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Abstract

For positive integers n, q, t we determine the maximum number of integer
sequences (a1, . . . , an) which satisfy 1 ≤ ai ≤ q for 1 ≤ i ≤ n, and any two
sequences agree in at least t positions. The result gives an affirmative answer
to a conjecture of Frankl and Füredi.

1 Introduction

Let n, q, t be positive integers with q ≥ 2, n ≥ t, and let [q] := {1, 2, . . . , q}. Then
H ⊂ [q]n is a set of integer sequences (a1, . . . , an), 1 ≤ ai ≤ q. We say that H is
t-intersecting if any two sequences intersects in at least t positions, more precisely,
|{i : ai = a′i}| ≥ t holds for all (a1, . . . , an), (a′1, . . . , a

′
n) ∈ H. In this paper, we

determine the exact value of the following function.

f(n, q, t) := max{|H| : H ⊂ [q]n, H is t-intersecting}.

A family A ⊂ 2[n] is called t-intersecting if |A∩A′| ≥ t holds for all A, A′ ∈ A. Define
a weighted size of A by w(A) :=

∑
A∈A(q − 1)n−|A|. Using a shifting technique, it is

not difficult to check the following:

Lemma 1 (Proposition 2 in [5]) f(n, q, t) = maxA w(A), where A ⊂ 2[n] runs
over all t-intersecting families.

If q = 2 then w(A) = |A|. Thus, f(n, 2, t) is simply the maximal size of t-intersecting
family A ⊂ 2[n], which is given by the Katona Theorem. This case was solved by
Kleitman [7].

Let us define a t-intersecting family Ar ⊂ 2[n] by

Ar := {A ⊂ [n] : |A ∩ [t + 2r]| ≥ t + r}.
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In [5], Frankl and Füredi conjectured f(n, q, t) = maxr≥0 w(Ar). If q ≥ t + 1 then
the conjecture claims f(n, q, t) = qn−t. They showed that this is true if t ≥ 15.

Now we introduce the full Erdős–Ko–Rado theorem, which was conjectured by
Frankl in [4], and proved by Ahlswede and Khachatrian in [1]. Set

AK(n, k, t, r) := |{B ∈
(

[n]

k

)
: |B ∩ [t + 2r]| ≥ t + r}|.

Theorem 1 ([1]) Let 1 ≤ t ≤ k ≤ n and B ⊂
(

[n]
k

)
be t-intersecting. If

(k − t + 1)(2 +
t− 1

r + 1
) ≤ n ≤ (k − t + 1)(2 +

t− 1

r
)

for some r ∈ N, then |B| ≤ AK(n, k, t, r).

Using the above result, we prove the following in section 2.

Theorem 2 Let q ≥ 3 and set r := b t−1
q−2

c. Then f(n, q, t) = w(Ar) for n ≥ t + 2r.

Note that

w(Ar) =
n−t−2r∑

j=0

t+2r∑
i=t+r

(
t + 2r

i

)(
n− t− 2r

j

)
(q − 1)n−i−j

=
n−t−2r∑

j=0

(
n− t− 2r

j

)
(q − 1)n−t−2r−j

t+2r∑
i=t+r

(
t + 2r

i

)
(q − 1)t+2r−i

= qn−t−2r
r∑

i=0

(
t + 2r

i

)
(q − 1)i. (1)

In section 3, we prove the case q ≥ t + 1 (and t ≥ 1) directly.
Independently, Ahlswede and Khachatrian [2] obtained Theorem 2 as a diametric

theorem in Hamming spaces. They used a different method. See [6] or [2] for the
history of the problem.

2 Proof of the theorem

Throughout this section, we fix q and t and set

r := b t− 1

q − 2
c =

t− 1

q − 2
− δ.

Let us recall the following easy probabilistic result.

Lemma 2 (Proposition 3 in [5]) For every ε > 0 the number of sequences (a1, . . . , an) ∈
[q]n which contain more than (1 + ε)(n/q) 1’s or less than (1 − ε)(n/q) 1’s is less
than εqn for n > n0(ε).

Choose any sufficiently small positive ε, i.e., 0 < ε < ε0(q, t), and set an open interval
I := ((1 − ε)(n/q), (1 + ε)(n/q)). In view of Lemma 1, f(n, q, t)q−n = w(A)q−n for
some t-intersecting family A. Moreover Lemma 2 gives that

f(n, q, t)q−n < w(B)q−n + ε

where B := {B ∈ A : |B| ∈ I}. Set B(k) := {B ∈ B : |B| = k}.
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Case I 0 < δ < 1.
Note that δ depends only on t and q.

Lemma 3 For k ∈ I and sufficiently large n,

(k − t + 1)(2 +
t− 1

r + 1
) ≤ n ≤ (k − t + 1)(2 +

t− 1

r
) (2)

Proof (2) is equivalent to

(2 + (t− 1)/r)−1n + t− 1 ≤ k ≤ (2 + (t− 1)/(r + 1))−1n + t− 1 (3)

Let us show the right half. Since k < (1 + ε)(n/q), it is sufficient to show

(1 + ε)(n/q) ≤ (2 + (t− 1)/(r + 1))−1n + t− 1

or
(1 + ε)(2 + (t− 1)/(r + 1)) < q.

This follows from q = 2 + (t− 1)/(r + δ) > 2 + (t− 1)/(r + 1) and ε < ε0(q, t). One
can prove the left half of (3) similarly.

Thus, by the Ahlswede–Khachatrian theorem we have |B(k)| ≤ AK(n, k, t, r).
Therefore,

f(n, q, t)q−n < q−n
∑
k∈I

w(B(k)) + ε

≤ q−n
∑
k∈I

AK(n, k, t, r)(q − 1)n−k + ε

= q−n
∑
k∈I

t+2r∑
j=t+r

(
t + 2r

j

)(
n− t− 2r

k − j

)
(q − 1)n−k + ε

< q−n
t+2r∑

j=t+r

(
t + 2r

j

) n−t−2r+j∑
k=j

(
n− t− 2r

k − j

)
(q − 1)n−k + ε

= q−n
t+2r∑

j=t+r

(
t + 2r

j

)
n−t−2r∑

i=0

(
n− t− 2r

i

)
(q − 1)(n−t−2r)−i(q − 1)t+2r−j + ε

= q−n
t+2r∑

j=t+r

(
t + 2r

j

)
qn−t−2r(q − 1)t+2r−j + ε

= q−t−2r
r∑

i=0

(
t + 2r

i

)
(q − 1)i + ε.

Hence we have

g(q, t) := lim
n→∞

f(n, q, t)q−n ≤ q−t−2r
r∑

i=0

(
t + 2r

i

)
(q − 1)i. (4)

On the other hand, (1) implies

g(q, t) ≥ q−t−2r
r∑

i=0

(
t + 2r

i

)
(q − 1)i. (5)
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By (4) and (5), we finally have

g(q, t) = q−t−2r
r∑

i=0

(
t + 2r

i

)
(q − 1)i.

Now suppose that for some t-intersecting familyA ⊂ 2[n] we have w(A) ≥ qng(q, t) + 1.
Since f(n + 1, q, t) ≥ qf(n, q, t) we have

f(n′, q, t) ≥ qn′−nf(n, q, t) ≥ qn′−nw(A) ≥ qn′
(g(q, t) + q−n),

which implies limn′→∞ f(n′, q, t)q−n′ ≥ g(q, t) + q−n > g(q, t), a contradiction. Thus
we must have w(A) ≤ qng(q, t), and actually w(Ar) = qng(q, t). (We need n ≥ t+2r
here.) This completes the proof of Case I.

Case II δ = 0.
In this case, we have q = 2 + t−1

r
.

Lemma 4 For k ∈ I and sufficiently large n,

(k − t + 1)(2 +
t− 1

r + 1
) ≤ n ≤ (k − t + 1)(2 +

t− 1

r − 1
).

In fact, one can prove

(2 +
t− 1

r − 1
)−1n + t− 1 ≤ (1− ε)

n

q
<

n

q
+ t− 1 < (1 + ε)

n

q
≤ (2 +

t− 1

r + 1
)−1n + t− 1.

The proof is similar to the proof of Lemma 3 and we omit it. By this lemma, we
have

|B(k)| ≤ max{AK(n, k, t, r), AK(n, k, t, r − 1)}.

If n = q(k − t + 1) then AK(n, k, t, r) = AK(n, k, t, r − 1). Since

AK(n, k, t, r) =
r∑

j=0

(
t + 2r

t + r + j

)(
n− t− 2r

k − t− r − j

)

=

(
n− t− 2r

k − t− r

)
r∑

j=0

(
t + 2r

t + r + j

) j∏
i=1

k − t− r − i + 1

n− k − r + i
,

we have

1 =
AK(n, k, t, r − 1)

AK(n, k, t, r)
=

(n− t− 2r + 2)(n− t− 2r + 1)

(k − t− r + 1)(n− k − r + 1)

∑r−1
j=0

(
t+2r−2

t+r+j−1

)∏j
i=1

k−t−r−i+2
n−k−r+i+1∑r

j=0

(
t+2r

t+r+j

)∏j
i=1

k−t−r−i+1
n−k−r+i

.

The above ratio tends to

q2

(q − 1)

∑r−1
j=0

(
t+2r−2

t+r+j−1

)
(q − 1)−j∑r

j=0

(
t+2r

t+r+j

)
(q − 1)−j

=
q2

(q − 1)

∑r
i=1

(
t+2r−2

i−1

)
(q − 1)i∑r

i=0

(
t+2r

i

)
(q − 1)i
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as n →∞ for fixed q, t and n = q(k − t + 1). This proves

q2
r∑

i=1

(
t + 2r − 2

i− 1

)
(q − 1)i = (q − 1)

r∑
i=0

(
t + 2r

i

)
(q − 1)i (6)

Now choose k ∈ I. (Here we do not assume n = q(k − t + 1).) Then,

AK(n, k, t, r − 1)

AK(n, k, t, r)
=

(n− t− 2r + 2)(n− t− 2r + 1)

(k − t− r + 1)(n− k − r + 1)

∑r−1
j=0

(
t+2r−2

t+r+j−1

)∏j
i=1

k−t−r−i+2
n−k−r+i+1∑r

j=0

(
t+2r

t+r+j

)∏j
i=1

k−t−r−i+1
n−k−r+i

<
n2

(1− ε)(n/q)(1− (1 + ε)/q)n

∑r−1
j=0

(
t+2r−2

t+r+j−1

)∏j
i=1

(1+ε)(n/q)
(1−(1+ε)/q)n∑r

j=0

(
t+2r

t+r+j

)∏j
i=1

(1−ε)(n/q)
(1−(1−ε)/q)n

=
q2

(1− ε)(q − 1− ε)

∑r
i=1

(
t+2r−2

i−1

)
( q−1−ε

1+ε
)i∑r

i=0

(
t+2r

i

)
( q−1+ε

1−ε
)i

.

By (6), the above ratio tends to 1 as ε → 0. Thus for any ε′ > 0 we can conclude
that

AK(n, k, t, r − 1) < (1 + ε′)AK(n, k, t, r)

if we choose ε sufficiently small and n sufficiently large, and k ∈ I. Finally we have

f(n, q, t)q−n < q−n
∑
k∈I

max{AK(n, k, t, r), AK(n, k, t, r − 1)}(q − 1)n−k + ε

< (1 + ε′)q−n
∑
k∈I

AK(n, k, t, r)(q − 1)n−k + ε

< (1 + ε′)q−t−2r
r∑

i=0

(
t + 2r

i

)
(q − 1)i + ε.

Using the same argument in Case I, we have

g(q, t) := lim
n→∞

f(n, q, t)q−n = q−t−2r
r∑

i=0

(
t + 2r

i

)
(q − 1)i,

and f(n, q, t) = qng(q, t), which completes the proof of the theorem.

3 Another approach

In this section we give a direct proof for the case q ≥ t + 1 using tools developed in
[1].

Let A ⊂ 2[n]. A family G ⊂ 2[n] is called a kernel of A if A =
⋃

G∈G U(G) where
U(G) := {F ⊂ [n] : G ⊂ F}. A rank of A is defined by

rank(A) := min{|
⋃

G∈G
G| : G is a kernel of A}.

Theorem 3 Let A ⊂ 2[n] be a shifted t-intersecting family with w(A) = f(n, q, t).
Then rank(A) ≤ t + 2r, where r := b t−1

q−2
c.

Since the proof is almost the same as the proof of Lemma 6 in [1], we omit the
details.
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Proof (Outline) Choose a shifted, inclusion minimal (i.e., antichain) kernel G ⊂ 2[n]

of A satisfying rank(A) = |⋃G∈G G|. Assume that δ > 0 and M := t + 2r + δ =
rank(A). Let G = G0 ∪ G1, G0 := {G ∈ G : M ∈ G}, G1 := G − G0, and let

G0 = Rt+1 ∪ · · · ∪ RM−1,

where Ri := G0 ∩
(

[M ]
i

)
. Set

R′
i := {E − {M} : E ∈ Ri} ⊂

(
[M − 1]

i− 1

)
.

Then, E ∈ R′
i, E ′ ∈ R′

j and i+ j 6= M + t imply |E ∩E ′| ≥ t. Thus we may assume
that Ri 6= ∅, Rj 6= ∅, i + j = M + t for some i, j.

Case I i 6= j.
Define

F1 := G1 ∪ (G0 − (Ri ∪Rj)) ∪R′
i,

F2 := G1 ∪ (G0 − (Ri ∪Rj)) ∪R′
j,

Bi := U(Fi).

Then we have

A− B1 = {R ∪ S : R ∈ Rj, S ∈ 2[M+1,n]},
B1 −A = {R ∪ S : R ∈ R′

i, S ∈ 2[M+1,n]},

and hence

w(A− B1) = |Rj|(q − 1)M−jqn−M ,

w(B1 −A) = |Ri|(q − 1)M−i+1qn−M .

If w(A) ≥ w(B1) and w(A) ≥ w(B2) then

|Rj|(q − 1)M−j ≥ |Ri|(q − 1)M−i+1,

|Ri|(q − 1)M−i ≥ |Rj|(q − 1)M−j+1.

Thus 1 ≥ (q − 1)2, a contradiction.

Case II i = j = M+t
2

= t + r + δ
2
.

In this case δ is even and δ ≥ 2. Using the same argument in Case I, we may assume
that Rα = ∅ for all α 6= i, and G = Ri ∪ G1. The average degree d̄ of R′

i ⊂
(

[M−1]
i−1

)
is given by d̄ = (i − 1)|Ri|/(M − 1). Therefore we can find ` ∈ [M − 1] such that
degR′

i
(`) ≤ d̄. Define a t-intersecting family T as follows:

T := {E ∈ R′
i : ` 6∈ E} ⊂

(
[M − 1]− {`}

i− 1

)
.
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Then |T | ≥ |R′
i| − d̄ = M−i

M−1
|Ri|. Let A = D1 ∪ D2 where D1 := U(G1), D2 :=

U(Ri)−D1, and let U(T ∪ G1) = D1 ∪ D3 where D3 := U(T )−D1. Then we have

w(D2) = |Ri|(q − 1)M−iqn−M ,

w(D3) = |T |(q − 1)M−iqn−M+1 ≥ M − i

M − 1
|Ri|(q − 1)M−iqn−M+1.

If w(D2) ≥ w(D3) then 1 ≥ M−i
M−1

· q. Since M = t+2r + δ and i = t+ r + δ
2
, we have

t + 2r + δ − 1 ≥ 2r + δ

2
q,

or equivalently,

r ≤ t− 1− (q/2− 1)δ

q − 2
=

t− 1

q − 2
− δ

2
.

Since δ
2
≥ 1 we have r ≤ t−1

q−2
− 1, which contradicts a definition of r.

Corollary 1 If q ≥ t + 1 then f(n, q, t) = qn−t.

Proof Suppose that A ⊂ 2[n] is t-intersecting and w(A) = f(n, q, t). By Theorem
3, we may assume rank(A) ≤ t + 2r, r := b t−1

q−2
c. If q ≥ t + 2 then r = 0, and

f(n, q, t) ≤ w(A0) = qn−t.
If q = t + 1 then r = 1 and f(n, q, t) ≤ max{w(A0), w(A1)}. In this case we

have w(A0) = w(A1) = qn−t.
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