WILEY-
BLACKWELL

The Ergodic Theory of Subadditive Stochastic Processes

Author(s): J. F. C. Kingman

Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 30, No. 3
(1968), pp. 499-510

Published by: Blackwell Publishing for the Royal Statistical Society

Stable URL: http://www.jstor.org/stable/2984253

Accessed: 19/05/2010 15:53

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajourna or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of thiswork. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Royal Statistical Society and Blackwell Publishi n&a_re collaborating with JSTOR to digitize, preserve and
extend access to Journal of the Royal Statistical Society. Series B (Methodological).

http://www.jstor.org


http://www.jstor.org/stable/2984253?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=black

1968] 499

The Ergodic Theory of Subadditive Stochastic Processes

By J. F. C. KINGMAN
University of Sussex

[Received October 1967. Revised February 1968]

SUMMARY

An ergodic theory is developed for the subadditive processes introduced by
Hammersley and Welsh (1965) in their study of percolation theory. This is a
complete generalization of the classical law of large numbers for stationary
sequences.

1. SUBADDITIVE PROCESSES

IN an important paper Hammersley and Welsh (1965) introduced the concept of a
subadditive stochastic process, and they have shown how such processes arise
naturally in various contexts, but particularly in the study of random flows in lattices.
They have shown that one may expect these processes to exhibit a certain ergodic
behaviour, and have taken the first steps towards the construction of an ergodic
theory like the classical one for averages of stationary sequences.

If T is any subset of the real line, a subadditive process x on T is a collection of
(real) random variables xy(s, t €T, s < t) with the property that

Xg < Xyt X 1)

for all s, ¢, u in T with s<u<¢. In this paper T will be taken as the set of non-negative
integers, although interesting problems arise when T is the interval (0,c0). It will be
convenient to adopt the convention that x; = 0 for all ¢ in 7.

If (1) is replaced by

Xst = Xsu + Xuts (2)

then x is said to be superadditive. Since x is superadditive if and only if —x is sub-
additive, any theorem about subadditive processes translates at once into a corre-
sponding result about superadditive processes.

A process which is both subadditive and superadditive satisfies

Xop = Xyt Xy 3
and is described as additive. If, for an additive process x, we write
Ve = X
repeated application of (3) gives
Xt = Yst1tVsizt o+ )

so that additive processes are just partial sums of sequences of random variables.

18
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Now the strong law of large numbers for stationary sequences (for which see, for
example, Doob, 1953, Section X.2) states that, if the sequence {y,} is stationary and has
finite expectation, then the finite limit

lim £74(y; + po+ ... +3) = lim xoy/t &)
t—>c0 >0

exists with probability one. Thus, under a stationarity assumption, the additive
process x has the ergodic property that xg/¢ converges with probability one as ¢—oo.
The problem is to extend this result to subadditive (and so also to superadditive)
processes.

For an additive process the condition that {y,} be stationary is equivalent to the
condition that the finite-dimensional distributions of x be invariant under the shift
Xg—>Xg11441- This makes it natural to define stationarity for a subadditive process
as follows:

Definition. A subadditive (or superadditive) process x is said to be stationary if
its finite-dimensional distributions are the same as those of the shifted process x’
defined by

Xg = Xgi1441- (6)

It is to be noted that this definition is stronger than that of Hammersley and
Welsh, who require only that the one-point distributions of x be the same as those
of x’. For additive processes, this condition is insufficient to imply the stationarity of
¥y, and their ergodic results are therefore new even in the additive case. It is possible
to construct examples of processes stationary in their sense but not in ours, but these
are highly artificial. All the examples quoted by Hammersley and Welsh are stationary
in the stronger sense, which will be used without further comment.

Let x be a stationary subadditive process, and suppose that each random variable
xg has finite expectation. Because of stationarity, this can depend only on (t—s);

E(xg) = 8o @)
From (1)
ga+ﬁ<g¢x+gﬂ (d,ﬂ?l), (8)

and a standard result in the theory of subadditive functions (Hammersley and Welsh,
1965, p. 68) shows that

&ilt—>y ®
as t—oo, where
y = infg/t (10)
=1

satisfies —co<y<oo. When y is finite, it is called the time constant of the process x.
Thus x possesses a time constant if and only if each x has a finite expectation g;_,
and g/t is bounded below.

Hammersley and Welsh are able to prove, under very stringent conditions, that
X/t converges to y as t—>co. The main conclusion of this paper is that, without any
further conditions than stationarity and the existence of vy, xg/t converges, with
probability one and in mean, to a random variable £ with expectation y. This result,
when restricted to additive processes, becomes the classical Birkhoff-von Neumann
ergodic theorem, of which it is a complete generalization. In most cases (see Section 4
below) it is possible to show that ¢ is actually equal to y, although the trivial case
Xg = (t—8) X (where X is any random variable) shows that this cannot always be true.
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2. THe EAsy ErGoDIC THEOREM
Almost the whole of the result asserted at the end of the last section can be proved
as a fairly easy consequence of the known theorems for additive processes.
Theorem 1. Let x be a stationary subadditive process with time constant y, and let

£ = lim sup xy/t; (11)
t—>00
then ¢ is almost certainly finite, and
E(§) =1. (12)
As t—o0,
E|X_¢l o0, (13)

and therefore x,,/t converges to ¢ in probability.
Proof. For any fixed n, write N(¢) for the integral part of ¢/n, and v(f) = t— N(¢) n.
Repeated application of (1) gives
N(t)

Xot < le(r—l)n,rn + XN )n,t
r=

N
< le(r—l)n,rn + WN@)» (14)
r=

where
n—1
Wn = > Ian,Nn+u|-
u=0

Now the sequence {X(,_j)nm; 7 =1,2,...} is stationary with finite expectation g,,
so that the strong law of large numbers shows that the limit

N
Zp = lim N1 > X(r—Dn,rn
N—>o r=1

exists with probability one, and that E(z,) = g,,.
Moreover, for each €>0,

¢ o] (e

2 P(wy/N>e) = 3 P(wy>Ne)< e E(wy) <o,

N=1 N=1

and the Borel-Cantelli lemma thus shows that, with probability one,
lim wy/N = 0.

N—>o0
The inequality (14) therefore gives

£<limsup x,/N(¢)n
t—>c0

N
<lim sup (Nn)_l { )Y X(r—1)n,rn + WN’
N—>c0 r=1

= z,/n.

In particular, £ <oo and E(§)<g,/n.
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Since this holds for all n, we have

E&)<y. (15)
If we write
¢
agq = > Xr—1,rs
r=8+1
then a is an additive process and x4 <a, Hence the process b defined by
by=ag—xg

is a non-negative superadditive process. If

Bn = infbot/t,
izn

then B, is an increasing sequence, converging as n—o0 to

lim inf b/t = liminf 1Y@y — xq)
{0 0

= Zl_ g.
By monotone convergence,

lim E(B,) = E(lim B,) = E(z;— &) = g — E($).

n—>0

But also
lim E(B,)< lim E(by,/n) = lim (ng;—g,)/n =g —7.
n—o n—>0

n—>0
Hence

&~ E()<g—7s
which with (15) implies that E(§) = y, proving (12).
It now follows that
EI t_lbot“Btl = E(tby—B) = (g1—t71g) —EB)~>(g1—y)—(&1—7) =0,
so that #'by—B;—~0 in mean as t—co. Since B; is monotone and converges to
(z,— &), it converges in mean, and so
t—l bot - Zl - f
in mean. But, by the ergodic theorem,
t -1 aot = d Zl
in mean, and so
L xg = t7ay—bo) > £

in mean, and so also in probability. The proof is therefore complete.
All that is missing in Theorem 1 to make it a full generalization of the known
result for additive processes is the fact that
& = liminf xg/t
-0
with probability one. This is a much deeper result and will be accomplished with
difficulty in Sections 5 and 6.



1968] KINGMAN — The Ergodic Theory of Subadditive Stochastic Processes 503

3. THE MaAxiMAL ErGobpic THEOREM

The usual approach to the classical ergodic theorem proceeds by way of a ““maximal
ergodic theorem”. Such a result exists for subadditive processes and is presented here
for its own interest, although it can also be used to give an alternative, and more
direct, proof of Theorem 1.

Theorem 2. Let x be a stationary subadditive process with time constant y, and
suppose that the event

A = {x4 =0 for some > 1}

has positive probability. Then
E(x4| 4)>0. (16)
Proof. If

my = max X,
1<s<t

then
My = MaxX Xog

<8<

< max (Xo;+ X 47
o<<s<t

= Xo; + Max X,
0<s<t

= Xy +max (0, 7)),
where the primes refer to corresponding quantities for the shifted process x” defined by
(6). Hence, if A4, is the event {m,>0},

mydP< f X AP+ f max (0, m)) dP
4, 4, 4,

< f X dP+ f max (0, m}) dP
.A; Q

4, O
= f x01dP+f mth.
4, 4,
Hence
f X dP=0,
4,
and letting o0,
f XpndP=0,
4

which proves (16).

The reader will note that this proof follows exactly the beautifully simple argument
given by Garsia (1965) for the usual maximal ergodic theorem. Unfortunately it
fails for superadditive processes, so that the usual procedure for deducing the point-
wise ergodic theorem is not available.
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4. THE RANDOM VARIABLE ¢

In the classical theorem for additive processes, the limit & is expressed as a
conditional expectation relative to the o-field of invariant events (Doob, 1953,
Section X.2). In the subadditive case a similar result holds; £ is a ‘“‘conditional time
constant”.

Theorem 3. Let x be a stationary subadditive process with time constant y, and
let # be the o-field of events defined in terms of x and invariant under the shift
x—>x'. Then the limit ¢ of Theorem 1 can be written in the form

£ = lim 11 E(xy] ). an
=0

In particular, if # is trivial (contains only events of probability 0 and 1), then
E=1y. (18)

Proof. Using primes as before to denote quantities defined with respect to the
shifted process x’, we have

& = limsup x,,/t > lim sup t Uxy—xy) = €.
t—>c0 {—>0

But
E(§) =y = E),

PE =8 =1

Thus ¢ is an invariant random variable, and so measurable with respect to .#.
Let @, be a version of the conditional probability E(xy|-#). By stationarity,

' E(xstlj) = (Dt—s’

and therefore

and (1) shows that
(I)a_'_ﬂ < ‘I)a + (Dﬂ

for all o, B> 1 with probability one. Hence
¢ = lim @t
>0
exists almost surely. We have to show that & = ¢ with probability one.

Let /e have positive probability. Conditional upon I, x is subadditive and
stationary. For any ¢,

Dy <D+ D,
so that @,/ decreases as ¢—> oo through the powers of 2. Hence, with ¢ = 2%,
E($|I) = lim E(t—1d;|1)
k—>c0

k—>0
= E(¢]1),

since xq/t— £ in mean conditional on I by Theorem 1. Thus

far- s
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for all Ie.#. Since both ¢ and ¢ are #-measurable, we have ¢ = ¢ with probability
one, and (17) is proved.
In particular, if . is trivial, (17) becomes
&= lim ¢t E(xy) = v,
t—>00
and the proof is complete.
Since ¢ is invariant it follows at once that, for every fixed s,

Xgft—> €
in mean as ¢—>co.

The theorem is of course mainly useful when one can show directly that £ is
trivial. This is so, for instance, in the problems considered by Hammersley and
Welsh, in which the process is defined in terms of independent random variables to
which the zero—one law can be applied. More precisely, their processes are defined
by equations of the form

Xg=F_(ceythg_g,Ugy Ugiq,...), (19)

where the functions F are fixed, and the u, are independent collections of random
variables with the same distributions. The o-field .# is contained in the o-field &’ of
events defined in terms of the u, and invariant under the shift

Us—>Ugyq.
Since (Doob, 1953, p. 460) .#” is known to be trivial, . is trivial, and therefore £ = y.

5. DECOMPOSITION OF A SUBADDITIVE PROCESS
Definition. A stationary subadditive process x is said to be purely subadditive if
it is non-negative and has time constant y = 0.
Theorem 4. A stationary subadditive process x with time constant y admits a
decomposition of the form
Xgt = Vst Zat> (20)
where y is stationary and additive, with

E(yo) =y (21)

and z is stationary and purely subadditive.

The proof is difficult and seems to require more powerful tools than do the other
results of this paper; it is deferred to the next section. The theorem is important
because it reduces the theory of subadditive processes to that of purely subadditive
processes, which is rather simpler. For instance, Theorem 1 shows that the non-
negative random variable

{ = limsupzy/t
t—>0
has
E() =0,
so that { = 0 with probability one. Hence, with probability one,

lim zy,/t = 0.

>0
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We already know from the classical theory that
lim yo/t
t—>c0

exists, so that (20) establishes the existence, with probability one, of the limit
lim xgt,

t—>o0
which must of course be the random variable £. We can therefore fill the gap in

Theorem 1.
Theorem 5. If x is a stationary subadditive process with time constant v, then
the limit
&= lim xg/t
t—>o0

exists with probability one, and satisfies the conditions of Theorems 1 and 3.

This result establishes several of the conjectures in Hammersley and Welsh (1965).
In particular, it shows that these authors were correct in surmising that convergence
in probability of x,,/t implies convergence with probability one. It will be noted that
the treatment given here removes the necessity of the technique of “smothering
with blankets” which Hammersley and Welsh wield with such ingenuity.

It should not be supposed that the decomposition (20) is uniquely determined
by x. For example, let v;,0,, ... be independent random variables with the standard
normal distribution, and write

Wg = Vg 1+ Vgrat ... + 0

Then w is additive, with time constant 0. If

xst = max (st 0)’
it is easily seen that x is subadditive, with

&= E(xq) = (t/2m)},

so that y = 0. Two different decompositions satisfying the conditions of Theorem 4
are those with

V=0, zg=2x4
and

Vo= We» Zg = Max(—wg,0).

6. PROOF OF THEOREM 4
Consider the set Q of all functions w = w(s, t) defined for s, ¢ €T, s <t and such that
w(t, 1) =0, ofs,t)<w(s,u)+o(u,t) 22)

for all s<u<t. Then the given process is, in effect, a random element of Q. More
precisely, if x, is the co-ordinate function defined on Q by

xg(w) = w(s, 1),

and if & is the smallest o-field with respect to which all the functions x are
measurable, then the given process defines a probability measure P on (2, %) such
that the random variables x, on (Q, &, P) have the finite-dimensional distributions of
the process.
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For any w in Q, we may define a new element 6w by
(Bw) (s, 1) = w(s+1,¢+1);
0 is then a function of Q into itself. Since

Xl 0w) = Xg41411(w),

the stationarity of x is equivalent to the statement that 0 preserves the measure P,
namely that

P(6-14) = P(4) (A€ F). 23)

We shall write L = L,(Q, &, P) for the Banach space of all real integrable functions
on Q, with the norm

1= | lr14p = E17|

For any fin L, a new element Tf of L is defined by
(I (w) = f(Ow);

T is then a bounded linear operator (in fact an isometry) of L into itself.
Lemma. There exists fin L such that, for all »,

fHTf+ ...+ T f< X5 24)
and such that
E(f)=1.

Notice that y is the largest possible value of E(f) for f satisfying (24), since
applying E to (24) gives

nE(f)< gns
and letting n— oo,

E(f)<y.
Assuming for the moment that the lemma has been proved, set
Yo =T f+Tf+ . +TH .

Then y is stationary and additive, and applying T° to (24) shows that y,<xg, so
that z, = xy—yy is stationary, non-negative and subadditive. Moreover,

E(yp) = E(f) = e
and the time constant of z is

lim 7 E(xy—ye) = lim t71(g;—yt) = 0.
t—>0

t—>o0

Hence Theorem 4 follows from the lemma.
Consider the element f,, of L defined by

m
JSn=m71 El(xOr — X1)-
r=
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For any n,
n—1 m
St Tt + T = m™t kEO rzl(xlc,k+r_ X1, fo+r)
m+n—1b—1
=m! > X (xst_xs+l,t)
t=1 s=a

m+n—1
=mt tZI (s — Xp0)s

where a = max (t—m, 0), b = min (¢,n). Hence we have
St Tt ATV <™ S gy (25)

Notice that, as m—>oco for fixed n, the right-hand side of (25) converges to x,,.
Moreover,

E(f m) =mt ré:ll(g r— & r—l) = gm/ m, (26)

so that E(f,)—y as m—>c0. Accordingly, if the sequence {f,,} has, in a suitable
topology, a limit point f in L, this will satisfy the conditions of the lemma. The
remainder of the proof consists of the (unfortunately rather involved) compactness
arguments needed to establish the existence of this limit point.

The dual L* of L is the space L(£2, &, P) of bounded measurable functions on Q,
and acts on L by the formula

@) = fnqﬁfdP (feL,$eL).

The dual L** of L* is the space of bounded finitely additive set functions on (Q, %)
vanishing on null sets, acting on L* by

(1, @) = f;{’"’ dp  (pEL¥, pel*™).

The natural imbedding «: L->L** is defined by

(Kﬂ(A)=fAfdP (feL,Ade ).

(For these and related results see, for instance, Dunford and Schwartz, 1964, Section
V.8.) .
From (25) with n =1, f,, <X, so that

o ll <l %o ll 1l o1 —Fonll = [l %on |+ ECXor —fr)
= || Xo1ll+ 81— gm/m<|| Xea ||+ 81—y = M (say).

Hence the elements «f,, of L** lie in the set {ueL**;| u| <M}, which by the
Bourbaki-Alaoglu theorem (Dunford and Schwartz, 1964, p. 424) is compact in the
weak* topology of L**. Thus the sequence (xf,,) has a weak* limit point u in L**,
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The operator S defined on L** by

(SW () = p(04) (UeF)
is weak* continuous, and

Sk = «T.

From (25),
m+n—1
Kfpp+ Skfpp+ e e + S L kf, <m™ Y KXy,
=1
and since the right-hand side converges to «x,,,
pwt+Sp+ ..+ S p< Xy, 27
From (26),
(kfms D) = (L, 1) = E(fn) = 8n/m—>7,

so that

(.U': D=y,
that is,

() = y. ' (28)

From (27) with n =1, (xxy; — ) is a non-negative finitely additive set function,
and therefore admits, by a theorem of Yosida and Hewitt (1952, Theorem 1.23), a
unique decomposition as the sum of a measure and a non-negative purely finitely
additive set function. Hence

p=A—m,
where A is a signed measure and # is non-negative and purely finitely additive. From
(27,
A4 SA+ .+ STLAS kX, + Ty,
where
my,=m+Sr+...+S" 17,
being a sum of purely finitely additive set functions, is purely finitely additive (Yosida
and Hewitt, 1952, Theorem 1.17). Hence
A SA+ .+ S AL kX,
In particular
MQ) +SAQ) + ... + 8™ MQ) < kX (2) = gis
so that
nAQ) < gn.
Letting n—> o,
MQ) <y = p(Q) = MQ) —7(Q).
Hence 7 = 0, and p = A is a signed measure.

Moreover, since u€L**, y vanishes on null sets, and so has a density f with
respect to P. Hence u = «f, and (27) shows that f satisfies (24). Finally, from (28),

E(f) = (k) (Q) = p(Q) =y,

and the proof is complete.
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