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THE ERMAKOV EQUATION:

A COMMENTARY

P. G. L. Leach, K. Andriopoulos

We present a short history of the Ermakov Equation with an emphasis on its
discovery by the West and the subsequent boost to research into invariants for
nonlinear systems although recognizing some of the significant developments
in the East. We present the modern context of the Ermakov Equation in
the algebraic and singularity theory of ordinary differential equations and ap-
plications to more divers fields. The reader is referred to the previous article
(Appl. Anal. Discrete Math., 2 (2008), 123–145) for an English translation
of Ermakov’s original paper.

1. THE LEWIS INVARIANT AND PINNEY’S SOLUTION

In 1950 the late Edmund Pinney [2] presented in a very succinct paper [85]
the solution of the equation

(1) ẍ + ω2(t)x =
1

x3

in which the overdot represents differentiation with respect to the independent
variable, t, which in many applications is the time (See also [7]). The solution
which he gave is

(2) x(t) =
(

Au2 + 2Buv + Cv2
)1/2

,

where u(t) and v(t) are any two linearly independent solutions of the equation

(3) ẍ + ω2(t)x = 0
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and the constants, A, B and C, are related according to B2 − AC = 1/W 2 with
W being the constant Wronskian of the two linearly independent solutions.

In 1966 the late Ralph Lewis, while he was on sabbatical at the Univer-
sity of Heidelberg, commenced the calculation of an invariant for the Hamiltonian
corresponding to (3), videlicet

(4) H =
1

2

(

p2 + ω2(t)q2
)

, p = q̇,

using Kruskal’s asymptotic method [54]. An adiabatic invariant for (4) had
been proposed by Lorentz at the Solvay Congress of 1911 [98], but this was
not satisfactory for the application of interest to Lewis which was the motion of
a charged particle in an electromagnetic field expected to be rapidly varying in
the context of plasma confinement. Kruskal’s method involves an asymptotic
expansion in terms of a parameter, ε, and for the first term in the expansion Lewis
obtained

(5) I0 =
1

2

(

(ρp − ρ̇q)
2
+

(

q

ρ

)2
)

,

where ρ(t) is a solution of (1) and so is given by (2). To the surprise of Lewis the
second and third terms in the asymptotic expansion were zero. He then essayed1

a direct calculation of the first derivative of I0 and found it to be zero! His results
are found in [65–67].

Although this result could scarcely be considered to be of use in classi-
cal problems, the reduction of the solution of the corresponding time-dependent
Schrödinger equation [68] to the solution of (3) could be regarded as a distinct
advantage since any numerical computation was then deferred until almost the last
line. A clear example of this is found in the calculation of Berry’s Phase for the
time-dependent linear oscillator [55]. The utility of the result was enhanced when it
was found that (1) occurred as an auxiliary equation in the calculation of invariants
for nonquadratic Hamiltonian systems [16, 17, 37, 38, 26, 69–74].

2. ERMAKOV AND HIS INVARIANT

In Ermakov’s paper the roles of (1), (3) and (5) are interchanged by compar-
ison with the work of Lewis2. Ermakov introduces (1) as an equation auxiliary to
(3), multiplies by an integrating factor and obtains the invariant after integration
with respect to time. The integrating factor is ρq̇ − ρ̇q, in which we have replaced
the momentum by q̇, and bears a remarkable similarity to angular momentum in
two dimensions if one regards ρ and q as Cartesian coordinates. This similarity
was pursued by Eliezer and Grey [23], but the interpretation did not endure

1The personal details of this story were related to one of us (PGLL) by Ralph many years
ago.

2Pinney’s contribution does not play a role here as he was not concerned with the invariant.
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into higher dimensions [36] even though sense could be made of an Ermakov in-
variant in higher dimensions [29]. The work of Ermakov received no notice in
the West until the late seventies of the last century when James Reid initiated
a surge of activity through his doctoral thesis3. There was a flood of papers on
generalisations in one direction or another of the basic result of Ermakov [4–6, 8,
9, 12, 27, 49, 56, 62, 80, 81, 84, 86–93, 96] and the subject of Ermakov invari-
ants attracted the attention of many of those who worked in the area of invariants
for time-dependent systems. In a more general direction Berkovich applied his
method of factorisation [10, 11] to problems based upon Ermakov systems. Fur-
ther applications are found in Cosmology [39–41, 75, 94, 95, 97, 99, 100], partial
differential equations of Mathematical Physics such as the Korteweg – de Vries
and Camassa – Holm equations [19, 20, 22, 42–46], Elasticity [77–79, 94, 99],
Quantum Mechanics [48] and nonlinear systems in general [15, 18, 25, 47, 50, 51,
63, 64].

Mention of the works of Berkovich on factorisation reminds one that the
Ermakov equation can be found embedded in a number of more general equations
for which methods to obtain solutions in closed form has been devised. The close
association of Berkovich with the forbear of this journal, Publications of the Fac-
ulty of Electrical Engineering of the University of Belgrade, it’s not surprising when
one sees papers devoted to the resolution of nonlinear ordinary differential equa-
tions. In particular there are the papers of Kečkić [101–103] and Mitrinović
and Kečkić [106] in the equations of which one can find that of Ermakov, albeit
at some times after deep enquiry. More recent work by Kocić [105] has continued
this tradition4.

3. ALGEBRAIC PROPERTIES

The Ermakov equation, (1), is distinguished by possessing the algebra of
sl(2, R), isomorphic to the noncompact algebra so(2, 1) which geometrically rep-
resents rotations on the surface of an hyperboloid of one sheet. The connection
with angular momentum in two dimensions is now obvious and the failure of the
extension to three dimensions quite evident. In the context of scalar differential
equations the former algebraic description is to be preferred since there really is
no suggestion of rotation. The importance of the algebra, sl(2, R), in the algebraic

3Reid was a student of mature years and studied under the supervision of John Ray at Clemson
University in South Carolina. According to the story which PGLL received in 1990 James Reid
found the paper in the Library of Congress. It is possible that Reid was motivated in his search
by a knowledge of some of the works of Berkovich such as [7].

4The devotion of certain writers to the elucidation of even more methods and stratagems is
possibly something of a mystery to outsiders. In his tribute to Professor Mitrinović on the occa-
sion of his 70th birthday his former student Kečkić writes ‘More then once Professor Mitrinović
said to the present author that he made a mistake in spending so much time on such an ungrati-
fying discipline as the integration of differential equations is known to be, and that he would have
done better if he had devoted all his time to some other field (eg inequalities). The author of this
paper wishes to his express a profound disagreement with that opinion of Professor Mitrinović.’
[104]. Given HIS contributions to the discipline one wonders if Professor Mitrinović was in the
habit of having a quiet jest.
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theory of differential equations cannot be overstated. All linear and linearisable
systems of ordinary differential equations of maximal symmetry possess this alge-
bra. Not surprisingly related linear evolution equations, such as the heat equation
and the Schrödinger equation, also possess this algebra. A number of papers
have been devoted to these algebraic properties [14, 28, 31–34, 57, 60, 61, 83].

Although a scalar second-order ordinary differential equation requires just
three Lie symmetries [1, 2, 58, 59] to specify it completely, the complete symme-
try group5 of (1) is not sl(2, R). Nucci et al [83] showed that two of the three
symmetries were quite nonlocal and that their derivation was nontrivial.

The solution, (2), of (1) presented by Pinney is equally interpreted as a first
integral of the third-order equation

(6)
...
x + 4ω2 ẋ + 4ωω̇x = 0

which is the normal form of a third-order equation of maximal symmetry provided
that one replaces the 1 in (1) by an arbitrary constant, say K, thereby removing
the constraint on the constants in the solution. The solution of (6) is

(7) x(t) = Au2 + 2Buv + Cv2,

where u(t) and v(t) are any two linearly independent solutions of (3) and A, B and
C are now the three arbitrary constants of integration. Some years ago Conte
[21] observed that the study of any one of (3), the Kummer-Schwarz equation,

(8) 2 ẋ
...
x − 3 ẍ2 + 4 ẋ4 − 4ω2 ẋ2 = 0,

and the Riccati equation

(9) ẋ + x2 + ω2 = 0

implied the study of the other two. The Kummer-Schwarz equation possesses ten
contact symmetries and so is linearisable to (6) by means of a contact consolation.
Subsequently Govinder et al [35] demonstrated that all linear and linearisable
third-order ordinary differential equations could be transformed to (6) by means
of a nonlocal transformation which certainly widens the class contemplated by
Conte. We observe that under the nonlocal transformation, y−2(t) = ẋ, the
Kummer-Schwarz equation, (8), becomes the Ermakov equation, (1), and so
the latter is also included in the class of equivalence.

Within the past three years there has been the development [3] of the use of
recursion operators for ordinary differential equations in a manner similar to that
of their well-known use for evolution partial differential equations. Ermakov’s

5A concept introduced by Krause [52, 53] in the context of the Kepler problem to describe
the group of the minimum number of symmetries required to specify an equation completely. It
should be noted that the concept was presaged in the context of partial differential equations by
Bluman and Cole some years earlier [13].
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equation, (1), provides a seed equation for such a sequence. Some initial results
can be found in Euler et al [24] and a more complete treatment in Maharaj et

al [76]. All elements of the sequence possess the algebra sl(2, R). They also have
rich properties in terms of singularity analysis in that the resonances appear in
patterns6.

At the conclusion of §2 we noted a number of studies devoted to the resolution
of nonlinear ordinary differential equations for which the Ermakov equation is a
particular instance. As far as we know, the algebraic properties of these more gen-
eral equations have not been studied. Certainly in some papers [101–103,106,105]
the transformations for resolution and so there is no loss of algebraic properties of
the Lie point symmetries. The real question is whether the particular isolation
from the general to the Ermakov equation has meant an increase in point symme-
tries. Even in this small area it would seem that the scope for future investigation
exists. In this respect the West could well look for inspiration in the generalisations
of methods of resolution mentioned above and to find the sources in journals such
as the Publications and its ilk which belong to an old and well-established European
tradition.

4. CONCLUDING COMMENTS

In the above we have briefly summarised some of the areas in which the
Ermakov equation has found application in recent decades. It is quite likely that
most of those applications would have been made independently of a knowledge
of the work of Ermakov since the papers of Pinney and Lewis had introduced
the equation into the recent literature. However, one wonders if the outburst of
activity in the development of generalisations of the Ermakov invariant would
have occurred without the direct impetus given by a knowledge of Ermakov’s
work. It is only fitting that Ermakov be given credit for his pioneering initiative.

Future developments involving the Ermakov equation and invariant can only
be a matter for conjecture. One hopes that the translation7 into English given in
this issue makes the work of Ermakov more accessible.

Acknowledgements. PGLL thanks IUCAA, Pune, India, and particularly its
Director, Professor N. K. Dadhich, for hospitality and the provision of facilities
during the period during which this work was undertaken and the University of
KwaZulu-Natal for its continued support. KA thanks the State (Hellenic) Scholar-
ship Foundation and the University of KwaZulu-Natal.

6In the form of (1) the Ermakov equation and the higher members of the differential sequence
possess the so-called Weak Painlevé Property. The transformation z = x

−2 converts the equations
to forms which have the standard Painlevé Property.

7The translator, Alex Harin, was a doctoral student at the University of Natal under the
supervision of PGLL in the early nineties. Before coming to Natal Alex completed his masters
degree at the University of Moscow. The story of his translation from Moscow to Durban at
a period when the relationships between the respective governments were somewhat less than
cordial is just one more chapter in the history of Ermakov.
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15. R. Carretero-González, D. J. Frantzeskakis, P. G. Kevrekidis: Nonlinear

waves in Bose-Einstein condensates : physical relevance and mathematical techniques.

Nonlinearity, 21 (2008), R139–R202.

16. V. K. Chandrasekhar, M. Senthilvelan, Kundu Anjan, M. Lakshmanan: A

nonlocal connection between certain linear and nonlinear ordinary differential equa-

tions/oscillators. Journal of Physics A: Mathematical and General, 39, (2006), 9743–

9754.

17. V. K. Chandrasekhar, M. Senthilvelan, M. Lakshmanan: On the general solu-

tion for the modified Emden-type equation ẍ + αxẋ + βx3 = 0. Journal of Physics A:
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95–101.
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