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Abstract. The aim of this paper is to study the behaviour of the ergodic Hilbert
transform associated to a flow which is Cesdaro bounded in the space of integrable
functions. In particular we see that if the flow is Cesdaro bounded in this space, and f
and its ergodic Hilbert transform are integrable functions then the ergodic Hilbert
transform is not only defined as an a.e. limit or a limit in measure, but it is also defined
as a limit in the norm of the space of integrable functions. In order to prove this result,
we show that the ergodic Hilbert transform and the ergodic maximal operator are of
weak type (1, 1) if the flow is Cesaro bounded in the space of integrable functions. It
is also shown that the ergodic Hilbert transform and the ergodic maximal operator are
of strong type (p, p), with p greater than one and finite, if the flow is Cesaro bounded
in the space of measurable functions with integrable pth-power. The last section of the
paper is devoted to providing nontrivial examples of Cesaro bounded flows. The proofs
use ideas of the theory of Muckenhoupt’s weights.

1. Introduction. Let (X, .#, v) be a finite measure space. By a flow {t,: te R} we
mean a group of measurable transformations t,: X - X with t, the identity and
T,1s=T,°T, (t,5€ R). The flow is said to be measure preserving if the 7, are measure
preserving, i.e., if v(t_,E)=vw(E) for all Ee.#. The flow is said to be nonsingular if
wWrt_,E)=0 for all teR and all Ee.# with v(E)=0. Finally, the flow is said to be
measurable if the map(x, t) - t,x from X x R into X is .#-.#-measurable where .# is
the completion of the product-c-algebra .# ® # of .# with the Borel sets, and the
completion is taken with respect to the product measure of v on .# and the Lebesgue
measure on %.

Let /: X —» R be a measurable function. The ergodic averages A4.f, ¢>0, and the
ergodic maximal operator Mf associated to a measurable flow are defined by

1 £
A ()= f S(mx)dt

and
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Mfix)=Sup 4,1 f1(x).
We also consider the maximal ergodic Hilbert transform
H*f(x)= sup | H,f(x)]

where

fa)

e<|t)<1e ¢

H,f(x)=

Assume now that the measurable flow {,: te R} is measure preserving. Then M and
H* are of weak type (1,1) and of strong type (p,p), 1<p<oo, ie., the following
inequalities hold, where # is either M or H*:

W{xeX: |%f(x)|>z})s%f Fldv

and

J |%f|pdvsCJ | f|Pdv, l<p<owo.
X X

It follows from these results that A, f converges a.e. as ¢ goes to 0 for all fe L*(dv). In
the same way it is seen that the ergodic Hilbert transform

Hf(x)=lim H,f ()

exists a.e. (the limit is understood in the pointwise sense). An immediate consequence
of the above inequalities is that if fe LP(dv), | < p< oo, then A,f converges in the L?-
norm. We also have that if fe L(dv), 1 < p< o0, then H,f converges to Hf in the L?-
norm and if fe L*(dv) then H,f converges to Hf in measure (see [P] for these results).
This leaves open the following question: if fe L'(dv) and Hf e L(dv) does H, f converge
to Hf in the L'-norm as ¢ goes to 0? This question was answered in the affirmative
in [ABGT] (in fact the setting of this paper is about power-bounded operators not just
measure preserving flows).

Our aim is to study the behaviour of the ergodic Hilbert transform associated to
a nonsingular measurable flow which need not preserve the measure v but which is a
Cesaro-bounded flow, i.e.,

SBE’ | A f Loy <C I f lLe@y

for some fixed p, 1 < p< co. Observe that this case is not included in [ABG]. The results
on LP(dv), 1 < p< oo, are easier and their discrete versions can be found in [MT] and
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[S]. We include them because we use them to study the ergodic Hilbert transform in
L(dv). Our main results are collected in the following theorems.

THEOREM 1. Let 1<p<o0. Assume that (X, #, V) is a finite measure space and
let {t,: te R} be a nonsingular measurable flow on X such that

SuIO) I A N Lo@ny < C I f Low
&>

for some positive constant C and all fe LP(dv). Let us denote by R either M or H*.
(@) If p=1 then there exists C>0 such that

v({xeX: |92f(x)|>z})s%f £ ldv

for all >0 and all functions fe L'(dv).
(b) If p>1 then there exists C>0 such that

f |.@f|”dvscf |f|Pdv

for all functions fe LP(dv).
(c) For every fe LP(av), the limits of A,f(x) as € goes to oo and of H, f(x) as ¢ goes
to 0 exist a.e.

A straightforward consequence of Theorem 1 is the following:

COROLLARY 1. Under the same assumptions as that in Theorem 1, we have:

(a) If 1<p<oo and fe LP(dv) then A,f converges in the LP(dv)-norm as € goes to
oo and H,f converges in the LP(dv)-norm as ¢ goes to 0.

(b) If p=1 and fe LY (dv) then A,f converges in the L(dv)-norm as & goes to oo
and H_f converges in measure as ¢ goes to 0.

THEOREM 2. Assume that (X, #,v) is a finite measure space and let {1,: te R} be
a nonsingular measurable flow defined on X such that

Sglg | Aef i@ <Clf Lty

for some C>0 and all functions fe L*(dv). If fe L*(dv) and Hf € L*(dv) then H_f converges
to Hf in the L*(dv)-norm as ¢ goes to 0.

The proof of this theorem appears in Sections 4 and 5 and follows the ideas in
[ABG], [CC] and [CS]. The latter papers study the behaviour of the (classical) Hilbert
transform on the real line. Section 2 will be devoted to some results we shall use about
the Hilbert transform and the Hardy-Littlewood maximal operator while the proof of
Theorem 1 is in Section 3. Finally, Section 6 gives examples of nontrivial Cesaro-
bounded flows.
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Throughout this paper, the letter C will always mean a positive constant not
necessarily the same at each occurrence and if 1 < p < oo then p’ will denote its conjugate
exponent, i.e., the number p’ such that p+p'=pp’.

2. Results in harmonic analysis. In order to prove the theorems we will need
some results on the Hardy-Littlewood maximal operator and the Hilbert transform
in R. We recall that for a locally integrable function f on the real line, the Hardy-
Littlewood maximal function, the maximal Hilbert transform and the Hilbert trans-
form are defined respectively by

&

Fr9=sup— | 1fx—0)ldt,

>0 2g J_,
[ —t
K*f(x)=sup »f)(x——)dt ,
£>0 | Jo<|rj<1/e t
and
R
. —t
Kf(x)= lim fxe=0
e=>0 Joclr<1/e t

if the limit exists a.e. We observe that they are, respectively, the ergodic maximal
operator, the maximal ergodic Hilbert transform and the ergodic Hilbert transform
associated to the flow t,(x)=x—1t on the real line. The next result will be useful in what
follows and you could find its proof in [HMuW] and [CF] (see also [GR]). In order
to state the result, we introduce the following definition.

DEeFINITION 1. Let o be a positive measurable function on the real line. We say that
o satisfies A,, 1 <p< oo, if there exists a constant C>0 such that

b 1 b p—1
j w(t)dt(b f a)l_”'(t)dt> <C if 1<p<ow
—a

a a

sup
a<b b—a

and
w¥(x)<Co(x) ae. if p=1.
Now we can state the results we shall use.

THEOREM A. Let w be a positive measurable function on R. Let 1 <p <0 and let
RS be either f*, K*f or Kf. The following are equivalent.

(a)  satisfies A,

(b) There exists C>0 such that

o8}

f T PQedi<C J /) Pty
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Jor all functions fe LP(w(t)dt).
(¢) There exists C>0 such that

f w(t)dts%fw 1 (&) Po(t)dt
RETOIE AP

for all A>0 and all functions fe L*(a(t)dt).

THEOREM B. Let w be a positive measurable function and let Rf be either f*, K*f
or Kf. The following are equivalent.

(a) o satisfies A,.

(b) There exists C>0 such that

J w(t)dt sgf [ f(t)]e(t)dt
(210> 2) Ao
for all A>0 and all functions fe LY(w(t)dt).

3. Proof of Theorem 1. In order to prove Theorem 1, we first claim that there
exists a measure u equivalent to v such that the flow preserves the measure y, i.e.,
W(E)=0 if and only if WE)=0 and u(t,E)=w(E) for all sets Ee /.

PROOF OF THE CLAIM. Since v(X)< oo we have
su%) [l Aaf”Ll(dv)S clf ”LP(dv)(v(X))l/p, <.
£>

Thus the sequence {ijandv}n is bounded for all Ee .. Let L be a Banach limit. We

define
i { ] sact})
X n

It is clear that u is finitely additive and u({¥)=0. Furthermore, we get from the above
inequality

0 < u(E)< CVX))YP(WENY?P < CU(X) < 00
and then u(X)< co. Therefore, in order to prove that u is a countably additive measure,
we only have to show that if £, oE,> - 2E,2E,,, > and (),E,=, E,c 4,
then u(E,) — 0, but this follows from w(E)< C((X))!/" (WE))*/? and the fact that vis a

measure.
Now we will see that u(z,E)=u(E) for all sets E € .. By the definition of y we have

u(t,E)= L<{—1— j" v(‘csﬂE)ds} > .
2n -n n

Observe that
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. I 1"
lim |:— J v(t,, E)ds—— J V(T ,E )dsJ =0.
n=w| 20 ) _ n 2n J_ n

In fact,

t t t
S; | Axe,x |lL1(dv)+7 WAt e lpian< C;V(X) .

lf" (0t E) — v(z,E))ds
2n J_,

Therefore, by the properties of the Banach limit

wrt,E)=L ({% f " v(t,E )ds} > =u(E).

The proof of the claim will be complete if we show that v and u are equivalent. It is
obvious that v(E)=0 implies u(E)=0. Assume now that u(E)=0. Let B= U:;_wrkE
and let us define

1
WE)= J v(t,E)ds .
o
It is clear that u(B)=0 and

u(E)=L<{i Y V(rkE)} ) .
2n k=-—n n

If we apply this equality to B and keep in mind that B=7,B for all integers k& then
we obtain

0=u(B)=L({#B)})=¥B) .
Thus v(r,B)=0 a.e. s€(0, 1), but this implies ¥(B)=0 and then w(E)=0.

In what follows, @ will be the Radon-Nikodym derivative of v with respect to u.
It is clear that 0 <w < oo a.e.

ProoF OoF THEOREM 1. Assume that p=1. Observe that
f‘:lg I Aef L@ <CIf L1y
is equivalent to
fBIg | fA0 Ly < Cl follL1n

and this holds for all fe L'(dv) if and only if

Mao(x)=sup A, w(x)<Cw(x) a.e.
>0
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This means that the functions w*: R - R, w*(t)=w(t,x), satisfy 4, for almost every
x € X with the same constant. Now we will use transference arguments to establish the
weak type (1, 1) inequality for H*. The proof for M follows the same pattern and we
omit it.

For fixed #>0 we define the truncated maximal ergodic Hilbert transform

J f) dt'.
e<|tj<1/e t

WixeX: H.‘,‘f(x)>l})=% f f Koes 15 oy 1 (T OO(T X))t
0vX

1 N
= J J w(t,x)du(x)dt .
N 0 Ji{xeX:Hy f(zex)> A}

Since H f(t,x) < K*(f*%(- 1/n, 5+ 1p)t) and * satisfies A; for almost all x (with the same
constant), Theorem B implies that

H f(x)=sup

e>n

Then, for all N>0 we have

v({xeX: H,’ff(x)>l})sif J w*(t)dtdu
N Jx J;

KA XX 1/m, N+ 1m0 > A}

N+1/n
sj\%L .[—1/,, f(r,x)w(t,x)dtdu=CN;—EMwadu
because the flow preserves the measure u. Letting N — oo and then n — 0 we have the
weak type (1, 1) inequality for H*.

Now let 1 <p< 0. The proof of the strong type inequalities will follow the same
pattern of the above case, once we prove that, for almost every x € X, the functions o™
satisfy 4, with the same constant. This can be proved as in [MT] and [S] where the
discrete case was treated in a more general setting. We shall omit the details of the
proof of the fact that w* satisfies 4, and the transference argument.

The convergence of the averages A,f and of H,f follows from the weak type
inequalities and the fact that the convergence holds for function fe LY(du)n LP(wdy)
which is dense in LP(wdy).

ReEMARK. It is worth noting that we only shall use the case p>1 for flows which
are Cesaro bounded in L(dv), i.e., for flows such that w* satisfies 4, for almost every
x€X with the same constant C. For these flows the condition 4,, p> 1, follows from
A, very easily and therefore the proof of the strong type (p, p) inequality is easier than
in the general case stated in Theorem 1.

4. Some basic facts for the proof of Theorem 2. Assume that (X, .#, v) is a finite
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measure space and {7,: r€ R} is a nonsingular measurable fiow on X such that
Sglg I Aef ILsan <C I fllLiay

for some constant C and all functions fe L*(dv). Then, as we have seen in Section 3,
there exists a finite measure y equivalent to v such that the flow preserves p. If w=dv/du
we know that the functions w* satisfy 4, for almost every x € X with the same constant

C.
Let f be a measurable function on X and let ¢ : R — R be a measurable function.
The convolution of fand ¢ is defined by

f*<p(x)=r fle)p(i)de

if it makes sense (the convolution of functions in R will be denoted by the same symbol
). Since the flow preserves the measure y it is very easy to see that if fe L}(du) and
@ e L1(R) then f*¢ is defined and

I /f*o “Li(azu)S ”f“L‘(du) o “L‘(R) .

We wish to show now that the convolution f* ¢ is also defined for functions fe L'(dv)
and @ € L'(R). In order to prove it, we recall that the function w belongs to L'(du) and
satisfies the following:

A,0(x)< Cox) for all ¢>0 and almost every xeX .
If we let ¢ go to oo and keep in mind that the limit lim, , , A,o(x) is positive and invariant

a.c. then we obtain

0<lim A,w(x)<Cinfw(r,x) a.e.
teR

E—w
Therefore if we consider for each integer n the set

X,={xeX:2"<supw ™~ (t,x)<2""1}
teR
we observe that the sets X, are invariant (7,X,= X, for all ze R), pairwise disjoint and
X =J,X, (these equalities are understood up to a set of measure zero). Furthermore,
LY(X,, dv)= LY(X,, du) because

1
f |f|dﬂ=f |f|dVS2"+1J Lfldv.
Xn Xn w Xn

Thus if fe L'(dv) and ¢ e L}(R) we have that the convolution f*¢ is defined on each
X,, since fe L*(X,, dv)= L*(X,, du). Keeping in mind that the sets X, are invariant,

pairwise disjoint and X =J,X,, we conclude that f*¢ is defined on X.
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This decomposition of the set X allows to obtain more properties of the convolution
which are necessary for the proof of Theorem 2. More precisely:

(a) If fe L'(dv), Hfe L'(dv) and @ e L'(R) then H(f*q@)=Hf* .

(b) If fe L'(dv), pe L*(R) and Ko e L1(R) then H(f*@)=f+*Ko.

(Observe that H(f* @) is defined since f*¢@e L(X,) for each n). As before, these
facts can be proved by reducing them to the case of the sets X, and the functions in
LY'(X,, du). This case, the measure preserving case, was proved in [ABG] in a more
general setting.

We would like to obtain also an inequality like

[ f+o ”Lt(du)S ”f”Ll(du) o ||L1(R)

but with the measure v. In the next theorem we give a result of this type under some
assumptions on ¢.

THEOREM 3. Let (X, .#,v) be a finite measure space and let {t,: te R} be a
nonsingular measurable flow on X such that

S‘:Ig I Acf i@y <C I f |l L1av

for some positive constant C and all functions fe L'(dv). Assume that ¢ < LY(R) and
Y(t)=supy g 51| @(5)] is in L'(R) (Y is the least radial decreasing majorant of ). If
feLY(dv) then

[ fxo(xX) | < (| || 2 myMS(x)
and
||f*(P ”Ll(dv)sc Iy ”L‘(R) ”f”L‘(dv)
where the constant C is independent of | and ¢.

Proor. For fixed xeX let us denote by f* the function f*(s)= f(z,x). Then
Lfxo(x)| <] fl*l o] (x)<|f*|*@(0) where the last = stands for the convolution of func-
tions in R. By a standard result (see [GC] for instance) the last term is dominated
by [ [ .(f*(0). But (f*)*(0) = Mf(x). This proves the first inequality.

Let u and w be as above. By Fubini’s theorem and the fact that the flow preserves
the measure y we obtain

”f*QDHLl(dv)SJ If(X)I<Jw w(TSX)I(P(—S)IdS>d#=J Lf(X) | w*| @[ (x)du

where @(s)= @(—s). Then by what we have already shown

1f 5@ L=< I¥ ”Ll(R)j Lf () Mo(x)dp .
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Now, since the functions w* satisfy 4, for almost every x e X with the same constant,
we have

I f«o ||L1(dv)SC Iy ”L‘(R)j [flody .
X

The proof of Theorem 2 requires to approximate the functions in L'(dv) by suitable
functions. This is the next result.

THEOREM 4. Let (X, M, v) and {1,: te R} be as in Theorem 3. Let
A={feLYadv): f(x)=f(t,x) a.e x forall te R}

and
= {f:g*qﬁ : ge L®(dv), ¢ bounded with compact support and f qﬁ(s)ds:O} .

If B is the L*(dv)-closure of the linear manifold generated by B then A@® B=L(dv), i.e.,
AnB={0} and LNdv)={f,+f,: f1€A4, [, B}.

Proor. It is clear that 4 and B are contained in L!(dv). We also have that
lim,,  A4,f = ffor all fe 4 and lim,_, , A, f =0 if fe B (these two facts give immediately
that 4n B={0}). We only have to show the statement for the functions fe B. By the
assumption

S‘:g | Aef 1@y <C I fllLraw

it suffices to establish that lim,_, A, f =0 for all functions fe B. In order to see this, we
consider f =g* ¢, g L*(dv), ¢ bounded with compact support and | , P(s)ds=0. Then

ef(x)—i f 8 r g(r,+sx)¢(s)dsdr—— f 805 f 9z, peds

f ¢>(s)— f e (g(r,ﬂx)—g(r,x»sr}ds.

By the dominated convergence theorem and the fact that

.1t .1 fF
lim — g(t, 4 X)dt =lim —— g(t,x)dt
e~ 28 J—¢ eoo0 26 ) _ &

we obtain lim,_, A4, f(x)=0.

Now we are going to prove that A@B=L(dv). Let fe L'(dv) and denote
F=Ilim,_, A,f. It is clear that Fe 4. Then it suffices to show that f— Fe B. Assume
that he L*(dv) and



ERGODIC HILBERT TRANSFORM 551

J hGdv=0 for all functions GeB.
X
Then

f h(x)(fm g(TSX)¢(S)dS>w(X)du=0

for all functions ge L*(dv) and all ¢ bounded with compact support and j‘fm d(s)ds =0.
Then it follows from Theorem 3 that the above equality holds for all functions g € L' (dv).
Applying this equality to g= fand ¢ =(1/2e)x_. o —(1/21)x(-,,, WE Obtain

n

1 [ 1
J h(x)co(x)ZSJv f (rsx)dsdy=f h(x)w(x)a f flrx)dsdp .

Since (1/27) f"_” f(z,x)ds converges to F in the L!(dv)-norm as 5 goes to oo (Corollary
1) and (1/23){”_8 f(t.x)ds converges to fin the L!(dv)-norm as ¢ goes to 0* (by Wiener’s
theorem and sup, ¢ || A.f | 1@y < C | f | L1av)), We Obtain

thwduzj Fhodu, ie., J (f —F)hdv=0
X X X

for the functions he L*(dv) as above. This means that f—Fe B.

In order to finish this section we are going to study the behaviour of the convolutions
S+, where ¢ is continuous with compact support and @,(t)=(1/¢)p(t/e).

THEOREM 5. Let(X, M, v),{t,: te R}, A, Band B be as in Theorem4. Let o: R— R
be continuous with compact support.

(a) Iffe L'(av) then f* ¢, converges to (| _(s)ds) f in the L*(dv)-norm as ¢ goes
to 0.

(b) If f€ B then fx@,,, converges to 0 in the L'(dv)-norm as ¢ goes to 0.

ProOOF. Let u and w be as in the proof of Theorem 4. By Theorem 4 and since
s‘:g I Af iy SC I Ly »

it suffices to establish the results for functions fe AuB. If feA it is clear that
S (x)=f(x)] °_°wgo(s)ds and therefore (a) follows for functions fe A. Now let fe B.
Then f =g ¢ where g e L*(dv), ¢ is bounded with compact support and j"_"w ¢(s)ds=0.
In what follows if ¥ : R — R, we write { to denote the function y(s)=1(—s). Then by
Fubini’s theorem and the fact that the flow preserves the measure u we obtain

g*(qsws)—(gw)r o(s)ds

feputf f " pls)ds

Li(dv) ’ Li(dv)
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(¢*<pe—¢r q)(S)dS>*w

SJ Ig|<¢*¢s—¢J w(S)dS>*wdusllgHw

Li(dp)

wX).

LYR)

<lgile

¢*<ps—¢f @(s)ds
By elementary results in the real line,

=0

LY(R)

lim

e~0t

¢>*<pe—¢r o(s)ds

and therefore (a) is proved.

Now we shall prove (b). As before it suffices to prove it for functions fe B. Let
f=g=*¢ with ge L*(dv), ¢ : R— R bounded with compact support and j‘quﬁ(s)ds:O.
Since ¢p* @, =(P.*p),,, we have

[/*@1, “Ll(dv)Sf [g %] (P * @)y | 0dy .
x

By Fubini’s theorem and the fact that the flow preserves the measure u we have
“f*(/71/g ”L‘(dv)gf lgl (¢e*¢)1/e*w‘iﬂ$ gl (¢s*(p)l/z*w “L‘(dﬂ)
X

<llgllel (¢a*(p)1/e ||L1(R)V(X)S g 1vX) | pexo “L’(R) .

Again, by elementary results ¢,*¢ converges to ¢f°qub(s)ds:0 in L'(R). Therefore
lim, ¢+ “f*‘Pl/s ”L‘(dv) =0.

5. Proof of Theorem 2. Let u, w, A, B and B be as in Section 4. Let fe L'(dv)
such that Hfe L'(dv). Then f=f, +/,, f;€ 4 and f, e B. Since H,f,=Hf, =0 it is clear
that we may assume that fe B.

Let fe B such that Hfe L'(dv). Consider a function ¢: R— R, ¢ >0 continuous
with compact support and j”foo e(dt=1. Let k(x)=1/x if | x|>1 and k(x)=0if | x|<1.
Finally let 6= Ko —k and h,=k,—k,;,. Observe that H f = f*h, and since the dilation
commutes with the Hilbert transform we get

he=K¢s_K¢1/a+51/s_5s .

Following the ideas in [CS] we see that the least radial decreasing majorant of ¢ is in
L'(R) and therefore for 4,=6,,,— 8, we get (Theorem 3)

I Fody Ly <C I F iy for all FeL'(dv).

Let y>0 and choose g in the linear manifold generated by B and such that
Il f—9llLan<y. Then
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{ Hef_Hf”Ll(av): |lf*hs~Hf||L‘(dv): I f*Ae_f*K((Px/a—(De)—'Hf”Ll(dv) .

Since K(¢,.— .)€ L'(R), ¢,,,—@,€ L'(R) and Hfe L'(dv), the properties (a) and (b)
in Section 4 give

I Hef —Hf | iany =l f* A= Hf ¥ @1 ;e + Hf x @, — Hf || L1ay)
< Hf*q)s_Hf”Ll(dv)+ I (f—g)*4, ”L’(dv)
g% 4, |+ 1 Hf x@ 1, | Lravy -
Now, since K(¢,—¢,,)€ L'(R) and Hge L' (dv),
gxd,=H.g—g*K(p,— @) =H.g—Hg*(¢,—¢,,)
=H,g—Hg+Hg—Hgx(o,—¢y) -
Therefore
| H f —Hf |pan <IN Hf @, — Hf || Ligwy+ | (f —9)* A L1gav
+I Hog—Hg llL1any+ | Hg—Hg* @, | L1avy
+ 1 Hg* el Lrany + | Hf #0151y -

Since Hf'e L'(dv), Theorem 5 gives that || Hf @, — Hf || L1y + | Hg — Hg* @, || 11 (ayy tends
to 0 as ¢ goes to 0. By one of the above inequalities

1(f—g)*4, ||Ll(av)§c I f—g ”Ll(dv)SCV .

By Corollary 1 and the fact that the linear manifold generated by B is contain-
ed in L*(dv) we have that |H,g—Hg | 24, —0 as ¢ goes to 0 and therefore
lim, o+ || H.g—Hg |14, =0 because v(X) < co. Finally, by Theorem 5,

1_%‘;1 (W Hf *@ 1l Ligawy F 1 Hg* @yl L1¢avy) =0
if we establish that Hf and Hg belong to B. This is proved in the next theorem (observe
that Hfe L'(dv) and Hge L'(dv)).

THEOREM 6. Under the assumptions of Theorem 2, if fe LY (dv) and Hfe LY(dv)
then HfeB.

Proor. Consider as in Section 4 the sets
X,={xeX:2"<supw~'(tx)<2"1}.
teR
Let f'e L(dv) such that Hfe LY(dv). Since L1(X,, dv)< L'(X,, du) then fe L*(X,, du) and

Hfe L'(X,, du). Therefore, by Theorem (3.23) in [ABG] we have that for each n there
exist F,e L'(X,, du) and ¢,: R— R bounded with compact support, | . Pu(s)ds=0, and
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such that HF,e L'(X,, du) and f=F,* ¢, on X,. As a consequence of the properties (a)
and (b) in Section 4

Hf=HF, x¢, on X,.
On the other hand, since Hf e L'(dv) we have by Theorem 4 that
Hf=fi+/2, fied, f,eB.

Now we observe that

lim A (Hf)=lim 4,(HF,*¢,)=0 on X,

£

and

hm Ae(Hf)= hm (Aefl +A5f2)= hm Aefl :fl .

£ 00

Therefore f;, =0 and Hf=f,+f,=f,€B.

6. Examples of Cesiaro bounded flows. This section is devoted to providing ex-
amples of Cesaro bounded flows.

We begin by considering the case X={zeC: |z|=1} with the c-algebra of the
Borel sets and the flow 1,(z)=ze". It follows from Theorem 1 and its proof that v is a
measure such that the flow is Cesaro bounded in LP(dv) if and only if dv=cwdu where
the flow preserves the measure u, >0 a.e. and w” satisfies 4, for almost all ze X. In
our case this means that dv(e’) = w(e")dt for some w >0 a.e. which satisfies Muckenhoupt’s
A, condition. These weights w were studied in [Mu] and [HMuW] (see also [GR]).
For instance, we have that a(e)=¢%, |t| <=, is an A, weightif and only if —1<a<p—1
and in this case the flow is Cesaro bounded in LP(dv) if dv(e”)= w(e")dt. More examples
can be given in this setting by using the result of Coifmann and Rochberg [CR] and
the factorization of 4, weights (see [GR]).

Next, we are going to show nontrivial examples in a more general setting.

THEOREM 7. Let (X, M, ) be a nonatomic finite measure space and let {z,: te R}
be a measure preserving flow such that t, is ergodic for some te R. Then for every p>1
and every q, 1 <q< p, there exists a measure dv=cwdu, >0 a.e., such that the following
holds:

(1) The flow is Cesdaro bounded in L¥(dv) and is not Cesaro bounded in LY (dv).

(2) The flow is not power bounded in L*(dv).

ProOOF. We begin by proving the case p=1. Let f >0, fe L*(du), f¢ L*(du). De-
note by M® the iterations of the ergodic maximal operator associated to the flow.
We know that M is bounded in L2(du), more precisely,

I Mf 1l L2 2 11 1| 2 -
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Let

0= Z lM“’f
104

Then w> f >0, we L*(dy) and
Z M<'+“f<4w

Therefore, w* satisfies 4. Then it is clear that (1) holds for dv=wdu and p=1. Let us
see now that (2) does not hold. Assume that the flow is power bounded in L'(dv). This
implies immediately that there exists a constant C >0 such that

w(tx)< Cow(x) a.e.

for all te R. Then the assumption about the ergodicity of the flow gives that w e L*(du)
which is a contradiction since 0< f <w and f¢ L*(dp).

Let us consider now the case p> 1. Let 1 <r<(p—1)/(q—1) and let 4 be a positive
constant such that

I Mf”Lr(du)SA ”f”L"(du)
for all fe L'(dy). Now choose f€ L'(du) such that f¢ L®~ Y4~ U(dy) and set

; AZ: M(l)f

As before, w* satisfies 4,. Then Holder’s inequality shows that if u=w' P then u*
satisfies 4, and therefore the flow is Cesaro bounded in LP(dv), dv=udu. In order to
prove the statement (1) completely, we assume that the flow is Cesaro bounded in L%(dv),
i.e., u* satisfies A, with the same constant for almost all x € X. This implies

Apu(x)(Ayu~ Ma- 1)(x))q_ '<C

for some constant C. Letting N go to oo and keeping in mind that z, is ergodic for
some t, we get that u~ Y4~ Ve LY(dy), i.e., we LP~ V@~ 1(4y). This is a contradiction
to the fact that w> f¢ LP~ D@~ 1),

Finally, observe that (2) follows from (1) since (2) implies that there exists C>0
such that for all ¢

u(t,x) < Cu(x) a.e.

and this would immediately imply that the flow is Cesaro bounded in L'(dv) and then
in L'(dv) forall r, 1 <r< .

REMARK. The theorem and its proof follow the ideas of the theory of weights
(see [CJR] and [GR]).
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