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Abstract

For positive integers n, g, t we determine the maximum number of integer
sequences (aj,...,a,) which satisfy 1 < a; < g for 1 < i < n, and any two
sequences agree in at least ¢ positions. The result gives an affirmative answer
to a conjecture of Frankl and Fiiredi.

1 Introduction

Let n,q,t be positive integers with ¢ > 2, n > ¢, and let [¢] := {1,2,...,q}. Then
H C [¢]" is a set of integer sequences (ay,...,a,), 1 < a; < q. We say that H is
t-intersecting if any two sequences intersects in at least ¢ positions, more precisely,
{i : a; = d/;}| > t holds for all (aq,...,a,), (a},...,al,) € H. In this paper, we

determine the exact value of the following function.
f(n,q,t) == max{|H| : H C [¢]", H is t-intersecting}.

A family A C 2" is called t-intersecting if | ANA’| > ¢ holds for all A, A’ € A. Define
a weighted size of A by w(A) := ¥ 4ca(q — 1)" 14l Using a shifting technique, it is
not difficult to check the following:

Lemma 1 (Proposition 2 in [5]) f(n,q,t) = max4w(A), where A C 2" runs
over all t-intersecting families.

If ¢ = 2 then w(A) = |A|. Thus, f(n,2,t) is simply the maximal size of t-intersecting
family A C 2", which is given by the Katona Theorem. This case was solved by
Kleitman [7].

Let us define a t-intersecting family A, C 2" by

A ={ACn]:[AN[t+2r]| > t+7r}.
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In [5], Frankl and Fiiredi conjectured f(n,q,t) = max,>ow(A,). If ¢ > t+ 1 then
the conjecture claims f(n,q,t) = ¢" *. They showed that this is true if ¢ > 15.

Now we introduce the full Erdés-Ko-Rado theorem, which was conjectured by
Frankl in [4], and proved by Ahlswede and Khachatrian in [1]. Set

AK(n, k,t,r):=|{B € <[Z]) BO[t+2r]| >t+r}.
Theorem 1 ([1]) Let 1 <t <k <nand B C ([Z]> be t-intersecting. If

)

t—1 t—1
<n<(k—t+1)(2
r+1)_n_( +1DE+ r

for some r € N, then |B| < AK(n, k,t,7).

(k—t+1)(2+

Using the above result, we prove the following in section 2.
Theorem 2 Let ¢ > 3 and set r := L%J Then f(n,q,t) = w(A,) forn >t+ 2r.
Note that

Wd) = n—z—: r Zr (t + 27") <n — t‘— 27") (q— 1)”_i_j

J=0 i=t+r U J
n—t—2r t+2r
—t—2 - t+2 ,

_ Z <7’L . 7“) ((] . 1>n7t72rf] Z < +. 7") (q . 1)t+2r71

j=0 J i=t+r v

n—t—2r - t+2r %
= ey (U )

=0

In section 3, we prove the case ¢ > t+ 1 (and ¢t > 1) directly.

Independently, Ahlswede and Khachatrian [2] obtained Theorem 2 as a diametric
theorem in Hamming spaces. They used a different method. See [6] or [2] for the
history of the problem.

2 Proof of the theorem

Throughout this section, we fix ¢ and ¢ and set
t—1 t—1
ro=| = —

| = J.
Let us recall the following easy probabilistic result.

q—2 q—2

Lemma 2 (Proposition 3 in [5]) Foreverye > 0 the number of sequences (ay, . .. ,a,) €
[¢]" which contain more than (1 + €)(n/q) 1’s or less than (1 — €)(n/q) 1’s is less
than eq™ for n > ng(e).

Choose any sufficiently small positive ¢, i.e., 0 < € < €(q, t), and set an open interval
I'=((1-¢€)(n/q),1+€)(n/q)). In view of Lemma 1, f(n,q,t)g" = w(A)g~" for
some t-intersecting family A. Moreover Lemma 2 gives that

f(n,q,t)g™" <w(B)g™" +€
where B:={B € A:|B| € I}. Set B(k):={B € B:|B| =k}.
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Casel 0<d<l.
Note that ¢ depends only on ¢ and gq.

Lemma 3 For k € I and sufficiently large n,

(b=t 1)@+ ) Sn (-t + 1)+ 2)
Proof (2) is equivalent to
Q+t-—1/r)"n+t-1<kE<2+(t-1/r+1) " n+t-1 (3)

Let us show the right half. Since k£ < (1 + €)(n/q), it is sufficient to show
1+e)n/g) <2+t—-1/(r+1) " n+t—1
or
14+e)2+(t—-1/(r+1)) <gq.

This follows from ¢ =2+ (t —1)/(r+40) >2+(t—1)/(r+1) and € < €(q,t). One
can prove the left half of (3) similarly. [

Thus, by the Ahlswede-Khachatrian theorem we have |B(k)| < AK(n,k,t, 7).
Therefore,

fn,q. )™ < ¢ "D w(B(k)) +e

kel
< Y AK(n ki) (g — 1) e

kel

t+2r
" t+2r\(n—1t—2r .

=y (I

el jmtir \J —J

t+2r n—t—2r+j

" t+2r n—t—2r e

: Z( JEP G B

j=t+r j J

t+2r n—t—2r
_ (t + 27‘) <TL - t_ 27”) (q . 1)(n—t—27“)—i(q o 1)t+2r—j +e

Jj=t+r = L

t+2r

t+2r »

_ ( >qn t— 27"((]_ 1)t+2r I 4

j=t+r ]

t+2
= ¢y <+r>q—ll—|—e
i
Hence we have
: -n —t—27r . t+2r )
9(g,t) = lim f(n,q,t)g " < ¢ " Z( ) >(q—1)- (4)
i=0
On the other hand, (1) implies
o [t 21 i
o0 3 (U a0y )
i=0
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By (4) and (5), we finally have
o t+2r i
g(q.t) = qtz}:( . )@—1%
i=0

Now suppose that for some t-intersecting family A C 2" we have w(A) > ¢"g(q,t) + 1.
Since f(n+1,q,t) > qf(n,q,t) we have

(' q,t) > ¢ " f(nq,t) > ¢ "w(A) > ¢ (g(q.t) + g7,

which implies lim,_o, f(n/, q,)g™™ > g(q,t) + > g(q,t), a contradiction. Thus
we must have w(A) < ¢"¢(q,t), and actually w( ) q"g(q,t). (Weneed n > t+42r
here.) This completes the proof of Case I.

Case II §/=0.

In this case, we have ¢ = 2 + %

Lemma 4 For k € I and sufficiently large n,

t—1 t—1
k—t+1 <n<(k—-t+1 .
(k—t+ D@+ —)<n<(F-t+ D)2+ —)
In fact, one can prove
(2+t_1r1+¢ 1<(l-et<lht—1<(14e02 < "H* +t—1
n - — € — €)— n — 1.
r—1 q q q 1

The proof is similar to the proof of Lemma 3 and we omit it. By this lemma, we
have

|B(k)| < max{AK(n, k,t,7), AK(n, k,t,r —1)}.
If n=gq(k—t+1) then AK(n, k,t,7) = AK(n, k,t,r — 1). Since

" t+2 —t—2
AK(n,k,t,r) = Z( + T,) (kn "
=0

t+r—+y —t—r—y

B n—t—ZTXT: t+2r H k—t—r—1+1
- \k—t—vr t+r+j)i n—k—r+i’

we have

_AK(n R t,r—1)  (n—t—2r+2)(n—t—2r+1) (tiﬁfj 21) {:1%

1 = - .
4 _ _ r t+2r k—t—r—i+1
AK(n, k,t,r) (k—t—r+1)(n—k—r+1) - <t+r+j) I bt it

The above ratio tends to
r—1 ( t+2r—2 —j r t+2r—2 7
¢ To(EA)e-07 ¢ Za ()e-
(-1 i, (tiﬁj)(q — 1) (a-1) T, (Hiy) (g—1r




as n — oo for fixed ¢,t and n = q(k — t 4+ 1). This proves
Tt 2r—2 i T (t+2r Z.
ey ()= ox (TH - ©)
i=1 1=0

Now choose k € I. (Here we do not assume n = q(k —t + 1).) Then,

AK(n ki t,r—1)  (n—t—2r+2)(n—t—2r +1) Sjm (57072) T 2222
o it — — k= r t+2r o k—t—r—itl
AK(n, k,t,7) (k—t—r+Dn—k—r+1) wr_ (7)1, i
r—1 ( t+2r—2 j (+€)(n/q)
n? 2j=0 <t+r+j—1) =1 (A=(+e)/g)n

— — r t+2r j (1—€)(n/q)
=9/ = A +a/an T5 () o d2575

2 T t+2r—2\ rq—1—€\3
q 2:1( i—1 ( 1+e )

(1-€)(g—1—¢) S (t-‘r‘?r)(%)i .
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By (6), the above ratio tends to 1 as € — 0. Thus for any € > 0 we can conclude
that
AK(n, k,t,r — 1) < (14 €)AK(n, k,t,7)

if we choose € sufficiently small and n sufficiently large, and k € I. Finally we have

f(n,q, g™ < ¢ ™Y max{AK(n, k,t,r), AK(n,k,t,r — )}g—1)" "+

kel
< (I1+€e)g™ Z AK(n, k,t,r)(g—1)""% +¢
kel
" (t+2 )
< (1+e)g> ( +z T) (q—1) +e.
i=0

Using the same argument in Case I, we have
. -n —t—2r : t+ 2r 7
o(0:0) = Jng St =3 ()=,
i=0

and f(n,q,t) = ¢"g(q,t), which completes the proof of the theorem. [

3 Another approach

In this section we give a direct proof for the case ¢ > t + 1 using tools developed in
[1].

Let A C 2. A family G C 2" is called a kernel of A if A = UgegU(G) where
U(G):={F C[n]: G C F}. A rank of A is defined by

rank(A) := min{| | J G| : G is a kernel of A}.

Geg

Theorem 3 Let A C 2I" be a shifted t-intersecting family with w(A) = f(n,q,t).
Then rank(A) < t + 2r, where r := L;%J

Since the proof is almost the same as the proof of Lemma 6 in [1], we omit the
details.



Proof (Outline) Choose a shifted, inclusion minimal (i.e., antichain) kernel G C 2"
of A satisfying rank(A) = |Ugeg G|. Assume that 6 > 0 and M =t +2r +0 =
rank(A). Let G =Gy UGy, Go:={G €G: M € G}, G :==G — Gy, and let

Go=Ri1U--URp_1,
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where R; := Gy N ([M]). Set

R :={E—-{M}:EeR;}C (W _11]>.

Then, E € R, E' € R} and i+ j # M+t imply |[E N E’| > t. Thus we may assume
that R; #0, R; # 0, i + j = M + ¢ for some ¢, j.

Case I 1 # ;.
Define

fl = gl U (go — (Rl U RJ)) U R;,
G1U(Go — (RiUR;)) UR],
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Then we have

A—B, = {RUS:RcR;, S e2Miny
Bi—A = {RUS:RecR, Se2Mtiny

and hence

wA—-B1) = [Rjl(g—1)" ¢,
wB —A) = |Ril(qg— )M+ M.

If w(A) > w(By) and w(A) > w(Bs) then

Ryl — 1)
Ril(g — 1)

> [Ril(g — D",
> [Rjl(g — )M
Thus 1 > (¢ — 1)?, a contradiction.

Case II i=j =20 =¢4r42

In this case ¢ is even and § > 2. Using the same argument in Case [, we may assume
that R, = 0 for all & # i, and G = R; U G;. The average degree d of R C (W_}”)

is given by d = (i — 1)|R;|/(M — 1). Therefore we can find ¢ € [M — 1] such that
degr/ (¢) < d. Define a t-intersecting family 7 as follows:

T:={EcR,:{¢F}C ([M_il_]l_{g})



Then |T] > |Ri —d = 2=4|R;|. Let A = Dy U D, where Dy := U(G,), Dy =

M—-1

U(R;) — Dy, and let U(T U G;) = Dy U D3 where D3 :=U(T) — D;. Then we have

w(D;) = |Ril(q—1)""¢"™",
—i _n— M —i —i _n—
w(Ds) = [T|(g— D" "M > [Ril(q — )M g
M—-1
If w(Dy) > w(Ds) then 1 > M=t . ¢ Since M = t+2r+6 and i = t+r+ 2, we have
2r+¢
frorts—1>—21%

or equivalently,

- qg—2 T g-2 2

Since g > 1 we have r < ;:—; — 1, which contradicts a definition of r. [ |

_t=l-(g2-15 _t-1 ¢

Corollary 1 Ifq >t + 1 then f(n,q,t) = ¢" "

Proof Suppose that A C 2" is t-intersecting and w(A) = f(n,q,t). By Theorem
3, we may assume rank(A) < ¢+ 2r, r := L;%J If ¢g > ¢+ 2 then r = 0, and
f(n,q,t) < w(Ag) = ¢" .

If g=t+1 then r = 1 and f(n,q,t) < max{w(Ap), w(A;)}. In this case we
have w(Ag) = w(A;) = ¢" . |
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