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THE ERGODIC THEORY OF DISCRETE ISOMETRY GROUPS

ON MANIFOLDS OF VARIABLE NEGATIVE CURVATURE

CHENGBO YUE

Abstract. This paper studies the ergodic theory at infinity of an arbitrary
discrete isometry group Γ acting on any Hadamard manifold H of pinched
variable negative curvature. Most of the results obtained by Sullivan in the
constant curvature case are generalized to the case of variable curvature. We
describe connections between measures supported on the limit set of Γ, dy-
namics of the geodesic flow and the geometry of M = H/Γ. We explore the
relationship between the growth exponent of the group, the Hausdorff dimen-
sion of the limit set and the topological entropy of the geodesic flow. The
equivalence of various descriptions of an analogue of the Hopf dichotomy is
proved. As applications, we settle a question of J. Feldman and M. Ratner
about the horocycle flow on a finite volume surface of negative curvature and
obtain an asymptotic formula for the counting function of lattice points. At
the end of this paper, we apply our results to the study of some rigidity prob-
lems. More applications to Mostow rigidity for discrete subgroups of rank 1
noncompact semisimple Lie groups with infinite covolume will be published in
subsequent papers by the author.

Notations

• H is a Hadamard manifold with pinched sectional curvature

−K2
2 ≤ K ≤ −K2

1 , K2 ≥ K1 > 0.

• Γ is a (non-elementary) discrete isometry group acting on H freely and
properly discontinuously (which is called Fuchsian).
• ∂H is the ideal boundary of H.
• M = H/Γ is a complete Riemannian manifold.
• SH (or SM) is the unit tangent bundle.
• gt is the geodesic flow on SH (or SM).
• v(t) is the unique geodesic in SH (resp. SM) with the initial velocity
v̇(0) = v ∈ SH (resp. SM).
• v(∞) (resp. v(−∞)) is the asymptotic class of the geodesic v(t) (resp.
v(−t)).
• L(Γ) is the limit set of Γ on ∂H.
• Lr(Γ) is the radical limit set of Γ in L(Γ).
• Ω = Ω(Γ) is the nonwandering set of the geodesic flow on SM
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0. Introduction

The purpose of this paper is twofold. We first want to built up a detailed
ergodic theory of discrete isometry subgroups of negatively curved Riemannian
manifolds. Our main motivation, however, is to lay a necessary foundation for our
generalizations of Mostow rigidity ([Yu3][Yu4]).

Assume that H is a simply connected n-dimensional Riemannian manifold of
pinched negative curvature −∞ < −K2

2 ≤ K ≤ −K2
1 < 0. We know that H is

diffeomorphic to an open disc Dn and the boundary of H at infinity is homeo-
morphic to a sphere Sn−1. Throughout this paper we always assume that Γ is a
torsion free non-elementary discrete isometry group acting on H freely and prop-
erly discontinuously. For the sake of simplicity, we call a group satisfying these
properties Fuchsian. This terminology was due to Eberlein and O’Neil in their pi-
oneering work [E-O’N]. Imagine that we stand inside the disc, looking at an orbit
Γx of Γ and thinking of each orbit point as a star; then we see a galaxy on the sky
at infinity, which is called the limit set of the Fuchsian group and is denoted by
L(Γ). We want to read information about the geometry of the quotient manifold
M = H/Γ by looking at this galaxy. The group acts naturally on its limit set. We
also want to study this action by looking at the dynamics of the geodesic flow gt

on M and vice versa. Actually, all these problems have their origin in the theory
of classical Fuchsian and Kleinian groups. Inspired by the classical theory, Patrick
Eberlein published a series of papers since the early seventies. He had achieved,
more or less, a complete picture of the topological dynamics of the Γ action and the
geodesic flow. However, he did not study the ergodic theory of the Γ action and
the geodesic flow. Indeed, the corresponding ergodic theory turns out to be much
more complicated, and much more interesting. The main theme of this paper is to
build a foundation of that theory.

Apart from Eberlein’s work, there are two other sources which influenced the
present paper. Our most important inspiration came from a group of Sullivan’s
papers (see [S1], [S2] and the references there). For me his works in the constant
curvature case are almost the axioms for a corresponding theory in the variable
curvature case. The generalizations are sometimes easy and straightforward, some-
times much more complicated and difficult, but we never lose track or direction.
The other influence came from Gromov’s fundamental paper [G] and a series of
researches after it, especially [C]. In several occasions results for the more abstract
Gromov hyperbolic space helped shorten our route, but theories for concrete objects
are always richer, more precise and more beautiful.

(0.1) Densities on the limit set. To measure the thickness of the galaxy, we
introduce two classes of measures on L(Γ).

(0.1.A) The conformal density. The conformal density is constructed by Patterson
in the case where dimH = 2,K ≡ −1 and his construction was generalized by
Sullivan to the case where K ≡ −1 in all dimensions. One can easily perform the
same construction in the variable curvature case. Namely, consider the Poincaré
series

gs(x, y) =
∑
γ∈Γ

e−sd(x,γy),
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and define the critical exponent δ(Γ) , δ to be the supremum of all s such that the
series diverges at s. Then by averaging the Dirac measure at each lattice point we
get the conformal density σy as a weak limit

σy = lim
si→δ+

∑
γ∈Γ

e−sid(x,γy) Dirac(γy)∑
γ∈Γ

e−sid(x,γy)
,

which is supported on L(Γ) (after a minor adjustment, see [P]) and satisfies

dσy
dσx

(ζ) = e−δρx,ζ(y),

where ρx,ζ is the Busemann function at ζ with ρx,ζ(x) = 0.

(0.1.B) The harmonic density (after Ancona [A2]). Let λ1 be the bottom of the
spectrum of the Laplacian on L2(H). Then for each 0 ≤ λ < λ1 there is a nice
λ-potential theory (see [A1]). Let Gλ(x, y) and Kλ(x, y, ζ) be the Green kernel and
the Poisson kernel of the operator 4+ λI and consider the Green series∑

γ∈Γ

Gλ(x0, γy).

Define the critical eigenvalue λ(Γ) to be the supremum of all λ such that the Green
series converges. Then we get the harmonic density τy as a weak limit of the
following average:

lim
λi→λ(Γ)−

∑
γ∈Γ

Gλi(x0, γy) Dirac(γy)∑
γ∈Γ

Gλi(x0, γx)
,

which is supported on L(Γ) (after a minor adjustment, see [A2]) and satisfies

dτy
dτx

(ζ) = Kλ(Γ)(x, y, ζ).

(0.2) The ergodic theory. There are close connections between the geodesic flow
gt on SM and the limit set Γ. For example

a) The nonwandering set Ω (see (5.1) for definition) of gt on SM corresponds
to (L(Γ)× L(Γ)�diagonal)/Γ; i.e., v ∈ Ω iff there is a lift ṽ ∈ SH of v, such
that ṽ(∞) ∈ L(Γ) and ṽ(−∞) ∈ L(Γ).

b) A point v ∈ SM is gt-conservative (i.e., gtv returns to a compact set infinitely
often as t→ +∞) iff v lifts to ṽ ∈ SH such that ṽ(∞) belongs to the radial
limit set Lr(Γ) ⊂ L(Γ)(see (3.5) for definitions).

c) There is a one-one correspondence between the gt-invariant (resp. ergodic)
measures on Ω and the Γ-invariant (resp. ergodic) measures on L(Γ)×L(Γ).

(0.2.A) From the conformal density σ we construct a gt-invariant measure µσ on
Ω (after Sullivan, Kaimanovich). We then prove the equivalence of the following
dichotomies:

• The geodesic flow is either completely conservative with respect to µσ or
completely dissipative.

•• Γ is either of divergent type (i.e., the Poincaré series diverges at δ(Γ)) or of
convergent type (i.e., the Poincaré series converges at δ(Γ)).

Theorem A. The following properties are equivalent:
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(1) Γ is of divergent type.
(2) σ(Lr(Γ)) > 0.
(3) Lr(Γ) has full σ-measure.
(4) The geodesic flow is ergodic with respect to µσ.

(0.2.B) From the harmonic density τ we construct a gt-invariant measure ντ on Ω.
We also have the equivalence of the following dichotomies (assuming λ(Γ) < λ1):

• The geodesic flow is either completely conservative with respect to the mea-
sure ντ or completely dissipative.

•• The Green series is either divergent at λ(Γ) or convergent at λ(Γ).

Theorem B. Assuming λ(Γ) < λ1, then the following properties are equivalent:

(1) The Green series diverges at λ(Γ).
(2) τ(Lr(Γ)) > 0.
(3) Lr(Γ) has full τ-measure.
(4) The geodesic flow gt is ergodic with respect to ντ .

The proof of Theorem A is achieved by the Sullivan shadow lemma in the variable
curvature case. The proof of Theorem B uses a biased Brownian motion argument.

(0.3) Hausdorff dimensions of the limit set. We introduce four metrics on
∂H (after Gromov, Kaimanovich) which are mutually equivalent. Some of our
arguments prefer one metric and some prefer another. We then study the Hausdorff
dimension HD of the limit set with respect to these equivalent metrics. One of our
main theorems is the following

Theorem C. Assuming that Γ is a general Fuchsian group, then we have:

(1) The Hausdorff dimension of the radial limit set is always ≤ δ(Γ).
(2) If µσ(SM) <∞, then HD(Lr(Γ)) = δ(Γ).

Remarks. If µσ(SM) < ∞ (resp. ντ (SM) < ∞), then by the Poincaré recurrence
theorem, the geodesic flow must be completely conservative and Γ must be of
divergent type. We also prove the following finiteness criterion which is used later
in the lattice case.

Theorem D. If the Poincaré series satisfies∑
γ∈Γ

e−sd(x,γx) ≥ A

s− δ ,

for s > δ = δ(Γ) and for some constant A > 0, then µσ(SM) <∞.

(0.4) Convex cocompact groups. A Fuchsian group Γ is convex cocompact if
and only if its corresponding nonwandering set Ω is compact. In this case, all
the thermodynamic formalisms apply. In particular, for each Hölder continuous
function ϕ : Ω→ R there corresponds a unique probability measure µϕ on Ω (which
is called the equilibrium state of ϕ), such that (gt, µϕ) is Bernoulli. We identify µσ

and ντ as equilibrium states of some special functions. For each equilibrium state
µϕ there corresponds a unique measure class ∂µϕ on ∂H. We have the following

Theorem E. If Γ is convex cocompact, then we have

(1) HD(L(Γ)) = δ.
(2) The conformal density σx is precisely the δ-dimensional Hausdorff measure

of the Busemann metric.
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(3) The lattice counting function N(x, y,R)= #{Γx∩B(y,R)} satisfies N(x, y,R)
∼ Ac(x)c(y)eδR, where A is a constant not depending on x, y, and c(x) =
σx(∂H).

(4) The Hausdorff dimension of the measure class ∂µϕ is exactly the metric en-
tropy of the geodesic flow with respect to the invariant measure µϕ.

(0.5) Geometrically finite groups and lattices. In the variable curvature case,
geometrically finite groups are still well-defined for discrete groups. Unlike the con-
stant curvature case, we do not have a good ergodic theory for this class of groups.
Even for the simplest case when Γ is a lattice, we feel that different exponential de-
cay rates of the geometry along different cusps might cause trouble for the measure
µσ to be finite. But if we assume the following control of global geometry:

lim
R→∞

VolS(x,R)

ehR
= c(x),(∗)

for a point x ∈ H and for a positive number c(x)(this is true if H has a cocompact
quotient), then we have

Theorem F. Let Γ be a lattice satisfying (∗). Then the following is true:

(1) µσ(SM) <∞.

If moreover (∗) is true for all x and if c(x) is a L1 function on M , then we have:

(2) h2 =
∫
M (
∫
SxM

(RH(v) + Ricci(v) − R(v(0)))dσx(v))dx, where dx is the Rie-

mannian volume (normalized such that
∫
SM dσx dx = 1), RH is the scalar

curvature of the horosphere, Ricci denotes the Ricci curvature on SM and R
is the scalar curvature on M .

(3) If dimM = 3, then h2 =
∫
M [
∫
SxM

(Ricci(v)−R(v(0)))dσx(v)]dx. If dimM =

2, then h2 =
∫
M
−c(x)K(x)dx/

∫
M
c(x)dx, where K(x) is the sectional cur-

vature at x.

Next we consider the case when dimM = 2. Assuming that (∗) is true, then

dωss , dx dσx gives an invariant measure of the contracting horocycle flow ht

with the natural parametrization (i.e. the induced Riemannian length along the
horocycle foliation). By the same arguments as in [Yu1], dωss is generically not
invariant under the geodesic flow gt and it is invariant under gt if and only if
M has constant curvature. However, one can reparametrize the horocycle flow ht

such that the measure µσ in Theorem F (1) is invariant under ht (see [M1]). The
following theorem partially answers a question raised by J. Feldman and M. Ratner
on the existence of a uniform parametrization of the horocycle flow on a finite
volume surface of variable negative curvature and the corresponding Raghunathan’s
conjecture.

Theorem G. Let M be a finite volume surface with negative curvature −K2
2 ≤

K ≤ −K2
1 , K2 ≥ K1 > 0. Assuming that (∗) is true for some point x in the

universal cover, then we have

(1) There is a uniform parametrization µσ of the horocycle flow with finite total
mass.

(2) (Orbit closures for horocycle flows; this is true without the extra assumption

(∗)). For each v ∈ SM , either htv = SM or htv = htv is periodic.
(3) (Classification of invariant measures). Let µ be any ergodic ht-invariant Borel

probability measure on SM . Then either µ = c · µσ (c is a constant) or µ is
supported on a periodic orbit of ht.
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(4) (Uniform distibution of horocycle orbits). If v ∈ SM and htv is not a periodic
orbit, then for every bounded continuous function f on SM we have

lim
t→∞

1

t

∫ t

0

f(hsv) ds =

∫
SM

f dµσ/µσ(SM).

For a finite volume Riemannian manifold of pinched negative curvature, it is
not hard to see that its geodesic flow is ergodic with respect to the finite Liou-
ville measure. Similarly, we have the following theorem concerning the harmonic
measure.

Theorem H. Let Γ be a lattice. Let σx be the harmonic measure on ∂H and νσ

be the measure on SM as constructed in Proposition 5.2.2. Then the geodesic flow
is ergodic with respect to νσ.

(0.6) Connections between δ(Γ) and λ(Γ). If H is a symmetric space of real
rank 1, then according to Sullivan ([S1]) and Corlette ([Co]), the bottom spectrum
λ(Γ) of the Laplacian satisfies

λ(Γ) =

{
1
4h

2 if δ(Γ) ≤ h
2 ,

δ(Γ)(h− δ(Γ)) if δ(Γ) ≥ h
2 ,

where h = lim
R→∞

log VolS(x,R)
R . For the general variable curvature case, there is

definitely no such simple relation. However, the above result is still true if one
assumes that H is harmonic with a compact quotient (and it is generally believed
that such an H must be symmetric).

(0.7) Rigidity. Finally, we address some rigidity problems. Assume that the

Poincaré series of Γ1 diverges at δ(Γ1). For any homomorphism Γ1
ϕ−→ Γ2, there

always exists a ϕ-equivariant map L(Γ1)
Φ−→ L(Γ2) measurable with respect to the

Patterson-Sullivan measures (see [Yu4] for more discussions about the existence).
Assuming that a measurable Φ−1 exists, then we have

Theorem I. Under the above assumptions, we have

(1) Either Φ−1 is singular with respect to the conformal densities or Φ preserves
the Busemann cross ratio up to a homothetic change of the Riemannian met-
ric.

(2) In the latter case, Φ is conformal with respect to the Busemann metric and
there is a measurable time-preserving conjugacy between the geodesic flows on
Ω(Γ1) and Ω(Γ2).

(3) If moreover, Γ1 and Γ2 are convex cocompact, then any isomorphism between
them always induces a homeomorphism between their limit sets which conju-
gates their actions on the limit sets. In particular, the following properties
are equivalent:
a) δ(Γ1) = δ(Γ2) and Φ is nonsingular with respect to the conformal den-

sities.
b) Φ preserves the cross ratio.
c) δ(Γ1) = δ(Γ2) and Φ is conformal with respect to the Busemann metric.
d) M1 = H1/Γ1 and M2 = H2/Γ2 have the same marked length spectrum.
e) There exists a continuous time-preserving conjugacy of the geodesic flows

on Ω(Γ1) and Ω(Γ2).
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Note. Various aspects of Theorem A were proved by Hopf (1939, for hyperbolic
2-space) and D. Sullivan (1979–1982, for hyperbolic n-space). The completely con-
servative or completely dissipative dichotomy for the geodesic flow was first ob-
served by Poincaré (1906, for Riemann surface) and extended by Sullivan to the
n-dimensional hyperbolic space. For the compact variable curvature case, the geo-
desic flow is extensively studied under the guise of hyperbolic dynamics by Anosov,
Sinai, Smale. . . since the early sixties. S. J. Patterson and D. Sullivan were among
the earliest (since the late seventies) to study the ergodic theory of general non-
cocompact discrete subgroups in SO(n, 1). Later on (1990), K. Corlette generalized
Sullivan’s work to convex cocompact groups in other noncompact rank 1 Lie groups
and discovered striking rigidity phenomena.

A first version of this paper appeared in the spring of 1992 as an MSRI preprint.
Since then, I had been trying to prove some rigidity results for symmetric spaces
which were first intended to be part of section 7 in the present paper but, due to its
length, will appear separately (see [Yu3] [Yu4]). Recently I received two preprints
(V. A. Kaimanovich, Ergodic theory of harmonic measures for the geodesic flow on
hyperbolic spaces, 1993; and K. Corlette, A. Iozzi, Limit sets of isometry groups of
exotic hyperbolic spaces) which are related to our work. The three papers have in-
tersections, but do not subsume the results of the others. The results in section 6 of
the present paper generalize some of Corlette’s work on convex-cocompact groups
of symmetric spaces of real rank 1 (see [Co]). Recall that convex-cocompact groups
are geometrically finite groups with no cusps. In the paper of Corlette-Iozzi, the au-
thors study the ergodic theory of geometrically finite groups of symmetric spaces of
real rank 1, and obtain results analogous to the results for convex-cocompct groups
in [Co] and the present paper. As we pointed out in section (0.5), for geometri-
cally finite groups in the variable curvature case, different asymptotic geometric
behaviors along different cusps might cause serious trouble. Even for a lattice, the
simplest geometrically finite group, the ergodicity and uniqueness problem of its
Patterson-Sullivan measure is still open. Our Theorem F and Theorem G are par-
tial results along this direction. In a different direction, the paper of Kaimanovich
studies the Hopf dichotomy for a harmonic measure associated with a Markov op-
erator on a Gromov hyperbolic space. Kaimanovich’s result is analogous to our
Theorem A or Theorem B, but does not overlap with ours. As he remarked in
page 57 of his paper, it would be interesting to obtain both his result and ours in
a unified manner.

There is already a rich and beautiful ergodic theory for discrete groups in
SO(n, 1) and a even richer theory for Kleinian groups. The discrete groups of other
exotic (the complex, the quaternionic and the Cayley) hyperbolic spaces tends to
be more rigid. Our main motivation in studying the general variable curvature case
is to pave the way for the study of various rigidity problems concerning discrete
subgroups in non-compact semi-simple Lie groups of real rank 1, and possible ex-
tensions of the Mostow rigidity to discrete groups of infinite covolume. Section 7
lays the foundation for further study. The sequels [Yu3], [Yu4] represents, more or
less, the completion of our program.

1. Gromov’s metric and three other metrics at infinity

(1.1) Notations and definitions, Gromov’s metric. Throughout this paper
we consider a simply connected Riemannian manifold H with bounded negative
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curvature ∞ < −K2
2 ≤ K ≤ K2

1 < 0. As a metric space with respect to the
Riemannian metric d, it is geodesic and hyperbolic in the sense of Gromov ([G]).
Fix a base point x0 ∈ H and consider the Gromov product

(x · y)x0 ,
1

2
(d(x, x0) + d(y, x0)− d(x, y)).

A sequence of points (xn) in H is said to be converging to infinity if (xn ·xm)x0 →∞
as n,m → ∞. Two such sequences (xn) and (yn) are equivalent if and only if
(xn · yn)x0 →∞ as n→∞. The set of all such equivalence classes is defined to be
the ideal boundary of H and is denoted by ∂H.

In order to study the asymptotic geometry of ∂H, Gromov introduced the fol-
lowing metric on the boundary. Let ε > 0 be a positive number. For each curve
σ : [t1, t2]→ H define the ε-length

`ε(σ) =

∫ t2

t1

e−εd(x0,σ(t)) dt.

For any two points x, y ∈ H, the Gromov metric is defined to be (the infimum
is taken over all continuous curves connecting x, y)

|x− y|εx0
= inf

σ
`ε(σ).

There exists a constant ε0 = ε0(K2) > 0 such that for all 0 < ε < ε0 the Gromov
metric is a distance and moreover one has(see for example [G] and the references
there):

(i) The identity map (H, d) ↔ (H, | · |εx0
) extends continuously to a homeomor-

phism H̄ ↔ H̄ε, where H̄ = H ∪ ∂H and H̄ε is the metric completion of
(H, | · |εx0

). Thus in particular, | · |εx0
defines a metric on ∂H.

(ii) Every isometry γ of H induces a | · |εx0
-Lipschitz map on (∂H, | · |εx0

). For each
ζ ∈ ∂H, there exists a neighborhood U 3 ζ and a constant C = C(K1, ε) so
that for all y1, y2 ∈ U ,

C−1eερx0,ζ
(γ−1x0) ≤

|γy1 − γy2|εx0

|y1 − y2|εx0

≤ Ceερx0,ζ
(γ−1x0),

where ρx,ζ(y) is the Busemann function at ζ with ρx,ζ(x) = 0.

(1.2) Three other metrics. We introduce three other metrics at infinity sug-
gested by Kaimanovich ([K]). They are all equivalent to the Gromov metric. In
many of our later arguments, some prefer one particular metric, some prefer an-
other. We will exploit them correspondingly.

(1.2.1) The shadow metric. Fix a point x0 ∈ H and for ζ, η ∈ ∂H define

`x0(ζ, η) , sup{t|t ≥ 0, d(γx,η(t), γx,η(t)) ≤ 1},
ρεx0

(ζ, η) , e−ε`x0(ζ,η),

where γx,ζ(t) and γx,η(t) are the geodesics starting from x and pointing to ζ, η.
This metric is called the shadow metric.
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(1.2.2) The Busemann metric. Consider the Busemann cocycle βx(ζ, η) , ρx,ζ(y)+
ρx,η(y) where y belongs to the geodesic γ from ζ to η. It is easy to see that the
definition does not depend on the choice of y and geometrically, βx(ζ, η) is the
length of the segment on γ cut out by the horospheres passing through x and
centered at ζ, η. The Busemann metric is defined to be

Bεx0
(ζ, η) , e− 1

2 εβx0(ζ,η).

(1.2.3) The geodesic metric. For any two points ζ, η ∈ ∂H consider the geodesic γ
from ζ to η and let Dx0(ζ, η) be the distance from x0 to γ. The geodesic metric is
defined to be

dεx0
(ζ, η) , e−εDx0(ζ,η).

Proposition (1.2.1) ([C], [K]). There exist ε0 = ε0(K1) > 0 and C = C(K1,K2)
> 0 such that ρεx0

(·), Bεx0
(·), dεx0

(·) are distances for all 0 < ε ≤ ε0. Moreover, for

all x0 ∈ H and ζ, η ∈ ∂H and for any two distε,1x0
, distε,2x0

of the above four metrics

C−1 ≤
distε,1x0

(ζ, η)

distε,2x0
(ζ, η)

≤ C.

Among the four metrics defined above, there is a special one: the Busemann
metric Bεx0

. All isometries of H act on (∂H,Bεx0
) as conformal maps under this

metric.

Proposition (1.2.2). Each isometry γ on H induces a conformal map on ∂H
under the metric Bεx0

.

Proof. Given any two points ζ, η ∈ ∂H, it is easy to see that

Bεx0
(γζ, γη) = e−

1
2 ε[ρx0,γζ

(γx0)+ρx0,γη(γx0)]Bεx0
(ζ, η).

For each δ > 0 there is a neighborhood V of ζ in ∂H such that for all η ∈ V , we
have

1− δ ≤ e ε2 [ρx0,γζ
(γx0)+ρx0,γη

(γx0)]/e−ερx0,γζ
(γx0) ≤ 1 + δ.

Thus for all η ∈ V we have (1− δ)e−ερx0,γζ
(γx0) ≤ Bεx0

(γζ,γη)

Bεx0
(ζ,η) ≤ (1 + δ)e−ερx0,γζ

(γx0)

and the proposition follows.

2. The action of Γ on ∂H, quasi-invariant measures

(2.1) The topological trichotomy ([E-O’N]). Let Γ be a torsion free discrete
isometry group acting on H freely and properly discontinuously. For any point x
in H consider the orbit Γx and its closure Γx under the Gromov metric. The limit
set of Γ is defined by L(Γ) , Γx ∩ ∂H. According to Eberlein and O’Neil, one of
the following possibilities must occur (the topological trichotomy):

(i) L(Γ) is a singleton. Every element of Γ is parabolic with a common fixed
point.

(ii) L(Γ) consists of two points ζ, η. Γ is infinite cyclic and every element of Γ is
hyperbolic with the common axis γ(ζ,η).

(iii) L(Γ) is infinite.

We will call Γ Fuchsian if its limit set satisfies (iii). From now on we always
assume Γ to be a Fuchsian group.
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(2.2) The action of Γ on ∂H (see [G] [C]). The following theorem is due to
Gromov.

Theorem (2.2.1). L(Γ) is the unique Γ-invariant minimal closed set of ∂H.

As corollaries of Gromov’s theorem, we have:

(i) The Γ-orbit of each ζ ∈ L(Γ) is dense in L(Γ).

(ii) Fixh , { fixed points of hyperbolic elements in Γ} is dense in L(Γ).

(iii) Fixp , {fixed points of parabolic elements in Γ} is either empty, or dense in
L(Γ).

(iv) L(Γ) is a perfect subset of ∂H. Either L(Γ) = ∂H or L(Γ) is nowhere dense
in ∂H.

We define the ordinary set of Γ by O(Γ) = ∂H \L(Γ). It is well-known that the
action of Γ on H∪O(Γ) is properly discontinuous ([E-O’N]). The Kleinian manifold
associated to Γ is defined to be M = (H ∪ O(Γ))/Γ. The following definition is
extremely useful when studying the ergodic properties of Γ.

Definition (2.2.2). The radial limit set Lr(Γ) is the set of all ζ ∈ L(Γ) such
that any geodesic ray joining x ∈ H and ζ intersects some ε-neighborhood of Γx
infinitely many times.

Obviously Lr(Γ) is non-empty and hence it is dense in L(Γ) by (i).

(2.3) Quasi-invariant measures of Γ on ∂H. Our objective in this paper is
to study the ergodic theory of Fuchsian groups, in connection with the geometry
of the Fuchsian manifold M = H/Γ and the dynamics of the geodesic flow. The
following proposition clarifies one fundamental fact.

Proposition (2.3.1). There is no finite invariant measure for the action of Γ on
L(Γ).

Proof. Let γ be a hyperbolic element in Γ with fix points γ−, γ+ (its existence
follows from the above discussion). Then any finite Γ-invariant measure µ is first of
all γ-invariant and by the hyperbolicity of γ, µ must be supported on γ−, γ+. The
orbits Γγ− and Γγ+ are both infinite ⇒ µ is infinite. This is a contradiction.

This proposition tells us that instead of invariant measures, we should look for
special quasi-invariant measures which are related to the geometry of the manifold
and the action of the group. Therefore we introduce the following definition:

Definition (2.3.2). A family of finite Borel measures {mx}x∈H on ∂H is called
an f -density of Γ for a measurable function f : H ×H × ∂H → R if for all points
x, y ∈ H the measures mx,my are equivalent with Radon-Nikodym derivatives

dmy

dmx
(ζ) = f(x, y, ζ),

for mx-a.e. ζ ∈ ∂H and for all γ ∈ Γ,f(γ−1x, x, γ−1ζ) = f(x, γx, ζ).

Notice that the last condition is equivalent to that mx(A) = mγx(γA) for all
measurable sets A ⊂ ∂H. The following definition introduces probably the two
most important quasi-invariant measures.

Definition (2.3.3). (i) Let Kλ(x, y, ζ) be the λ-Poisson kernel of H (see (4.1)).
If in Definition (2.3.2) f(x, y, ζ) = Kλ(x, y, ζ) then the corresponding Kλ-density
is called a λ-harmonic density of Γ.
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(ii) If f(x, y, ζ) = e−αρx,ζ(y) then the corresponding f -density is called an α-
conformal density of Γ.

(iii) A finite Borel measure m on L(Γ) is called an α-quasi-conformal density of
Γ if there exists some constant C ≥ 1 such that for some x0 ∈ H and for all
γ ∈ Γ

C−1e
−αρ

γ−1x0,ζ
(x0) ≤ d(γ∗m)

dm
(ζ) ≤ Ce−αργ−1x0,ζ

(x0) .

Remark. If {mx}x∈H is an α-conformal density, then mx0 obviously gives rise to a
quasi-conformal density.

3. Conformal densities

(3.1) Conformal densities arising from Hausdorff measure. Let (X, ρ) be
any metric space and D ≥ 0 be a nonnegative constant. Let A be a subset of X .
For each ε ≥ 0 consider

HDε (A) , inf


∞∑
j=1

δDj | A ⊂
⋃
j

Bxj (δj), δj ≤ ε, xj ∈ A


where the infimum is taken among all coverings of A by balls of radius ≤ ε. The
limit measure HDρ (A) = lim

ε→0
HDε (A) is called the D-dimensional Hausdorff measure

of A. The Hausdorff dimension HD(A) is defined to be

HD(A) , inf{D : HDρ (A) = 0} = sup{D : HDρ (A) =∞}.

An easy consequence of this definition is that if 0 < HDρ (A) <∞ then HD(A) = D.
The following statement follows easily from the above definition, Proposition (1.2.1)
and Proposition (1.2.2). Here the Busemann metric is singled out as the favorite
among the four metrics constructed in section 1.

Proposition (3.1.1). Suppose A ⊂ ∂H is an Γ-invariant Borel set with HD/ερ (A)

<∞ where ρ is any of the four metrics |·|εx0
, ρεx0

, dεx0
, Bεx0

. Then HD/ερ defines a D-

quasi-conformal density of Γ on ∂H. In particular, {HD/εBεx0

}x0∈H is a D-conformal

density of Γ.

Later on we will see that in many cases Hausdorff measure is the only way to
produce conformal density.

(3.2) The Patterson-Sullivan construction. Next we generalize Patterson’s
construction of an important conformal density for any Fuchsian group Γ acting on
a manifold of negative curvature. Fix two points x, y in H and for any real number
s > 0, consider the Poincaré series

gs(x, y) =
∑
γ∈Γ

e−sd(x,γy).

Let Sk be the number of the orbit points Γy in B(x, k + 1
2 ) \ B(x, k − 1

2 ); then

gs(x, y) is proportional to
∞∑
k=0

Ske
−ks. Let δ(Γ) be the critical exponent of Γ defined
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by δ(Γ) , lim k→∞
1
k logSk. Then gs(x, y) diverges for s < δ(Γ) and converges for

s > δ(Γ). Consider the family of measures

µsx =
1

gs(y, y)

∑
γ∈Γ

e−sd(x,γy)δγy, s < δ(Γ),

where δ(γy) is the Dirac mass at γy. Using the triangle inequality it is easy to see
that e−sd(x,y)gs(y, y) ≤ gs(x, y) ≤ esd(x,y)gs(y, y). Thus {µsx}0≤s<δ(Γ) is a family

of finite measures with uniformly bounded total mass. Let µx = lim
sj→δ(Γ)+

µ
sj
x be a

weak limit in the space of uniformly bounded measures on H ∪ ∂H. Suppose that
gs(y, y) → ∞ as s → δ(Γ) (this restriction can be eliminated by adding a slowly
increasing weight as in [P] [S1]). Then µx is concentrated on the cluster points of
the orbit Γy ,i.e., the limit set L(Γ). From the construction it is easy to see that
for any other point x′ ∈ H the limit lim

sj→δ(Γ)+
µ
sj
x′ = µx′ also exists and moreover,

the Radon-Nikodym derivative at ζ ∈ L(Γ) satisfies

dµx′

dµx
(ζ) = e−δ(Γ)ρx,ζ(x′).

It is also easy to see that γ∗µx = µγx. So we have proved part (i) of the following
proposition.

Proposition (3.2.1). (i) For any Fuchsian group Γ, there exists a δ(Γ)-confor-
mal density.

(ii) δ(Γ) > 0.
(iii) Suppose Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γ = ∪Γi are subgroups of Γ. Then δ(Γ) =

lim
i→∞

δ(Γi).

Part (ii) is equivalent to Proposition (2.3.1). The proof of (iii) goes exactly like
the proof in Sullivan([S1]).

(3.3) Uniqueness. The weak limit in Patterson’s construction is by no means
unique. The following statement reveals that uniqueness is closely related to er-
godicity.

Proposition (3.3.1). Let {µx}x∈H be any α-conformal density of Γ. Then any
other α-conformal density {νx}x∈H coincides with µ up to a scalar multiplication if
and only if the Γ action on ∂H is ergodic with respect to the measure class defined
by µ.

Proof. 1) If Γ is ergodic with respect to the measure class of µ, consider the
measure σ = 1

2 (µ + ν) which is clearly also an α-conformal density. Since µx
and νx are both absolutely continuous with respect to σx therefore their Radon-
Nikodym derivatives dµx

dσx
, dνx
dσx

exist and are Γ-invariant. By the ergodicity of Γ
these derivatives are equal to positive constants µx-almost everywhere.

2) If Γ is not ergodic with respect to the measure class of µ, then there exists
a Borel Γ-invariant subset A ⊂ ∂H such that for all x ∈ H, µx(A) > 0 and
µx(AC) > 0. Define σx(E) = µx(E ∩A); then it is easy to check that σx is another
α-conformal density.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE ERGODIC THEORY OF DISCRETE ISOMETRY GROUPS 4977

(3.4) Sullivan’s shadow lemma. Fix a point x0 in H. For any x ∈ H and
d > 0 consider the shadow of the ball B(x, d) from x0 to ∂H defined by Ox0(x, d) =
{ζ ∈ ∂H | γx0,ζ ∩ B(x, d) 6= ∅}, where γxo,ζ is the geodesic from x0 to ζ. The
following important result(in the constant curvature case) is due to Sullivan.

Lemma (3.4.1) (Sullivan’s shadow lemma). Let {µx}x∈H be an α-conformal den-
sity of Γ. Suppose µx0 does not consist of a single atom. Then there exist constants
c ≥ 1 and d0 ≥ 0, such that for all d ≥ d0 and γ ∈ Γ one has

c−1e−αd(x0,γ
−1x0) ≤ µx0(Ox0(γ−1x0, d)) ≤ ce−αd(x0,γ

−1x0)+2dα.

Proof. This lemma is actually proved in [C] in the case of Gromov’s hyperbolic
space. For the sake of completeness, we give a simplified proof in our case. The
geodesic distance dεx0

turns out to be favorable for the argument here. Let m0 be

the largest mass of atoms of µx0 and fix any number m such that m0 < m < A ,
µx0(∂H). Then there exists δ > 0 such that all sets in ∂H with dεx0

-diameter≤ δ
have µx0 -measure ≤ m. From the definition of dεx0

it is easy to see that there
exists d0 > 0 such that for all γ ∈ Γ and d ≥ d0, the dεx0

-diameter of the set

γ(∂H\Ox0(g−1x0, d)) is ≤ δ. Therefore we have A−m ≤ µx0(γOxo(γ
−1x0, d)) ≤ A.

On the other hand,

µx0(γOx0(γ−1x0, d)) = µγ−1x0
(Ox0(γ−1x0, d))

=

∫
Ox0 (γ−1x0,d)

e
−αρ

γ−1x0,ζ
(x0)dµx0(ζ)

By the property of the Busemann function ρx,ζ(y) it is easy to see that (compare
also [C]) for all ζ ∈ Ox0(γ−1x0, d),

d(x0, γ
−1x0)− d ≤ ργ−1x0,ζ(x0) ≤ d(x0, γ

−1x0).

Combining the above estimates we obtain the proof of the lemma.

Although the idea of this lemma is simple, it shall play a crucial role in later
studies.

(3.5) The radial limit set. The radial limit set (see (2.2.2) for definition) was
introduced by Hedlund in dimension 2 when he was studying horocyclic transi-
tive points. It also has connection with Diophantine approximation. Here it is
of crucial importance for our study of metric properties (ergodicity, Hausdorff di-
mension,invariant measure . . . ) of Γ. Note that ζ ∈ ∂H is a radial limit point
if and only if for some c > 0 and x ∈ H, ζ belongs to infinitely many shadows
Ox(γx, c), γ ∈ Γ.

Theorem (3.5.1). Let σ be a D-conformal density of Γ. If
∑
γ∈Γ

e−Dd(x0,γ
−1x0) <

∞, then σx0(Lr(Γ)) = 0.

Proof. The idea of our proof is due to Sullivan [S1]. We can write Γ = {γn}n=1,2,···.

Given any ε > 0 there exists N such that
∑
n≥N

e−Dd(x0,γ
−1x0) < ε. By Sullivan’s

shadow lemma, for d ≥ d0,∑
n≥N

σx0(Ox0(γ−1
n x0, d)) ≤ Ce2dDε.
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But for 0 < d ≤ d0 we also have∑
n≥N

σx0(Ox0(γ−1
n x0, d)) ≤

∑
n≥N

σx0(Ox0(γ−1
n x0, d0)) ≤ Ce2d0Dε.

Consequently σx0 [
⋂
N≥1

⋃
n>N

Ox0(γ−1
n x0, d)] = 0 for all d > 0. But as we have already

remarked, Lr(Γ) =
⋃
d>0

(
⋂
N≥1

⋃
n>N

Ox0(γ−1
n x0, d)), so the theorem follows from the

above estimates.

We now begin to study the Hausdorff dimension of the radial limit set Lr(Γ).

Next we use the shadow metric ρ , ρ1
x0

.

Theorem (3.5.2). Let σ be a D-conformal density of Γ. Then there is a constant
C > 0 such that for all A ⊂ Lr(Γ) with positive measure σx0(A) > 0, one has
HDρ (A) ≤ Cσx0(A).

Proof. For σx0 -almost every point ζ ∈ A we have

lim
ε→0

σx0(D(ζ, ε) ∩A)

σx0(D(ζ, ε))
= 1,

where D(ζ, ε) , {η ∈ ∂H | ρ(ζ, η) ≤ ε}. Given δ > 0 there is a subset A′ ⊂ A and
ε0 > 0, d1 > 0 with σx0(A \A′) < δ such that

(i)
σx0 (D(ζ,ε)∩A)

σx0(D(ζ,ε)) ≥ 1− δ for all 0 < ε ≤ ε0 and ζ ∈ A′.
(ii) A′ ⊂

⋂
N≥1

⋃
n>N

Ox0(γ−1
n x0, d1)(Γ = {γn}n≥1 as in (3.5.1)).

Since every point in A′ lies in infinitely many balls Ox0(γ−1
n x0, d1), using a Vitali

type argument, one can construct a union of balls Ox0(γ−1
nk x0, d1), k = 1, 2, · · · ,

which covers σ-almost all of A′, such that their ρ-radius rk satisfies rk < ε < ε0
2

and that the center of O(k) is outside the union
⋃k−1
j=1 O(j), where O(k) is the ball

in ∂H with radius 2rk and with the same center as Ox0(γ−1
nk
x0, d1). Hence the set

Ω =
⋃
k≥1

Ox0(γ−1
nk
x0, d1) is a disjoint union and by the shadow lemma, there exists

a constant C1 such that ∑
k≥1

e−Dd(x0,γ
−1
nk
x0) ≤ C1σx0(Ω).

By the definition of the shadow metric, there exists a constant C2 such that for all

k, rk ≤ C2e
−d(x0,γ

−1
nk
x0). Consequently we get

HDε (A′) ≤
∑
k

rDk ≤ CD2
∑
k

e−Dd(x0,γ
−1
nk
x0) ≤ CD2 C1σx0(Ω).

Letting ε→ 0 we obtain

HD(A′) ≤ CD2 C1σx0(A′)/1− δ ≤ C1C
D
2

1− δ (σx0(A)− δ).

Letting δ → 0 we get HD(A) ≤ C ·σx0(A) for some constant C and the theorem
follows.

Corollary (3.5.3). If there exists a D-conformal density σ of Γ, then the Haus-
dorff dimension of the radial limit set satisfies HD(Lr(Γ)) ≤ D. In particular,
HD(Lr(Γ)) ≤ δ(Γ).
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Proof. If σ(Lr(Γ)) > 0 then the claim follows easily from Theorem (3.5.2). Even
if σ(Lr(Γ)) = 0, we can still construct a cover of Lr(Γ) as in the proof of Theorem
(3.5.2) and have HDε (Lr(Γ)) ≤ Cσx(Ω) for some constant C. But this means that
HD(Lr(Γ)) <∞ and consequently, HD(Lr(Γ)) ≤ D.

Proposition (3.5.4). A radial limit point ζ ∈ Lr(Γ) cannot be the atom of any
d-conformal density µ of Γ.

Proof. Assume that ζ is both a radial point and a atom. Then there exist γi ∈
Γ, i ≥ 1, and x ∈ H so that lim

i→∞
e−ρx,ζ(γix) =∞. If ζ is not a parabolic point, then

we have: ∑
γ∈Γ

e−αρx,ζ(γx) =
∑
γ∈Γ

µx(γ−1ζ)/µx(ζ) ≤ µx(∂H)

µx(ζ)
<∞,

which is a contradiction. If ζ is a point both radial and parabolic, then the stabilizer
Γζ preserves all horospheres centered at ζ. It follows that {γi} contains no two

elements from the same coset of Γ/Γζ . Yet µx(∂H) <∞ implies
∑
e−αρx,ζ(γx) <∞

over a system of cosets representatives of Γ/Γζ . This is again a contradiction.

The following theorem reveals an important property of the radial limit set.

Theorem (3.5.5). Let σ be an α-conformal density of Γ. If A is a Γ-invariant
subset of Lr(Γ) then either σx(A) = 0 or σx(A) = σx(∂H).

Proof. Suppose that σx(A) > 0. For each density point ζ of A there exist a
number C > 0 and a sequence {γ−1

n x} converging to ζ radially such that

σx(Ox(γ−1
n x,C) ∩A)

σx(Ox(γ−1
n x,C))

→ 1 (n→∞).(1)

Let m0 be the largest point mass of σx. Given ε > 0, if C and n are large enough,
then we have

σγ−1
n x(Ox(γ−1

n x,C)) ≥ σx(∂H)−m0 − ε.(2)

Since A is Γ-invariant, we have the following estimates:

σγ−1
n x(Ox(γ−1

n x,C) ∩A)

σγ−1
n x(Ox(γ−1

n x,C))
=
σx(Oγnx(x,C) ∩A)

σx(Oγnx(x,C))

=1−
∫
Ox(γ−1

n x,c)\A e
−αρx,ζ(γ−1

n x)dσx(ζ)∫
Ox(γ−1

n x,c) e
−αρx,ζ(γ−1

n x)dσx(ζ)

≥1− C1
σx(Ox(γ−1

n x, c) \A)

σx(Ox(γ−1
n x, c))

(by the boundedness

of the function ρx,ζ(γ
−1
n x)− ρx,η(γ−1

n x) for ζ, η ∈ Ox(γ−1
n x,C))

≥1− ε (by (1), if n is large enough).

(3)

Combining (2), (3) we get, for n large enough,

σx(A) ≥ σx(Oγnx(x,C) ∩A) ≥ (1− ε)σγ−1
n x(Ox(γ−1

n x,C))

≥ (1− ε)(σx(∂H)−m0 − ε).
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And consequently we get

σx(A) ≥ σx(∂H)−m0.(4)

But if σx has any atom, then it has infinitely many and by (4) at least one of them
lies in A. This is a contradiction to Proposition (3.5.4).

Corollary (3.5.6). Suppose that there exists an α-conformal density of the Fuch-
sian group Γ with σx(Lr(Γ)) > 0. Then we have:

(i) σx(Lr(Γ)) = σx(∂H).
(ii) α = δ(Γ).
(iii) α is the unique δ(Γ)-conformal density of Γ and Γ is ergodic on ∂H with

respect to the measure class of σ.
(iv) Γ is of divergence type.

Proof. (i) follows from Theorem (3.5.5) since Lr(Γ) is Γ-invariant. (ii) follows from
Corollary (3.5.3). (iii) is obvious. (iv) follows from Theorem (3.5.1).

We will see later on in section (5.3) that if Γ is of divergence type, then the
Patterson-Sullivan measure σx satisfies σx(Lr(Γ)) = σx(L(Γ)).

(3.6) The lattice counting function. If x, y ∈ H and r > 0 set the lattice point
counting function

N(r, x, y) = #{γ ∈ Γ | d(x, γy) ≤ r}.

The following theorem will be important for later estimates.

Theorem (3.6.1). For any Fuchsian group Γ there exists a constant C = C(x, y)
> 0 so that N(r, x, y) ≤ Ceδ(Γ)r.

Proof. It is enough to prove N(r, x, x) ≤ Ceδ(Γ)r. Let Γk be the set of γ ∈ Γ
such that k − 1 < d(x, γ−1x) ≤ k. By the shadow lemma, there exist constants
d1 > 0, C1 > 0 such that for all γ ∈ Γk, e−δ(Γ)k ≤ C1µx0(Ox0(γ−1x0, d1)). On
the other hand, there exists a constant C2 > 0 ([C]) such that for all ζ ∈ ∂H,
#{γ ∈ Γk | ζ ∈ Ox0(γ−1x0, d1)} ≤ C2. Therefore we have∑

γ∈Γk

µx0(Ox0(γ−1x0, d1)) ≤ C2µx0(
⋃
γ∈Γk

Ox0(γ−1x0, d1)).

Combining the above estimates we get Sk ≤ C1C2µx0(∂H)eδ(Γ)k, where Sk = #Γk.
Hence we have N(k, x, x) ≤ S1 + · · ·Sk−1 ≤ Ceδ(Γ)k and the theorem is proved.

4. Harmonic densities

(4.1) Preliminaries. A general reference for this section is [A1]. Consider a
Hadamard manifold H of dimension n ≥ 2 with negative curvature −∞ < −K2

2 ≤
K ≤ −K2

1 < 0. Let

λ1 = inf

{∫
M |∇ϕ|2dm∫

ϕ2dm
: ϕ ∈ C∞0 (H), ϕ 6≡ 0

}
be the first eigenvalue of the Laplacian operator 4. Then for each λ < λ1 there
exists a Green kernel Gλ with respect to the operator4λ = 4+λI : Gλ : H×H →
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(0,∞]. Set G = G0; then we have

G(x, y) ≤ Ceβd(x,y)Gλ(x, y), for x, y ∈ H, 0 < λ < λ1,(1)

Gλ(x, y) ≤ Ceβ′d(x,y), for x, y ∈ H, d(x, y) ≥ 1,(2)

Gλ(x, y) ≥ G(x, y) > C−1, for x, y ∈ H, d(x, y) ≤ 1, λ > 0,(3)

where C, β, β′ are positive constants depending only on n,K1,K2 and λ−λ1. More
generally, for each λ′ < λ < λ1 we have

Gλ′(x, y) ≤ Ce−βd(x,y)Gλ(x, y), for x, y ∈ H,(4)

where C, β depend only on K1, K2, n, λ, λ′.
Given any 0 < µ < λ1 and ε > 0, there exists α = α(ε, µ,H) such that for all

0 < λ < λ′ < µ with |λ− λ′| ≤ α,

Gλ(x, y) ≥ e−εd(x,y)Gλ′(x, y), x, y,∈ H, d(x, y) ≥ 1.(5)

For each λ < λ1 let Kλ : H ×H × ∂H → R be the Poisson kernel of 4λ. Then
there is a bijection between the positive4λ-harmonic functions u on H and positive
measures µx on ∂H defined by: u(y) =

∫
M Kλ(x, y, ζ)dµx(ζ). In general, we also

have

Kλ(x, y, ζ) = lim
z→ζ

Gλ(y, z)

Gλ(x, z)
.(6)

Denote by νx the harmonic measure of 4. Then for f ∈ L∞(νx), 0 < λ <
λ1, the map uf,λ(y) =

∫
∂M Kλ(x, y, ζ)f(ζ)dνx(ζ) defines a 4λ-harmonic function

satisfying uf,λ(y) ≤ C‖f‖∞e−αd(x,y), where C,α are positive constants depending
only on n,K1,K2, λ. Each positive 4λ-harmonic function u is a 4λ-potential, i.e.,
u(y) = λ

∫
H
G(x, y)u(x)dx. If ϕλ(y) ,

∫
∂H

Kλ(x, y, ζ)dνx(ζ) then for νx-a.e. ζ ∈
∂H, u(x)

ϕλ(x) is bounded on the geodesic ray
−→
Oζ. If u is a 4λ′ -harmonic positive

function and λ′ < λ, then u(y)
φλ(y) → 0 as y → ζ radially for νx-a.e. ζ ∈ ∂H.

(4.2) Construction of a harmonic density. Consider a Fuchsian group Γ and
M = H/Γ. Denote by λ(Γ) the first eigenvalue of 4 on M ; then λ(Γ) ≤ λ1.
We assume that λ(Γ) < λ1. Then the Green series

∑
γ∈Γ

Gλ(γx, y) diverges for all

λ(Γ) < λ < λ1 and converges for all λ < λ(Γ). According to (4.1) (5), the series∑
γ∈Γ

eεd(x,γx)Gλ(Γ)(γx, y) is divergent for all ε > 0 and y ∈ H\Γ(x). Fix an increasing

sequence Ri → ∞ and a decreasing sequence εi → 0 and consider the following
function h : R+ → R+ : h(R1) = 0, h(t) = εi(t− Ri) + h(Ri) for Ri ≤ t < Ri+1.
If Ri is large enough, then we have∑

γ∈Γ
Ri≤d(γx,x)<Ri+1

eh(d(x,γx))Gλ(Γ)(γx, y) ≥ 1.

Now fix y0 ∈ H \ Γ(x) and consider the following series of measures:

νλy ,

∑
γ∈Γ

eh(d(x,γx))Gλ(γx, y)δγx∑
γ∈Γ

eh(d(x,γx))Gλ(γx, y0)
,
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where δγx is the Dirac measure at γx. Take a weak limit lim
λi→λ(Γ)−

νλiy0
= νy0 (since

νλy0
are probability measures weak limits exist). Then it is easy to see that for any

y ∈ H \Γ(x), lim
λi→λ(Γ)−

νλiy also exists and we denote it by νy. From the construction

and the relation (4.1) (6) we have:

(i) νy is supported on L(Γ).

(ii)
dνy
dνy0

(ζ) = Kλ(Γ)(y0, y, ζ) for all y ∈ H, ζ ∈ L(Γ).

Theorem (4.2.1) (see Ancona [A2]). (i) There exists a λ(Γ)-harmonic density ν
of Γ, where λ(Γ) is the first eigenvalue of Laplacian on M = H/Γ. The following
defined function is a λ(Γ)-harmonic function on M :

ϕν(y) =

∫
Kλ(Γ)(y0, y, ζ)dνy0(ζ).

(ii) If Γ has a fundamental domain D in H with D̄ ∩ L(Γ) = ∅, then the series∑
γ∈Γ

Gλ(Γ)(γx, y) diverges for all y ∈ H, and ϕν is the unique λ(Γ)-harmonic

function on M satisfying ϕν(y0) = 1. If moreover, L(Γ) 6= S∞, then λ(Γ) > 0.

The proof of the following statement is the same as in section (3.3).

Proposition (4.2.2). Let σ be a λ-harmonic density of Γ. Then Γ is ergodic with
respect to the measure class defined by σ if and only if any other λ-harmonic density
coincides with σ up to a scalar multiplication.

(4.3) A version of the Ahlfors theorem for harmonic densities. Let
{νx}x∈H be the family of harmonic measures of the Laplacian 4. Let Γ be a
Fuchsian group. Next we prove a theorem similar to that of Ahlfors for Kleinian
groups ([Ah]). Compare also with Theorem (3.5.5).

Theorem (4.3.1). The harmonic measure νx(Lr(Γ)) of the radial limit set of
any Fuchsian group is either 1 or 0.

Proof. Let χrΓ be the characteristic function of the radial limit set Lr(Γ). Then

ϕ(x) ,
∫
∂M

χrΓ(ζ)dνx(ζ) = νx(Lr(Γ))

defines a Γ-invariant harmonic function with 0 ≤ ϕ(x) ≤ 1.
If νx(Lr(Γ)) is positive, then by Fatou’s radial convergence theorem, there exists

at least one ζ ∈ Lr(Γ) such that lim
t→∞

ϕ(v(t)) = χrΓ(ζ) = 1, where v(t) is a geodesic

ray in H so that v(∞) = ζ. Since ζ ∈ Lr(Γ), there exist sequences {γn} ⊂ Γ
and tn → ∞ such that d(γnv(tn), v(0)) ≤ C where C is a positive constant. By
compactness we can assume moreover that γnv(tn) → x0 ∈ H. The Γ-invariance
and continuity of ϕ imply that ϕ(x0) = 1. Hence ϕ attains a maximum at an
interior point x0 and it has to be the constant function 1.

The following theorem follows from the same idea because the Fatou’s radial
convergence theorem is true for any λ-harmonic function.

Theorem (4.3.2). Let σ be any λ-harmonic density for a Fuchsian group Γ, λ <
λ1. Then either σx(Lr(Γ)) = 1 or σx(Lr(Γ)) = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE ERGODIC THEORY OF DISCRETE ISOMETRY GROUPS 4983

Proof. (Compare our proof with [S1], see also [A2] for more details about the
Fatou theorem.) Let Φ(x) be the total mass of σx. Then Φ is an eigenfunction
of the Laplacian on H with eigenvalue λ. Consider the Φ–process corresponding
to the operator L = 4 + 2 grad log Φ. The transition probability for this process

is PΦ
t (x, y) = eλt Pt(x,y)

Φ(x)Φ(y) (where Pt(x, y) is the heat kernel of 4 on H) and the

Φ-process preserves the measure Φ2(y)dy on H. It is easy to check that the positive
L-harmonic functions are just the functions g

Φ , where g is a positive eigenfunction
of L with eigenvalue λ, and the L-harmonic measures (i.e. the hitting probability
at ∂H of the Φ-biased random motion starting at x ∈ H) are exactly the measures
σx

Φ(x) . By the Fatou theorem, the radial limit of any positive L–harmonic function

exists σx-almost everywhere. The remaining part of the proof is the same as in
Theorem (4.3.1).

Remark. The condition λ < λ1 implies that the operator L = ϕ−1(4 + λI)ϕ is
Greenian. Consequently we can use the Fatou theorem in the above argument.
(See [A2] for the properties of a Greenian operator.)

5. The action of Γ on ∂H × ∂H and the geodesic flow

(5.1) The topological picture. In this section we continue to assume that Γ is a
Fuchsian group. Γ has a natural diagonal action on ∂H × ∂H : γ(ζ, η) = (γζ, γη).
This action is closely related with the geodesic flow gt on SM , the unit tangent
bundle of M = H/Γ. Recall that a point v ∈ SM is called non-wandering if for any
neighborhoodO of v we can find a sequence tn →∞, such that gtnO∩O 6= ∅. From
this definition it is easy to see that v is non-wandering if and only if both v(−∞)
and v(+∞) are in L(Γ). From now on we denote by Ω the set of non-wandering
points in SM . There is a natural identification Ω = [(L(Γ)×L(Γ)\diagonal)×R]/Γ.
We first recall the following two results by Eberlein ([E1]).

Proposition (5.1.1). The action of Γ on L(Γ) × L(Γ) is topologically transitive;
i.e., there exists a dense orbit.

Proposition (5.1.2). Let M = H/Γ be a Fuchsian manifold. Then we have

(1) gt is topologically transitive on Ω.
(2) Periodic vectors are dense in Ω.
(3) Either Ω = SM or Ω is connected and nowhere dense in SM .

These results provides a clear picture of the topological dynamics of the geodesic
flow and the Γ action on its limit set. But the corresponding ergodic theory for the
geodesic flow and the Γ action turns out to be much more complicated. Our main
purpose in this section is to construct geometrically meaningful invariant measures
of the geodesic flow and to study their ergodicity.

(5.2) Invariant measures. Unlike the case of the Γ acting on ∂H, there are
plenty of invariant measures of the diagonal Γ action on ∂H × ∂H. Obviously,
there is a natural one-one correspondence between the following two sets of invariant
measures:

{All gt-invariant measures on SM} 1−1↔ {All Γ-invariant measures on ∂H × ∂H}.

Following [K], [L1], we construct two classes of Γ-invariant measures on ∂H×∂H.
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Proposition (5.2.1). Let σ be any D-conformal density of Γ. Then the measure
dUσx on ∂H × ∂H defined by dUσx (ζ, η) = eDβx(ζ,η)dσx(ζ)dσx(η), where βx(ζ, η) =
ρx,ζ(y) + ρx,η(y) for any point y on the geodesic from ζ to η is a locally finite
invariant measure of the diagonal action of Γ.

Proof. By definition, we have

dUσx (γζ, γη)

d(γ∗Uσx )(γζ, γη)
=

eDβx(γζ,γη)dσx(γζ)dσx(γη)

eDβx(ζ,η)d(γ∗σx)(γζ)d(γ∗σx)(γη)

=
eDβx(γζ,γη)

eDβx(ζ,η)
eD(ργ−1x,ζ(x)+ργ−1x,η(x)) = 1.

Remark. Obviously we have dUσx = dUσy for any x, y ∈ H. In other words, the
measure does not depend on the choice of base points. From now on we will denote
it by dUσ. We denote the corresponding invariant measure of the geodesic flow on
SM by dµσ.

Fix a point o ∈ H. Let σo be an D-conformal density of Γ. For each v ∈ SH, the
following map P : W su(v) −→ ∂H − v(−∞), P (w) = w(∞), is a homeomorphism.
One can first pull the measure σo back to W su(v) by the map P and then define a
measure µsu on W su(v) by

dµsu

d(P ∗σo)
(w) = e−Dρo,w(∞)(w(0)).(5.2.0∗)

It is easy to check that the above equation is well-defined and is Γ-equivariant.
Thus it can be projected to the quotient unit tangent bundle SM to yield a family
of measures on each W su(v) satisfying

g∗t µ
su = eDtµsu.(5.2.1∗)

One then obtains a family of measures µss on leaves of the W ss(v) foliation with
the property that g∗t µ

ss = e−Dtµss via pulling over by the flip map v 7→ −v. Define
the measures µu, µs by

dµu = dµsu × dt, dµs = dµss × dt.(5.2.2∗)
It is easy to see that µu and µs are holonomy invariant and moreover

dµσ = dµu × dµss = dµs × dµsu.(5.2.3∗)
Due to the similarity between the above construction and the Margulis construction
in [M], we call µσ a Bowen-Margulis measure for the geodesic flow on SM .

On the other hand, given any invariant measure µ of the geodesic flow on SM
satisfying (5.2.1∗)(5.2.2∗)(5.2.3∗), one can construct a D-conformal density σ of Γ,
such that µ = µσ (for the construction when Γ is a cocompact lattice, see [L2]).

Next we consider the corresponding construction for harmonic measures.

Proposition (5.2.2). Let σ be any λ-harmonic density of Γ. Then the measure
dΛσx(ζ, η) = Gx(ζ, η)dσx(ζ)dσx(η), where

Gx(ζ, η) = lim
y1→ζ
y2→η

Gλ(y1, y2)

Gλ(x, y1)Gλ(x, y2)
,

is a Γ-invariant measure on ∂H × ∂H.

Proof. By definition, we have
dΛσx

d(γ∗Λσx) (γζ, γη) = Gx(γζ,γη)dσx(γζ)dσx(γη)
Gx(ζ,η)d(γ∗σx)(γζ)d(γ∗σx)(γη) =

Gx(γζ,γη)
Gx(ζ,η) Kλ(γ−1x, x, ζ)Kλ(γ−1x, x, η) = 1 (compare (4.1)).
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Note that the measure Λσx also does not depend on the choice of x. We denote
it by Λσ. We denote the corresponding invariant measure of the geodesic flow on
SM by νσ.

(5.3) Ergodic theory of the infinite Bowen-Margulis measure. Consider a
separable, complete metric space (X, d) and a σ-finite Borel measure µ on X which
is invariant under a continuous flow Ts : X → X . The space X is not necessarily
compact and the measure µ might be infinite. However, we assume that X is locally
compact and that the µ measure of each compact subset of X is finite.

We recall the following Hopf generalization of the Birkhoff ergodic theorem.

Theorem (5.3.1). If f, g ∈ L1(µ), g > 0 and lim
T→0

∫ T
0 g(Tsx)ds = +∞ for µ-a.e.

x in X (such a function g does not always exist), then the limit

h(x) = lim
T→∞

∫ T
0
f(Tsx)ds∫ T

0
g(Tsx)ds

exists µ-almost everywhere and moreover, h is measurable and flow invariant,
gh ∈ L1(µ) and for any bounded, measurable Ts–invariant function v, we have∫
X ghv dµ =

∫
X fv dµ.

The measure µ is said to be Ts ergodic if for any Ts invariant measurable set
A ⊂ X , either µ(A) = 0 or µ(X \A) = 0.

Proposition (5.3.2). If µ is Ts ergodic under the hypotheses of Proposition
(3.3.1), then for almost all x ∈ X, we have

lim
T→∞

∫ T
0
f(Tsx)ds∫ T

0
g(Tsx)ds

=

∫
X
f dµ∫

X g dµ
.

Corollary (5.3.3). If µ is ergodic and A,B are two measurable subsets of X,
µ(A) <∞, µ(B) 6= 0 then we have

lim
T→∞

∫ T
0 χA(Ttx) dt∫ T
0 χB(Ttx) dt

=
µ(A)

µ(B)
.

An important notion for a dynamical system on a noncompact space is the notion
of conservative set.

Definition (5.3.4). A point x ∈ X is called a dissipative point for Ts if for any
compact set A ⊂ X , there exists a t0 > 0 such that Ttx /∈ A for all t ≥ t0. Otherwise
x is called conservative. We denote by CTs and DTs the set of all conservative and
dissipative points in X . The flow Ts is said to be conservative with respect to µ if
µ(DTs) = 0.

Proposition (5.3.5). The conservative set of the geodesic flow gt on SM is ex-
actly the Γ-quotient of (∂H ×Lr(Γ) \ diagonal)×R, i.e., the set of vectors v whose
end asymptotic point v(+∞) is a radial limit point of Γ.

Proof. If v ∈ Cgt , then there exists compact set A ⊂ SM so that gtiv ∈ A for
a sequence ti → ∞. It follows that there exist γi ∈ Γ such that the geodesic v(t)
in the universal covering satisfies v̇(ti) ∈ γiA. Hence v(∞) is a radial limit point.
On the other hand, if v(∞) ∈ Lr(Γ), then v(t) lies in a K-neighborhood of Γx and
thus on SM , gtv returns infinitely often to the K-neighborhood of SxM .
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Proposition (5.3.6). If σ is a D-conformal density of Γ with σ(Lr(Γ)) > 0, then
gt is conservature with respect to the invariant measure dµσ = dUσ dt.

Proof. By Corollary (3.5.6), σ(Lr(Γ)) = σ(L(Γ)). Therefore dµσ has full measure
on the conservative set.

Theorem (5.3.7). Let σ be a D-conformal density of Γ. Then we have

(i) gt is either completely dissipative or completely conservative with respect to
dµσ.

(ii) gt is conservative with respect to dµσ if and only if
∑
γ∈Γ

e−Dd(x,γx) = +∞.

Proof. (i) If dµσ gives positive measure to the conservative set, then σx(Lr(Γ)) > 0
and by (3.5.6) it has full measure ⇒ gt is completely conservative.

(ii) If
∑
γ∈Γ

e−Dd(x,γx) <∞, then by Proposition (3.5.1), σx(Lr(Γ)) = 0 and conse-

quently gt is completely dissipative.

The most difficult part is to show that divergence of the Poincaré series implies
that the geodesic flow is conservative. The idea of our proof is due to Sullivan
([S2]). See also [N] for a nice treatment of the constant curvature case. Fix a point
x ∈ H. Let t0 be the largest point mass of σx. By the proof of (3.4.1), there exists
R > 0 such that for all y ∈ H with d(y, x) > 2R,

σx(41(y)) ≥ 1

2
(σx(∂H)− t0) , C1 > 0,(1)

where 41(y) = {ζ ∈ ∂H | ζ = v(∞), v(0) ∈ B(y,R), v(t) ∈ B(x,R) for some t >
0} (this is because, if R is large enough, then the dεx diameter of ∂H \ 41(y) is
small). Since there are only finitely many γ ∈ Γ such that γ(B(x,R))∩B(x,R) 6= ∅,
we may assume that γ(B(x,R)) ∩ B(x,R) = ∅ for all id 6= γ ∈ Γ without af-
fecting the divergence of

∑
γ∈Γ

e−Dd(x,γx). Denote 42(γx) = {ζ ∈ ∂H | ζ =

v(∞) for some vector v such that v(0) ∈ B(x,R), v(t) ∈ B(γx,R) for some
t > 0}. Then we have σx(γ−1(42(γx))) ≥ C1 by (1) and consequently, σx(42(γx))

= σγ−1x(γ−1(42(γx))) =
∫
γ−142(γx) e

−Dρx,ζ(γ−1x)dσx(ζ). Since ρx,ζ(γ
−1x) ≤

d(γ−1x, x) and moreover, since there exists a universal constant B1 such that
ρx,ζ(γ

−1x) ≥ d(x, γ−1x)−B1 for all ζ ∈ γ−142(γx), we can find a constant A1 > 0
such that

A1e
−Dd(x,γ−1x) ≥ σx(42(γx)) ≥ C1e

−Dd(x,γ−1x).(2)

Denote by Õ the unit tangent bundle of B(x,R) in SH and by O its projection to

SM . Then by (1) (2) and the definition of µσ it is easy to see that A2e
−Dd(x,γ−1x) ≥

µσ[Õ ∩ g−d(x,γx)γ(Õ)] ≥ C2e
−Dd(x,γ−1x) for all γ ∈ Γ, where C2 = C2(H,R,Γ) and

A2 = A2(H,R,Γ) are constants. If we assume that R > 1 and k ≤ d(x, γx) < k+ 1
then we have

C3e
−Dd(x,γ−1x) ≥ µσ[Õ ∩ g−kγ(Õ)] ≥ C−1

3 e−Dd(x,γ−1x),(3)

for some constant C3 = C3(H,R,Γ). From the divergence of the Poincaré series

we get
∞∑
n=1

µσ(Õ ∩ g−n(Γ(Õ))) =∞. Now let En be the event of O ∩ g−n(O) (i.e.,
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the event that a point of O returns to O at time n by the geodesic flow). Then its
probability is given by

P (En) =
µσ(O ∩ g−n(O))

µσ(O)
=
µσ(Õ ∩ g−n(ΓÕ))

µσ(Õ)
.

Notice that P (En+m ∩ En) = P (En)P (En+m | En). Moreover, using the ele-
mentary inequality a1+a2+···+ak

b1+b2+···+bk ≤ max
1≤j≤k

{ajbj }, we can find a γ ∈ Γ, such that

P (En+m | En) =
µσ(Γ(Õ) ∩ gn(Õ) ∩ g−mΓ(Õ))

µσ(Γ(Õ) ∩ gn(Õ))

≤ µσ(γ(Õ) ∩ gn(Õ) ∩ g−mΓ(Õ))

µσ(γ(Õ) ∩ gn(Õ))

=
µσ(Õ ∩ gn(γ−1Õ) ∩ g−m(ΓÕ))

µσ(Õ ∩ gn(γ−1Õ))
.

Let Γ1 = {β ∈ Γ | Õ∩gn(γ−1Õ)∩g−m(βÕ) 6= ∅}. Then by the above argument
there exists a constant C4, C5 such that for each β ∈ Γ1, we have

i) µσ(Õ∩gn(γ−1Õ)∩g−m(βÕ)) ≤ µσ(gnγ−1Õ∩g−m(βÕ)) ≤ C4e
−D(n+d(x,βx)).

ii) µσ(Õ ∩ gn(γ−1Õ)) ≥ C−1
4 e−nD.

Consequently we get

µσ(Õ ∩ gn(γ−1Õ) ∩ g−m(ΓÕ)) ≤
∑
β∈Γ1

C4e
−D(n+d(x,βx))

≤ C4e
−nD

∑
β∈Γ1

e−Dd(x;βx)

≤ C4C5e
−nD

∑
β∈Γ1

µσ(Õ ∩ g−m(βÕ))

≤ C6e
−nDP (Em),

for some constant C6. Therefore we have

P (En+m | En) ≤ C6e
−nDP (Em)

C−1
4 e−nD

= C4C6P (Em).

Thus P (En+m ∩ En) ≤ CP (En)P (Em) for some constant C > 0. By the Borel-
Cantelli lemma (see [S4] for a generalized version) we have P (En infinitely often ) >
0. Combining this and Corollary (3.5.6) we have that almost every x ∈ O is a
conservative point for gt. Hence the theorem is proved.

Corollary (5.3.8). Let σ be a D-conformal density of Γ. Then σx(Lr(Γ)) =
σx(L(Γ)) if and only if

∑
γ∈Γ

e−Dd(x,γx) =∞.

We now begin to study the ergodicity problem. Consider the function τ : SM ⇀
R+, τ(v) = d(v(0), x), where d is the Riemannian metric on M . Let Or = τ−1[0, r].
We want to show that

lim r→∞
1

r
logµσ(Or) <∞.(∗)

If ` is a geodesic passing through B(x, r), then the length of the intersection
`∩B(x, r) is ≤ 2r and we also have d(x, `) ≤ r. By Proposition (1.2.1), there exists
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a constant C1 = C1(H) such that βx(`(−∞), `(∞)) ≤ C1e
2r. Since dµσ(ζ, η) =

eDβx(ζ,η)dσx(ζ)dσx(η)dt we have µσ(Br) ≤ C2re
2Dr, where C2 = C2(H) is a con-

stant and Br denotes the unit tangent bundle of B(x, r). But the ball Br covers Or;
therefore (∗) is proved. Now consider the function ρ = e−(2D+ε)τ for some ε > 0.
We have the following estimates:∣∣∣∣dρρ

∣∣∣∣ ≤ (2D + ε)|dτ | ≤ 2D + ε.

By (∗), ρ ∈ L1(µσ). Hence we have:

Lemma (5.3.9). There exists a positive µσ-integrable function ρ on SM which
satisfies, for some constant C,

ρ(v)− ρ(w)

ρ(w)
≤ Cd(v(0), w(0)).

This lemma allows us to prove an analogy of Hopf’s ergodic theorem for geodesic
flows.

Theorem (5.3.10). If the geodesic flow is conservative with respect to µσ then
it is ergodic with respect to the same measure.

Proof. The idea of our proof is due to Hopf. By the conservative condition we have∫∞
0
ρ(gtv)dt = +∞ for µσ-almost all v ∈ SM . By Theorem (5.3.1), the following

limit,

lim
T→∞

∫ T
0
f(gtv)dt∫ T

0
ρ(gtv)dt

= fρ(v),

exists for each f ∈ L1(dµσ) and µσ-almost all v ∈ SM . The measure µσ is ergodic
if and only if fρ is constant almost everywhere for all f ∈ L1(dµσ). It suffices to
consider only the set of continuous functions f with compact support (they are
dense in L1(dµσ)). For continuous functions it is easy to see that fρ(v) = fρ(w)
if v ∈ W s(w) or v ∈ Wu(w). Hence fρ determines a Γ-invariant function on
∂H × ∂H \ diagonal which is almost everywhere constant on each factor ζ × ∂H
or ∂H × η. Therefore it is constant dUσ-almost everywhere by the Fubini theorem
and the loca product structure of the measure dUσ.

Corollary (5.3.11). If µσ(SM) <∞, then we have:

(1) σ is the unique Γ-conformal density of dimension δ(Γ).
(2) σx(Lr(Γ)) = σx(L(Γ)).
(3) gt is ergodic with respect to µσ.

Proof. Since µσ(SM) < ∞, the Poincaré recurrence theorem implies that µσ-
almost all points v ∈ SM are conservative. Thus σx(Lr(Γ)) > 0 and the corollary
follows from Corollary (3.5.6) and Theorem (5.3.10).

(5.4) A finiteness criterion for the Bowen-Margulis measure. By Corollary
(5.3.11), if the Bowen-Margulis measure µσ for a Fuchsian group has finite total
mass, then it is ergodic and the radial limit set has full measure. The purpose of
this section is to present a finiteness criterion, which, in the constant curvature
case, is due to Sullivan ([S1]). First we prove the following simple lemma.
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Lemma (5.4.1). Let Γ be a Fuchsian group and B a bounded subset of SM . Then
there exists a constant C such that for µσ-almost all v ∈ SM ,

lim
T→∞

1

T

∫ T

0

χB(gtv)dt = C.

Moreover, C = 0 unless µσ(SM) <∞.

Proof. If gt is dissipative then almost all trajectories spend only a finite amount

of time in B; therefore we have lim
T→∞

1
T

∫ T
0 χB(gtv)dt = 0. If gt is conservative then

it is ergodic and by the ergodic theorem, the following limit,

lim
T→∞

1

T

∫ T

0

χB(gtv) dt =
µσ(B)

µσ(SM)
,

exists and is equal to 0 unless µσ(SM) <∞.

Theorem (5.4.2). Let σ be an α-conformal density of Γ. If µσ(SM) =∞, then
lim
T→∞

1
T

∑
d(x,γx)≤T

e−αd(x,γx) = 0.

Proof. We denote a point of SH by v = (ζ, η, t), ζ, η ∈ ∂H and t ∈ R. For
any subset O ⊂ SH and ζ ∈ ∂H we denote Oζ = O ∩Wu(ζ), where Wu(ζ) =

{v ∈ SH | v(−∞) = ζ}. Consider the measure dµζ = eαβx(ζ,η)dσx(η) ds on Oζ .
Let O be the unit tangent bundle of the geodesic ball B(x,R). For ζ ∈ ∂H and
T > 0 consider the function

F (T, ζ) =
1

T
µζ [g

T (Oζ) ∩
⋃

d(x,γx)≤T
γ(0)]/µζ(Oζ).

It satisfies

F (T, ζ) ≤ 1

µζ(Oζ)

∫
Oζ

[
1

T

∫ T+2R

0

χΓO(gtv) dt

]
dµζ(v).

According to Lemma (5.4.1), the integrand tends to zero as T → ∞ for µσ-
almost all v ∈ SM . By the bounded convergence theorem, lim

T→∞
F (T, ζ) = 0 for

almost all ζ ∈ ∂H. On the other hand, we have:

F (T, ζ) =
1

T

∑
d(x,γx)≤T

µζ(g
−T (γO ∩Oζ))
µζ(Oζ)

=
1

Tµζ(Oζ)

∑
d(x,γx)≤T

∫
Oζ

χg−T (γO)(v)eαβx(ζ,η)dσx(η) ds.

If in the last expression we only consider those γ ∈ Γ such that γx is close to the
antipodal ζ′ of ζ with respect to x, then eαβx(ζ,η) is bounded from above and below
and the same is true for the arc length contribution to the measure µσ. Thus for
ε > 0 there exists a constant C1 = C1(ε) such that

F (T, ζ) ≥ C1
1

Tµζ(Oζ)

∑
γ∈Γ

d(x,γx)≤T,|γx−ζ′|x≤ε

σx(Oζ(γx,R)),

where Oζ(γx,R) is the shadow from ζ to ∂H of B(γx,R), | · |x is the Gromov
distance. On the other hand, we can choose 0 < R1 < R2 such that if R1 ≤ R ≤ R2

then we have Ox(γx,R1) ⊂ Oζ(γx,R) ⊂ Ox(γx,R2). We can also choose R1 such
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that if R ≥ R1 then one can apply Lemma (3.4.1) to Ox(γx,R). Hence by the
shadow lemma we obtain

F (T, ζ) ≥ C2

Tµζ(Oζ)

∑
γ∈Γ

d(x,γx)≤T, |γx−ζ′|x≤ε

e−αd(x,γx),

for some constant C2 = C2(R, ε). Since lim
T→∞

F (T, ζ) = 0, we get

lim
T→∞

∑
γ∈Γ

d(x,γx)≤T,|γx−ζ′|x≤ε

e−αd(x,γx) = 0.

Since L(Γ) is covered by a finite number of balls of radius ε centered at points ζ′

antipodal to points ζ, we finish the proof of Theorem (5.4.2).

Theorem (5.4.3). If there is a constant A such that the Poincaré series satisfies∑
γ∈Γ

e−sd(x,γx) ≥ A

s− δ ,

for s > δ = δ(Γ), then µσ(SM) <∞.

Proof. Denote nk = #{γ ∈ Γ|k − 1
2 < d(x, γx) ≤ k + 1

2}. Then by Theorem

(3.6.1), nk ≤ C1e
kδ. Thus for s > δ and some constant C2, we have

∞∑
k=T+1

nke
−sk ≤ C2e

T (δ−s)

s− δ .

If the assumption of the theorem is satisfied, we can choose T0 so large that if
T ≥ T0 then C2

TeT (s−δ) <
A
2 . Therefore for T ≥ T0 we have

1

T

∑
γ∈Γ

d(γx,x)≤T

e−sd(x,γx) ≥ A

(s− δ)T −
C2e

T (δ−s)

T (s− δ) ≥
A

2T (s− δ) .

Now consider a decreasing sequence δn → δ and define Tn = 1
δn−δ . We have for

n large enough

1

Tn

∑
d(x,γx)≤Tn

e−δnd(x,γx) ≥ A

2
.

However, since δn > δ, we also have

1

Tn

∑
d(x,γx)≤Tn

e−δd(x,γx) >
A

2
.

Combining the above estimates and Theorem (5.4.2) we obtain the proof of Theorem
(5.4.3).

Corollary (5.4.4). Under the above assumptions and notation, if nk ≥ Ceδk for
some constant C then µσ(SM) <∞.

Proof. For s > δ, We have
∑
γ∈Γ

e−sd(x,γx) ∼
∑
k≥1

nke
−sk ≥ C

∑
k≥1

e(δ−s)k ≥
C

1−e(δ−s)k ≥
C
s−δ .
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(5.5) Hausdorff dimension and finiteness. Corollary 3.5.3 tells us that the
Hausdorff dimension HD(Lr(Γ)) of the radial limit set is always ≤ δ(Γ). We prove
in this section that if a Fuchsian group has finite Bowen-Margulis measure, then
HD(Lr(Γ)) = δ(Γ).

Theorem (5.5.1). Let σ be the δ(Γ)-conformal density of a Fuchsian group Γ as
constructed in (3.2). If µσ(SM) <∞, then HD(Lr(Γ)) = δ(Γ).

We will need the following two lemmas.

Lemma (5.5.2). Fix w ∈ SM . Let w(0) = x and σ(t, v, w) = d(v(t), w(0)) for
v ∈ SM . If µσ(SM) <∞, then for µσ-almost all v ∈ SM, lim

t→∞
1
tσ(t, v, w) = 0.

Proof. Let τ(v) be the directional derivative of σ(t, v, w) along v(t) at t = 0.
Then |τ(v)| ≤ 1 for all v ∈ SM and since µσ(SM) < ∞, τ(v) is integrable.
Notice that τ(v) = −τ(−v) and that the measure µσ is flip-invariant. So we get∫
SM τ(v)dµσ = 0. By ergodicity we have

lim
T→∞

1

T
[σ(T, v, w) − σ(0, v, w)] = lim

T→∞

1

T

∫ T

0

τ(gtv) dt

=

∫
SM

τ(v)dµσ = 0.

Lemma (5.5.3). If µσ(SM) < ∞ then there exists a compact set K ⊂ Lr(Γ)
such that σx(K) > 0 and moreover, ∀ ε > 0, there exist C = C(ε) and r0 > 0 such
that if ζ ∈ K and 0 < r < r0, then σx(B(ζ, r))/rδ−ε ≤ C, where B(ζ, r) is the
metric ball in ∂H with respect to the geodesic metric dx = d1

x.

Proof. Given t > 0 and ζ ∈ ∂H we define v(t) to be the geodesic ray from x to ζ
and set

Dt,ζ = {y ∈ H̄| the angle between
−−→
v(t)y and

−−−→
xv(t) is ≥ π

2
}.

By the law of cosine ([BGS], see also Corollary 1.1.4 of [B]), there exists a constant
C1 = C1(K1,K2) such that for all y ∈ Dt,ζ , e

d(x,y) ≥ C1e
d(v(t),y)+t. Let γ0x be

the closest Γ-image of x to v(t). Then by the triangle inequality, d(v(t), γx) ≥
d(γ0x, γx)− d(v(t), γx). Thus for s > δ, we have

est
∑

γ∈Γ,γx∈Dt,ζ

e−sd(x,γx) ≤ C−s1

∑
γx∈Dt,ζ

e−sd(v(t),γx)

≤ C−s1 esd(v(t),γ0x)
∑

γx∈Dt,ζ

e−sd(γ0x,γx)

≤ C−s1 esd(v(t),γ0x)
∑
γ∈Γ

e−sd(x,γx).(∗∗)

Let σsx be the measure
∑
γ∈Γ e

−sd(x,γx)D(γx)∑
γ∈Γ e

−sd(x,γx) , where D denotes the Dirac measure.

Then (∗∗) implies that σsx(Dt,ζ) ≤ C−s1 e−stesd(γ0x,v(t)). Letting s → δ(Γ) , δ, we

obtain that σx(Dt,ζ∩∂H) ≤ C−δ1 e−δteδd(γ0x,v(t)). In the case of constant curvature,
it is easy to see that there exists a constant C2 = C2(K1,K2) > 0 such that for all
η on the boundary of Dt,ζ ∩ ∂H, dx(ζ, η) ≥ C2e

−t. In the case of variable negative
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curvature we can still prove prove a similar estimate by using the comparison theo-
rem. See, for example, Lemma 2.4.2 of [B], which ensures the existence of a point p
on the geodesic (ζ, η) such that d(v(t), p) ≤ C = C(π2 ,K1,K2). Thus the distance
from x to (ζ, η) satisfies Dx(ζ, η) ≤ d(x, p) ≤ d(x, v(t)) + d(v(t), p) ≤ t+ C, which
in turn implies an analogous estimate as in the constant curvature case. Writting
r = C2e

−t we have

σx(B(ζ, r)) ≤ C−δ1

(
r

C2

)δ
eδd(γ0x,v(t)) = (C1C2)−δeδd(γ0x,v(t))rδ.

By Lemma (5.5.2), given any ε > 0, there exist t0 > 0 and a compact set K ⊂ Lr(Γ)
such that σx(K) > 0 and such that for all t ≥ t0 and ζ ∈ K, d(γ0x, v(t)) ≤ εt,
where v(t) is the geodesic from x to ζ. This finishes the proof of Lemma (5.5.3).
The proof of Theorem (5.5.1) is standard once we have Lemma (5.5.3).

(5.6) Ergodicity and recurrence for the harmonic measure. Recall that
a Riemannian manifold M is said to be recurrent if almost every Brownian path
starting from any point in M enters every open set infinitely often, or equivalently,
M admits no Green function. A similar notion of recurrence can be stated for any
diffusion process on M . First let us recall the following

Theorem (5.6.1) (Ancona [A2]). Let Γ be a Fuchsian group and M = H/Γ. Let
νx be the harmonic measure at x ∈ H on ∂H or on SxM . The following properties
are equivalent

i) M is recurrent.
ii) For each x ∈ M and νx-almost all v ∈ SxM , the image of the geodesic ray

v(t)t≥0 is dense in M .
iii) νx(Lr(Γ)) = 1.
iv) The action of Γ on ∂H × ∂H is ergodic with respect to the measure νx × νx.

Let λ = λ(Γ) be the first eigenvalue of the Laplacian on M = H/Γ and σ a
λ-harmonic density of Γ. If λ < λ1 then such a σ exists by (4.2). From now on we
assume λ < λ1 and denote by dΛσ the Γ-invariant measure on ∂H×∂H constructed
in Proposition (5.2.2). We also denote by dνσ = dΛσdt the corresponding invariant
measure on SM of the geodesic flow.

Theorem (5.6.2) (Dichotomy). The geodesic flow gt on (SM, νσ) is either

i) completely dissipative (i.e., the random geodesic eventually leaves every com-
pact set forever), or

ii) completely conservative and ergodic. In this case the λ-harmonic density is
unique.

Proof. The conservative dichotomy follows from Theorem (4.3.2). Ergodicity is
treated in the following theorem. Uniqueness follows from Proposition (4.2.2).

Theorem (5.6.3). Assume that the Fuchsian group Γ satisfies λ(Γ) < λ1. Let

νσ be the gt-invariant harmonic measure corresponding to a λ , λ(Γ)-harmonic
density σ. Then the following properties are equivalent.

i) σx(Lr(Γ)) = 1.
ii) σx(Lr(Γ)) > 0.
iii) The series

∑
γ∈ΓGλ(γx, y) diverges for y ∈ H \ Γx.

iv) The geodesic flow is ergodic with respect to νσ.
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Proof. The equivalence i) ⇔ ii) follows from Theorem (4.3.2). To prove iii) ⇒ iv):
Recall the Φ-process in the proof of Theorem (4.3.2). The following argument of
Sullivan ([S1]) for the constant curvature case works just as well for the variable
curvature case. The divergence of the series

∑
γ∈ΓGλ(γx, y) implies that the quo-

tient Φ-process on M is recurrent. Then the recurrence property for the quotient
Φ-process implies that combined action of Γ and time shift on the space of biinfinite
paths of the Φ-process is ergodic, which easily implies the ergodicity of the geodesic
flow on (SM, νσ). To prove i) ⇒ iii): If the series

∑
γ∈ΓGλ(γx, y) converges then

it defines a Green function for the operator L (see Theorem (4.3.2)) on M . Thus
the Φ-process is transient, which contradicts i). Finally, the implication iv) ⇒ i) is
obvious.

Corollary (5.6.4). If Γ has a fundamental domain D in H with D̄ ∩ L(Γ) = ∅,
then the geodesic flow is ergodic with respect to νσ.

Proof. This follows from Theorem (4.2.1).

6. Geometrically finite groups and convex cocompact groups

(6.1) Definitions and basic properties. We continue to assume that Γ is a
Fuchsian group of a simply connected Riemannian manifold of pinched negative
curvature. Let L(Γ) be the limit set and O(Γ) = ∂H \ L(Γ) be the ordinary set.
The Kleinian manifold associated to Γ is defined to be M̄Γ = H ∪ O(Γ)/Γ. The
Gromov geodesic hull of Γ is defined to be G(Γ) = (L(Γ)× L(Γ) \ diagonal )×R,
i.e., the union of all geodesics γ in H with γ(−∞), γ(∞) ∈ L(Γ). Generally, G(Γ) is

not a convex set. But it is a subset of the convex hull H(Γ) , the smallest convex

set in H̄ containing L(Γ). It is well-known that G(Γ) ∩ ∂H = L(Γ) and that G(Γ)
is an ε-convex set for some ε > 0; i.e., for all geodesic segments γ : [a, b]→ H with
γ(a), γ(b) ∈ G(Γ), one has d(γ(t), G(Γ)) ≤ ε for all a ≤ t ≤ b (Gromov [G]). Let
p ∈ L(Γ) be a parabolic fixed point and let Γp be the maximal parabolic subgroup
of Γ fixing p.

Definition (6.1.1). A parabolic fixed point p ∈ L(Γ) is said to be bounded if
(L(Γ)\{p})/Γp is compact. An end of the Kleinian manifold M̄Γ is called a parabolic
end if it is associated to a bounded parabolic point.

Theorem (6.1.2). The following properties are equivalent (see [B]):

i) M̄Γ has finitely many ends, each a parabolic end.
ii) L(Γ) = Lr(Γ)∪ { bounded parabolic fixed points }.
iii) H(Γ)/Γ∩ thickε(M) is compact for some 0 < ε < ε(K1,K2), where ε(K1,K2)

is the Margulis constant and thickε(M) = {x ∈M | inj(x,M) ≥ ε/2}.
iv) For some ε > 0, the ε-neighborhood of H(Γ)/Γ in M has finite volume.

Definition (6.1.3). A Fuchsian group Γ is called geometrically finite if it satisfies
any one of the above properties.

Definition (6.1.4). i) Γ is said to be geodesic cocompact ifG(Γ)/Γ is compact.
ii) Γ is said to be convex cocompact if H(Γ)/Γ is compact.

It is easy to see that a convex cocompact group is always geometrically finite.
A geometrically finite group is convex cocompact if and only if it has no parabolic
elements.
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Proposition (6.1.5). A Fuchsian group Γ is convex cocompact if and only if it is
geodesic cocompact.

Proof. Since the Gromov geodesic hull G(Γ) is always a subset of the convex hull
H(Γ) of Γ, hence we have the easy implication that convex cocompact ⇒ geodesic
cocompact. By a theorem of Anderson ([And]), for any compact subset W in the
ideal boundary of a Hadamard manifold H with pinched negative curvature, the
geodesic hull G(W ) admits a convex neighborhood in H lying within a bounded
distance from G(W ). It follows that geodesic cocompact⇒ convex cocompact.

Proposition (6.1.6). If Γ is convex cocompact, then we have:

(i) Lr(Γ) = L(Γ).
(ii) Let D be any convex fundamental domain of Γ in H (for example, the Dirichlet

domain). Then D̄ ∩ L(Γ) = ∅.

Proof. (i) Assume that ζ ∈ L(Γ). Let γ(t) be a geodesic satisfying γ(∞) = ζ and
γ(−∞) ∈ L(Γ). Then γ ⊂ G(Γ). Let D be a compact fundamental domain of Γ
acting on G(Γ). Then there exists a sequence {γn}n≥0 ⊂ Γ such that γ ⊂ ∪n≥0γnD.
This implies that ζ is a radial limit point.

(ii) Assume that ζ ∈ D̄ ∩ L(Γ). Since D is convex, there exists a geodesic ray
σ joining x in D to ζ. Since ζ is a radial limit point ((i)), γn(σ) ∩ K 6= ∅ for a
infinite sequence of γn ∈ Γ and a compact set K ⊂ H, which contradicts the proper
discontinuity of Γ.

The following theorem exhibits a fine property of convex cocompact groups.

Theorem (6.1.7) ([C]). Any convex cocompact Fuchsian group Γ is a hyperbolic
group in the sense of Gromov.

(6.2) The conformal density of a convex cocompact group as a Hausdorff
measure and a lattice counting formula. Suppose that Γ is convex cocompact.
By Proposition (6.1.6), Lr(Γ) = L(Γ). Thus according to Corollary (3.5.6), we have:

i) Γ has a unique conformal density σ of dimension δ = δ(Γ) and the Γ action
on L(Γ) is ergodic with respect to σ.

ii) Γ is of divergent type, i.e.,
∑
γ∈Γ e

−δ(Γ)d(x,γx) =∞.

The following theorems, which were proved in [C] for hyperbolic groups, are
clearly true under our set up.

Theorem (6.2.1) ([C]). Let B(ζ, r) be the ball on ∂H with respect to any one of
the four metrics defined in section 1. There exists a constant C ≥ 1 such that for
all ζ ∈ L(Γ) and r ≥ 0,

C−1rδ ≤ σx(B(ζ, r)) ≤ Crδ .

Corollary (6.2.2) ([C]). Let Hδ be the δ-dimensional Hausdorff measure with re-
spect to any one of the above four metrics. There exists a constant C ≥ 1 such that
for all A ⊂ L(Γ),

C−1Hδ(A) ≤ σx(A) ≤ CHδ(A).

The following theorem shows that the δ(Γ)-conformal density of a convex co-
compact group Γ is exactly the δ-dimensional Hausdorff measure associated with
the Busemann metric.
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Theorem (6.2.3). The δ-dimensional Hausdorff measure HδBx with respect to the

Busemann metric Bx gives rise to a δ-conformal density of Γ and HδBx = Kσx for
some constant K.

Proof. This follows from Proposition (3.1.1) and the uniqueness of the δ(Γ)-dimen-
sional conformal density for a convex cocompact group.

In [C], Coornaert also proved the following result.

Theorem (6.2.4)([C]). Let nx(R) = #{Γx ∩ B(x,R)}. Then there exists a con-
stant C ≥ 1 such that

C−1eδR ≤ nx(R) ≤ CeδR.

We provide an exact formula in the following

Theorem (6.2.5). Let Γ be a convex cocompact group. Let σ be the δ(Γ)-conformal
density and c(x) = σx(∂H). Let N(x, y,R) = #{Γx ∩ B(y,R)}. Then there is a
constant C > 0 such that for all x, y ∈ H,

N(x, y,R) ∼ Cc(x) · c(y)eδR.

Proof. In his thesis ([M, Theorem 8, p.99]), Margulis proved that if Γ is cocompact,
then

N(x, y,R) ∼
µ̃SxM(SxM)µ̃SyM (SyM)

µ(SM)

∫ R

0

ehtdt,

where h is the topological entropy, µ is the Bowen-Margulis measure, µ̃SxM is a
measure he constructed via the following process ([M] p. 83–85):

Let Uk =
⋃n(k)
i=1 P

(k)
i be a finite open cover of the unit tangent sphere SxM .

Each P
(k)
i has a W su × W s-local product structure with diameter ≤ 1

k . Then
by sliding the Margulis measure on a close W su-piece along W s leaves to SxM
(taking care of the intersections) we obtain a measure µk on SxM . Then any weak
limit of {µk} as k → ∞ gives us the measure µ̃SxM . Now assume that we are in
the convex cocompact case and recall the Margulis measure along W su-leaves we
constructed from a conformal density (see (5.2.0∗ )). We can perform a construction
similar to the above cocompact case to obtain measures on unit tangent spheres.
Namely, we can choose a finite open cover Uk of the unit tangent sphere at x. It
is easy to see that if the diameter of the sets in Uk is small, then the measure µk
obtained by sliding as in the cocompact case is close to the conformal density σx.
Consequently, by the uniqueness of the conformal density and the uniqueness of the
Bowen-Margulis measure for convex-cocompact groups, and also by the comment
in front of Proposition (5.2.2), we conclude that the limit measure µ̃SxM of the
measures µk satisfies µ̃SxM = C · σx, where C is a constant which does not depend
on x. In the cocompact case we get N(x, y,R) ∼ C · c(x)c(y)ehR, where c(x) is

the Margulis function c(x) = limR→∞
V ol(S(x,R))

ehR (it seems that Margulis did not
realize this fact in his thesis). Margulis’s argument in the cocompact case depends
only on the local decomposition properties (5.2.1∗)–(5.2.3∗) and the fact that the
Bowen-Margulis measure is mixing. In the convex cocompact case, both properties
are still satisfied(see the next section for the mixing property) and all of Margulis’s
arguments still apply. Hence we have an analogous formula.
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(6.3) Gibbs measures. We continue to assume Γ to be a convex cocompact
group. This is equivalent to saying that the nonwandering set Ω of the geodesic
flow gt on SM = S(H/Γ) is compact. In the terminology of dynamical systems,
the nonwandering set is a compact hyperbolic invariant set and the geodesic flow
satisfies Axiom A. Moreover, by Proposition (5.1.2), gt|Ω is topologically transitive
with dense periodic vectors. Thus the whole theory of thermodynamic formalism
applies here. In particular, for each Hölder continuous function ϕ : Ω → R, there
exists a unique probability measure µϕ on Ω (the so-called equilibrium state of the
function ϕ), which is invariant and ergodic under the geodesic flow and is positive
on non-empty open sets of Ω. If we denote by Pϕ the topological pressure of ϕ and
by hµ the metric entropy of an invariant measure µ. Then we have

Pϕ = supµ∈M(gt)

{
hµ(f) +

∫
ϕdµ

}
,

where M(gt) , {all gt-invariant probability measures on Ω}. The supremum is
achieved uniquely by a measure µϕ which is called the Gibbs measure of the poten-
tial function ϕ. The Gibbs measures satisfy nice properties. For example, for any
ε > 0, there exists Cε > 0 so that for all v ∈ Ω and T ≥ 0,

µϕ(Bv(ε, T )) ≥ Cεe−[Pϕ+
∫ T
0
ϕ(gtv)dt],

where Bv(ε, T ) = {w ∈ Ω|d(gtw, gtv) ≤ ε for all 0 ≤ t ≤ T}.
Theorem (6.3.1). Let σ be the δ = δ(Γ) conformal density of Γ and let µσ be the
gt-invariant measure constructed in (5.2). Then µσ is the unique equilibrium state
of the function ϕ = 0 up to a scalar multiplication. Moreover, µσ maximizes the
topological entropy of the geodesic flow.

Proof. By Theorem (6.2.4) and Corollary (5.4.4), µσ is a finite measure on Ω. On
the other hand, as we remarked in section (5.2), the measure µσ can be described as
dµσ = dµu × dµss = dµs × dµsu, where µi (i = s, u, ss, su) are measures along the
Anosov foliation which are uniformly expanding (or contracting) by the geodesic
flow. By the uniqueness of the finite Bowen-Margulis measure (i.e., measures having
the above local decomposition) on basic hyperbolic sets, µσ must be the unique
measure which maximizes the topological entropy.

By Proposition (6.1.6), the Dirichlet domain D of a convex cocompact group Γ
satisfies D̄ ∩ L(Γ) = ∅. According to Corollary (5.6.4), Γ has a unique λ = λ(Γ)-
harmonic density σ and the geodesic flow gt is ergodic with respect to the measure
νσ.

Theorem (6.3.2). For a convex cocompact group Γ, we have νσ(Ω) < ∞. More-
over, the measure νσ is the unique equilibrium state of the function τ : Ω → R,
τ(v) , d

dt |t=0Kλ(v(0), v(t), v(∞)), where Kλ is Poisson kernel we introduced in
section (4.1).

Proof. We follow a construction of Ledrappier ([L1]). Compare also (5.2). Fix a

point x ∈ H. Using the canonical homeomorphism W su(v)
P→ ∂H \ {v(−∞)}, we

can pull the measure σx back to W su(v) (which is denoted by the same symbol)
and then define a measure νsu(v) on W su(v) by

dνsu

dσx
(w) = Kλ(x,w(0), w(∞)).
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The measure νsu does not depend on the choice of x and is Γ invariant. It transforms
under the geodesic flow via

dνsu

dνsu ◦ g−t (g
tv) = Kλ(v(0), v(t), v(∞)).

Similarly one can construct a family of Γ-invariant measure νss on the W ss leaves
which transforms under the geodesic flow via

dνss

dνss ◦ g−t (g
tv) = Kλ(v(0), v(t), v(∞))−1.

Combining them together we obtain a flow invariant measure dν = dνsu×dνss×dt.
It can be projected to SM since it is Γ-invariant.

On the other hand, consider the function τ0(v) on SM defined by τ0(v) =
lnKλ(v(0), v(1), v(∞)). We claim that τ0 is Hölder continuous. By Theorem
6.2 and Theorem 6.3 in [AS], we see that in order to prove the Hölder regularity of
the Poisson kernel Kλ(x, y, ζ) as a function of ζ, it suffices to check two things:

1) the Hölder structure of ∂H,
2) a Harnack inequality at infinity for the operator L = ∆− λI.

Condition 1) follows naturally from our curvature pinching condition and condition

2) is proved in Theorem 2 of [A3]. Now let µ be any limit point of 1
t

∫ t
0
νsu◦g−sds as

s→∞. According to [Si2], the conditional measures of µ along the W su foliation
are equivalent to νsu. From this it follows that hµ(g1) =

∫
τ0dµ (see [Si1]). We also

have hm(g1) ≤
∫
τ0 dm for any invariant probability measure m (see [LY]). Thus µ

is the unique equilibrium state of τ0 and it must coincide with the measure ν. Since∫ 1

0
τ(gsv) ds = τ0(v), the function τ has the same equilibrium state as τ0 and their

topological pressure is equal to zero. By the description of the measures ν and νσ

it is easy to see that they are absolutely continuous with respect to each other. Let
f(v) = dνσ

dν (v). Since f is gt-invariant and both νσ and ν are gt-ergodic, f must be
a positive constant.

(6.4) Hausdorff dimension of Gibbs measures. We continue to consider a
convex cocompact group Γ. Let G(gt) = { all Gibbs measures, i.e., the equilibrium
states of all Hölder functions on Ω}. Let µ ∈ G(gt). For any measurable partition
ζ subordinate to the strong unstable foliation (see [LY] for definition) there is a

canonical family of conditional measures µζv on ζ(v). Via the projection ζ(v)
P→

∂H : w → w(∞), µζv can be projected to ∂H and by the quasi-invariance of Gibbs
measures under the weak stable foliation, we have that for µ-almost all v, w ∈ SM ,
if P (ζ(v))∩P (ζ(w)) 6= ∅, then the measures P ∗(µζv) and P ∗(µζw) are equivalent on
the subset P (ζ(v)) ∩ P (ζ(w)). Thus they define a measure class on ∂H, which we
denote by ∂µ.

Definition (6.4.1). Let ρ be any metric on ∂H. The ρ-Hausdorff dimension of
∂µ is defined to be

HDρ(∂µ) = inf
A⊂∂H

∂µ(∂H\A)=0

HDρ(A).

Theorem (6.4.2). Let µ be a Gibbs measure. Let η be any one of the four metrics
defined in section 1. Then the η-Hausdorff dimension of ∂µ is equal to hµ.
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Proof. By a result of L.S. Young ([Y]), it suffices to prove that for ∂µ-almost all

ζ ∈ ∂H, limε→0
log ∂µBη(ζ,ε)

log ε = hµ. By the equivalence of all four metrics and the

definition of ρx, it is enough to prove that

lim
T→∞

logP ∗(µζv){w(∞) | w ∈ SxM, d(gtv, gtw) ≤ 1 for all 0 ≤ t ≤ T}
T

= −hµ,

where d(gtv, gtw) , d(v(t), w(t)) is the Riemannian distance between the two points
v(t) and w(t). According to [LY],

lim
T→∞

1

T
logµζv{w ∈ ζ(v) | d(gtv, gtw) ≤ 1, 0 ≤ t ≤ T} = −hµ.

The proof of the theorem is completed by the following lemma.

Lemma (6.4.3). For any x ∈ H, v ∈ SH, consider the metric ρx which is in-
troduced in section 1, and the metric ηv on ∂H \ {v(−∞)}, which is defined by:

ηv(ζ, η) = e−tv(ζ,η), where tv(ζ, η) , sup{t ≥ 0|d(gtw1, g
tw2) ≤ 1} and w1, w2 are

the unique vectors on W su(v) satisfying w1(∞) = ζ, w2(∞) = η. Then there exist
a neighborhood 4 of v(∞) on ∂H and a constant C > 0 such that for all ζ, η ∈ 4,
C−1ηv(ζ, η) ≤ ρx(ζ, η) ≤ Cηv(ζ, η).

Proof. Assume that x is a point on the horosphere Hsu(v) (which is also the pro-
jection of W su(v) to H). Then we have the following estimates:

(1) There is a constant C1 > 0, such that for the vector v1 ∈ SxM with v1(∞) =
ζ, we have d(gtw1, g

tv1) ≤ C1e
−K1t, and for the vector v2 ∈ SxM with

v2(∞) = η, we have d(gtw2, g
tv2) ≤ C1e

−K1t.
(2) There exists a constant C2 > 0, such that C2

−1eK1t ≤ d(gtw1, g
tw2) ≤

C2e
K2t.

Assuming that d(gt0v1, g
t0v2) = 1, we obtain |d(gt0w1, g

t0w2)− 1| ≤ 2C1e
−K1t0 .

Combining this and (2) we get the proof of the lemma.

(6.5) Lattices. Unlike the convex cocompact case and the constant curvature
case, we do not have a clear picture for the ergodic theory of geometrically finite
Fuchsian groups. This is partly due to the fact that the asymptotic geometry along
different cusps could behave differently. Let us consider the simplest case when Γ is
a non-uniform lattice. Then M = H/Γ is diffeomorphic to the interior of a compact

manifold with boundary. We have a Margulis decomposition M = M0 ∪
⋃k
i=1Mi,

where M0 is the compact part and Mi = Ni × (0,∞), Ni = Li/Γζi with Li a
horosphere at ζi ∈ ∂H and Γζi ⊂ Γ a maximal parabolic subgroup fixing ζi. Each
Ni is a C2-codimension 1 compact submanifold of M .

From now on, we make the following assumption (∗ ∗ ∗): for some (and hence

for all) x ∈ H, limR→∞
v(x,R)
ehR

= c1(x) for some constant h > 0 (here v(x,R) =
Vol(B(x,R))). This condition is satisfied in the following two cases:

(1) H is a symmetric space (in this case c1(x) is constant for all x).
(2) H has a compact quotient (in this case, c1(x) is a bounded function on H).

Let Γ be any lattice on H satisfying (∗ ∗ ∗). Then it is easy to see that δ(Γ) = h.
Moreover, we have

Theorem (6.5.1). For any Hadamard manifold H of pinched negative curvature
satisfying (∗ ∗ ∗) and a lattice Γ of H, the lattice counting function N(x, y,R) =
#{Γy ∩B(x,R)} satisfies N(x, x,R) ≥ cehR for some constant c.
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Proof. Let D be the Dirichlet region of Γ at x. Then D consists of a com-
pact part and finitely many cusps. Given ε > 0, there exists r0 > 0 such that
Vol(D \D(r0)) ≤ ε, where D(r0) = D ∩ B(x, r0). We can also choose r0 so that,
for r ≥ r0, v(x, r) ≥ [c1(x)− ε]ehr. Then for all R ≥ r0 we have

v[B(x,R) ∩ Γ(D(r0))] = v(x,R)− v(B(x,R) ∩ Γ(D \D(r0)))

≥ (c1 − ε)ehR −
∫
D−D(r0)

N(R, x, y) dy ≥ (c1 − ε)ehR − c2.

The last inequality is due to, according to Theorem (3.6.1), N(R, x, y) ≤ c2ehR for
some constant c2 > 0. Thus v(D(r0)) ·N(R+ r0, x, x) ≥ (c1 − ε− c2ε)ehR.

Theorem (6.5.2). Let H be a Hadamard manifold satisfying (∗ ∗ ∗), let Γ be a
discrete isometry group of H, and let σ be the δ(Γ)-conformal density of Γ. Then
we have:

(1) µσ(SM) <∞.
(2) gt is ergodic with respect to µσ.
(3) The Poincaré series diverges at δ = δ(Γ) = h.
(4) The Hausdorff dimension of ∂H with respect to any one of the four distances

in section 1 is h.

Proof. This follows from the finiteness critera in Corollary (5.4.4).

Let S(x,R) be the geodesic sphere in H and Sx(R) be its volume. If H satisfies
(∗ ∗ ∗) then it is easy to see that the following limit exists:

lim
R→∞

Sx(R)

ehR
=
c1(x)

h
, c(x).

Now consider the measure dσRx (y) =
dmRx (y)
ehR

on S(x,R), where mR
x is the Rie-

mannian volume on S(x,R). Push the measures σRx to infinity via the projection
S(x,R) → ∂H : y → vxy(∞), where vxy(∞) is the point at infinity corresponding
to the geodesic ray from x to y; we obtain a family of uniformly bounded measures
on ∂H which we denote by the same symbol. Let σ̃x = limRi→∞ σ

Ri
x be any weak

limit. Then for any other point y the limit limRi→∞ σRiy = σ̃y also exists and their
Radon-Nikodym derivative satisfies

dσ̃y
dσ̃x

(ζ) = e−hρx,ζ(y).

By the uniqueness of h-conformal density, σ̃x must coincide with σ up to a scalar
multiplication. If we assume moreover that c(x) is a bounded (or L1) function onM ,

then the measurewss on SM defined by
∫
SM

ϕdwss
def
=
∫
M
dx
(∫

SxM
ϕ(x, ζ)dσx(ζ)

)
is a finite measure on SM . The results in [Yu1] can be generalized to the fi-
nite volume case. In the following theorem we normalize the metric such that∫
SM

dwss = 1.

Theorem (6.5.3). Let H be a Hadamard manifold with pinched negative curva-

ture. If limR→∞
v(x,R)
ehR

= c(x) for some bounded or L1 function c(x) on H. Then
we have

1◦. c(x) is smooth.
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2◦. If c(x) is a constant function, then for each x ∈ H, h =
∫
∂H

trU(x, ζ)dσ̄x(ζ),
where σ̄x is the normalized Patterson-Sullivan measure and trU(x, ζ) is the
mean curvature at x of the horosphere Hss(x, ζ) passing through x and with
center ζ.

3◦. h =
∫
SM

trUdwss.

4◦. h2 =
∫
SM (RH(v)−R(v(0)) + Ric(v))dwss, where R(v(0)) is the scalar curva-

ture of M at v(0),Ric(v) is the Ricci curvature, RH(v) is the scalar curvature
of the horosphere Hss(v).

5◦. If dimM = 3, then h2 =
∫
SM(Ric(v)−R(v(0))) dwss.

6◦. If dimM = 2, then h2 =
∫
M
c(x)K(x) dm(x), where K(x) is the sectional

curvature and dm is the Riemannian volume.

On the other hand, without any extra global assumption, we have a fine ergodic
theory for the harmonic measure.

Theorem (6.5.4). Let Γ be a lattice and σx be the unique harmonic measure on
∂H. Let νσ be the measure on SM we constructed in Proposition (5.2.2). Then the
geodesic flow is ergodic with respect to νσ.

Proof. According to Theorem (6.1.2) ii), ∂H = Lr(Γ) ∪ {bounded parabolic fixed
points}. Since the set of all parabolic fixed points of Γ on ∂H is countable and the
harmonic measure σx has no atom ([KL]), the σx(Lr(Γ)) has full measure. Hence
νσ must be ergodic by Theorem (5.6.3).

Next we give a proof of Theorem G in the introduction. Actually Ratner’s
argument in [R] for the SL(2, R) case can be translated verbatim as soon as the
invariant (after a reparametrization) measure µσ of the horocycle flow is finite, plus
the following observations:

(1) Property (1.2) of [R] is ensured by the corresponding property of the Margulis
conditional measure (see section 5.2).

(2) The orbit closure property of the horocycle flow follows from Theorem 5.5 of
[E2].

(3) For the proof of uniform distribution of horocycle orbits, one needs the prop-
erty that if htv is not a closed orbit, then there exists a compact set K ⊂ SM
and a sequence tn → ∞ such that gtnv ∈ K for all n = 1, 2, . . . . This is
equivalent to the following fact: if v(∞) is not a parabolic fixed point, then
it is a radial limit point. This fact is guaranteed by our Theorem (6.1.2) ii).
Compare also the proof of Theorem (6.5.4) and the discussion there.

(6.6) Bottom of spectrum, the connection between δ(Γ) and λ(Γ). Let Γ
be any Fuchsian group and let 4M be the Laplacian operator on L2(M). Then the
bottom spectrum λ(Γ) of the Laplacian 4M can be described as the maximum of
all λ such that (4M + λ)−1 converges. This is equivalent to saying that the kernel
gλ(x, y) =

∫∞
0 etλHt(x, y) dt converges for x 6= y, where Ht(x, y) =

∑
γ∈Γ Pt(x̂, γŷ)

and Pt is the heat kernel in H and x̂, ŷ are lifts of x, y in H. Since the Green function
Gλ of the operator L = 4 + λ in H is equal to Gλ(x̂, ŷ) =

∫∞
0 etλPt(x̂, ŷ) dt, we

have gλ(x, y) =
∑
γ∈ΓGλ(x̂, γŷ). Hence λ(Γ) is the supremum of those λ for which∑

γ∈ΓGλ(x, γy) converges for all x 6= y, x, y ∈ H. Also δ(Γ) is the supremum

of those s for which the series
∑
γ∈Γ e

−sd(x,γy) diverges. In the general variable
curvature case, since one does not have a simple qualitative connection between
Gλ(x, y) and e−d(x,y), one should not expect that δ(Γ) and λ(Γ) can be related
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by any equality or inequality. This question is completely settled in the constant
curvature case by Sullivan ([S3]) and in the symmetric space case by Corlette ([Co]).
We want to point out that their results can be generalized to any H which is
harmonic with a compact quotient.

Theorem (6.6.1). Let H be a simply connected harmonic manifold with pinched
negative curvature and a compact quotient. Let Γ be any Fuchsian group of H.
Then we have:

(i)

λ(Γ) =

{
1
4h

2, if δ(Γ) ≤ h
2

δ(Γ)(h− δ(Γ)), if δ(Γ) ≥ h
2

, where h = lim
R→∞

log VolB(x,R)

R
.

(ii) M is λ(Γ) recurrent (i.e.
∫∞

0
etλ(Γ)Ht(x, y) dt = ∞) if and only if δ(Γ) ≥ h

2
and the Poincaré series diverges at s = δ(Γ).

Proof. (i) If H is harmonic with a compact quotient, then it is asymptotically
harmonic ([Yu2]) and consequently, there are positive λ-harmonic functions which
satisfy ϕ(x, y) = ϕ(R), R = d(x, y) and moreover

ϕ̈(R)− A′(R)

A(R)
ϕ̇(R) + λϕ = 0,

where A(R) =the area of the geodesic sphere S(x,R).
For R near 0 and infinity respectively, this equation becomes

R = 0 : ϕ̈(R)− n

R
ϕ̇(R) + λϕ = 0, n = dimH.

R = ∞ : ϕ̈(R)− hϕ̇(R) + λϕ = 0,(
by asymptotic harmonicity, lim

R→∞

A′(R)

A(R)
= h

)
.

By the same argument as in [S3], it is easy to see that the Green kernel Gλ(x, y)
satisfies

Gλ(x, y) ∼ e
−
(
h
2 +

√
h2

4 −λ
)
d(x,y)

.

Thus λ(Γ) is the supremum of all λ such that the series∑
γ∈Γ

e
−
(
h
2 +

√
h2

4 −λ
)
d(x,y)

converges for x, y ∈ H. If δ(Γ) ≤ h
2 , then the above series converges for all 0 ≤

λ < h2

4 and consequently λ(Γ) = h2

4 . If δ(Γ) > h
2 then it is easy to see that the

supremum value of λ such that h
2 +

√
h2

4 − λ ≥ δ(Γ) is exactly λ = δ(Γ)(h− δ(Γ)).

(ii) follows easily from (i).

Remark. Recall that in the construction of the λ(Γ)-harmonic density (see section

(4.2)), one requires that λ(Γ) < h2

4 . If H is a harmonic manifold then the harmonic
density coincides with the conformal density and it provides no new information.
Only for non-harmonic manifolds does the harmonic density bring new information
about the bottom spectrum.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5002 CHENGBO YUE

We end this section by recalling extraordinary rigidity properties for the discrete
isometry groups acting on quaternionic hyperbolic space Hn

H or the Cayley plane
H2
Ca

.

Theorem (6.6.2) (Corlette [Co]). (i) If Γ is a Fuchsian group on Hn
H, n ≥ 2,

then δ(Γ) = 4n+ 2 or δ(Γ) ≤ 4n. If δ(Γ) = 4n+ 2, then Γ is a lattice.
(ii) If Γ is a Fuchsian group on H2

Ca
, then δ(Γ) = 22 or δ(Γ) ≤ 16. If δ(Γ) = 22

then Γ is a lattice.

7. Mostow rigidity in a general setting

(7.1) Nonsingularity, cross ratio, and conformality. Suppose that M1 =
H1/Γ1 and M2 = H2/Γ2 are two Fuchsian manifolds. Assume that ϕ : Γ1 → Γ2 is
a homomorphism and Φ : Λ1 = L(Γ1) → Λ2 = L(Γ2) is a Borel map conjugating
the action of Γ1 to that of Γ2: Φ(γζ) = ϕ(γ)(Φ(ζ)) for all γ ∈ Γ1 and ζ ∈ Λ1.
For any Hadamard manifold H we define, for x ∈ H and ζ1, ζ2, ζ3, ζ4 ∈ ∂H, the
function

rx(ζ1, ζ2, ζ3, ζ4) =
e−βx(ζ1,ζ2)e−βx(ζ3,ζ4)

e−βx(ζ1,ζ3)e−βx(ζ2,ζ4)
,

where βx is the Busemann cocycle (see (1.2.2)). It is easy to see that rx does not
depend on the choice of the base point x,so we denote it by r. We call r(ζ1, ζ2, ζ3, ζ4)
the cross ratio of ζ1, ζ2, ζ3, ζ4. This cross ratio coincides with the usual cross ratio
in the constant curvature case.

Theorem (7.1.1). Suppose that δ(Γ1) = δ(Γ2) , δ and that Φ is nonsingular
with respect to the δ-conformal densities σ1 of Γ1 and σ2 of Γ2. Suppose also that
the Poincaré series for Γ1 diverges at δ. Then Φ preserves the cross ratio almost
everywhere.

Proof. The idea of the following proof is due to Sullivan ([S2]). The map Φ × Φ
is a measurable conjugacy between the action Γ1 on Λ1 × Λ1 and Γ2 on Λ2 × Λ2.

Let Uσ
i

be the Γi-invariant measure on Λi × Λi that we construct in (5.2). The

(Φ × Φ)∗(Uσ
2

) is a Γ1-invariant measure on Λ1 × Λ1 absolutely continuous with

respect to Uσ
1

(since Φ : (Λ1, σ
1)→ (Λ2, σ

2) is nonsingular). Because the Poincaré
series for Γ1 diverges at δ, the Γ1 action on Λ1 × Λ1 is ergodic with respect to

Uσ
1

. Thus the Γ1-invariant function f = d(Φ×Φ)∗(Uσ
2

)

dUσ1 must be constant almost

everywhere on Λ1 × Λ1. Therefore Γ2 also acts ergodically with respect to Uσ
2

. If

we denote h(ζ) =
dΦ∗(σ2

y)

dσ1
x

(ζ), where x ∈ H1, y ∈ H2, then we have:

d(Φ× Φ)∗(Uσ
2

)(ζ, η) = e−δβy(ϕζ,ϕη)dΦ∗(σ2
y)(ζ)dΦ∗(σ2

y)(η)

= e−δβy(ϕζ,ϕη)h(ζ)h(η)dσ1
x(ζ)dσ1

x(η).

However (Φ× Φ)∗(Uσ
2

) = cUσ
1

for some constant c. So we obtain

eδβy(ϕζ,ϕη)h(ζ)h(η) = ceδβx(ζ,η),

from which it follows easily that Φ preserves the cross ratio almost everywhere.

Remark. It is easy to see from the proof that, without the assumption δ(Γ1) =
δ(Γ2), one can get

r(ζ1, ζ2, ζ3, ζ4) = r(Φζ1,Φζ2,Φζ3,Φζ4)
δ(Γ2)
δ(Γ1) .
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However, one can always make a homothetic change of the Riemannian metric on
H2, such that under the new metric, δ(Γ2) = δ(Γ1).

Theorem (7.1.2). If ϕ : Γ1 → Γ2 is a homomorphism between two Fuchsian
groups and Φ : L(Γ1) → L(Γ2) a Borel map conjugating the action of Γ1 to that
of Γ2. Assume that the Poincaré series of Γ1 diverges at δ(Γ1) and δ(Γ2) = δ(Γ1).
Then Φ is conformal almost everywhere with respect to the Busemann metric.

Proof. By the continuity of the conformal measures and the fact that Φ preserves
cross ratio almost everywhere with respect to the conformal measure, it is easy to
see that Φ coincides almost everywhere with a continuous map Φ̃ : L(Γ1)→ L(Γ2)
which preserves cross ratio for all four-tuples. Now fix x ∈ H1, y ∈ H2 and
ζ, η1 ∈ L(Γ1). Let −ζ be the geodesic reflection of ζ with respect to x. Then we
have, for all η ∈ L(Γ1),

e−βy(Φ̃ζ,Φ̃η)

e−βx(ζ,η)
=
e−βx(−ζ,η1)e−βy(Φ̃ζ,Φ̃(−ζ))e−βy(Φ̃η,Φ̃η1)

e−βy(Φ̃(−ζ),Φ̃η1)e−βx(η,η1)
.

Hence

lim
η→ζ

e−βy(Φ̃ζ,Φ̃η)

e−βx(ζ,η)
=
e−βx(−ζ,η1)e−βy(Φ̃ζ,Φ̃(−ζ))e−βy(Φ̃ζ,Φ̃η1)

e−βy(Φ̃(−ζ),Φ̃η1)e−βx(ζ,η1)
.

Therefore Φ̃ is conformal with respect to the Busemann metric.

(7.2) Time-preserving conjugacy of the geodesic flows.

Theorem (7.2.1). Let ϕ be a homomorphism between two Fuchsian groups and
Φ : L(Γ1) → L(Γ2) be a Borel map conjugating the action of Γ1 to that of Γ2.
Assume that the Poincaré series for Γ1 diverges at δ(Γ1). Assume also that δ(Γ1) =

δ(Γ2) , δ and that Φ is nonsingular with respect to the δ-conformal densities. Then

there exists a continuous map Ω(Γ1)
f→ Ω(Γ2) between the nonwandering sets of

the geodesic flows on M1 and M2 such that f is a time-preserving conjugacy of the
geodesic flows on Ω(Γ1) and Ω(Γ2).

Proof. i) We give the construction of the conjugacy following [H] where the co-

compact case is treated. We denote by µσ
1

and µσ
2

the Bowen-Margulis measure

associated to σ1 and σ2, normalized such that µσ
1

(Ω(Γ1)) = µσ
2

(Ω(Γ2)) = 1. Let
µsu1 (resp. µsu2 ) be the Margulis conditional measures as constructed in section (5.2).
Then they can also be viewed as measures at infinity via the canonical projection
P : W su(v)→ ∂H \{v(−∞)} : w→ w(∞). Now we lift everything to the universal
cover. For each v ∈ Ω(Γ1), pick up w ∈ Ω(Γ2) such that Φ(v(−∞), v(∞)) =
(w(−∞), w(∞)). Then there exists a Borel function fv,w on λ(Γ2) such that
Φ(µsuv ) = fv,wµ

su
w . Since µsugtv = eδtµsuv , µsugtw = eδtµsuw , there is for every v ∈ Ω(Γ1)

a unique f(v) ∈ Ω(Γ2) such that Φ(v(−∞), v(∞)) = (f(v)(−∞), f(v)(+∞)) and
that fv,w(f(v)(∞)) = 1. Clearly f(gtv) = gt(f(v)) and f commutes with the action
of Γ. It is also clear that f preserves the Wu foliation. Moreover since the measure
dµu = dµsu×dt is holonomy invariant under the W ss foliation, f also preserves the
W ss foliation. Thus f descends to a time-preserving conjugacy of the geodesic flows
on Ω(Γ1) and Ω(Γ2). If we choose Φ to be continuous at the beginning (see the
proof of Theorem (7.1.1) and the discussion there), then f is also continuous.
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Theorem (7.2.2). Suppose that Γ1 and Γ2 are convex cocompact groups and that
ϕ : Γ1 → Γ2 is an isomorphism. Then there is a unique homeomorphism Φ :
L(Γ1) → L(Γ2) which conjugates the action of Γ1 to that of Γ2. Moreover, the
following properties are equivalent:

i) δ(Γ1) = δ(Γ2) , δ, Φ is nonsingular with respect to the δ-conformal densities
σ1 and σ2.

ii) Φ preserves the cross ratio.

iii) δ(Γ1) = δ(Γ2) , δ and Φ is conformal with respect to the Busemann metric.
iv) M1 = H1/Γ1 and M2 = H2/Γ2 have the same marked length spectrum.
v) There exists a time-preserving conjugacy of the geodesic flows on Ω(Γ1) and

Ω(Γ2).

Proof. Since convex cocompact groups are hyperbolic groups in the sense of Gro-
mov, and any isomorphism between two hyperbolic groups is a quasi-isometry with
respect to their word metrics, hence the isomorphism must induce a homeomor-
phism between their limit sets. Now i) ⇒ ii) is Theorem (7.1.1). ii) ⇒ iii) is
Theorem (7.1.2). iii)⇒ i): This is because, in the convex cocompact case, the con-
formal density σ1 (resp. σ2) is exactly the δ-dimensional Hausdorff measure with
respect to the Busemann metric. Thus the conformal map Φ preserves the measure
class of the conformal density. i) ⇒ v) is Theorem (7.2.1). v) ⇒ iv) is obvious. iv)
⇒ i): The proof is the same as the cocompact case, which can be found in [H].
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