledge,
“thromboinflammation” was initially used by Blair et al. in
2009 to describe their discovery that the activation of platelet
toll-like receptor 2 (TLR2), a receptor best known for its role
in triggering inflammation, also promotes thrombosis (7).
In 2013, Engelmann used the word “Immunothrombosis”
to describe thrombosis “triggered by” or “involved with”
innate immune responses (8). While not of our invention,
we and others have used “immunohemostasis” to describe
hemostatic responses that involves immune players under
physiologic situations, as compared to the pathologic property
of “thrombosis” (12). To clarify our discussion below, here
we will define “immunohemostasis” as an integrated process
that includes the classic coagulation, clot formation, as well
as the immune responses for pathogen trapping upon blood
vessel damage without pathological consequences. In contrast,
“thromboinflammation” will refer to pathological responses
within the vasculature following blood vessel injury, invasion
by a variety of pathogens, or non-infectious inflammatory
triggers. We hope that by this definition, the process of
thromboinflammation be an umbrella that considers thrombus

formation, coagulation system activation, and innate and
adaptive immunity as an integrated detrimental process. Thus,
thromboinflammation is associated with diseases that are
historically under separated categories. Some examples include
thrombotic diseases like stroke, deep vein thrombosis, and
myocardial infarction, infectious diseases such as bacteremia,
viremia, and parasitemia, cancer metastasis through blood
vessels, and disseminated intravascular coagulation (DIC).

In the past decade, efforts in better understanding the
pathogenesis of infectious diseases have led to new discoveries
of the critical roles that platelets have in thromboinflammation.
In some settings, platelets may be protective through limiting
pathogen dissemination, directly killing pathogens, and eliciting
timely and adaptive host immune responses timely. In other
situations, however, platelet responses during infection may be
harmful. In our current review, we will focus on the interactions
between platelets and classic immune cells during infectious
diseases. We use dengue, malaria, Esterichia coli (E. coli) and
Staphylococcus aureus (S. aureus) infections as specific pathogen
examples to illustrate the thromboinflammation as an integrated
process in which platelets actively participate. Platelets are also
involved in many other infectious diseases outside the scope
of this review. Readers are referred to several other excellent
summaries of this topic (13–19).

PLATELETS ARE VERSATILE PATROLLERS

Platelets are the smallest cells in blood circulation with a diameter
of 2–3µm under resting conditions (20). They are anucleate cells
produced by fragmentation of the megakaryocyte extrusions into
the vasculature, formed mostly in the bone marrow, although
other sites of platelet genesis include the lung, spleen, and liver
(21). Differentiated from hematopoietic stem cells or common
myeloid progenitors (22–24), megakaryocytes and platelets share
many myeloid lineage features, such as the expression of a
panel of pattern recognition receptors (PRRs), phagocytosis
of exogenous antigens, interactions with other immune cells,
and the release of chemokines and cytokines upon activation
(15, 20, 25, 26). Having a life span of 7–10 days in healthy
humans and about 5 days in the mouse, it is estimated that
about 100 billion platelets are produced every day in humans,
with about 2 billion a day in mice (20). Platelets are mighty
patrollers that constantly scan over the vascular endothelium and
circulating leukocytes in a “touch and go” manner (27). Upon
activation, platelets rapidly undergo massive plasma membrane
extension (spreading), become activated, translocate and/or
express multiple receptors on their surface that further enhance
their aggregation with nearby platelets or leukocytes, or directly
bind to and sequester extracellular pathogens (20). Platelets
also degranulate and release pre-packed (or in some cases)
newly-synthesized microbicide proteins and chemokines that
facilitate pathogen destruction, signal immune cells, and promote
inflammation (20). The reader is also referred to a recent review
by Rossaint et al. that provides more detailed information on the
platelet receptors and chemokines involved in inflammation (28).

Work from our group and others demonstrates that
during pathogen invasion, platelets have alterations in their
transcriptome and proteome that augment host defense
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mechanisms (29–31), although these changes may also result
in adverse outcomes in some settings. These and other
features make platelets effective and dynamic sentinels against
bloodborne pathogens.

DENGUE VIRUS

Dengue virus (DENV) is a mosquito-borne, positive sense,
single-stranded RNA virus of the Flaviviridae family, with five
serotypes documented so far (32, 33). The annual incidence
of dengue is estimated to be 390 million globally, with about
100 million individuals having clinically apparent symptoms
(34). While in most individuals the disease is self-limited with
a high fever as the only symptom, about 10% of patients
have thrombocytopenia and hemorrhagic symptoms (termed
dengue hemorrhagic fever, DHF). In severe cases of dengue
infection, patients may develop dengue hemorrhagic shock
(DHS) (35). Morbidity and mortality rates in these last two types
of dengue infection can be rather high. Emerging and established
studies highlight that platelets are implicated centrally in the
pathogenesis of the disease. Figure 1 summarizes some of the
responses of platelets during dengue infection.

Dengue virus can directly bind and activate human platelets
via multiple receptors. The direct interaction was suggested from
observations of dengue virus RNA and dengue-like particles
in platelets from patients with dengue (36). Later studies
demonstrated that the direct interactions between dengue and
platelets are mediated through dendritic cell-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN) and
heparin sulfate proteoglycan receptors (HSPG) on platelets (37,
38). Intriguingly, the expression of DC-SIGN on platelets appears
to decrease in some patients as dengue infection resolves (39).
In addition, Chao et al. showed direct platelet activation by
DENV nonstructural protein 1 (NS1) through interactions with
TLR4 and TLR2 (40). Recently, Sung et al. showed DENV
induces platelet activation via CLEC-2 (41). Following DENV
binding, platelets become activated, undergo a series of changes
that further amplify the thromboinflammation, which will be
discussed later.

Similar to myeloid cells, platelets also express Fc receptors
that are capable of binding IgG opsonized DENV complexes.
This mediates, in part, the development of thrombocytopenia
andDHF/DHS in patients infected withDENV. Fc receptors have
recently been shown to play a central role in antibody-dependent
enhancement (ADE) during dengue infection. ADE is the clinical
setting whereby individuals previously exposed to (or immunized
against) one dengue serotype have an increased risk of more
severe dengue (e.g., DHF/DHS) when they become infected with
a different dengue serotype (42, 43), suggesting an intimate
relationship between antibody mediated inflammatory responses
and platelets. The work by Katzelnick et al., which included a
large cohort of more than 8,000 patients with dengue, reported
that ADE and severity of dengue is associated with DENV-
antibody titers between 1:21 and 1:80 (43). Moreover, during the
early phase of DENV infection, the glycosylation of Fc regions
and the ratio between IgG subclasses (IgG1/IgG2) appears to

FIGURE 1 | Platelets are key sentinel and effector cells during dengue

infection. Platelets can directly bind dengue virus (DENV) and virus: IgG

immune complexes through DC-SIGN and other receptors as listed. This

binding leads to altered gene and protein expression in platelets and the

activation of platelets. Some of these responses include the expression of

IFITM3, assembly of NLRP3 inflammasomes, production and release of IL-1β,

secretion of α-granule and dense granule contents, translocation of P-selectin

to the platelet surface (allowing platelet-leukocyte interactions and signaling),

and integrin αIIbβ3 activation. Changes in platelets further trigger the platelet

aggregation and thrombosis, endothelial inflammation and vascular leakage,

and monocyte activation and cytokine production, and more. These

responses span the classic pathogenesis of thrombosis and inflammation, and

may contribute to hemorrhagic symptoms and shock in some patients.

regulate platelet counts (42). Human platelets express FcγRIIA
and FcγRIIIA receptors that can engage both IgG1 and IgG2
(31, 42, 44–46). Increased afucosylation (the absence of fucose on
the Fc glycan) of the CH2 domain of the Fc region of both IgG1
and IgG2, together with an increased IgG1/IgG2 ratio, leading
to altered binding affinity between IgG and FcγR receptors on
platelets (42). In humanized FcR transgenic mice, this results
in significant thrombocytopenia (42). Following binding of
IgG immune complexes to platelets, platelets degranulate and
release stored serotonin; this pathway is downstream of FcγRIIA
signaling (47). In some settings, increased circulating levels of
serotonin can contribute to systemic shock (47, 48).

Upon DENV infection, platelets can also be activated
indirectly by complement C3, serotonin, or PAF. For example,
platelets express complement receptor C3R (49, 50). Platelets
from patients infected with dengue have increased IgG and C3
binding that is associated with increased platelet activation and
clearance. This could not be completely blocked by FcγRIIA
inhibition (51, 52). Moreover, platelets could be activated by
serotonin via 5HT2A receptors, which leads to increased platelet
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clearance and development of thrombocytopenia (53). Recently,
Masri et al. showed that the serotonin is mainly synthesized in
mast cells during DENV infection and subsequently internalized
by platelets via 5HT2 receptors (53). Similarly, PAF receptor
(PAFR) deficient mice also exhibited elevated platelet counts and
decreased vascular permeability after DENV-II inoculation, as
compared to wild type (WT) mice, suggesting that PAFR is also
involved in the development of thrombocytopenia (54, 55). This
further supports our notion that platelets have many myeloid cell
features that mediate thromboinflammation.

Following activation of platelets during dengue infection,
the global gene expression, proteomic, and lipodomic profilings
of platelets are all altered to facilitate viral clearance (56–
58). Unbiased next-generation RNA sequencing of platelets
from patients and in megakaryocytes infected in vitro with
dengue virus by recent work from Campbell et al. (56)
suggests that megakaryocytes sense dengue infection and/or
agonists generated during infection, and in response alter the
repertoire of mRNAs invested into newly produced platelets (56).
One of transcripts significantly upregulated in megakaryocytes
and platelets during DENV infection was interferon-induced
transmembrane protein 3 (IFITM3). IFITM3 protein was also
increased in platelets from patients infected with DENV and
cultured megakaryocytes exposed to DENV in vitro. IFITM3
in other cells restricts viral replication, therefore enhancing
resistance to DENV infection (56). Interestingly, IFITM3
induction in human megakaryocytes not only reduced DENV
infection of megakaryocytes but also reduced DENV infection
in stem cells in the surrounding bone marrow niche. This study
highlights the ability of megakaryocytes to participate effective in
innate antiviral immune responses.

As mentioned above, through DC-SIGN and HSPG,
TLR4, CLEC-2, and other receptors, DENV could activate
platelets, cause thrombocytopenia and thromboinflammation
in patients. Platelet activation is associated with the severity
of thrombocytopenia and increased risk of DHF in patients
with DENV (37, 51, 59, 60). A hallmark of platelet activation
is the conformational change of integrin αIIbβ3, which binds to
fibrinogen and von Willebrand factor (vWF), triggering platelet
adhesion to vascular endothelial cells and causing thrombosis
(61). Activation of platelets also triggers degranulation and
the release of a number of proteins including P-selectin,
PAF, soluble CD40L (CD154), and serotonin—proteins that
are often dichotomized into either pro-thrombotic or pro-
inflammatory, but which could fall together under the term
“thromboinflammation” (54, 55, 62, 63). P-selectin on platelets
engage its ligand, P-selectin glycoprotein ligand (PSGL) on
leukocytes, promoting proinflammatory cytokine production
such as IL-1β and IL-8 by both platelets and monocytes
(40, 62, 64). These cytokines induce enhanced permeability
of endothelial cells and vascular leakage, and are associated
with an increased risk of DHS in patients (64). P-selectin
also tether platelets to PSGL on endothelial cells, and induces
vascular endothelial damage (65, 66). Moreover, serotonin not
only contributes to the development of thrombocytopenia.
The stored serotonin could be released from a large number
of platelets following platelet activation, lead to an increased

concentration of serotonin in circulation, cause vasodilation
and hypotension, and development of systemic shock (47, 48).
Upon activation, platelets undergo apoptosis, with decreased
mitochondrial potential, assembly of inflammasomes, increased
phosphatidylserine (PS) exposure and P-selectin expression
on the cell surface (37, 38, 67). This process further catalyzes
thromboinflammation. For example, the apoptosis of platelets
not only increases the phagocytosis of platelets by monocytes,
but also triggers activation of the coagulation system, generation
of thrombin, and formation of thrombi (68–70). In addition,
during DENV infection, the release of angiopoetin-1 by platelets
is reduced. This is associated with dampened inhibition of
angiopoetin-2, and increased endothelial damage in patients
with DHS (71).

Dengue activated platelets are associated with increased
assembly of inflammasome NLRP3, which activates caspase-1
and triggers apoptosis within platelets, and promotes platelet
aggregation (67, 72). This leads to a reduced platelet lifespan
and contributes to the development of thrombocytopenia in
dengue patients (63, 67). The NLRP3 inflammasome assembly
in platelets also leads to the synthesis of IL-1β by platelets
and its subsequent secretion into plasma and packaging
into microvesicles (67). Platelet activation and apoptosis
is higher in patients with DHF than without DHF, and
correlates with in vitro phagocytosis of platelets by macrophages
through a phosphatidylserine-recognizing pathway (37, 51).
Furthermore, NLRP3 and FcγRIIIA have been shown to
induce dengue-triggered hemorrhage inmice synergistically (73).
NLRP3 has also been correlated with increased low-density
lipoproteins (LDL) and decreased high-density lipoproteins
(HDL), suggesting extravascular effects to host lipid metabolism
following NLRP3 activation (74). However, the role of platelets in
this pathological process remains unclear.

In addition to antibody-dependent platelet activation,
platelets may also engage antigen specific T cells by presenting
dengue antigens through MHC class I. For example, a proteomic
study by Trugilho et al. revealed proteasome subunit proteins
and HLA class I antigen presentation pathway proteins as the
most significantly upregulated in platelets during dengue (57).
In addition, platelets express several T cell co-signaling ligands,
such as CD40, CD86, ICOSL, and upon activation, are capable
of cross-presenting exogenous antigens in vitro and stimulating
antigen specific T cell responses (75). It seems possible that
following direct binding of virus or through FcγRIIA, platelets
internalize dengue virus, degrade dengue antigens in their
immunoproteasomes, and present antigen peptides through
HLA class I for recognition by CD8+ T cells.

Platelets are also involved in other pathological mechanisms of
dengue infection. For example, platelets may increase endothelial
barrier permeability due to decreased S1P levels, or promote
DENV replication in monocytes through the release of platelet
factor 4 (PF4, also known as CXCL4) (64, 76–78). Platelet-
derived microparticles may also play a role in the pathogenesis
of the disease, as they are notably increased in thrombocytopenic
patients without bleeding, and decreased in thrombocytopenic
patients with bleeding (67). A summary of some of these
identified mechanisms can be found in Figure 1.
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MALARIA

Malaria, also a mosquito-borne infectious disease, is caused by
systemic infection with parasites of the Plasmodium group. In
humans, five species of Plasmodium have been identified that
cause malaria: P. falciparum, P. malariae, P. ovale, P. vivax,
and P. knowlesi. Of these, P. falciparum is the most common
(79). Malaria has been a major health concern worldwide for
decades, with an estimated incidence of more than 200 million
cases a year (79). The parasitic sporozoites are transmitted from
the mosquito’s saliva into human bloodstream, and subsequently
infect hepatocytes where they mature into schizonts. Eventually,
the infected hepatocytes rupture, releasing merozoites into the
bloodstream. Plasmodium then invade erythrocytes, replicating
until the cells burst. This cycle is repeated, typically causing fever
each time the erythrocytes burst.

Common characteristics of malaria include headache, cyclical
fevers, anemia, and thrombocytopenia. In the study by de Mast
et al. healthy volunteers were infected with P. falciparum and
developed thrombocytopenia at the earliest phase of blood-stage
infection (80). Thrombocytopenia is so common in patients
that platelet count has been proposed as an affordable and fast
diagnostic test for malaria in low-income regions, with a reported
sensitivity of 60% and specificity of 88% (81–83). Recently,
Gardinassi et al. integrated plasma metabolomic data and whole
blood transcriptomic data obtained from volunteers infected
with P. vivax (84). They found that platelet activation together
with changes in IFN signature modules and T cell signaling are
the top three most significantly changed processes (84).

A major cause of morbidity and mortality in patients
with malaria is cerebral malaria (CM) (85, 86). Increased
platelet accumulation has been documented in the brain
microvasculature of children who died of CM, as well as in
animals with experimental cerebral malaria (ECM) (85–89).
These platelets were often found aggregated with Plasmodium
parasites or leukocytes, together with increased vWF staining (18,
90–92). Platelet activation and thrombosismay precede leukocyte
infiltration (88). Moreover, recent proteomic studies performed
on postmortem brain tissue obtained from CM patients revealed
that proteins involved in platelet activation and coagulation
were upregulated (93). Thus, platelets and leukocytes (as well as
platelet-leukocyte aggregates) are associated with CM. Figure 2
highlights a schematic representation of some of the interactions
between activated platelets and other circulating blood cells
during malaria infection.

Both platelets and platelet derived microparticles (PMPs) can
directly bind Plasmodium infected RBCs (PRBCs) (88, 89, 95, 96).
This binding is mainly mediated by CD31 (PECAM-1) and CD36
(GPIV) on platelets and the P. falciparum erythrocyte membrane
protein 1 variant on PRBCs (89, 95, 96). After binding, platelets
can directly kill the intraerythrocytic Plasmodium in vitro (97,
98). In patients, platelets can directly kill all major malaria
parasites in vivo, and the decreased platelet count has partially
been attributed to the increased binding to PRBCs (99). In
some—but not all—studies, the severity of thrombocytopenia
has been associated with increased parasitic density and adverse
outcomes (98, 100, 101). The significance of platelets in parasite

clearance remains somewhat uncertain, as the physiological
platelet to RBC ratio ranges from ∼1:10 to 1:50, and platelet-
bound PRBCs have been found in less than 5% of the total PRBCs
in patients infected with malaria (98, 99, 102). Nevertheless,
considering that about 100 billion platelets are produced daily
(for comparison, about 200 billion RBCs are produced daily),
and platelet-mediated parasite killing could be occur very rapidly
(e.g., minutes), it remains plausible that platelets contribute to
parasitic killing in humans, directly or indirectly. This remains
an area of active investigation in the field.

One chemokine implicated in platelet-mediated parasite
clearance is PF4. Following direct platelet-PRBC binding,
platelets release PF4 which engage the Duffy antigen receptor
(Df) on PRBCs. This engagement induces disruption of
the parasite digestive vacuoles and terminal deoxynucleotidyl
transferase deoxyuridine triphosphate nick-end labeling of
parasite nuclei (TUNEL+), without lysing PRBCs (99, 103).
Following this initial discovery, subsequent studies have shown
that PF4-driven antiparasitic activity is mainly mediated by the
C-terminus of PF4. A synthetic PF4 derived cyclic peptide,
named cPF4PD, showed promising killing of parasites in PRBCs
without lysing normal RBCs (104, 105). Recent work by Wang
et al. showed that the host can upregulate PF4 production
in malaria by activating the transcription factor E74 like ETS
transcription factor 4 (ELF4) in megakaryocytes (106).

However, the PF4 released from platelets is not entirely
protective, as in some settings PF4 release may trigger
inflammation. For example, in a mouse model of experimental
cerebral malaria (ECM), platelet accumulation and PF4 release
in the brain led to significantly increased blood brain barrier
permeability and T cell infiltration. In these models, PF4
deficient mice have decreased T cell infiltration and were
protected from the development of ECM (89). Further studies
showed that platelet-derived PF4 activated the transcription
factor KLF4 in monocytes and promoted monocytes to produce
proinflammatory cytokines such as IL-6 and TNFα, which are
important in the pathogenesis of ECM (88).

Platelets also have been shown to participate in
thromboinflammation during malaria infection through
other mechanisms. For example, platelets are the major
source of IL-1β, which protects against ECM development in
experimental models of malaria (107). Additionally, plasma vWF
levels (including ultra-large vWF multimers) are increased in
patients with malaria (18, 92, 108, 109), also associated with
increased GPIb shedding from platelets and the development
of thrombocytopenia (110). The readers are referred to several
excellent reviews on this topic (18, 81, 111).

GRAM-NEGATIVE BACTERIAL
INFECTIONS

Bacteria are commonly classified into Gram-positive and
Gram-negative species based on their cell wall structures.
Gram-positive bacteria feature a thick layer of peptidoglycan,
which is evident by Gram staining. Gram-negative bacteria
have a thin layer of peptidoglycan covered by a layer of
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FIGURE 2 | Platelet activities during malaria infection. During malaria infection, platelets may be found in the vasculature closely surrounding plasmodium-infected

RBCs (PRBCs) or interacting with monocytes (platelet-monocyte aggregates) or lymphocytes. Toxins generated during malaria infection (e.g., hemozoin) may active

platelets. Platelet interactions with monocytes trigger pro-inflammatory cytokine synthesis by monocytes. Figure is adapted from Rondina et al. (94) with permission

obtained from Elsevier.

outer membrane and lipopolysaccharides (LPS). Infection by
pathogenic bacteria can cause thromboinflammation locally or
systemically, such as via endothelium barrier damage and lung
edema, intestine inflammation and diarrhea, platelet activation,
and thrombocytopenia, coagulation activation and disseminated
intravascular coagulation (DIC). In experimental models of
infection, depleting platelets prior to infection often leads to
increased mortality, suggesting an important role of platelets in
host survival during bacterial infections (112–116).

The Gram-negative bacterium E. coli is a major cause of
urinary tract infections. Strains of E. coli, as well as LPS
purified from E. coli are widely used in research and these
tools have improved our understanding of many host immune
responses in platelets and other cells. We and others have
shown direct interactions between platelets and E. coli in vitro
(117). Direct interactions between platelets and E. coli have
been captured in vivo recently using super-resolutionmicroscopy
(118). These investigators captured real-time, in vivo platelet
migration toward E. coli in mouse liver sinusoids within hours
after infection, as well as in vitro platelet migration toward and
bundling of E. coli bacteria within minutes (118).

Human platelets express toll-like receptors (TLRs) 1–10 (at
the mRNA and/or protein level), and mouse platelets express
TLRs 1-8 (31, 119–121). Of these, TLR4, an LPS specific
receptor, was the first TLR well characterized on platelets
(122). In macrophages and dendritic cells, LPS activates the
TLR4/MyD88 signaling, triggers inflammation (123, 124). In
platelets, LPS activates the TLR4/MyD88 and signals downstream
via cGMP/PKG-dependent pathway (125). Administration of
LPS to rats resulted in platelet activation and adhesion to the
endothelium through P-selectin and integrin GPIb receptors and

the development of thrombocytopenia in rats within 30min
(122). Subsequently, Cognasse, Andoneigui and Aslam et al.
showed independently that both human andmouse platelets have
functional TLR4 on their surface (113, 121, 126).

Upon LPS stimulation and TLR4 activation, a number of
events happen to platelets that cause thromboinflammation
(127). LPS stimulation signals to human platelets to process tissue
factor (TF) pre-mRNA into mature mRNA, with subsequent
increases in TF protein, which is procoagulant (117, 128). This
is a unique bacteria stimulated platelet response that has been
not reported in any other infectious diseases. LPS also induces
some other changes in platelets as we have mentioned above.
Similar like activation during DENV infection, platelets can also
be activated and undergo apoptosis upon LPS stimulation (129),
and triggers the secretion of thrombo-inflammatory factors,
including P-selectin at low LPS concentrations and CD40L,
TNF-α, and PF4 at higher LPS concentrations (127, 130, 131).
From an evolutionary perspective, this might serve as an
adaptive rheostat to the host, perhaps by limiting the scale of
thromboinflammation when the bacterial load is low (125, 126,
128, 131). Moreover, LPS stimulates platelets to opsonize IgG
immune complexes and enhances the phagocytosis of platelets
by macrophages, suggesting there may be a synergistic effect of
TLR4 and FcR on platelets (132). LPS also stimulates platelets
to interact with neutrophils through the interactions between
P-selectin, PSGL-1, and lymphocyte function-associated antigen
1 (LFA-1) (112, 114, 133). Neutrophils reciprocally trigger
platelet activation and thromboxane generation during E. coli
infection (114). In addition, upon LPS stimulation, platelets
maintain vascular integrity and prevent leukocyte infiltration via
CLEC-2 (116).
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Upon Gram-negative bacterial infections, platelets are actively
involved in the generation of neutrophil extracellular traps
(NETs) (112). NETs are extracellular lattices of chromatin,
histones, and granule enzymes extruded by neutrophils upon
activation (Figure 3A), via a unique process termed “NETosis”
(134). NET formation is an efficient mechanism for trapping both
Gram-positive and Gram-negative bacteria. Platelets mediate
key aspects of NET formation. Although neutrophils can form
NETs without platelets when infected with Gam-positive or
Gram-negative bacteria, platelets are able to significantly expand
the surface area of NETs in vitro (112). In vivo depletion of
neutrophils or platelets impairs NET formation and significantly
impedes bacterial clearance (112, 135).

Multiple surface receptors on platelets and secreted factors by
platelets regulate NET formation. For instance, platelet-derived
P selectin plays an important role in the early stage of NETosis,
facilitating platelet-neutrophil direct interactions (114, 136).
Platelet GPIbα, a well-studied receptor in hemostasis and
thrombosis, has been found recently triggers the activation of
neutrophils and extracellular vesicle release from neutrophils
(114). In addition, another important receptor in hemostasis
and thrombosis, the integrin αIIbβ3 on platelets, this also
mediates NETosis, as the deficiency of integrin αIIbβ3
impairs NETs formation (135). Although NETs trap bacteria
efficiently, exaggerated or misplaced NET formation may
also be deleterious. Histones, serine proteases, and cathepsin
G released by activated neutrophils can activate platelets,
promoting coagulation, endothelial damage, and thrombosis
(133, 137–139). Understanding the roles of NET formation in
adaptive and maladaptive host responses remains an active area
of investigation. We refer the reader to the recent review article
by Zucoloto et al. for more detailed discussions on the platelet-
neutrophil interactions that illustrate the intimate relationship
between inflammation and thrombosis (19, 140).

Another example of the versatility of platelets and
thromboinflammation as an integrated process is the synergistic
signaling of FcγRIIA receptors and platelet integrin αIIbβ3
(a canonical hemostatic receptor) upon E. coli infection. In
addition to activation through TLR4, platelets could also be
activated by E. coli via FcγRIIA receptors, provided simultaneous
integrin αIIbβ3 signaling (45). Either absence of IgG or
blockage of αIIbβ3 signaling would abolish the aggregation
of platelets when incubated with E. coli (45, 141). Recent
work by Palankar et al. demonstrates that human platelets
directly kill E. coli in mechanisms that require FcγRIIA and
PF4 (142). As with malaria, PF4 is also central to effective E.
coli killing. Disruption of platelet cytoskeletal functions also
reduced the efficacy of E. coli killing by platelets. Moreover,
the complement C3 opsonization of E. coli facilitates the
formation of platelet-bacteria aggregates which is important in
the induction of adaptive immune responses (143). Together,
these findings suggest that platelets accumulate on bacteria,
releasing antimicrobial α-granule contents that effectively kill
E. coli (142). While not a central focus of this review, platelets
interact with other leukocytes, including monocytes, forming
stable platelet-leukocyte aggregates that promote the release
of agonists from platelets and subsequent pro-inflammatory

cytokine synthesis by monocytes (Figures 3B,C). Interestingly,
in aging (where the risk of infection rises substantially), these
interactions may be upregulated—potentially contributing to
cytokine release injurious to the host (144). Whether these aging-
dependent responses contribute to adverse clinical outcomes in
sepsis remains an area of active investigation.

Bacteria also possess endogenous mechanisms to counteract
host defenses. Some of these directly affect human platelet
activities. As one example, work from our group demonstrated
that pathogenic E. coli bacteria isolated from infected patients
induced platelet apoptosis via calpain-mediated degradation of
the cell survival protein Bcl-xL (145). This was accompanied
by impaired mitochondrial membrane potential and lateral
condensation of actin. Degradation of Bcl-xL was driven by
alpha hemolysin, a pore-forming toxin produced by E. coli.
Interestingly, clinical isolates of S. aureus (a Gram-positive
bacteria discussed below) that produced alpha toxin (α toxin,
also known as α hemolysin) degraded in Bcl-xL platelets (145).
These findings suggest a mechanismwhereby bacterial pathogens
contribute to thrombocytopenia.

GRAM-POSITIVE BACTERIAL INFECTIONS

Gram-positive bacterial infections, especially multidrug resistant
pathogens, are a major global health challenge (146). S. aureus,
Listeria monocytogenes (L. monocytogenes), and Streptococcus
pneumoniae (S. pneumoniae, or pneumococcus) are common
pathogens causing substantial morbidity and mortality.
Here we highlight the mechanisms of platelet-mediated
thromboinflammation during S. aureus infections, but readers
are referred to the recent review by Anderson and Feldman on
platelets in pneumonia and other excellent reviews as we have
mentioned above (13, 14, 147).

For decades, S. aureus, including methicillin sensitive and
resistant S. aureus, i.e., MSSA and MRSA, was known to
interact with, and activate platelets. In 1964, Siegal et al. showed
that a toxin from staphylococcal bacteria could induce platelet
morphological changes observed by electron microscopy images
and inhibition of platelet rich plasma clotting (148). In the 1970s,
Clawson andWhite showed that among several strains of bacteria
able to directly bind platelets and induce platelet aggregation and
adhesion, S. aureus was the most potent (149, 150). Interestingly,
at low bacterial numbers, platelets bind to bacteria without
forming substantial platelet-platelet aggregates, suggesting there
may be favored interactions between bacteria and platelets
under these conditions. At higher bacterial numbers, platelet
aggregation is induced and bacteria can be found encased in
platelet-platelet aggregates (Figure 4) (149, 150). More recently,
Wong et al. showed that upon MRSA infection in vivo, platelets
scan liver Kupffer cells and rapidly (within minutes of infection)
recognizeMRSA on the surface of Kupffer cells (27). This triggers
aggregation within sinusoids that limits bacterial spreading (27).
Additionally, platelet depleted mice have significantly increased
mortality upon MRSA infection in vivo (27).

There is heterogeneity for clinically isolated S. aureus
species from patients to bind platelets (27, 152). When S.
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FIGURE 3 | Activated platelets induce formation of neutrophil extracellular traps (NETs). (A) Platelets are commonly activated during Gram-negative bacteria

infections, and express multiple receptors that could facilitate the process of NET formation (NETosis), such as P-selectin. The lattices of chromatin, histones, and

granule enzymes (NETs) play a critical role in pathogen clearance and may also induce thromboinflammatory responses, potentially contributing to vascular and tissue

injury. (B) Activated platelets interact with monocytes, inducing the synthesis of inflammatory mediators. (C) Upper panel: isolated human platelets and monocytes

incubated under control conditions. Lower panel: formation of platelet-monocyte aggregates and nuclear translocation of nuclear factor kappa B (NF-κB) in monocytes

when the platelets were activated with nanomolar concentrations of thrombin. Figure is adapted from Rondina et al. (94) with permission obtained from Elsevier.

aureus binds to platelets, it appears to be in a saturable and
reversible manner, suggesting there are receptor-ligand mediated
interactions between platelets and S. aureus (153). Recently,
platelets are shown to be capable of spreading and enclosing
bacteria in vitro (118, 151).

Platelets can directly bind S. aureus antigens through
multiple receptors. For example, activated human platelets
express gC1qR, which could directly bind S. aureus protein A
without complement opsonization (154). In addition, platelets
could be directly activated by the α toxin, the Staphylococcal
superantigen-like 5 (SSL5), extracellular adherence protein (Eap),
chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl

peptide receptor-like 1 inhibitory protein (FLIPr) and other
proteins of S. aureus (151, 155–158). Alpha toxin is the major
cytotoxic virulent factor of S. aureus, capable of forming
heptamers and develop pores on target cell membrane, causing
cell death. Incubation of α toxin with washed platelets induced
morphological changes of platelets in suspension, including
visibly lysed shape, smaller in size, and decreased content
of intracellular granules (159). The incubation of α toxin
also impaired the spreading capability of platelets on collagen
and fibrinogen (159). In addition, α toxin can form complex
with ADAM10 on platelets, a widely expressed zinc-dependent
metalloprotease, and activate the latter (160). The activated
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FIGURE 4 | Platelets sequester S. aureus and promote thromboinflammation.

(A) Confocal and (B) transmission electron microscopy of cultured

staphylococcus aureus (Sa) incubated in the presence (right panels) or

absence of platelets (P, time = 240min). (C) Differential interference contrast

(left panel) and transmission electron (right panel) microscopy of clusters of S.

aureus (Sa, white arrows) surrounded by platelets (P). Scale bars = 5µm.

After sequestration of S. aureus, platelets become activated, form aggregates

in vitro and microthrombosis in vivo, interact with macrophages and

neutrophils, trigger NETs formation, and also shuttle bacteria to splenic

dendritic cells to activate CD8+ T cell responses. Figure adapted from

Kraemer et al. (151) with permission.

ADAM10 then proteolyze GPVI on platelets, and impede platelet
adhesion to collagen, and in vivo reduce platelets activation and
accumulation at sites of infection (155, 161). These mechanisms
facilitate bacteria evasion and spreading. Furthermore, in vivo,
the α toxin induced platelet aggregation in the liver and kidney
and associated organ failure has been shown by Surewaard et al.
(162). In contrast, platelets also evolved with protective responses
following α-toxin encounters. For example, α toxin induces the
release of multiple microbicidal proteins from platelets, such
as thrombin-induced platelet microbicidal protein-1 (tPMP-1)
and human β defensin-1, which significantly suppress bacterial
growth and trigger NETs formation (151, 152). Alpha toxin
also triggers integrin αIIbβ3 dependent platelet aggregation

and increased protein synthesis of Bcl3, which promotes clot
retraction, stabilizes thrombus within the vasculature (159). In
addition, α toxin can indirectly bind platelets when opsonized
by complement C3b, which promotes platelet aggregates as well
as platelet-macrophage and platelet-neutrophil interactions (161,
162). These platelet-monocyte interactions can induce NLRP3
inflammasome and IL-1β production in monocytes; this may
happen in platelets but as of yet remains unproven (163–165).
SSL5 is a member of the SSL-family proteins that has been shown
evolved in S. aureus evasion. It can directly bind either GPVI
or GPIbα on platelets and signal downstream, induce activation
of integrin αIIbβ3 and P selectin on platelets (157). Activated
αIIbβ3 further promotes platelet aggregation, platelet-leukocyte
aggregates, and adhesion to endothelial cells. Increased P-selectin
also binds SSL5, as well as monocytes and neutrophils (156). In
addition to direct binding, platelets can rapidly (within ∼1min
of infection) bind complement opsonized bacteria, including
S. aureus, in vivo (166). This may play a critical role in
shuttling bacteria to the splenic DCs to trigger host CD8+ T cell
responses (143, 166).

SUMMARY AND PERSPECTIVES

Small in size and abundant in number, platelets are effective
sentinels constantly roaming the vasculature, quickly sensing and
responding to invading pathogens. Many of the responses by
platelets to pathogen invasion bridges hemostatic, inflammatory,
and immune continuums: the activation of platelets leads to
the expression of activated integrin αIIbβ3 and P-selection
on the plasma membrane, formation of platelet aggregates
and thrombosis, adherence and damage to the endothelium,
increased interactions with macrophages and neutrophils,
promotion of NETs formation, release of cytokines. These
bridging features contributed to the evolution of the concept of
thromboinflammation. Undoubtedly, the field will continue to
see new discoveries expanding the armamentarium of platelet
functions during infectious diseases. Exciting technological
innovations are likely to continue to facilitate many of these
discoveries. Sequencing techniques, such as next-generation
RNA-sequencing and ribosomal footprint profiling, have already
uncovered important new insights into the rich and dynamic
nature of the platelet transcriptome and proteome (31, 167–
170). Moreover, efforts to integrate sequencing data with
machine-learning strategies may uncover new insights (84, 170).
Proteomic studies of platelet lysates and granules have provided
another layer of unbiased information about numerous proteins
released by platelets and/or stored in their granules. Many of
these include proteins synthesized within platelets, packaged
from megakaryocytes, or internalized from the extracellular
environment (84, 171–173). The application of super-resolution
microscopy, including single-molecule localization microscopy
(SMLM) and structured illumination microscopy (SIM), will
provide unparalleled opportunities to visualize platelet granules
and gather information about intracellular protein localization
(174–176). The incredible evolution of our understanding of
anucleate platelets in functions beyond just hemostasis has been
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an exciting journey and further discoveries will likely continue to
expand the role of platelets in infectious diseases.
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