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Abstract One of the most cited papers in Applied Mechanics is the work of Eshelby from

1957 who showed that a homogeneous isotropic ellipsoidal inhomogeneity embedded in an

unbounded (in all directions) homogeneous isotropic host would feel uniform strains and

stresses when uniform strains or tractions are applied in the far-field. Of specific importance

is the uniformity of Eshelby’s tensor S. Following Eshelby’s seminal work, a vast literature

has been generated using and developing Eshelby’s result and ideas, leading to some beau-

tiful mathematics and extremely useful results in a wide range of application areas. In 1961

Eshelby conjectured that for anisotropic materials only ellipsoidal inhomogeneities would

lead to such uniform interior fields. Although much progress has been made since then, the

quest to prove this conjecture is still not complete; numerous important problems remain

open. Following a different approach to that considered by Eshelby, a closely related tensor

P = SD0 arises, where D0 is the host medium compliance tensor. The tensor P is associated

with Hill and is of course also uniform when ellipsoidal inhomogeneities are embedded in

a homogeneous host phase. Two of the most fundamental and useful areas of applications

of these tensors are in Newtonian potential problems such as heat conduction, electrostatics,

etc. and in the vector problems of elastostatics. Knowledge of the Hill and Eshelby tensors

permit a number of interesting aspects to be studied associated with inhomogeneity prob-

lems and more generally for inhomogeneous media. Micromechanical methods established

mainly over the last half-century have enabled bounds on and predictions of the effective

properties of composite media. In many cases such predictions can be explicitly written

down in terms of the Hill tensor, or equivalently the Eshelby tensor and can be shown to

provide excellent predictions in many cases.

Of specific interest is that a number of important limits of the ellipsoidal inhomogene-

ity can be taken in order to be employed in predictions of the effective properties of, for

example, layered media and fibre reinforced composites and also to the cases when voids

and cracks are present. In the main, results for the Hill and Eshelby tensors are distributed

over a wide range of articles and books, using different notation and terminology and so it

is often difficult to extract the necessary information for the tensor that one requires. The
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case of an anisotropic host phase is also frequently non-trivial due to the requirement of

the associated Green’s tensor. Here this classical problem is revisited and a large number

of results for problems that are felt to be of great utility in a wide range of disciplines are

derived or recalled. A scaling argument leads to the derivation of the Eshelby tensor for

potential problems where the host phase is at most orthotropic, without the requirement of

using the anisotropic Green’s function. The Concentration tensor A linking interior fields

to those imposed in the far-field is derived for a wide variety of problems. These results can

therefore be used in the various micromechanical schemes.

Directly related to the tensors of Eshelby and Hill is the so-called Moment tensor M. As

well as arising in the literature on micromechanics, this tensor is important in the vast area of

research associated with inverse problems and specifically with the problem of identifying

an object inside some domain given the application of a specific set of boundary conditions.

Due to its fundamental importance and direct link to the Eshelby and Hill tensors, here we

state the connection between M,P and S in an effort to ensure that the work is of use to as

wide a community as possible.

Both tensor and matrix formulations are considered and contrasted throughout. Appen-

dices give various details that illustrate the implementation of both approaches.
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1 Introduction

The canonical isolated inhomogeneity problem has been of fundamental importance in a

number of materials modelling problems now for well over a century. This problem is the

following: a single inhomogeneity or particle of general shape, with different material prop-

erties to that of the surrounding material is embedded inside an unbounded (in all directions,

i.e., free-space) homogeneous host medium. Given some prescribed conditions in the far-

field, what form do the fields take within the inhomogeneity? As well as being interesting

in its own right, this problem is of utmost importance in homogenization, micromechanics

and multiscale modelling.

The first to consider this kind of inhomogeneity problem was Poisson in 1826 [103]

who studied the perturbed field due to an isolated ellipsoid in the context of the Newtonian

potential problem. He showed that given a uniform electric polarization (or magnetization),

the induced electric (or magnetic) field inside the ellipsoid is also uniform. In 1873 Maxwell

[83] derived explicit expressions for this field. Early work in linear elasticity saw a number

of studies determine the field inside and around inhomogeneities, including the important

case of a cavity (since this was correctly recognized as a defect or flaw). Examples of these

works are those associated with the case of spheres [43, 118], spheroids [29] and ellipsoids

[107, 113, 114] but all considered specific loadings, usually of the homogeneous type in
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the far-field, meaning uniform tractions or displacements that are linear in the independent

Cartesian variable, say x.

The inhomogeneity problem is now usually associated with the name of Eshelby be-

cause in 1957 he showed that for general homogeneous conditions imposed in the far-field,

the strain set up inside an isotropic homogeneous ellipsoid is uniform [31]. In 1961 Eshelby

[32] conjectured that “. . . amongst closed surfaces, the ellipsoid alone has this convenient

property. . . ”. One could ask is this really true? In the sense of what it is thought that Eshelby

meant when he made this conjecture (the so-called weak Eshelby conjecture, where the in-

terior field must be uniform for any homogeneous far-field loading), this statement certainly

is true although this was only proved in 2008, simultaneously by Kang and Milton [56] and

Liu [71] in the case of isotropic media. There is a slightly different version (the so-called

strong Eshelby conjecture), where the interior field must be uniform only for a specific, sin-

gle uniform far-field loading. This strong conjecture has not been proven in the context of

three dimensional isotropic linear elasticity, although significant progress has been made in

the last decade, see [55] for a review. The results obtained in [4] go beyond the weak Eshelby

conjecture but still do not fully prove the strong conjecture. Interestingly the weak conjec-

ture for the associated Newtonian potential problem was proved some time before Eshelby’s

1957 elastostatics paper, by Dive in 1931 [24] and Nikliborc [97] in 1932, see also the dis-

cussion in [55, 56, 71]. In deriving these results, Dive and Nikliborc proved the converse

of Newton’s theorem that if V1 is an ellipsoid of uniform density, the gravitational force in

V1 is zero [58]. The strong conjecture in the context of the potential problem is true in two

dimensions [111, 115] but is not true in dimensions greater than two: a non-ellipsoidal coun-

terexample associated with a specific far-field loading (equivalently a specific eigenstress)

was found by Liu [71].

It is important to note that the proofs of Eshelby’s conjectures in elastostatics referred

to above correspond to simply connected, isotropic inhomogeneities with Lipschitz bound-

aries. Eshelby’s work was followed up by numerous researchers who considered the general

anisotropic case [6, 8, 32, 61, 70, 121, 122, 129, 133]. In 1974 Cherepanov [22] proved that

multiple inhomogeneities of non-ellipsoidal shape can interact in order to render the interior

fields uniform; see also Kang and Milton [56] and Liu [71] who coined the term E-inclusions

for such interacting inhomogeneities. Liu and co-workers have also considered the periodic

Eshelby problem in two dimensions [72, 73]. Kang and Milton [56] used their approach to

prove Eshelby’s weak conjecture in the context of the fully anisotropic potential problem.

Most notably however, it is stressed again that the weak Eshelby conjecture for elasticity

has not yet been proved in the context of anisotropic elasticity.

Interest in deriving the Eshelby tensor for non-ellipsoidal inhomogeneities has always

been active in order to show that the conjecture holds for specific classes of inhomogeneities.

Particular attention has been paid to polygonal and polyhedral inhomogeneities and the as-

sociated properties of Eshelby’s tensor [57, 74, 79, 80, 93, 94, 98, 108]. The supersphere

case has been considered recently by [18] building on the work by [99, 100, 119]. A gen-

eral method was developed by Ru [110] in order to obtain an analytical solution associated

with a two dimensional inhomogeneity of arbitrary cross section and explicit forms of the

stress inside hypotrochoidal and rectangular inhomogeneities were derived. Some analytical

expressions have recently been derived for two-dimensional problems in the Newtonian po-

tential and plane elastostatics problems where inhomogeneities are either polygonal or their

shape can be described by finite Laurent expansions [140, 141]. Additional useful properties

of the Eshelby tensor have been deduced, including the relationship of the averaged Eshelby

tensor for non-ellipsoidal inhomogeneities to their ellipsoidal counterparts [126, 137].

More recently the inhomogeneity problem has been studied in the nonlinear elasticity

context where results associated with Eshelby’s conjecture have been proved in two di-
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mensions for so-called harmonic materials [59, 60, 112]. Although nonlinear problems are

generally more difficult than linear elastostatics, the nonlinearity frees up a number of is-

sues that are more constrained in linear problems. The study of nonlinear problems with

dilatational eigenstrain was recently carried out in [135]. Giordano [41] considered the non-

linearly elastic inhomogeneity problem but where the constitutive behaviour is described via

expansions in strain (Landau elasticity).

Here, due to the associated vast theoretical and practical interest, attention is restricted to

the case of linear problems for ellipsoidal inhomogeneities and associated limits in the con-

text of the Newtonian potential problem and elastostatics. A general approach to deriving

the Hill tensor P and proving many of its properties is to use the integral equation form of

the governing equations [132]. In fact Eshelby approached the problem in quite a different

manner, using the concept of eigenstrain [31]. Hill [47] considered the so-called polariza-

tion (hence P) of an ellipsoid. The review articles of Walpole [123] and Willis [132], who

developed the integral form of the Hill tensor, have been very influential and the text of Mura

[92] describes the associated Green’s tensor and form of the Eshelby tensor S for elastostat-

ics in detail. The consideration of isolated inhomogeneity problems allows the derivation

of the so-called concentration tensor A, of use in dilute micromechanical schemes, where

interactions between inhomogeneities are not important [134]. This tensor is related to the

Hill tensor via the expression

A=
[

I + P
(

C1 − C0
)]−1

, (1.1)

where C0 and C1 are the modulus tensors of the host and inhomogeneity respectively and

I is the identity tensor. In the field of micromechanics a number of very ingenious approx-

imations have been made that lead to rather excellent predictions of effective properties in

the case where interactions amongst inhomogeneities are important (see [81, 127, 132] for

broad overviews). Finally it is noted that variational bounds can be conveniently written

down in terms of the Hill or Eshelby tensors [17, 45, 102, 105, 128, 130, 132], with those of

the Hashin-Shtrikman type being particularly important.

There is no real preference for the direct integral equation approach leading to the Hill

tensor, over the Eshelby eigenstrain approach. It is chiefly down to individual preference

although it is important to note that Hill’s tensor possesses the major symmetries whereas

Eshelby’s does not in general. Some find the notion of eigenstrain rather artificial, although

in many cases it is a very useful concept as a means for solving harder problems such as

determining fields inside multiple inhomogeneities [91, 138]. The simple relation

S = PC0 (1.2)

between the Hill and Eshelby tensors, means that deriving one immediately yields the other.

The Hill and Eshelby tensors are of great utility in a number of micromechanical meth-

ods and what is quite astonishing is that they can be evaluated analytically in a large number

of very important cases. However, results are distributed over a large number of articles,

reviews and textbooks, and furthermore often in articles that span a wide range of scientific

fields due to the wide ranging applicability of the theory. References dealing with deriva-

tions of specific results are those of [10, 14, 28, 81, 106, 123, 132] and [67]. The field is

still very much alive, pushed forward by both unresolved theoretical issues as well as appli-

cations involving not only inhomogeneities but also cracks and dislocations [95, 139] and

by the desire to fully resolve the open issues described above. Recent work has focused in

more detail on inhomogeneities of general shape and how these can feed into models of

inhomogeneous media with distributions of non-canonical inhomogeneities [14–16, 33–35,
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138, 140, 141]. Such studies are important to understand how local stress fields develop

in the medium under loading. This is highly dependent upon the inhomogeneity shape. It

must always be stressed that the utility of the Eshelby tensor itself for general shapes in

micromechanical methods is limited by the fact that fields interior to the inhomogeneity are

not generally uniform in such cases and therefore the tensor does not arise as a natural quan-

tity from the governing integral equations ((2.7) and (2.11) below) as it does in the case of

ellipsoidal inhomogeneities.

Another important tensor that arises in inhomogeneity problems and has a direct link to

the Eshelby and Hill tensors is the Moment tensor M. In the case of ellipsoidal inhomo-

geneities with homogeneous boundary conditions in the far-field, this tensor is most easily

written down in terms of the Concentration tensor as

M = |V1|
(

C1 − C0
)

A, (1.3)

where |V1| is the volume of the inhomogeneity. For further discussion on the broader nature

of the Moment tensor, see the book by Ammari and Kang [1] and also [4]. It plays an impor-

tant role in the vast area of research associated with inverse problems and specifically with

the problem of identifying an object inside some domain given the application of a specific

set of boundary conditions. The Moment tensor arises within the conjecture of Pólya-Szegö

[104] from 1951 (pre-dating that of Eshelby), which states that the trace of the moment ten-

sor is a minimum for circular (spherical) inhomogeneities in 2(3) dimensions. As should be

obvious there are strong connections between this conjecture and the Eshelby conjecture.

We refer to [4, 56] for further details.

Here the objective is to gather together important results associated with the Hill and

Eshelby tensors for ellipsoidal inhomogeneities in a consistent notation, derive a number of

important limiting cases such as those associated with cracks and cavities, derive compact

results associated with the anisotropic potential problem and finally derive and state asso-

ciated Concentration tensors. This should prove useful to many who frequently require the

form of the P- or S-tensors in practice but who struggle to find the appropriate reference.

The emphasis here is to derive the Hill, Eshelby and Concentration tensors but as is clear

from (1.3) the Moment tensor follows straightforwardly from these.

An important point to note is that using the so-called invariant notation, potential and

linear elastostatics problems can be considered simultaneously, only that the latter is a higher

order tensor analogue of the former. Here however the applications are made distinct in order

to stress the different results and mechanisms for deriving these expressions. In particular

the results from potential theory feed into those from linear elastostatics. As a result, index

notation shall be used almost entirely throughout.

In much of the literature on micromechanics the terms inclusion and inhomogeneity are

used interchangeably. However in some cases they are used to make an important distinc-

tion. An inhomogeneity is defined as a particle of general shape having different material

properties to those of the surrounding medium in which it is embedded. On the other hand

the terminology inclusion is used to represent a general shaped region within some medium

that has the same properties as the surrounding medium but where this finite inclusion re-

gion has been subject to some eigenstrain (e.g., thermal strain). This differentiation is used,

e.g., in Mura [92] and Qu and Cherkaoui [106] and it is also adopted here.

In Sect. 2 the integral equation formulation of the inhomogeneity problem is stated, yield-

ing integral equations for the potential gradient and strain inside an inhomogeneity. In Sect. 3

it is illustrated that such fields are uniform when the inhomogeneity is ellipsoidal and the

general expressions for the associated Hill tensors are stated. The notion of Concentration
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tensors is also discussed. In Sects. 4 and 5 specific results are then stated and derived for

the cases of the Newtonian potential problem and elastostatics respectively. A closing dis-

cussion is given in Sect. 6 describing how the results are used in micromechanical methods

together with a summary of current areas of associated research. Numerous important de-

tails and results are stated in Appendices in order for this review to be comprehensive but

also to aid the flow of reading, in particular the mechanism for representing tensors of cer-

tain symmetries with respect to appropriate tensor bases, tensor contractions, and the matrix

formulation of operations between tensors are covered in Appendix C.

As many pertinent references are given as possible; it is important to stress that the focus

is specifically on the formulation of the Eshelby, Hill and Concentration tensors rather than

articles associated with micromechanical methods, of which there are thousands. For the

latter the interested reader is referred to the many textbooks that have been written over the

last decade, e.g., [14, 28, 54, 67, 106].

2 Integral Equation Formulation

Index notation shall be used for tensors throughout, working in Cartesian coordinates and

using repeated subscripts to imply summation. The term unbounded will be used when refer-

ring to free-space, i.e., unbounded in all directions. Although a general invariant formulation

can be employed to deal with problems in the potential and linear elastostatics context si-

multaneously [132], this approach can obfuscate details that are important when it comes to

deriving specific Hill and Eshelby tensors for given anisotropies and inhomogeneity shapes,

which is the main purpose of this article.

Notation is as defined in Fig. 1 for both the potential problem and linear elastostatics.

A single isolated inhomogeneity V1, for the time being of general shape and with surface

∂V1 is embedded (perfectly) inside an unbounded homogeneous medium V and the medium

exterior to V1 is denoted as V \V1 = V0. Both materials are considered generally anisotropic

so that their material modulus tensors are

Cij (x) = C1
ijχ

1(x) + C0
ij

(

1 − χ1(x)
)

(2.1)

in the context of the potential problem and

Cijkℓ(x) = C1
ijkℓχ

1(x) + C0
ijkℓ

(

1 − χ1(x)
)

(2.2)

in the context of elastostatics. Here the so-called characteristic function associated with a

domain V1, has been employed, being defined as

χ1(x) =
{

1, x ∈ V1,

0, x /∈ V1.
(2.3)

Finally it is noted that the inhomogeneity (C1
ij and C1

ijkℓ) and host (C0
ij and C0

ijkℓ) modulus

tensors are uniform tensors, meaning that each component of the tensor is constant but these

constants can be different.

2.1 The Potential Problem

Since it is often useful to consider a specific physical problem, certainly in terms of language

and terminology, the potential problem is described in the context of steady state thermal
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Fig. 1 An inhomogeneity V1 of

general shape and with boundary

∂V1 is embedded perfectly inside

the host medium V0. The

classical inhomogeneity problem

is to determine the fields that

arise within the inhomogeneity

and host medium given some

far-field condition

conductivity. The equation governing the steady state temperature distribution T (x) in the

medium described above and depicted in Fig. 1 is

∂

∂xi

(

Cij (x)
∂T

∂xj

)

= 0, (2.4)

where the assumption is that no heat sources are present. The free-space Green’s function

associated with the host phase satisfies

∂

∂xi

(

C0
ij

∂G

∂xj

(x − y)

)

+ δ(x − y) = 0, (2.5)

as well as the far-field condition limx→∞ G(x) = 0. Assuming continuity of temperature

and normal flux across ∂V1, the resulting temperature distribution may be straightforwardly

derived in integral equation form as

T (y) = T ∗(y) −
(

C1
kj − C0

kj

)

∫

V1

∂T

∂xk

(x)
∂G

∂xj

(x − y) dx, (2.6)

which holds for all y. Here T ∗(y) is the solution to the equivalent problem satisfying (2.4)

with no inhomogeneity present (or equivalently with C1
ij = C0

ij ). Upon taking derivatives of

(2.6) with respect to yi and noting the property ∂G/∂xi = −∂G/∂yi it is found that for all

y ∈ V ,

ei(y) = e∗
i (y) +

(

C1
kj − C0

kj

) ∂2

∂yi∂yj

∫

V1

ek(x)G(x − y) dx, (2.7)

where the ith component of the temperature gradient has been defined as ei = ∂T /∂xi .

2.2 Elastostatics

The origins of the P-tensor reside in the context of elastostatics rather than in potential

problems even though the theory is of course analogous. The P-tensor originated with Hill

[47] who also introduced the compact notation (now commonly referred to as Hill notation)

for transversely isotropic fourth order tensors, which is summarized in Appendix C.2.3.

Walpole [122], Willis [130–132] and Laws [62] amongst others followed this with influential

work associated with inhomogeneities of specific shapes, paying particular attention in many

cases to the scenarios of discs, fibres and cracks. A number of P-tensors are also stated in the
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excellent concise review of micromechanics by Markov [81] although unfortunately, some

typographical errors are present there and these are corrected here.

The integral equation formulation of the isolated inhomogeneity problem in elastostatics

proceeds analogously to the potential problem with an expected increase in complexity. The

equations governing the elastic displacement u in the medium described above and depicted

in Fig. 1 are

∂

∂xj

(

Cijkℓ(x)
∂uk

∂xℓ

)

= 0, (2.8)

where body forces have been neglected. The associated Green’s tensor of the host phase

satisfies

∂

∂xj

(

C0
ijkℓ

∂Gkr

∂xℓ

)

+ δirδ(x − y) = 0, (2.9)

as well as the far-field condition limx→∞ Gij (x) = 0, noting that Gij = Gj i . The resulting

displacement field in the medium may be straightforwardly derived in integral equation form

as

ui(y) = u∗
i (y) −

(

C1
mnkℓ − C0

mnkℓ

)

∫

V1

emn(x)
∂Gki

∂xℓ

(x − y) dx, (2.10)

which holds for all y. Here u∗
i (y) is the solution to the equivalent problem satisfying (2.8)

with no inhomogeneity present, or equivalently C1
ijkℓ = C0

ijkℓ. As in the potential problem,

take derivatives of both sides of (2.10) to form the strain tensor eij = (∂ui/∂xj +∂uj/∂xi)/2

and use the property ∂Gki/∂xj = −∂Gki/∂yj so that, for all y ∈ V ,

eij (y) = e∗
ij (y) +

(

C1
mnkℓ − C0

mnkℓ

)

[

∂2

∂yℓ∂yj

∫

V1

emn(x)Gki(x − y) dx

]
∣

∣

∣

∣

(kℓ),(ij)

. (2.11)

Here the notation |(kℓ),(ij) indicates symmetry with respect to the pair of indices grouped

together inside parentheses, so that upon defining

Qmnki =
∫

V1

emn(x)Gki(x − y) dx, (2.12)

one can write

∂2Qmnki

∂yℓ∂yj

∣

∣

∣

∣

(kℓ),(ij)

= 1

4

(

∂2Qmnki

∂yℓ∂yj

+ ∂2Qmnℓi

∂yk∂yj

+ ∂2Qmnkj

∂yℓ∂yi

+ ∂2Qmnℓj

∂yk∂yi

)

. (2.13)

3 Uniformity of the Hill and Eshelby Tensors

3.1 The Potential Problem

Impose so-called homogeneous temperature gradient conditions (in the language of mi-

cromechanics: such conditions would lead to a homogeneous temperature gradient in a ho-

mogeneous medium) so that in the far-field when |x| → ∞,

T → θixi, (3.1)
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where θ is uniform and therefore T ∗ = θixi and e∗
i = θi . Referring to (2.7), one then asks,

is there an inhomogeneity of any shape that can give rise to a uniform temperature gradient

field inside the inhomogeneity, i.e., for y ∈ V1? If such an inhomogeneity does exist, then

(2.7) is only consistent for y ∈ V1 if the tensor defined as

Pij (y) = − ∂2

∂yi∂yj

∫

V1

G(x − y) dx (3.2)

is also uniform, i.e., is independent of y. The tensor P with components Pij defined in (3.2) is

known as Hill’s Polarization tensor for the potential problem and it possesses the symmetry

Pij = Pj i . If P is not uniform, it would mean that the assumption of a uniform temperature

gradient field inside the inhomogeneity was incorrect.

It transpires that when the inhomogeneity region is ellipsoidal the P-tensor defined in

(3.2) is indeed uniform. This is proved in Appendix A.1, where it is also shown that the

general form for the P-tensor can be defined in terms of an integral over the surface of the

unit sphere S2.

General form of Hill’s tensor for the potential problem:

Ellipsoid in an unbounded medium

The components of Hill’s tensor are defined as

P
ellipsoid

ij = det(a)

4π

∫

S2

Φij (ξ)

(ξ kakℓaℓmξm)3/2
dS(ξ), (3.3)

where ξ = (ξ 1, ξ 2, ξ 3) is a unit vector that points from the origin, i.e., the centre of S2, to

its surface. Additionally Φij is given by

Φij (ξ) =
ξ iξ j

C0
kℓξ kξ ℓ

(3.4)

and a is a second order tensor whose components are defined by

aij =
3

∑

n=1

anδinδjn (3.5)

as long as the semi-axes of the ellipsoid are aligned along the x1, x2 and x3 axes, so that

det(a) = a1a2a3. In fact it is always possible to define a in this manner by choosing x1, x2

and x3 to be aligned along the semi-axes of the ellipsoid, as long as one is happy for

the principal axes of C0
ij to be defined in different directions to x1, x2 and x3 should the

principal axes of C0 and a not be aligned.

Clearly since the integral is over the surface of the unit sphere S2, it is sensible to re-

solve ξ i into spherical polar coordinates for the purposes of evaluating this integral. The

form of (3.3) illustrates the important general result that the P-tensor is uniform for an arbi-

trarily anisotropic ellipsoidal inhomogeneity embedded inside an arbitrarily anisotropic host

phase. That Eshelby’s (weak) conjecture is true for anisotropic potential problems [56, 71],

means that the ellipsoid is the only shaped inhomogeneity for which the interior tempera-
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ture gradient is uniform under any such far-field condition of the form (3.1). The fact that

the strong conjecture is not true in the Newtonian potential problem means that there exists

shapes where the interior temperature gradient field can be uniform for specifically chosen

homogeneous far-field conditions [71].

To determine the appropriate P-tensor in any circumstance then one can appeal to (3.3)

and carry out the necessary integration. Alternatively, as shall be shown in Sect. 4, in many

cases it is relatively straightforward to use symmetry arguments and results from potential

theory in the isotropic host case together with scalings in some cases of host anisotropy,

in order to derive explicit results, often in a more straightforward manner than by directly

evaluating the general expression (3.3). In fact in the potential problem context, symme-

try arguments and results from potential theory [58] are often sufficient to derive results

for many special cases of ellipsoids in host media that are at most orthotropic. The gen-

eral result (3.3) is thus suitable for more complex anisotropies than orthotropy or for ex-

ample if the semi-axes of the ellipsoid are not aligned with the axes of symmetry of host

anisotropy.

It should be recalled that the P-tensor is independent of the anisotropy of the inhomo-

geneity and therefore arbitrary anisotropy can be retained for the inhomogeneity domain.

The only aspects of the inhomogeneity that influence the P-tensor are its shape and, for

anisotropic host phases, its orientation with respect to the axes of anisotropy of the host

phase. It is important to note the following three points:

• In the host region V0 the temperature gradient is generally not uniform.

• For non-homogeneous temperature gradient conditions in the far-field, the temperature

gradient field inside an ellipsoidal inhomogeneity is generally not uniform. However if the

prescribed temperature gradient is a polynomial of order n, then so is the field inside an

ellipsoidal inhomogeneity, see [6]. This is known as the polynomial conservation property

for ellipsoids.

• Generally for non-ellipsoidal inhomogeneities in unbounded domains and general shaped

inhomogeneities in bounded host domains V , the temperature gradient inside the inho-

mogeneities is not uniform, although interacting E-inclusions [71] can lead to uniform

interior temperature gradients and for specific loadings, non-ellipsoidal inhomogeneities

can yield uniform interior temperature gradients, e.g., the counterexample of the Strong

Eshelby conjecture given by Liu [71].

Regarding the first point, once the interior temperature gradient field is known, it can be

employed to determine the exterior field by using (2.6) so that for y /∈ V1,

T (y) = θiyi −
(

C1
kj − C0

kj

)

Akℓθℓ

∫

V1

∂G

∂xj

(x − y) dx, (3.6)

where Aij is the temperature gradient Concentration tensor linking the interior temperature

gradient to that in the far-field, i.e., θj , see Sect. 3.3. The gradient of (3.6) is not uniform

since y now lies outside V1.

3.2 Elastostatics

The symmetry relation Cijkℓ = Cijℓk was used in deriving (2.11) as this turns out to be

preferable in various contexts. Analogously to the potential problem, let us take homoge-
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neous displacement gradient conditions in the far-field, i.e., as |x| → ∞

ui → ǫijxj , (3.7)

where ǫij is uniform and therefore u∗
i = ǫijxj and e∗

ij = (ǫij + ǫj i)/2. Note that ǫij does not

have to be symmetric but if it is then it is simply the strain in the far-field. As in the case of

the potential problem, the aim is to determine if there exists an inhomogeneity of any shape

that is consistent with the assumption of uniform interior strain. If such an inhomogeneity

exists, (2.11) is only consistent for y ∈ V1 if the tensor defined as

Pijkℓ(y) = −
[

∂2

∂yj∂yℓ

∫

V1

Gik(x − y) dx

]∣

∣

∣

∣

(ij),(kℓ)

(3.8)

is uniform. The tensor defined here is the P-tensor for elastostatics. It possesses the minor

symmetries Pijkℓ = Pijℓk = Pj ikℓ by construction. Furthermore, thanks to the symmetry of

the free space Green’s tensor Gij = Gj i it also possesses the major symmetry Pijkℓ = Pkℓij .

It transpires that when the inhomogeneity region is ellipsoidal the P-tensor defined in

(3.8) is indeed uniform. This is proved in Appendix A.1, where it is also shown that the

general form for the P-tensor can be defined in terms of an integral over the surface of the

unit sphere S2.

General form of Hill’s tensor for linear elastostatics:

Ellipsoid in an unbounded medium

The components of Hill’s tensor are defined as

P
ellipsoid

ijkℓ = det(a)

4π

∫

S2

Φijkℓ(ξ)

(ξmamnanpξp)3/2
dS(ξ), (3.9)

where ξ and S2 are as defined for the potential problem and a is defined in (3.5). Further-

more

Φijkℓ =
(

ξ j ξ ℓNik(ξ)
)
∣

∣

(ij),(kℓ)
, (3.10)

where Nij is defined via

NikÑkj = δij , Ñij (ξ) = C0
ijkℓξ j ξ ℓ. (3.11)

That Eshelby’s (weak) conjecture is true for isotropic elastostatics problems [56, 71],

means that the ellipsoid is the only shaped inhomogeneity for which the interior temperature

gradient is uniform under any such far-field condition of the form (3.7). It is stressed however

that it is not yet clear whether the weak conjecture is true in the context of anisotropic

problems.

To determine the P-tensor for an ellipsoid for a given host anisotropy one merely

has to evaluate the surface integral in (3.9) and this can be done numerically very ef-

ficiently. For host anisotropies more complex than transversely isotropic it is gener-

ally recommended that the form (3.9) be employed and integrals are evaluated numeri-

cally. In what follows here the P-tensor shall be determined in the case of an isotropic
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host phase by appealing to various symmetries and potential theory. An important re-

sult derived by Withers [133] associated with a transversely isotropic host phase is also

stated.

As in the potential problem, the only aspects of the inhomogeneity that influence the

P-tensor are its shape and, for anisotropic host phases, its orientation with respect to the

axes of anisotropy of the host phase. Note also that the same three points described for the

potential problem, preceding equation (3.6), also hold here in the elastostatics context with

appropriate modifications to terminology. Furthermore, once the field is known inside the

inhomogeneity region V1 the exterior field can be determined in terms of the Green’s tensor,

as

ui(y) = ǭijyj −
(

C1
mnkℓ − C0

mnkℓ

)

Amnpqe
∗
pq

∫

V1

∂Gki

∂xℓ

(x − y) dx, (3.12)

where Aijkℓ are the components of the strain Concentration tensor (see Sect. 3.3), which

links the strain inside the inhomogeneity to that in the far-field.

3.3 The Potential Gradient Tensor and Strain Concentration Tensor

Defining the volume average

f = 1

|V |

∫

V

f (x) dx (3.13)

of the function f , it is straightforward to show that in the case of the conditions (3.1), the

body averaged temperature gradient is [81]

ei = θi = e∗
i . (3.14)

Of immediate interest is the temperature gradient field e1
i inside an ellipsoidal inhomogene-

ity V1, which from the theory developed above has been shown to be uniform so that it is

equal to its phase average, e1
i = e1

i where the phase average is defined as

f
1 = 1

|V1|

∫

V1

f (x) dx. (3.15)

Therefore in the case of an isolated ellipsoidal inhomogeneity with homogeneous far-field

conditions of the form (3.1), using (3.14), the expression in (2.7) becomes

e1
i = ei −

(

C1
kj − C0

kj

)

e1
kPij . (3.16)

Using the symmetries Cij = Cj i and Pij = Pj i and re-arranging, (3.16) can thus be written

in the form

ei =
(

δij + Pik

(

C1
kj − C0

kj

))

e1
j . (3.17)

Therefore one can relate the uniform temperature gradient inside the inhomogeneity to the

average temperature gradient of the entire body via a second order tensor, which is thus

identified as the temperature gradient Concentration tensor for this problem.
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Temperature gradient Concentration tensor:

Ellipsoid in an unbounded medium

For an ellipsoidal inhomogeneity V1 embedded in an otherwise unbounded uniform

medium, if homogeneous temperature gradient conditions (3.1) are prescribed in the far-

field, the following exact relationship holds:

e1
i = e1

i = Aijej , (3.18)

where the uniform Concentration tensor Aij is defined by

AikÃkj = δij , Ãij = δij + Pik

(

C1
kj − C0

kj

)

(3.19)

and Pij is defined in (3.2).

Note that Aij is the Concentration tensor associated with an isolated inhomogeneity in-

side an unbounded host medium. The calligraphic notation Aij has been used to stress the

link with (and distinguish from) the exact Concentration tensor whose components are usu-

ally defined as Aij , and which links the phase average of the true temperature gradient inside

an inhomogeneity to that in the far-field in a complex inhomogeneous medium, which may

consist of interacting inhomogeneities. For a dilute medium where interaction effects can be

neglected, Aij = Aij .

Moving on to the elastostatics case, it is straightforward to show that in the case of the

conditions (3.7), the body averaged strain is

eij = 1

2
(ǫij + ǫj i) = e∗

ij . (3.20)

The (uniform) strain e1
ij inside an ellipsoidal inhomogeneity V1 is thus equal to its phase

average, e1
ij = e1

ij . Therefore for an isolated ellipsoidal inhomogeneity with homogeneous

far-field conditions (3.7), using (3.20), the expression in (2.11) can be used to determine the

expression

ēij =
(

Iijkℓ + Pijmn

(

C1
mnkℓ − C0

mnkℓ

))

e1
kℓ, (3.21)

where Iijkℓ is the fourth order identity tensor defined in (C.9). Therefore the uniform strain

inside the inhomogeneity can be related to the average strain of the entire body via a fourth

order tensor, which is thus identified as the strain Concentration tensor for this problem.

Strain Concentration tensor:

Ellipsoid in an unbounded medium

For an ellipsoidal inhomogeneity V1 embedded in an otherwise unbounded medium, if

homogeneous displacement conditions (3.7) are prescribed in the far-field, the following

exact relationship holds:

e1
ij = Aijkℓekℓ, (3.22)

where the uniform Concentration tensor Aijkℓ is defined by

AijmnÃnmkℓ = Iijkℓ, Ãijkℓ = Iijkℓ + Pijmn

(

C1
mnkℓ − C0

mnkℓ

)

. (3.23)
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4 The Potential Problem: Specific Cases

4.1 Isotropic Host Phase

Assume that the host phase is isotropic, so that C0
ij = k0δij and therefore the associated

free-space Green’s function is

G(x − y) = 1

4πk0

1

|x − y| . (4.1)

From (3.2) and (1.2) therefore

Pij (x) = 1

k0

∂2Γ

∂xi∂xj

, Sij (x) = ∂2Γ

∂xi∂xj

, (4.2)

where Γ is the potential defined by

Γ (x) = − 1

4π

∫

V1

1

|x − y| dy. (4.3)

Note that this is the negative of the Newtonian potential (see for example Kellogg [58])

associated with an ellipsoidal domain V1. From potential theory therefore

∇2Γ (x) = ∂2Γ

∂xk∂xk

= χ1(x) (4.4)

and furthermore Γ (x) is a quadratic function of the components of x (see Appendix B),

illustrating the uniformity of the P-tensor in this case.

As an aside, note that since the host phase is isotropic, the temperature field exterior to

the inhomogeneity is determined via (3.6) so that

T (y) = θiyi +
(

C1
kj − k0δkj

)

Akℓθℓ

1

k0

∂Γ (y)

∂yj

. (4.5)

This solution tends to θiyi in the far-field, as it should do.

Once Pij is determined for an isotropic host phase the associated Concentration tensor for

an isolated inhomogeneity may then be found from (3.19) as is now illustrated in a number

of special cases of specific inhomogeneities with given shape and anisotropy.

4.1.1 Sphere in an Isotropic Host Phase

When V1 is a sphere, it is clear from (4.3) that Γ (x) must be spherically symmetric and

hence ∂2Γ
∂xi∂xj

must be isotropic (and uniform) and therefore

∂2Γ

∂xi∂xj

= γ δij (4.6)

for some constant γ . Note that the form (4.6) is a result of the spherical shape and not any

assumption regarding isotropy of the inhomogeneity because such an assumption has not
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been made. Performing a contraction in (4.6) and using (4.4) with x ∈ V1 yields γ = 1
3
.

Therefore from (4.2) and (1.2)

Pij = 1

3k0

δij , Sij = 1

3
δij . (4.7)

For practical purposes, especially for use in micromechanical methods for bounds and esti-

mates of effective material properties, it is useful to write down the associated Concentration

tensors.

Isotropic Sphere If the spherical inhomogeneity is isotropic with conductivity C1
ij =

k1δij , one can show straightforwardly using (3.19) and properties of second order tensors

(see Appendix C.1) that

Aij = 3k0

k1 + 2k0

δij . (4.8)

Anisotropic Sphere Consider a transversely isotropic sphere where the plane of isotropy

is the x1x2 plane. The conductivity tensor therefore takes the form C1
ij = k1(Θij + υδi3δj3)

where Θij is defined according to

δij = Θij + δi3δj3 (4.9)

and υ indicates the degree of anisotropy, with υ = 1 giving isotropy. Using the result derived

in (4.7) and (4.9) together with properties from Appendix C.1, the Concentration tensor Aij

can be written down in the form

Aij = 3k0

k1 + 2k0

Θij + 3k0

υk1 + 2k0

δi3δj3. (4.10)

Setting υ = 1 recovers the isotropic result (4.8).

Averaging over all orientations of the anisotropy of the inhomogeneity uniformly will

yield an isotropic Concentration tensor of the form

Aij = γ δij , (4.11)

where the underline denotes averaging over orientations. By performing this uniform orien-

tation averaging (see Appendix C.3.3) on (4.10) it is straightforwardly shown that

γ = 2k0

k1 + 2k0

+ k0

υk1 + 2k0

. (4.12)

It is also possible to weight the averaging should there be a preferential distribution of

anisotropy. Details of how to implement this procedure are given in Appendix C.3.2.

4.1.2 Circular Cylinder in an Isotropic Host Phase

When V1 is a circular cylinder with axis of symmetry in the x3 direction, it is clear that Γ (x)

should be independent of x3 and isotropic in the x1x2 plane so that

∂2Γ

∂xi∂xj

= γΘij (4.13)
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for some constant γ , where Θij was defined in (4.9). Performing a contraction in (4.13) and

using (4.4) the result γ = 1
2

is obtained. From (4.2) therefore

Pij = 1

2k0

Θij , Sij = 1

2
Θij . (4.14)

If the cylinder is isotropic with conductivity tensor

C1
ij = k1δij , (4.15)

it is straightforward to show that

Aij = 2k0

k1 + k0

Θij + δi3δj3. (4.16)

Alternatively, suppose that the cylinder is transversely isotropic with conductivity tensor

C1
ij = k1(Θij + υδi3δj3). (4.17)

Interestingly one can show that in this case the Concentration tensor is identical to the

isotropic case, i.e., the form stated in (4.16): the parameter υ does not appear in the Concen-

tration tensor. Of course if the axis of symmetry of transverse isotropy is not aligned with

the cylinder axis then this Concentration tensor would then depend on υ .

If the (uniform) orientation average of (4.16) is taken, the associated Concentration tensor

is derived:

Aij = k1 + 5k0

3(k1 + k0)
δij . (4.18)

This last result is often used when very long, thin needle-like inhomogeneities are uniformly

distributed and oriented throughout some host medium.

4.1.3 Ellipsoid in an Isotropic Host Phase

Consider now the general case of an ellipsoidal inhomogeneity and as usual denote the semi-

axes of the ellipsoid as aj , j = 1,2,3. It is straightforward to show, using the theory of the

potential, as in Appendix B that for an ellipsoid in an isotropic host phase, the function Γ (x)

is quadratic in the components of x and can be written in the closed form

Γ (x) =
(

x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

− 1

)

Υ −
3

∑

j=1

x2
j

aj

∂Υ

∂aj

, (4.19)

where

Υ = 1

4
a1a2a3

∫ ∞

0

dt
√

(a2
1 + t)(a2

2 + t)(a2
3 + t)

. (4.20)

In Appendix B it is then shown that

∂2Γ

∂xi∂xj

=
3

∑

n=1

E(εn; ε1, ε2)δinδjn, (4.21)
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where with εn = a3/an,

E(x; ε1, ε2) = x2

2

∫ ∞

0

ds

(1 + sx2)

√

(1 + sε2
1)(1 + sε2

2)(1 + s)

. (4.22)

Therefore

Pij = 1

k0

3
∑

n=1

E(εn; ε1, ε2)δinδjn, Sij = k0Pij . (4.23)

Finally note that using (4.4) it is easily shown that γ1 + γ2 + γ3 = 1.

4.1.4 Spheroid in an Isotropic Host Phase

Denote the semi-axes of the spheroid as a1 = a2 = a �= a3 and use this in (B.27) which

becomes

Υ = 1

2
a2

3

∫ π/2

0

cosψ

ε2 + (1 − ε2) sin2 ψ
dψ, (4.24)

where ε = a3/a. Make the substitution β = sinψ to find

Υ = 1

2
a2

3

∫ 1

0

dβ

ε2 + (1 − ε2)β2
= a2

3

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

arccosh(ε)

ε
√

ε2−1
, ε > 1,

arccos(ε)

ε
√

1−ε2
, ε < 1,

1, ε = 1,

(4.25)

noting that ε = 1 is the case of a sphere.

Therefore from (4.19) it is clear that

Γ (x) = 1

2

(

x2
1 + x2

2

)

T (ε) + 1

2
x2

3S(ε) − Υ, (4.26)

where

S(ε) = 2

a2
3

Υ − 2

a3

∂Υ

∂a3

= 1

1 − ε2
− ε

1 − ε2

⎧

⎨

⎩

1√
ε2−1

arccosh(ε), ε > 1,

1√
1−ε2

arccos(ε), ε < 1
(4.27)

and T (ε) = 1
2
(1 − S(ε)). The function S(ε) has taken many forms in the literature but it

is felt that this is a most clear, consistent and concise formulation. Note that S(ε) → 1
3

as

ε → 1 for the spherical case (see further details below).

Using (4.26) in (4.2), the resulting Hill and Eshelby tensors take the form

Pij = 1

k0

(γΘij + γ3δi3δj3), Sij = k0Pij , (4.28)

where γ3 = S(ε) and γ = T (ε).
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Expressions for the Concentration tensors associated with the spheroidal inhomogeneity

case can now be determined straightforwardly. For an isotropic spheroid,

Aij = k0

k0 + (k1 − k0)γ
Θij + k0

k0 + (k1 − k0)γ3

δi3δj3. (4.29)

Averaging uniformly over orientations of the axes of the spheroid yields

Aij = 1

3

(

2k0

k0 + (k1 − k0)γ
+ k0

k0 + (k1 − k0)γ3

)

δij . (4.30)

One can take limits in the case of the spheroidal inhomogeneity in order to derive the

following results, some of which confirm cases considered above. When V1 is

(i) a sphere, i.e., ε → 1, it is deduced that γ = γ3 = 1
3
,

(ii) a cylinder, i.e., ε → ∞, it is deduced that γ3 = 0, γ = 1
2
,

(iii) a disc or layer, i.e., ε → 0, it is deduced that γ3 = 1, γ = 0.

When used in (4.29) (i) and (ii) confirm the results derived for the Concentration tensors for

isotropic spheres and cylinders derived in Sects. 4.1.1 and 4.1.2 respectively. One has to be

rather careful in taking these limits and for (i) use L’Hopital’s rule appropriately, noting that

as ε → 1

S(ε) = 1

3
− 4

15
(ε − 1) + 6

35
(ε − 1)2 + O

(

(ε − 1)3
)

. (4.31)

In (ii) one has to use the fact that arccoshx ∼ logx as x → ∞. The result for layers in (iii)

can also be obtained via straightforward symmetry arguments.

4.1.5 Limiting Case of an Elliptical Cylinder

One can use the formulation for general ellipsoids above in order to obtain a result for an

elliptical cylinder, unbounded in the x3 direction with semi-axes a1 and a2 lying along the

x1 and x2 axes respectively. Taking the limit a3 → ∞ in (B.32), one can show that

∂2Γ

∂xi∂xj

=
2

∑

n=1

γnδinδjn, (4.32)

where

γ1 = a1a2

2

∫ ∞

0

ds

(a2
1 + s)

3
2 (a2

2 + s)
1
2

, γ2 = a1a2

2

∫ ∞

0

ds

(a2
1 + s)

1
2 (a2

2 + s)
3
2

. (4.33)

The integrals can be determined explicitly, noting that with i, j = 1,2, (i �= j)

∫

ds

(a2
i + s)

3
2 (a2

j + s)
1
2

= 2

(a2
i − a2

j )

(

a2
j + s

a2
i + s

)
1
2

(4.34)

and therefore

γ1 = a2

a1 + a2

, γ2 = a1

a1 + a2

. (4.35)
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The Hill and Eshelby tensors therefore take the form

Pij = 1

k0(a1 + a2)
(a2δi1δj1 + a1δi2δj2), Sij = k0Pij . (4.36)

As regards the Concentration tensor for an isotropic cylinder with C1
ij = k1δij , this is deter-

mined in the form

Aij = k0(1 + ǫ)

k0 + k1ǫ
δi1δj1 + k0(1 + ǫ)

k1 + k0ǫ
δi2δj2 + δi3δj3, (4.37)

where ǫ = a2/a1 is the aspect ratio of the ellipse.

4.1.6 Limiting Cases of a Cavity, Penny-Shaped Crack and Ribbon-Crack

It does not make sense to define a temperature gradient Concentration tensor in the context

of cracks or cavities because clearly there is no interior field. However it turns out that this

concept is useful and can be interpreted as linking the far-field to the field on the surface

of such inhomogeneities [50] with an appropriate definition of cavity temperature gradient.

Here the results above are used in order to derive associated Concentration tensors for cracks

and cavities.

Consider a spheroidal inhomogeneity and the limit k1 → 0 in (4.29). This yields

Aij = 1

1 − γ
Θij + 1

1 − γ3

δi3δj3. (4.38)

This is the Concentration tensor for potential problems involving spheroidal cavities.

Next consider the so-called penny-shaped crack limit. The asymptotic form of γ (ε) and

γ3(ε) as ε → 0 is required. These are easily shown to be

γ3(ε) = 1 − π

2
ε + 2ε2 + O

(

ε3
)

, γ (ε) = π

4
ε − ε2 + O

(

ε3
)

. (4.39)

Therefore one can derive the form

Aij = Θij +
(

2

πε
+ 1

2

)

δi3δj3 + O(ε), (4.40)

where expansions have been taken for ε ≪ 1 and terms up to O(1) have been retained since

higher order terms will clearly vanish as ε → 0.

The coefficient of δi3δj3 in (4.40) involves an apparently singular limit as ε → 0. That

this is not a problem arises from the fact that this expression is used in formulae for effective

properties of cracked media where this term is always multiplied by a volume-fraction term

(or rather a crack-density term) that is proportional to ε [48, 49]. Note that taking the limits

in the opposite order, i.e., ε → 0 and then k1 → 0 yields an inconsistent result, giving rise

to singular effective material behaviour in the crack limit, which cannot be correct.

Finally, consider a different limit, the so-called ribbon-crack limit. Take k1 = 0 in the

elliptical cylinder result (4.37) to find

Aij = (1 + ǫ)δi1δj1 + (1 + ǫ)

ǫ
δi2δj2 + δi3δj3. (4.41)
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Therefore as ǫ → 0

Aij = 1

ǫ
δi2δj2 + δij + O(ǫ). (4.42)

As in the penny-shaped crack result above, the Concentration tensor for the ribbon-crack is

singular.

4.2 Anisotropic Host Phase

The general form (3.3) for the P-tensor associated with arbitrary host anisotropy requires

the necessary surface integral to be evaluated. In the case of transversely isotropic and or-

thotropic media however, where principal axes are aligned with the semi-axes of the el-

lipsoid, the problem can be simplified significantly by employing a scaling of the Cartesian

variables in order to reduce the isolated ellipsoidal inhomogeneity problem in an anisotropic

medium to the case of an ellipsoidal inhomogeneity (with different semi-axes) in an isotropic

medium. Therefore the results derived above for the isotropic host phase case can be used

in the scaled domain and then mapped back to the physical domain in order to obtain the

appropriate physical Hill and Eshelby tensors.

As usual consider the case of an ellipsoid with semi-axes aj , j = 1,2,3 but now em-

bedded in an orthotropic host medium (with principal axes aligned along xj , i.e., with the

semi-axes of the ellipsoid) so that

C0
ij = k0(δi1δj1 + υ2δi2δj2 + υ3δi3δj3), (4.43)

where υ2 = 1 (or υ3 = 1) for transverse isotropy. The governing partial differential equation

is

∂

∂xi

(

C0
ij

∂T

∂xj

)

= 0. (4.44)

Now employ the simple rescaling

xj = √
υj x̂j , j = 1,2,3, (4.45)

where υ1 = 1 is introduced for notational convenience (the conductivity along the x1

axis is thus k0), so that the semi-axes of the ellipsoid in the mapped domain become

âj = aj/
√

υj , j = 1,2,3 and the scaled ellipsoid is denoted as V̂1. The governing equa-

tion then becomes that governing isotropic media so that

Pij = 1

k0

3
∑

n=1

∂2Γ (x)

∂x2
n

δinδjn = 1

k0

3
∑

n=1

1

υn

∂2Γ̂ (x̂)

∂x̂2
n

δinδjn, (4.46)

where Γ̂ (x̂) is defined in terms of the isotropic (due to scaling) Green’s tensor as defined in

(4.1) but now integrated over the scaled ellipsoid V̂1, i.e.,

Γ̂ (x̂) = − 1

4π

∫

V̂1

1

|ŷ − x̂|dŷ. (4.47)
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As a consequence for a general ellipsoid, the result (B.29) can be used but with xj replaced

by x̂j and aj replaced by âj , j = 1,2,3. Therefore with reference to (4.22)

∂2Γ̂

∂x̂i∂x̂j

=
3

∑

n=1

E(ε̂n; ε̂1, ε̂2)δinδjn, (4.48)

where ε̂n = â3/ân. The P and S-tensors for an ellipsoid embedded inside an orthotropic host

medium can then be written as

Pij = 1

k0

3
∑

n=1

γnδinδjn, Sij =
3

∑

n=1

υnγnδinδjn, (4.49)

where γn = 1
υn
E(ε̂n; ε̂1, ε̂2).

Note that the above scaling approach is considerably simpler than carrying out the nec-

essary integrals in the corresponding general expression (3.3) for the P-tensor. If the inho-

mogeneity is embedded in a transversely isotropic host phase with conductivity tensor

C0
ij = k0(Θij + υδi3δj3), (4.50)

then the (orthotropic) P-tensor for an ellipsoid with semi-axes aligned with the principal

directions of anisotropy is found by setting υ1 = υ2 = 1 and υ3 = υ in (4.49) above. Simpli-

fications arise for a spheroid of course as shall now be illustrated.

4.2.1 Spheroid in a Transversely Isotropic Host Phase

Consider a spheroid in a transversely isotropic medium where the major/minor axis of the

spheroid is aligned with the axis of transverse isotropy of the host phase. Denote the semi-

axes of the spheroid as a = a1 = a2 �= a3 and the axis of transverse isotropy as x3. The

scaling argument above can be used to see immediately that the P and S-tensors are given

by

Pij = 1

k0

(γΘij + γ3δi3δj3), Sij = k0Pij , (4.51)

where with reference to (4.27)

γ3(ε) = 1

υ
S

(

ε√
υ

)

, (4.52)

ε = a3/a and γ = 1
2
(1 − υγ3), the latter being derived by using

∂2Γ̂

∂x̂2
1

+ ∂2Γ̂

∂x̂2
2

+ ∂2Γ̂

∂x̂2
3

= 1 (4.53)

for x̂ ∈ V1.

Assuming the spheroid itself is isotropic with conductivity tensor C1
ij = k1δij , and using

(4.50) together with the form of P-tensor in (4.51), the Concentration tensor defined in (3.19)

can be straightforwardly determined as

Aij = k0

k0 + (k1 − k0)γ
Θij + k0

k0 + (k1 − υk0)γ3

δi3δj3, (4.54)
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with γ and γ3 as defined above. Alternatively, supposing that the spheroid is now trans-

versely isotropic with the same axis of symmetry as the host, i.e., C1
ij = k1(Θij + ζ δi3δj3),

one finds that

Aij = k0

k0 + (k1 − k0)γ
Θij + k0

k0 + (ζk1 − υk0)γ3

δi3δj3. (4.55)

4.2.2 Circular Cylinder in a Transversely Isotropic Host Phase

The circular cylinder limit can be taken in the spheroid case considered in Sect. 4.2.1 where

the cross-section of the cylinder sits in the plane of isotropy of the host medium. It is then

anticipated that the P and S-tensors will be transversely isotropic. It has been discussed

above that S(x) → 0 as x → 0 and therefore as with the isotropic host case from (4.52)

γ3 → 0. Therefore γ = 1
2
(1 − νγ3) = 1

2
and then

Pij = 1

2k0

Θij , Sij = 1

2
Θij , (4.56)

so that in fact this tensor is unchanged from the case of an isotropic host phase as in (4.14).

The Concentration tensor for an isotropic cylinder can be straightforwardly determined as

Aij = 2k0

k1 + k0

Θij + δi3δj3. (4.57)

The Concentration tensor associated with a transversely isotropic cylinder is also given by

that in (4.57).

An interesting non-standard example is the case of a spheroid embedded inside a trans-

versely isotropic host phase where the axes of symmetry and semi-axes are not coincident.

In this case the general (surface integral) form of the P and S-tensors must be used with

the semi-axes aligned with the x axes but with all components of the modulus tensor being

generally non-zero.

4.2.3 Ellipsoid in an Orthotropic Host Phase

Consider an ellipsoid with semi-axes aj , j = 1,2,3 that are aligned with the axes of

anisotropy of the host medium with orthotropic conductivity tensor as defined in (4.43).

Analogous scaling arguments can be used as above in order to scale this problem into an

ellipsoid in an isotropic host and then scale back to the physical domain, as described above

to show that

Pij = 1

k0

3
∑

n=1

γnδinδjn, Sij =
3

∑

n=1

γnδinδjn, (4.58)

where

γn = 1

υn

E(ε̂n; ε̂1, ε̂2), (4.59)

where υ1 = 1 and noting that ε̂n =
√

υn

υ3
εn where εn = a3

an
.

For reference, P-tensors for a variety of problems are summarized in Table 1.
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Table 1 Summary of results for the P-tensor associated with ellipsoidal inhomogeneities for potential prob-

lems

Host anisotropy Inhomogeneity shape P-tensor

Isotropic Ellipsoid

a1 �= a2 �= a3
εn = a3/an

Use potential theory:

Pij = 1
k0

∑3
n=1 E(εn; ε1, ε2)δinδjn

Spheroid

a1 = a2 = a �= a3
ε = a3/a

Use potential theory:

Pij = 1
k0

(γΘij + γ3δi3δj3)

γ = 1
2
(1 − γ3), γ3 = S(ε)

Sphere Use symmetry:

Pij = 1
3k0

δij

Transversely

isotropic

υ1 = υ2 = 1 �= υ3 = υ

Ellipsoid

a1 �= a2 �= a3
εn = a3/an

Use scalings and potential theory:

Pij = 1
k0

∑3
n=1

1
υn

E(ε̂n; ε̂1, ε̂2)δinδjn

ε̂n = â3/ân and ân = an/
√

υn

Spheroid

a1 = a2 = a �= a3 and a3
is aligned with axis x3
of transverse isotropy

Use scalings and potential theory:

Pij = 1
k0

(γΘij + γ3δi3δj3)

γ = 1
2
(1 − υγ3), γ3 = 1

υ S( ε√
υ

)

Sphere Special case of spheroid result above:

Pij = 1
k0

(γΘij + γ3δi3δj3)

γ = 1
2
(1 − υγ3), γ3 = 1

υ S( 1√
υ

)

Orthotropic

υ1 = 1 �= υ2 �= υ3

Ellipsoid

a1 �= a2 �= a3

Use scalings and potential theory:

Pij = 1
k0

∑3
n=1

1
υn

E(ε̂n; ε̂1, ε̂2)δinδjn

ε̂n = â3/ân and ân = an/
√

υn

Worse than orthotropic or

semi-axes of ellipsoids not

aligned with axes of

anisotropy

Use general integral form:

Pij = det(a)
4π

∫

S2
Φij dS(ξ)

(ξkakℓaℓmξm)3/2

Φij = ξ iξj /(C0
kℓ

ξkξℓ)

5 Elastostatics: Specific Cases

5.1 Isotropic Host Phase

For the case of an isotropic host phase case the elastic modulus tensor is defined as

C0
ijkℓ = 3κ0I

1
ijkℓ + 2μ0I

2
ijkℓ (5.1)

in terms of the isotropic fourth order basis tensors as defined in (C.7) and (C.8). Here κ0 and

μ0 are the bulk and shear moduli of the host, noting the relation to Poisson’s ratio ν0

κ0 = 2μ0(1 + ν0)

3(1 − 2ν0)
. (5.2)
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The appropriate isotropic Green’s tensor is

Gij (x − y) = 1

4πμ0

δij

|x − y| − 1

16πμ0(1 − ν0)

∂2|x − y|
∂xi∂xj

(5.3)

and the expression for the P-tensor in (3.8) therefore becomes

Pijkℓ = 1

4μ0

(

∂2Γ

∂xj∂xℓ

δik + ∂2Γ

∂xj∂xk

δiℓ + ∂2Γ

∂xi∂xℓ

δjk + ∂2Γ

∂xi∂xk

δjℓ

)

+ 1

4μ0(1 − ν0)

∂4Ψ

∂xi∂xj∂xk∂xℓ

. (5.4)

The potential Γ is that already encountered and defined in (4.3) and Ψ is defined by

Ψ (x) = 1

4π

∫

V1

|x − y|dy, (5.5)

which satisfies (see for example Kellogg [58])

∇4Ψ = −2∇2Γ = −2χ1(x). (5.6)

Once Pijkℓ is determined, the components of the Eshelby tensor can be calculated from

(1.2) and the associated Concentration tensor can be found from (3.23). Recall that no as-

sumptions have been made regarding the anisotropy of the inhomogeneity. This is not re-

quired in order for the P-tensor to be determined. The only aspects of the inhomogeneity

that influence the P-tensor are its shape and, for anisotropic host phases, its orientation with

respect to the axes of anisotropy of the host phase.

5.1.1 Sphere in an Isotropic Host Phase

Assume that the host phase is isotropic with elastic modulus tensor given in (5.1)

and consider the case where V1 is a sphere. The (uniform) tensors ∂2Γ/∂xi∂xj and

∂4Ψ/∂xi∂xj∂xk∂xℓ will be spherically symmetric, i.e., isotropic and must possess full sym-

metry with respect to the interchange of any index. As with the potential problem therefore,

∂2Γ

∂xi∂xj

= 1

3
δij (5.7)

and for Ψ the general isotropic form, with the additional constraint regarding symmetry with

respect to interchange of any indices, is

∂4Ψ

∂xi∂xj∂xk∂xℓ

= ψ(δijδkℓ + δikδjℓ + δiℓδjk), (5.8)

where ψ is a constant to be determined. Performing the contractions j = i, ℓ = k in (5.8) and

utilizing (5.6), ψ = −2/15. Using (5.7) and (5.8) in (5.4), the components of the P-tensor

are

Pijkℓ = 1

6μ0

(δikδjℓ + δiℓδjk) − 1

30μ0(1 − ν0)
(δijδkℓ + δikδjℓ + δiℓδjk). (5.9)
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After simplification and writing in terms of the tensors I 1
ijkℓ and I 2

ijkℓ this becomes

Pijkℓ = p1I
1
ijkℓ + p2I

2
ijkℓ, (5.10)

where upon using the relationship (5.2) the components of the P-tensor are determined as

p1 = 1 − 2ν0

6μ0(1 − ν0)
= 1

3κ0 + 4μ0

, p2 = 4 − 5ν0

15μ0(1 − ν0)
= 3(κ0 + 2μ0)

5μ0(3κ0 + 4μ0)
. (5.11)

From this form the Eshelby tensor is easily determined via (1.2) as

Sijkℓ = s1I
1
ijkℓ + s2I

2
ijkℓ, (5.12)

where

s1 = 1 + ν0

3(1 − ν0)
= 3κ0

3κ0 + 4μ0

, s2 = 2(4 − 5ν0)

15(1 − ν0)
= 6(κ0 + 2μ0)

5(3κ0 + 4μ0)
. (5.13)

Isotropic Sphere The P-tensor derived in (5.10) holds for a spherical inhomogeneity of

arbitrary anisotropy, embedded inside an isotropic host phase. If the inhomogeneity is also

assumed isotropic with elastic modulus tensor of the form

C1
ijkℓ = 3κ1I

1
ijkℓ + 2μ1I

2
ijkℓ, (5.14)

one can use (C.9) and the contraction properties of the tensors I 1
ijkℓ, I

2
ijkℓ as defined in Ap-

pendix C.2 in order to write

Ãijkℓ = I 1
ijkℓ + I 2

ijkℓ + Pijmn

(

C1
mnkℓ − C0

mnkℓ

)

=
(

1 + 3(κ1 − κ0)p1

)

I 1
ijkℓ +

(

1 + 2(μ1 − μ0)p2

)

I 2
ijkℓ. (5.15)

Finally the inversion properties of such a tensor are employed (as described in Ap-

pendix C.2.3) together with (5.11) in order to obtain the strain Concentration tensor:

Aijkℓ =
(

3κ0 + 4μ0

3κ1 + 4μ0

)

I 1
ijkℓ + 5μ0(3κ0 + 4μ0)

3κ0(3μ0 + 2μ1) + 4μ0(2μ0 + 3μ1)
I 2
ijkℓ. (5.16)

Taking κ1,μ1 → 0 in (5.16) the Concentration tensor for a spherical cavity is obtained

purely in terms of the host Poisson ratio:

Aijkℓ = 3(1 − ν0)

2(1 − 2ν0)
I 1
ijkℓ + 15(1 − ν0)

7 − 5ν0

I 2
ijkℓ. (5.17)

Cubic Sphere Assume now that the sphere has cubic symmetry with elastic modulus ten-

sor

C1
ijkℓ = 3κ1I

1
ijkℓ + 2μ1I

2
ijkℓ + η1δijkℓ, (5.18)

where

δijkℓ =
{

1, i = j = k = ℓ,

0, otherwise.
(5.19)
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Instead of (5.15), it is found that

Ãijkℓ =
(

1 + 3(κ1 − κ0)p1

)

I 1
ijkℓ +

(

1 + 2(μ1 − μ0)p2

)

I 2
ijkℓ + η1Pijmnδmnkℓ. (5.20)

Next, using the form of the P-tensor in (5.10) and the relationships (C.19), the expression

(5.20) becomes

Ãijkℓ = α̃1I
1
ijkℓ + α̃2I

2
ijkℓ + α̃3δijkℓ, (5.21)

where

α̃1 = 1 + 3(κ1 − κ0)p1 + η1(p1 − p2), α̃2 = 1 + 2(μ1 − μ0)p2, α̃3 = η1p2.

(5.22)

Finally, appealing to the theory regarding cubic tensors in Appendix C.2.2 the Concentration

tensor is

Aijkℓ = α1I
1
ijkℓ + α2I

2
ijkℓ + α3δijkℓ, (5.23)

where

α1 = α̃2
2 + α̃1α̃3

α̃2
2(α̃1 + α̃3)

, α2 = 1

α̃2

, α3 = − α̃3

α̃2
2

. (5.24)

Note that when η1 = 0 the case of an isotropic sphere is recovered as in (5.15).

5.1.2 Circular Cylinder in an Isotropic Host Phase

Now assume that V1 is a circular cylinder with axis of symmetry in the x3 direction. As

for the potential problem, Γ (x) must be independent of x3 and isotropic in the x1x2 plane.

Hence, as described in (4.13)

∂2Γ

∂xi∂xj

= 1

2
Θij . (5.25)

Furthermore Ψ must also be independent of x3 and be isotropic in the x1x2 plane and hence

write

∂Ψ

∂xi∂xj∂xk∂xℓ

= ψ(ΘijΘkℓ + ΘikΘjℓ + ΘiℓΘjk), (5.26)

for some constant ψ , where the fact that this tensor should be fully symmetric with respect

to interchange of any of its indices has been used. Performing the contractions j = i, ℓ = k

and using (5.6) leads to the conclusion that ψ = − 1
4
. From (5.4) therefore

Pijkℓ = 1

8μ0

(Θjℓδik + Θjkδiℓ + Θiℓδjk + Θikδjℓ)

− 1

16μ0(1 − ν0)
(ΘijΘkℓ + ΘikΘjℓ + ΘiℓΘjk). (5.27)

By writing δij = Θij + δi3δj3 in the first term of (5.27) and then recognizing the appropriate

Hill transversely isotropic basis tensors (the reader is referred to the discussion of this tensor
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basis in Appendix C.2.3) that arise as a result of the various contraction terms, the P-tensor

can be written in the form

Pijkℓ = 1

8μ0

[

2(1 − 2ν0)

1 − ν0

H
1
ijkℓ + 3 − 4ν0

1 − ν0

H
5
ijkℓ + 2H6

ijkℓ

]

(5.28)

= 1

4μ0

[

2μ0

λ0 + 2μ0

H
1
ijkℓ + λ0 + 3μ0

λ0 + 2μ0

H
5
ijkℓ +H

6
ijkℓ

]

. (5.29)

In order to derive the Eshelby tensor one contracts P with the host modulus tensor C0. To do

this, write the isotropic basis tensors in terms of the Hill basis tensors using the expressions

(C.26)–(C.28) and then use the contractions summarized in Table 2 in order to determine

that

Sijkℓ = 1

4(1 − ν0)

(

2H1
ijkℓ + 2ν0H

2
ijkℓ + (3 − 4ν0)H

5
ijkℓ + 2(1 − ν0)H

6
ijkℓ

)

. (5.30)

It may well be the case that a different tensor basis should be used if it transpires that

the cylinder itself is more anisotropic than transversely isotropic, for use in Concentra-

tion tensors for example. However for computation, the matrix formulation, as described

in Appendix C.4 can be of great utility when anisotropic basis tensors are becoming rather

cumbersome.

Suppose now that the cylinder is isotropic with elastic modulus tensor as defined

in (5.14). Once again using (C.26)–(C.28), constructing Ãijkℓ is then just a matter of ex-

ploiting the contractions in Table 2. It transpires that Ãijkℓ takes the form

Ãijkℓ =
6

∑

n=1

α̃nH
n
ijkℓ, (5.31)

where

α̃1 = λ1 + μ1 + μ0

(λ0 + 2μ0)
, α̃2 = (λ1 − λ0)

2(λ0 + 2μ0)
, α̃3 = 0, (5.32)

α̃4 = 1, α̃5 = μ0 + μ1(3 − 4ν0)

4μ0(1 − ν0)
, α̃6 = (μ1 + μ0)

2μ0

. (5.33)

Using the inversion expression for transversely isotropic tensors stated in Appendix C.2.3,

the appropriate Concentration tensor is thus derived as

Aijkℓ =
6

∑

n=1

αnH
n
ijkℓ, (5.34)

where

α1 = λ0 + 2μ0

(λ1 + μ1 + μ0)
, α2 = (λ0 − λ1)

2(λ1 + μ1 + μ0)
, α3 = 0, (5.35)

α4 = 1, α5 = 4μ0(1 − ν0)

μ0 + μ1(3 − 4ν0)
, α6 = 2μ0

μ1 + μ0

. (5.36)
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Since α2 �= α3 it is seen that A1133 �= A3311. The circular cylindrical cavity limit can be

obtained by setting μ1 = 0. Using the expression λ = 2μν/(1 − 2ν),

α1 = 2(1 − ν0)

(1 − 2ν0)
, α2 = ν0

1 − 2ν0

, α3 = 0, (5.37)

α4 = 1, α5 = 4(1 − ν0), α6 = 2. (5.38)

Finally note that the fourth order tensor (5.34) can be represented in matrix form (see Ap-

pendix C.4 where the following “square bracket” notation is introduced) as

[A] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 a13 0 0 0

a12 a11 a13 0 0 0

a31 a31 a33 0 0 0

0 0 0 a33 0 0

0 0 0 0 a33 0

0 0 0 0 0 a66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.39)

where

a11 = (1 − ν0)(3 − 4ν0)

(1 − 2ν0)
, a12 = (ν0 − 1)(1 − 4ν0)

(1 − 2ν0)
, a13 = ν0

1 − 2ν0

, (5.40)

a31 = 0, a33 = 1, a66 = 2(1 − ν0). (5.41)

Clearly it is possible to write down explicit expressions for the Concentration tensor when

the circular cylinder is anisotropic. This merely complicates the tensorial (or matrix) oper-

ations after the derivation of the P-tensor in (5.27). Given this P-tensor, perhaps the most

important aspect is then to choose the tensor basis set correctly, given the anisotropy of the

inhomogeneity. For example, when the cylinder itself is transversely isotropic (a common

occurrence in applications) it is considered sensible to use a transversely isotropic tensor

basis set. For practical purposes and especially for the sake of computation, using the ma-

trix formulation of tensors is advantageous in cases where the tensor basis sets become

rather cumbersome. The following procedure is used, in the usual notation, referring to Ap-

pendix C.4, and defining the 6 × 6 matrix [P ] associated with the P-tensor, define

[Ã] = [I ] + [P ][W ]
[

C1 − C0
]

, (5.42)

where [W ] is defined in (C.56) and therefore

[A] = [W ]−1[Ã]−1[W ]−1. (5.43)

5.1.3 Spheroid in an Isotropic Host Phase

When V1 is a spheroid, the potential theory outlined in Appendix B is once again of use. It

is clear that the P-tensor must be transversely isotropic and therefore will take the form

Pijkℓ =
6

∑

n=1

pnH
n
ijkℓ. (5.44)
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The separate contributions to the P-tensor shall therefore first be decomposed into this form.

Firstly, from the potential case described in Sect. 4.1.4

∂2Γ

∂xi∂xj

= γΘij + γ3δi3δj3, (5.45)

where γ3 = S(ε) and γ = 1
2
(1 − γ3). Representing all terms in the Hill basis one can show

that

1

4

(

∂2Γ

∂xj∂xℓ

δik + ∂2Γ

∂xj∂xk

δiℓ + ∂2Γ

∂xi∂xℓ

δjk + ∂2Γ

∂xi∂xk

δjℓ

)

= γ
(

H
1
ijkℓ +H

5
ijkℓ

)

+ γ3H
4
ijkℓ + 1

2
(γ + γ3)H

6
ijkℓ. (5.46)

This is seen by using Θik = δik − δi3δk3 and writing for example,

∂2Γ

∂xj∂xℓ

δik = ∂2Γ

∂xj∂xℓ

(Θik + δi3δk3)

= (γΘjℓ + γ3δj3δℓ3)(Θik + δi3δk3)

= γ (ΘjℓΘik + Θjℓδi3δk3) + γ3(Θikδj3δℓ3 + δi3δj3δk3δℓ3). (5.47)

Doing this for each term on the left hand side of (5.46), combining and using the definitions

of the transversely isotropic basis tensors in Appendix C.2.3 leads to the form on the right

hand side of (5.46).

Further, after much algebraic manipulation using the simplifications of the integrals in

Appendix B in the case of spheroids one can show that

1

4

∂4Ψ

∂xi∂xj∂xk∂xℓ

=
6

∑

n=1

ψnH
n
ijkℓ, (5.48)

where, upon using γ3 = 1 − 2γ ,

ψ1 = ε2(4γ − 1) − γ

4(1 − ε2)
, ψ2 = ψ3 = ε2(1 − 2γ ) − γ

4(1 − ε2)
, (5.49)

ψ4 = 3γ − 1

2(1 − ε2)
, ψ5 = 1

2
ψ1, ψ6 = 2ψ2. (5.50)

Therefore

p1 = 1

μ0

(

γ + 1

(1 − ν0)
ψ1

)

, p2 = p3 = ψ2

μ0(1 − ν0)
, (5.51)

p4 = 1

μ0

(

1 − 2γ + 1

(1 − ν0)
ψ4

)

, p5 = 1

μ0

(

γ + 1

2(1 − ν0)
ψ1

)

, (5.52)

p6 = 1

μ0

(

1

2
(1 − γ ) + 2

(1 − ν0)
ψ2

)

. (5.53)

A good check is to ascertain that the result for a sphere in an isotropic host phase is recov-

ered by taking ε → 1 and using (4.31). This is easily done and yields the result derived in
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Sect. 5.1.1 associated with a sphere. Another useful limit is to take ε → 0. Results already

derived can be employed, e.g., (4.39), which when used in (5.49)–(5.50) yield

ψ1 = − π

16
ε + O

(

ε3
)

, ψ2 = ψ3 = − π

16
ε + ε2

2
+ O

(

ε3
)

, (5.54)

ψ4 = −1

2
+ 3π

8
ε − 2ε2 + O

(

ε3
)

, ψ5 = − π

32
ε + O

(

ε3
)

,

ψ6 = −π

8
ε + ε2 + O

(

ε3
)

.

(5.55)

For the components of the P-tensor this then gives

p1 = 1

μ0

(

π(3 − 4ν0)

16(1 − ν0)
ε − ε2

)

+ O
(

ε3
)

, (5.56)

p2 = p3 = 1

μ0

(

− π

16(1 − ν0)
ε + 1

2(1 − ν0)
ε2

)

+ O
(

ε3
)

, (5.57)

p4 = 1

μ0

(

1 − 2ν0

2(1 − ν0)
− π(1 − 4ν0)

8(1 − ν0)
ε − 2ν0

1 − ν0

ε2

)

+ O
(

ε3
)

, (5.58)

p5 = 1

μ0

(

π(7 − 8ν0)

32(1 − ν0)
ε − ε2

)

+ O
(

ε3
)

, (5.59)

p6 = 1

μ0

(

1

2
− π(2 − ν0)

8(1 − ν0)
ε + 3 − ν0

2(1 − ν0)
ε2

)

+ O
(

ε3
)

. (5.60)

The Eshelby tensor with respect to a transversely isotropic basis, in the form

Sijkℓ =
6

∑

n=1

snH
n
ijkℓ (5.61)

for either the spheroid with components of P-tensor (5.51)–(5.53) or the ε → 0 limit of

the spheroid with components of the P-tensor (5.56)–(5.60) has components that are related

directly to the components of the P-tensor via the expressions

s1 = 2μ0

(

p1 + 2p2ν0

1 − 2ν0

)

, s2 = 2μ0

(

p1ν0 + (1 − ν0)p2

1 − 2ν0

)

, (5.62)

s3 = 2μ0

(

p3 + ν0p4

1 − 2ν0

)

, s4 = 2μ0

(

2p3ν0 + (1 − ν0)p4

1 − 2ν0

)

, (5.63)

s5 = 2μ0p5, s6 = 2μ0p6. (5.64)

Finally, it is straightforward, but rather tedious, to show, using the P-tensor derived in the

previous example, that the strain Concentration tensor associated with an isotropic spheroid

embedded in an isotropic host phase is

Aijkℓ =
6

∑

n=1

αnH
n
ijkℓ, (5.65)
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where with � = 1
2
q1q4 − q2q3,

α1 = q4

2�
, α2 = − q2

2�
, α3 = − q3

2�
, (5.66)

α4 = q1

2�
, α5 = 1

q5

, α6 = 1

q6

(5.67)

and where

q1 = 1 + 2p1(λd + μd) + 2p2λd , q2 = p1λd + p2(λd + 2μd), (5.68)

q3 = 2p3(λd + μd) + p4λd , q4 = 1 + 2p3λd + p4(λd + 2μd), (5.69)

q5 = 1 + 2p5μd , q6 = 1 + 2p6μd , (5.70)

with

λd = λ1 − λ0, μd = μ1 − μ0. (5.71)

The spheroidal cavity result is simply (5.65)–(5.71) with λ1 = μ1 = 0 and so every occur-

rence of λd and μd is simply replaced with −λ0 and −μ0 respectively. The result can be

obtained in terms of ν0 alone by using the expression λ0 = 2μ0ν0/(1 − 2ν0).

The average of the Concentration tensor over uniform orientations of spheroids can be

obtained using the result in (C.52) in order to derive an expression of the form

Aijkℓ = α1I
1
ijkℓ + α2I

2
ijkℓ. (5.72)

5.1.4 Elastic Layer

The result for the spheroid can be used in order to determine the P-tensor and Concentration

tensor for an elastic layer, taking ε = 0 in (5.56)–(5.60),

Pijkℓ = 1

2μ0

(

1 − 2ν0

1 − ν0

H
4
ijkℓ +H

6
ijkℓ

)

, (5.73)

and Eshelby’s tensor easily follows as

Sijkℓ = ν0

1 − ν0

H
3
ijkℓ +H

4
ijkℓ +H

6
ijkℓ. (5.74)

Using the P-tensor the Concentration tensor for an isotropic layer is straightforwardly de-

termined as

Aijkℓ = H
1
ijkℓ +

(

λ0 − λ1

λ1 + 2μ1

)

H
3
ijkℓ +

(

λ0 + 2μ0

λ1 + 2μ1

)

H
4
ijkℓ +H

5
ijkℓ + μ0

μ1

H
6
ijkℓ. (5.75)

5.1.5 Limiting Case of a Penny-Shaped Crack

For a penny shaped crack, terms up to O(ε) are retained in (5.56)–(5.60) to obtain

Pijkℓ = 1

μ0

[

π(3 − 4ν0)

16(1 − ν0)
εH1

ijkℓ − π

16(1 − ν0)
ε
(

H
2
ijkℓ +H

3
ijkℓ

)
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+
(

1 − 2ν0

2(1 − ν0)
− π(1 − 4ν0)

8(1 − ν0)
ε

)

H
4
ijkℓ

+ π(7 − 8ν0)

32(1 − ν0)
εH5

ijkℓ +
(

1

2
− π(2 − ν0)

8(1 − ν0)
ε

)

H
6
ijkℓ

]

. (5.76)

Using this to determine the Concentration tensor with μ1 = 0 as in the cavity limit, it is

straightforwardly shown that

Aijkℓ = (1 − ν0)H
1
ijkℓ − 1

2
(1 − ν0)H

2
ijkℓ +

(

4ν0(1 − ν0)

π(1 − 2ν0)

1

ε
− 1

2
(1 − ν0)(1 + 2ν0)

)

H
3
ijkℓ

+
(

4(1 − ν0)
2

π(1 − 2ν0)

1

ε
+ 1

2
(1 + 2ν0)(1 − ν0)

)

H
4
ijkℓ +H

5
ijkℓ

+
(

4(1 − ν0)

π(2 − ν0)

1

ε
+ 16(3 − ν0)(1 − ν0)

π2(2 − ν0)2

)

H
6
ijkℓ, (5.77)

where terms of O(ε) have been neglected in (5.77). This expression has singular behaviour

as ε → 0 akin to the potential problem result (4.40) and when deriving effective properties

for distributions of cracks, this singular nature is necessary to yield the correct effective

behaviour [48]. In fact although O(1) coefficients have been retained in (5.77) only the

singular terms are required in order to determine effective properties. The expression (5.77)

corrects the typographical errors given on p. 104 of [81].

A common requirement is the determination of the effective properties of a medium

comprising penny shaped cracks that are uniformly distributed and uniformly oriented inside

some host material. Using (C.52) the associated Concentration tensor is shown to be

Aijkℓ = 4(1 − ν2
0 )

3πε(1 − 2ν0)
I 1
ijkℓ + 8(1 − ν0)(5 − ν0)

15πε(2 − ν0)
I 2
ijkℓ + O(1). (5.78)

The case of an ellipsoid in an isotropic medium shall now be considered. In order to deal

with this generally in a tensor setting, ideally an orthotropic tensor basis should be used.

Although it is possible to write down such a basis, details are rather lengthy and in fact

for practical computation, it is perhaps most sensible to write down the nine independent

components of the P-tensor and use matrix computations in the manner described after

Sect. 5.1.2 above.

5.1.6 Ellipsoid in an Isotropic Host Phase

The nine independent components of the P-tensor for an ellipsoid can be defined in terms

of the function E(εn; ε1, ε2) and the semi-axes ratios εn.

The nine independent components of the Eshelby tensor for an ellipsoid in an isotropic

medium are usually stated in terms of the four components S1111, S1122, S1133 and S1212 to-

gether with cyclic properties of the indices, in terms of Imn and Im as defined in (B.42)–

(B.45). In turn these lead to expressions in terms of the fundamental integral E(εn; ε1, ε2)

via (B.35) and (B.43)–(B.46). Now use (5.4) with (4.21) and (B.48) and employ the proper-

ties (B.43)–(B.46) to derive the following compact forms

P1111 = 3

16πμ0(1 − ν0)
I11 + 1 − 4ν0

16πμ0(1 − ν0)
I1, (5.79)
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P1122 = 1

16πμ0(1 − ν0)
(I21 − I1), (5.80)

P1133 = 1

16πμ0(1 − ν0)
(I31 − I1), (5.81)

P1212 = 1

32πμ0(1 − ν0)
(I12 + I21) + (1 − 2ν0)

32πμ0(1 − ν0)
(I1 + I2). (5.82)

All other non-zero components are obtained by cyclic permutation of the indices in the above

equations. Those components that cannot be obtained via cyclic permutation are zero, e.g.,

P1112 = P1223 = P1323 = 0.

For representations and calculations of the Concentration tensor it is convenient to use

the matrix representation of the tensors. This is discussed in the next section by considering

the elliptical cylinder and ribbon crack limits. First however the components of the Eshelby

tensor are stated, using (1.2) and noting the slightly modified notation for Imn in (B.42) (i.e.,

the factor of a2
m) as compared with the standard definition in Mura [92]. The components

are expressed as

S1111 = 3

8π(1 − ν0)
I11 + 1 − 2ν0

8π(1 − ν0)
I1, (5.83)

S1122 = 1

8π(1 − ν0)

ε2
1

ε2
2

I12 − 1 − 2ν0

8π(1 − ν0)
I1, (5.84)

S1133 = 1

8π(1 − ν0)

ε2
1

ε2
3

I13 − 1 − 2ν0

8π(1 − ν0)
I1, (5.85)

S1212 = 1 + ε2
1/ε

2
2

16π(1 − ν0)
I12 + 1 − 2ν0

16π(1 − ν0)
(I1 + I2) (5.86)

and permutation rules follow as for the P-tensor.

5.1.7 Elliptical Cylinder and Ribbon-Crack Limit

In Sect. 4.1.5 it was shown that in the limit as a3 → ∞, E(1; ε1, ε2) → 0 and

E(ε1; ε1, ε2) → a2

a1 + a2

= ǫ

1 + ǫ
, E(ε2; ε1, ε2) → a1

a1 + a2

= 1

1 + ǫ
, (5.87)

where ǫ = a2/a1. These are used in the expressions for Imn and In in Appendix B and

substituted into (5.79)–(5.82) to determine the associated P-tensor components. Since the

P-tensor is still orthotropic there are nine independent components:

P1111 = ǫ

(

4(1 + ǫ)(1 − ν0) − (1 + 2ǫ)

4μ0(1 − ν0)(1 + ǫ)2

)

, (5.88)

P2222 = 4(1 + ǫ)(1 − ν0) − (2 + ǫ)

4μ0(1 − ν0)(1 + ǫ)2
, (5.89)

P3333 = 0, (5.90)



264 W.J. Parnell

P1122 = −ǫ

4μ0(1 − ν0)(1 + ǫ)2
, P1133 = 0, (5.91)

P2233 = 0, P1313 = ǫ

4μ0(1 + ǫ)
, (5.92)

P2323 = 1

4μ0(1 + ǫ)
, P1212 = (1 − ν0)(1 + ǫ)2 − ǫ

4μ0(1 − ν0)(1 + ǫ)2
. (5.93)

The Eshelby tensor components follow as

S1111 = ǫ

(

1 + 2(1 + ǫ)(1 − ν0)

2(1 − ν0)(1 + ǫ)2

)

, S2222 = ǫ + 2(1 − ν0)(1 + ǫ)

2(1 − ν0)(1 + ǫ)2
, (5.94)

S3333 = 0, S1133 = ν0ǫ

(1 − ν0)(1 + ǫ)
, (5.95)

S3311 = 0, S1122 = −ǫ + 2ǫ(1 + ǫ)ν0

2(1 − ν0)(1 + ǫ)2
, (5.96)

S2211 = −ǫ + 2ν0(1 + ǫ)

2(1 − ν0)(1 + ǫ)2
, S2233 = ν0

(1 − ν0)(1 + ǫ)
, (5.97)

S3322 = 0, S1313 = ǫ

2(1 + ǫ)
, (5.98)

S2323 = 1

2(1 + ǫ)
, S1212 = −ǫ + (1 − ν0)(1 + ǫ)2

2(1 − ν0)(1 + ǫ)2
, (5.99)

noting that Eshelby’s tensor does not possess the major symmetry, unlike Hill’s tensor.

Suppose that the host and elliptical cylinder are both isotropic. In order to determine

the Concentration tensor orthotropic tensors are required. Although it is possible to use an

orthotropic basis set, it is perhaps most convenient to work with the matrix formulation of

the tensors and derive the Concentration tensor using a symbolic mathematical package such

as Mathematica. In doing this the matrix formulation [A] of the tensor A is employed as

noted in (5.42)–(5.43). The components of the matrix are so long that to list these here would

not be beneficial but two very useful limits shall be written down. The elliptical cylindrical

cavity limit is obtained by taking μ1 → 0 which yields a matrix form of the tensor as

[A] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

a13 a23 a33 0 0 0

0 0 0 a44 0 0

0 0 0 0 a55 0

0 0 0 0 0 a66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.100)

where

a11 = (1 − ν0)(1 + 2ǫ − 2(1 + ǫ)ν0)

(1 − 2ν0)
, a12 = (1 − ν0)(−1 + 2(1 + ǫ)ν0)

(1 − 2ν0)
, (5.101)

a13 = (2ǫ − 1 + 2(1 − ǫ)ν0)ν0

(1 − 2ν0)
, a21 = (1 − ν0)(−ǫ + 2(1 + ǫ)ν0)

ǫ(1 − 2ν0)
, (5.102)

a22 = (1 − ν0)(2 + ǫ − 2(1 + ǫ)ν0)

ǫ(1 − 2ν0)
, a23 = (2 − ǫ + 2(ǫ − 1)ν0)ν0

ǫ(1 − 2ν0)
, (5.103)
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a33 = 1, a44 = 1 + ǫ

2ǫ
, (5.104)

a55 = 1 + ǫ

2
, a66 = (1 + ǫ)2(1 − ν0)

2ǫ
(5.105)

and taking the limit as ǫ → 0 yields the ribbon-crack limit, retaining terms up to O(1) in ǫ,

a11 = 1 − ν0, a12 = −(1 − ν0), (5.106)

a13 = −ν0, a21 = 2(1 − ν0)ν0

(1 − 2ν0)ǫ
− (1 − ν0), (5.107)

a22 = 2(1 − ν0)
2

(1 − 2ν0)ǫ
+ 1 − ν0, a23 = 2(1 − ν0)ν0

(1 − 2ν0)ǫ
− ν0, (5.108)

a33 = 1, a44 = 1

2ǫ
+ 1

2
, (5.109)

a55 = 1

2
, a66 = 1

2ǫ
(1 − ν0) + (1 − ν0). (5.110)

5.1.8 Flat Ellipsoid

Consider the case when a1 > a2 ≫ a3. It is straightforward to take this limit in (B.36)–(B.40)

in order to obtain

I1 = 4πε2

(F (k) − E(k)

((ε2/ε1)2 − 1)
, (5.111)

I2 = 4πε2E(k) − I1, (5.112)

I3 = 4π − 4πε2E(k), (5.113)

where with reference to (B.39) and (B.40), F(k) and E(k) are introduced as the complete

Elliptic integrals of the first and second kind, respectively

E(k) =
∫ π/2

0

dx

(1 − k2 sin2 x)1/2
, F (k) =

∫ π/2

0

(

1 − k2 sin2 x
)1/2

dx (5.114)

and k = 1 − ε2
1

ε2
2

. From (5.111)–(5.113), the Imn can be straightforwardly determined via

(B.43)–(B.46) and thus the components of the P-tensor from (5.79)–(5.82) and (5.83)–

(5.86).

5.1.9 Spheroid Limit Check

One can straightforwardly take the spheroidal inhomogeneity limit a1 = a2 = a �= a3 in the

ellipsoidal result above. In particular it is noted that in the limit as a1 → a2 = a, referring to

Sect. 4.1.4,

I1 = I2 = 2π
(

1 − S(ǫ)
)

, (5.115)

I3 = 4πS(ǫ), (5.116)
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where ε = a3/a. This then gives

I11 = I22 = I12 = I21 = π − I1 − I3

4(ε2 − 1)
, (5.117)

I13 = I23 = I1 − I3

ε2 − 1
, (5.118)

I33 = 4π

3
− 2

3
ε2I13, (5.119)

I31 = I32 = ε2I13. (5.120)

These can then be used in (5.79)–(5.82) together with the cyclic properties to derive the

components of the P-tensor for a spheroid. It is straightforward to check that this gives rise to

the coefficients p1 through p6 as defined for a transversely isotropic tensor in (5.51)–(5.53).

5.2 Anisotropic Host Phase

In the potential problem case, scaling coordinate systems assisted in the derivation of results

associated with anisotropic media. Although such methods can sometimes lead to modest

simplifications in elasticity, the general theory does not lead to any significant advances,

certainly for the problems that are of greatest interest in micromechanics. In particular such

methods do not lead to significant simplifications for generally transversely isotropic media

which is a material symmetry of great importance. Therefore to derive the P-tensors asso-

ciated with inhomogeneities in anisotropic host phases, it is best to work with the integral

form of the P-tensor as defined in (3.9) for an ellipsoid.

Few explicit results are available in general however since the Green’s tensor cannot

generally be determined analytically. One of the few that can be determined is that as-

sociated with transversely isotropic media. Withers derived the associated Eshelby tensor

for a spheroid [133] using the form of the Green’s function determined by Pan and Chou

[101] and we state his result here where the semi-major or minor axis of the spheroid is

aligned with the axis of transverse isotropy. This result shall then be validated by employ-

ing the general integral form (3.9). Only in the last decade have articles started to appear

that compute effective properties of composite media with anisotropic inhomogeneities via

micromechanical methods (e.g., [42, 116]). It is also important to note specific results for

the Eshelby and Hill tensors associated with cracks in anisotropic media, e.g., Gruescu et al.

[44] and Barthélémy [9].

5.2.1 Spheroid in a Transversely Isotropic Host Phase

Consider a spheroid with semi-axes a = a1 = a2 �= a3 embedded in a transversely isotropic

host phase where the x1x2 plane is the plane of isotropy. The elastic modulus tensor of the

host is

C0
ijkℓ =

6
∑

n=1

c0
nH

n
ijkℓ, (5.121)

where

c0
1 = 2K0, c0

2 = ℓ0, c0
3 = ℓ0, (5.122)

c0
4 = n0, c0

5 = 2m0, c0
6 = 2g0. (5.123)
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Here K0 and m0 are the in-plane bulk and shear moduli and g0 is the antiplane shear modulus

(often p0 is used for the anti-plane modulus but this is not employed here in order to avoid

confusion associated with components pj of the Hill tensor).

Derivation from Withers’ Eshelby Tensor Withers derived the Eshelby tensor for a

spheroid in a transversely isotropic host medium. In order to state this result it is useful

to first define the parameters

v1 =
(

(ℓ̂0 − ℓ0)(ℓ̂0 + ℓ0 + 2g0)

4n0g0

)1/2

+
(

(ℓ̂0 + ℓ0)(ℓ̂0 − ℓ0 − 2g0)

4n0g0

)1/2

,

v2 =
(

(ℓ̂0 − ℓ0)(ℓ̂0 + ℓ0 + 2g0)

4n0g0

)1/2

−
(

(ℓ̂0 + ℓ0)(ℓ̂0 − ℓ0 − 2g0)

4n0g0

)1/2

,

v3 =
(

m0

g0

)1/2

,

where ℓ̂0 = (n0(K0 +m0))
1/2. Note that for elastic materials v3 ∈R, the set of real numbers,

but v1, v2 ∈ C, the set of complex numbers, in general, with v2 = v1, where an overbar

denotes the complex conjugate here (not to be confused with the body average!)1 For vi ∈R

define

viI3(vi) = 4πS(viε), I1(v1) = 4π

vi

− 2I3(vi). (5.124)

When vi ∈ C, either of the cases in S(viε) are valid since they are merely an analytic con-

tinuation of the function (of vi ) into the complex vi -plane. Note that in the case of isotropy,

ℓ0 = λ0 = ℓ′
0, g0 = m0 = μ0, ℓ̂0 = n0 = K0 + m0 = λ0 + 2μ0 and thus v1 = v2 = v3 = 1.

The notation Ii = Ii(1) is therefore appropriate for the isotropic case, as already introduced.

For a transversely isotropic host phase defined by elastic properties (5.121) Withers de-

termined the components Sijkℓ in the form

S1111 =
2

∑

i=1

[

2g0(1 + Mi)v
2
i − m0

]

LiviI1(vi) + 1

2
Dm0I1(v3), (5.125)

S1122 =
2

∑

i=1

[

2g0(1 + Mi)v
2
i − 3m0

]

LiviI1(vi) − 1

2
Dm0I1(v3), (5.126)

S3333 = 2

2
∑

i=1

[

ℓ0 − n0Miv
2
i

]

v3
i MiLiI3(vi), (5.127)

S1133 = 2

2
∑

i=1

[

ℓ0 − n0Miv
2
i

]

viLiI1(vi), (5.128)

S3311 = 2

2
∑

i=1

[

g0v
2
i (1 + Mi) − m0

]

MiLiv
3
i I3(vi), (5.129)

1This latter point does not appear to have been recognized in the original papers on this subject, see [133]. An

example of a transversely isotropic material for which v2 = v1 ∈ C is zinc with (all in GPa) K = 80, ℓ = 33,

n = 50, m = 63, g = 40, for which v1 = 1.1284 + 0.6465i to 4dp. (Private communication with P.J. Withers

and T. Mori.)



268 W.J. Parnell

S1313 = 1

2
g0

2
∑

i=1

Liv
3
i (1 + Mi)

(

I3(vi) − 2MiI1(vi)
)

+ 1

4
Dg0I3(v3)v

2
3, (5.130)

where

D = 1

4πg0v3

, Mi = (K0 + m0)/v
2
i − g0

ℓ0 + g0

, Li = (−1)i g0 − n0v
2
i

8πn0g0(v
2
1 − v2

2)v
2
i

.

Note that slightly different notation has been used here from that in [133] and in particular

the notation I3(vi) has been used whereas [133] used I2(vi) for this term in the correspond-

ing equations. This is done here to preserve the symmetry with the isotropic case above so

that as vi → 1, I3(vi) → I3.

Via straightforward contraction with the transversely isotropic compliance tensor D0, i.e.,

the inverse of (5.121), (1.2) then yields

P1111 + P1122 = n0(S1111 + S1122) − 2ℓ0S1133

2�
, (5.131)

P1111 − P1122 = S1111 − S1122

2m0

, (5.132)

P3333 = K0S3333 − ℓ0S3311

�
, (5.133)

P1133 = n0S3311 − ℓ0S3333

2�
, (5.134)

P1313 = S1313

2g0

, (5.135)

P1212 = S1212

2m0

, (5.136)

where � = K0n0 −ℓ2
0. Of course this calculation could also be done with the help of matrices

rather than tensor forms. Since the P-tensor is transversely isotropic however it is rather

straightforward to write down the transversely isotropic tensor basis forms

Pijkℓ =
6

∑

n=1

pnH
n
ijkℓ, Sijkℓ =

6
∑

n=1

snH
n
ijkℓ, (5.137)

where

p1 = 2P1111 − P1212, p2 = p3 = P1133, (5.138)

p4 = P3333, p5 = P1212, p6 = 2P1313 (5.139)

and similarly for the Eshelby tensor with pn → sn and Pijkℓ → Sijkℓ of course.

Derivation from the Direct Integral Form As noted above, the P-tensor will itself be

transversely isotropic of the form given in (5.137). Using the direct integral formulation

of the P-tensor (3.9), let the unit vector ξ pointing to the surface of the unit sphere be

parametrized by the two angles ϕ ∈ [0,2π) and ϑ ∈ [0,π), so that it takes the form

ξ 1 = cosϕ sinϑ, ξ 2 = sinϕ sinϑ, ξ 3 = cosϑ. (5.140)
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Fig. 2 Plot of the components P1111 (solid black), P3333 (dashed blue) and P1313 (dotted red) of the Hill

tensor associated with a spheroidal inhomogeneity (varying the aspect ratio ε) embedded in the transversely

isotropic host phase PZT-7A, using the form of the P-tensor derived from the explicit form of the Eshelby

tensor for this problem. These explicit results are confirmed by calculating the components at discrete values

of the aspect ratio by evaluating the direct integral form of the P-tensor given in (5.141). Note that the limiting

values as ε → ∞ correspond to the circular cylinder result (5.29) and when ε → 0 the layer limit is obtained

(Color figure online)

Therefore, together with (5.121), (3.9) becomes

Pijkℓ = ε

4π

∫ 2π

0

∫ π

0

Φijkl

(1 + (ε2 − 1) cos2 ϑ)3/2
sinϑ dϕ dϑ, (5.141)

where

Φijkℓ = (ξ j ξ ℓNik)|(ij),(kℓ) (5.142)

with Nij defined via NikÑkj = δij . The components of Ñ are defined as Ñij = C0
ijkℓξ j ξ ℓ. It

is straightforward to implement this in a variety of mathematical packages or programming

languages.

Here let us plot the five independent components of the P-tensor, illustrating that the two

approaches (Withers’ explicit form and the direct integral evaluation) described above agree.

Let us take the elastic properties (associated with the host phase) to be transversely isotropic

and choose the material PZT-7A.2 Although realistically this material would normally be

chosen as the reinforcing phase in a composite, it is appropriate to illustrate the calculations

for a model material. Its properties are (all stated in GPa)

K = 121.2, m = 35.8, ℓ = 73, n = 175, g = 47.2. (5.143)

In Figs. 2–3 the components of the P-tensor are plotted, using the explicit form arising

from the Eshelby tensor and using the direct evaluation of the integral in order to confirm

the results.

Concentration Tensor Since the P-tensor is known one can now go on to deduce the asso-

ciated Concentration tensor. First assume that the spheroid is isotropic with elastic modulus

tensor

C1
ijkl = 3κ1I

1
ijkl + 2μ1I

2
ijkl . (5.144)

2This material is Lead Zirconate Titanate, a material frequently used in piezoelectric composites
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Fig. 3 As with Fig. 2 but for the

components P1122 (solid black)

and P1133 (dashed red) of the

P-tensor (Color figure online)

Since the Concentration tensor will be transversely isotropic, it is convenient to write C1
ijkl

with respect to the transversely isotropic tensor basis so that

C1
ijkl =

6
∑

n=1

c1
nH

n
ijkl, (5.145)

where the c1
n coefficients are defined in terms of the two independent elastic moduli κ1

and μ1:

c1
1 = 2κ1 + 2

3
μ1, c1

2 = κ1 − 2

3
μ1, c1

3 = κ1 − 2

3
μ1, (5.146)

c1
4 = κ1 + 4

3
μ1, c1

5 = 2μ1, c1
6 = 2μ1. (5.147)

Let us employ (5.121), together with the form of P-tensor defined in (5.137). The proper-

ties of the transversely isotropic basis tensors Hn
ijkl described in Appendix C.2.3 shall also

be exploited (and in particular the contraction properties in Table 2), together with the ex-

pressions written down in (C.26)–(C.28). The inverse of the Concentration tensor defined in

(3.23) can then be determined in the form

Ãijkl =
6

∑

n=1

α̃nH
n
ijkl, (5.148)

where upon defining cn = c1
n − c0

n,

α̃1 = 1 + p1c1 + 2p2c3, α̃2 = p1c2 + p2c4, α̃3 = p3c1 + p4c3, (5.149)

α̃4 = 1 + 2p3c2 + p4c4, α̃5 = 1 + p5c5, α̃6 = 1 + p6c6. (5.150)

The tensor Ãijkl is then inverted, following the procedure in Appendix C.2.3, to yield the

Concentration tensor

Aijkl =
6

∑

n=1

αnH
n
ijkl, (5.151)

where

α1 = α̃1

2�
, α2 = − α̃2

2�
, α3 = − α̃3

2�
, (5.152)
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α4 = α̃4

2�
, α5 = 1

α̃5

, α6 = 1

α̃6

. (5.153)

Alternatively suppose that the inhomogeneity is transversely isotropic with the same

symmetry axis as the host so that it possesses the elastic modulus tensor of the form (5.145)

but where now the constants c1
n are defined in terms of the 5 independent components of this

tensor. Then the Concentration tensor is again defined by (5.151) but of course now with the

c1
n associated with the transversely isotropic cylinder. This indicates the merit of using the

above notation since one can still use (5.151)–(5.153) in this case, merely modifying the c1
n

to account for the transverse isotropy of the cylinder.

As usual, the matrix form of these fourth order tensors can be employed for computa-

tional efficiency when the problems lack simple symmetries.

5.2.2 Circular Cylinder in a Transversely Isotropic Host

Suppose now that the inhomogeneity is a circular cylinder with its cross-section residing in

the plane of isotropy of the transversely isotropic host phase. One can arrive at the corre-

sponding P-tensor in two ways. The first is to take the limit ε = a3/a → ∞ in the prolate

spheroid case in Sect. 5.2.1. The second way is to recognize that since the anisotropy of

the host will not affect the in-plane components of the P-tensor, the tensor will simply be

the same as that for an isotropic host as derived in Sect. 5.1.2 but the elastic properties are

modified via λ0 + μ0 → K0 and μ0 → m0 for in-plane components and μ0 → g0 for the

anti-plane component. Therefore, from (5.29)

p1 = 1

2(K0 + m0)
, p2 = 0, p3 = 0, (5.154)

p4 = 0, p5 = K0 + 2m0

4m0(K0 + m0)
, p6 = 1

4g0

. (5.155)

The Concentration tensor may then be derived by using these coefficients in (5.149)–(5.150)

and the expressions that follow.

6 Discussion

6.1 Association with Micromechanics

One of the primary reasons for deriving the Hill or Eshelby tensors and associated Concen-

tration tensors is to understand a multitude of aspects of the behaviour of inhomogeneous

media, including their macroscopic constitutive response and so-called effective properties.

Following a relatively straightforward argument regarding volume averaging, the effective

modulus tensor C∗ of an n + 1 phase medium with a distinguishable host phase (phase 0)

can be stated as [81, 132]

C∗ = C0 +
n

∑

r=1

φr

(

Cr − C0
)

Ar , (6.1)

where φr is the volume fraction of phase r and Ar is the exact Concentration tensor associ-

ated with embedded phase r . This is in contrast to the Concentration tensor A introduced
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in Sect. 3.3 which is the Concentration tensor associated with an isolated inhomogeneity,

i.e., the presence of other inhomogeneities is not accounted for in A. Consequently if the

inhomogeneity phases are distributed dilutely then one can merely use the approximation

A ≈ A in (6.1). This links directly therefore to the moment tensor defined for (isolated)

ellipsoidal inhomogeneities in (1.3), which permits (6.1) to be written as

C∗ = C0 + nr

n
∑

r=1

Mr , (6.2)

where nr = Nr/|V | is the so-called number density of the inhomogeneities of phase r , with

Nr being the number of those inhomogeneities of that phase. We stress that (6.2) is valid

here for dilute volume fractions only. For more discussion on the use of the moment tensor

in micromechanics see [2, 3].

Many micromechanical methods use a more sophisticated approximation that can ac-

count, in an approximate manner at least, for interactions. One of the most commonly em-

ployed methods is the so-called classical self consistent method [54]. Interaction is approx-

imated in this most simple self-consistent scheme by taking the host medium in the deter-

mination of A to be the unknown effective medium. In general then (6.1) gives rise to a

nonlinear system of equations for the determination of effective properties. In many cases

these are not even algebraic equations. Furthermore for the self consistent method, one has

to make an assumption in advance of the symmetry properties of the effective tensor. For

example in the case of aligned spheroids C∗ will be transversely isotropic.

The textbooks referred to at the end of Sect. 1 provide an excellent introduction to the

numerous micromechanical methods, many of which are based on the form of effective

modulus tensor defined in (6.1). A similar form can be deduced for media where there is no

distinguishable host phase (for example the case of polycrystals) and also for media where

multiphysics effects are important as described in the next section.

6.2 Beyond the Potential Problem and Elastostatics

A large number of explicit, compact results associated with the Hill and Eshelby tensors for

ellipsoidal inhomogeneities, as well as their associated Concentration tensors have been col-

lected, stated and in some cases derived. The intention is that this will be of great utility to a

large number of researchers for implementation in micromechanical and bounding schemes.

A thorough discussion of both matrix and tensor (where possible due to space limitations)

formulations has been carried out. Typographical errors in past articles and reviews have

been corrected and a common notation has been employed.

Although the general integral forms (3.3) and (3.9) are useful they should generally be

avoided where explicit forms are available. Gavazzi and Lagoudas [40] described a numeri-

cal implementation for elasticity. It should be noted that recently Masson [82] derived a new

form of the P-tensor in terms of a single integral, although the integrand is inevitably more

complex than that in the surface integral in (3.9).

In the literature many of the cases described above are considered as approximations to

more complicated shaped inhomogeneities. In terms of the derivation of overall effective

properties this is extremely useful, certainly as a first approximation, since it avoids com-

plex computational simulations. However it must be stressed that more advanced analysis is

required if detailed micromechanical information such as stress concentration calculations

close to inhomogeneities of a complex shape is required [15]. For finite domains, provided

the host phase is in some sense much larger than the inhomogeneity, if the inhomogeneity
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is ellipsoidal then the temperature gradient or strain field inside the ellipsoid is well approx-

imated as being uniform. The inhomogeneity problem associated with bounded domains is

described in the book by Li and Wang [67] which summarizes the work in [68, 69].

Continuing with discussion associated with the potential problem and elastostatics first,

an important extension of the inhomogeneity problem is that of the coated inhomogeneity.

This problem is popular, not least because it arises as a micromechanics problem in the

generalized self-consistent method (GSCM) [23]. The so-called double inclusion problem

dates back many decades and was solved approximately by Hori and Nemat-Nasser [50]

although the approximations involved lead to some rather counter-intuitive predictions when

used in the GSCM [51]. Exact solutions in the case of concentric spheroids or ellipsoids

have been derived by Hatta and Taya [46] in the thermal context and Jiang et al. [52] in two-

dimensional elasticity. See also [75, 76] for elasticity problems involving coated spheres

and cylinders respectively. The case of inhomogeneities with radially dependent material

properties has been considered in Chap. 3 of [54] amongst others. The coated inhomogeneity

is also of interest due to its association with the neutral inclusion problem [89]. Associated

with the coated inhomogeneity is the scenario when the interface of an inhomogeneity with

the host phase is imperfect [37, 63]. This imperfection can itself be used as the basis for a

neutral inclusion [12, 109]. Moment tensors have recently been discussed in the context of

cloaking [5].

It is important to note that when the inhomogeneity becomes very small, i.e., the case of

a nano-inhomogeneity, then surface energies become non-negligible. This problem has been

considered by Sharmi and Ganti [117] and Duan et al. [25] for example. Including surface

energies is important in order to incorporate size-dependent effects in effective properties.

These are absent in classical micromechanical methods that use the standard Eshelby or Hill

tensors.

Eshelby’s problem has also been considered in the context of micro-continuum elasticity

models, which themselves were introduced in order to bridge the gap between continuum

and atomistic/molecular models [30]. Micropolar (Cosserat) theory has been considered by

Cheng and He [20, 21] and Ma and Hu [77]. Micro-stretch theory has been developed by

Ma and Hu [78]. Strain gradient constitutive behaviour was studied by Gao and Ma [38, 39].

The dynamic problem was considered for spheres and cylinders by Mikata and Nemat-

Nasser [87, 88] and more generally in [19, 84]. Rate dependence of the Hill and Eshelby

tensors has been considered by Suvarov and Dvorak [120] and viscoelastic properties have

been studied by Wang and Weng [125] by using transform techniques and correspondence

principles. Nguyen et al. [96] studied cracked viscoelastic solids using the appropriate Es-

helby tensor. Extensions to plasticity have been considered, see [36, 53, 64] for example.

The Newtonian potential and elastostatics problems are canonical problems that can as-

sist with the development of coupled (multiphysics) problems. Dunn and Taya [26], Dunn

and Wienecke [27] and Mikata [85, 86] considered the case of piezoelectricity and the pre-

diction of the electroelastic moduli. Li and Dunn [66] and Zhang and Soh [136] considered

full coupling and the resulting effective moduli associated with piezoelectromagnetic me-

dia. The theory associated with poroelastic and thermoelastic behaviour was developed by

Berryman [11] and extended to the anisotropic case by Levin and Alvarez-Tostado [65].

Upon closing it should be noted that it is very fortuitous that such elegant and concise

uniformity results hold for ellipsoidal inhomogeneities. These results allow a large number

of expressions to be derived analytically and therefore the results have been utilized a great

deal. Having said that there is much work to be done. As has been noted, the Eshelby conjec-

ture is still not fully resolved [4], analysis for general shaped inhomogenities continues [16],

specifically in the context of stress analysis and resulting effective properties and although
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computational methods are powerful, they are still only able to solve elasticity problems

for inhomogeneous media with an order of 1000 inhomogeneities in “reasonable” times.

For use in Monte-Carlo schemes this is therefore still computationally expensive. Nonlinear

problems in the context of finite elasticity still require attention [135] and this applies to

coupled problems as well.

Acknowledgements The author is grateful to the Engineering and Physical Sciences Research Council for

funding his research fellowship (EP/L018039/1). He is also thankful to Prof. J. Berger (Colorado School of

Mines) and Prof. H. Ammari (ETH, Zurich) for helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Uniform P-Tensors for Ellipsoidal Inhomogeneities

Fourier transforms can be applied in a straightforward manner to derive forms of the Green’s

tensors that are useful in the context of deriving properties of the Hill and Eshelby tensors.

For arbitrary anisotropy in the potential problem the Green’s function takes the form [92]

G(z) = 1

16π3

∫

S2

∫ ∞

−∞

1

Cij ξ̄i ξ̄j

exp(iξ ξ̄ · z) dξ dS(ξ̄), (A.1)

where the Fourier transform variable ξ = ξ ξ̄ with ξ = |ξ | and where S2 corresponds to

ξ = 1, the surface of the unit sphere. Next since

δ(ξ̄ · z) = 1

2π

∫ ∞

−∞
exp(iξ ξ̄ · z) dξ (A.2)

the form (A.1) becomes

G(z) = 1

8π2

∫

S2

δ(ξ̄ · z)
1

Cij ξ̄i ξ̄j

dS(ξ̄). (A.3)

In elastostatics an entirely analogous approach shows that

Gij (z) = 1

8π2

∫

S2

δ(ξ̄ · z)Nij (ξ̄) dS(ξ̄), (A.4)

where

Ñik(ξ)Nkj (ξ) = δij , Ñij (ξ) = Cijkℓξj ξℓ. (A.5)

A.1 The Potential Problem

Substitute the general form (A.3) of the free-space Green’s function into (3.2) and with

x ∈ V1 this leads to the following form of the Hill tensor:

Pij (x) = − 1

8π2

∂2

∂xi∂xj

∫

S2

1

C0
kℓξ kξ ℓ

J (ξ · x) dS, (A.6)
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where

J (p) =
∫

y∈V1

δ(p − ξ · y) dy. (A.7)

Take the simplest case, where V1 is a sphere of radius a. With x ∈ V1 then p ≤ a since ξ is

a unit vector. It is then recognized that the value of J (p) is the area of the disc defined by

the intersection of the plane ξ · y = p with the sphere V1. Since |p| ≤ a, J (p) = π(a2 − p2)

and carrying out the necessary differentiation gives

P
sphere

ij = 1

4π

∫

S2

ξ iξ j

C0
kℓξ kξ ℓ

dS. (A.8)

Since this integral is over the unit sphere S2 and involves only ξ i then this shows that the

P-tensor is independent of x for a spherical inhomogeneity. This was evident from the fact

that J (p) is a quadratic function of its argument. In order to perform the integration over

the unit sphere, introduce the parameters ϑ ∈ [0,π) and ϕ ∈ [0,2π) via

ξ 1 = cosϕ sinϑ, ξ 2 = sinϕ sinϑ, ξ 3 = cosϑ (A.9)

and then

P
sphere

ij = 1

4π

∫ 2π

0

∫ π

0

Φij (ξ) sinϑdϑdϕ, (A.10)

where

Φij (ξ) =
ξ iξ j

Ckℓξ kξ ℓ

. (A.11)

It is straightforward to extend this derivation in order to derive the corresponding result

for an ellipsoid. Suppose that the ellipsoid is defined by V = {y : yT (aT a)−1y < 1} where

a is the second order tensor defined in (3.5) with aj being the semi-axes of the ellipsoid.

With x ∈ V1, the only aspect that changes from the calculation for the sphere is that now the

function J (p) will be the area of the region defined by the intersection of the plane ξ · y = p

with the ellipsoid V1. It transpires that

J (p) = det(a)

(ξ kakℓaℓmξm)3/2
π

(

a2 − p2
)

. (A.12)

Importantly the integral is still only over the unit sphere and the subsequent result is (3.3).

A.2 Elastostatics

One can proceed entirely analogously to the potential problem case in order to derive the

representation of the P-tensor for an ellipsoid in the elastostatics context. Using (A.4) and

following the same procedure as for the potential problem one obtains (3.9).

Appendix B: Potential Theory

Two integrals over ellipsoidal domains arise in potential theory, having important applica-

tions in micromechanics. Define the two functions

Γ (x) = − 1

4π

∫

V1

1

|x − y| dy, Ψ (x) = 1

4π

∫

V1

|x − y|dy, (B.1)
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where V1 is the ellipsoidal domain defined by the inequality

y2
1

a2
1

+ y2
2

a2
2

+ y2
3

a2
3

≤ 1 (B.2)

and of interest in (B.1) is the case when x ∈ V1.

Introduce local spherical polar coordinates via yj = xj + zj , j = 1,2,3 where

z1 = r cosϕ sinϑ, z2 = r sinϕ sinϑ, z3 = r cosϑ, (B.3)

where ϑ ∈ [0,π),ϕ ∈ [0,2π) and r ∈ [0,∞). The surface of the ellipsoid is given by r =
R1(ϑ,ϕ) and the differential volume element is dV = r2 sinϑdrdϑdϕ so that

Γ (x) = − 1

8π

∫ 2π

0

∫ π

0

R2
1(ϑ,ϕ) sinϑ dr dϑ dϕ (B.4)

and similarly

Ψ (x) = 1

16π

∫ 2π

0

∫ π

0

R4
1(ϑ,ϕ) sinϑdϑdϕ. (B.5)

Introduce the shifted variable ψ = ϑ − π/2 and upon defining r1(ψ,ϕ) = R1(ψ + π/2, ϕ)

the integrals become

Γ (x) = − 1

8π

∫ π/2

−π/2

∫ 2π

0

r2
1 (ψ,ϕ) cosψ dϕ dψ, (B.6)

Ψ (x) = 1

16π

∫ π/2

−π/2

∫ 2π

0

r4
1 (ψ,ϕ) cosψ dϕ dψ. (B.7)

At this point note that

∫ π/2

−π/2

∫ 2π

0

f (ψ,ϕ)dθ dψ =
∫ π/2

0

∫ π

0

[

f (ψ,ϕ) + f (ψ,ϕ + π)
]

+
[

f (−ψ,ϕ) + f (−ψ,ϕ + π)
]

dϕ dψ. (B.8)

This pairing is useful to argue that certain integrals below are zero. Evaluating the local

spherical polar coordinates on the surface of the ellipsoid yields

Ar2
1 + 2Br1 + C = 0, (B.9)

where

A = cos2 ψ cos2 ϕ

a2
1

+ cos2 ψ sin2 ϕ

a2
2

+ sin2 ψ

a2
3

, (B.10)

B = x1 cosψ cosϕ

a2
1

+ x2 cosψ sinϕ

a2
2

− x3 sinψ

a2
3

, (B.11)

C = x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

− 1, (B.12)
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noting that A > 0 and C < 0, and thus

r1 = −B +
√

B2 − AC

A
, (B.13)

where the positive root is chosen since B2 − AC > B2 (AC < 0). Hence

Γ (x) = 1

8π

∫ π/2

−π/2

∫ 2π

0

AC − 2B2 + 2B
√

B2 − AC

A2
cosψ dϕ dψ (B.14)

and

Ψ (x) = 1

16π

∫ π/2

−π/2

∫ 2π

0

(

8B4

A4
− 8B2C

A3
+ C2

A2
− 8B3

√
B2 − AC

A4

+ 4BC
√

B2 − AC

A3

)

cosψ dϕ dψ. (B.15)

The radical contributions to both potentials can be shown to be zero by appealing to (B.8)

since it transpires that the relevant integrand f (ψ,ϕ) possesses the symmetry

f (ψ,ϕ) = −f (−ψ,ϕ + π), f (ψ,ϕ + π) = −f (−ψ,ϕ). (B.16)

The functions Γ and Ψ thus reduce to

Γ (x) = CΥ − Γ1, (B.17)

where

Γ1 = 1

4π

∫ π/2

−π/2

∫ 2π

0

B2

A2
cosψ dϕ dψ, Υ = 1

8π

∫ π/2

−π/2

∫ 2π

0

cosψ

A
dϕ dψ (B.18)

and

Ψ (x) = Ψ1 − CΨ2 + C2Ω, (B.19)

where

Ψ1 = 1

2π

∫ π/2

−π/2

∫ 2π

0

B4

A4
cosψ dϕ dψ, Ψ2 = 1

2π

∫ π/2

−π/2

∫ 2π

0

B2

A3
cosψ dϕ dψ, (B.20)

Ω = 1

16π

∫ π/2

−π/2

∫ 2π

0

1

A2
cosψ dϕ dψ. (B.21)

B.1 Closed Integral Form for Γ (x)

Write Γ1 = Γ11 + Γ12, where

Γ11 = 1

4π

∫ π/2

−π/2

∫ 2π

0

(

cos2 ψ cos2 ϕ

a2
1

x2
1

a2
1

+ cos2 ψ sin2 ϕ

a2
2

x2
2

a2
2

+ sin2 ψ

a2
3

x2
3

a2
3

)

cosψ

A2
dϕ dψ

(B.22)
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and

Γ12 = 1

2π

∫ π/2

−π/2

∫ 2π

0

(

x1x2 cos2 ψ sinϕ cosϕ

a2
1a

2
2

− x2x3 cosψ sinψ sinϕ

a2
2a

2
3

− x3x1 cosψ sinψ cosϕ

a2
3a

2
1

)

cosψ

A2
dϕ dψ. (B.23)

The contribution from Γ12 is zero—the first term due to 2π periodicity of the integrand in ϕ

and the second and third terms due to their being odd in ψ . Treating Υ as a function of aj ,

the form of Γ1 can be exploited, writing

Γ (x) = CΥ −
3

∑

j=1

x2
j

aj

∂Υ

∂aj

. (B.24)

Therefore once Υ is determined, Γ (x) straightforwardly follows. Now introduce A into the

form of Υ in (B.18) to obtain

Υ = 1

8π

∫ π/2

−π/2

cosψ

∫ 2π

0

1

M(ψ) cos2 ϕ + N(ψ) sin2 ϕ
dϕ dψ, (B.25)

where

M(ψ) = cos2 ψ

a2
1

+ sin2 ψ

a2
3

, N(ψ) = cos2 ψ

a2
2

+ sin2 ψ

a2
3

. (B.26)

Next, the evenness of the integrand is exploited in order to write it as

Υ = 1

π

∫ π/2

0

cosψ

∫ π/2

0

sec2 ϕ

M + N tan2 ϕ
dϕ dψ

= 1

2
a1a2a

2
3

∫ π/2

0

cosψ
√

(a2
1 sin2 ψ + a2

3 cos2 ψ)(a2
2 sin2 ψ + a2

3 cos2 ψ)

dψ. (B.27)

Make the substitution sinψ = a3

/

√

a2
3 + t , where t ∈ [0,∞) so that

Υ = 1

4
a1a2a3

∫ ∞

0

dt

�(t)
, (B.28)

where �(t) =
√

(a2
1 + t)(a2

2 + t)(a2
3 + t). Finally therefore using (B.24)

Γ (x) = 1

4
a1a2a3

∫ ∞

0

X(x, t) dt
√

(a2
1 + t)(a2

2 + t)(a2
3 + t)

, (B.29)

where

X(x, t) =
3

∑

n=1

x2
n

a2
n + t

− 1 (B.30)
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is a quadratic polynomial in x. It is then found that

∂2Γ

∂xi∂xj

=
3

∑

n=1

γnδinδjn, (B.31)

where

γn = a1a2a3

2

∫ ∞

0

dt

(a2
n + t)

√

(a2
1 + t)(a2

2 + t)(a2
3 + t)

. (B.32)

Setting t = a2
3s, γn = E(εn; ε1, ε2) which is defined in (4.22), with εn = a3/an. Mura [92]

writes (B.29) in the form

Γ (x) = 1

8π

(

−I +
3

∑

n=1

x2
nIn

)

, (B.33)

where

I = 2πa1a2a3

∫ ∞

0

ds

�(s)
, In = 2πa1a2a3

∫ ∞

0

ds

(a2
n + s)�(s)

. (B.34)

The link between In and E is then clear:

In = 4πE(εn; ε1, ε2). (B.35)

Finally, note that the integrals In (or equivalently E(εn; ε1, ε2)) can be expressed in terms

of elliptic integrals [92]. In particular assuming that a1 > a2 > a3,

I1 = 4πε2

(ε2
2/ε

2
1 − 1)(1 − ε2

1)
1/2

{

F(θ, k) − E(θ, k)
}

, (B.36)

I3 = 4π

(1 − ε2
2)(1 − ε2

1)
1/2

{(

1 − ε2
1

)1/2 − ε2E(θ, k)
}

, (B.37)

I2 = 4π − I1 − I3, (B.38)

where

F(θ, k) =
∫ θ

0

dx

(1 − k2 sin2 x)1/2
, E(θ, k) =

∫ θ

0

(

1 − k2 sin2 x
)1/2

dx, (B.39)

θ = sin−1
(

1 − ε2
1

)1/2
, k = 1

ε2

(

ε2
2 − ε2

1

1 − ε2
1

)1/2

. (B.40)

B.2 Closed Integral Form for Ψ (x)

One can also derive an integral form for Ψ (x) although such a derivation is rather lengthy.

Expression (11.38) of Mura [92] is employed, which establishes that (no sum over i here,

with sums being shown explicitly for clarity)

∂Ψ (x)

∂xi

= xi

8π

(

(

I − a2
i Ii

)

−
3

∑

n=1

(In − Iin)x
2
n

)

, (B.41)
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noting the additional factor of 1/(4π) here from our modified definition of potentials as

compared with Mura. The integral Imn is defined as

Imn = 2πa2
ma1a2a3

∫ ∞

0

ds

(a2
m + s)(a2

n + s)�(s)
, (B.42)

where the slight modification to Mura’s notation should be noted: Imn = a2
mIM

mn, where IM
mn

is Mura’s definition of this integral as defined in Chap. 11 of [92]. This modification means

that expressions are now defined in terms of non-dimensional quantities here. In particular

it is possible to write Imn in terms of Im, In and ǫm, ǫn as follows,

Imn = (In − Im)

(1 − (εm/εn)2)
, m �= n. (B.43)

Additional relations are noted as

Imn = ǫ2
n

ǫ2
m

Inm (B.44)

and

I11 = 4π

3
− 1

3
(I12 + I13), I22 = 4π

3
− 1

3
(I21 + I23), I33 = 4π

3
− 1

3
(I31 + I32),

(B.45)

3I1 = 3I11 + I21 + I31, 3I2 = 3I22 + I12 + I32, 3I3 = 3I33 + I13 + I23.

(B.46)

Therefore, differentiating (B.41) with respect to xj , xk and then xℓ (in that order) gives

∂4Ψ

∂xi∂xj∂xk∂xℓ

= 1

4π
δijδkℓ(Iik − Ik) + 1

4π
(δikδjℓ + δjkδiℓ)(Iij − Ij ). (B.47)

Note that (B.47) is however not a fully symmetric fourth order tensor as it should be since

derivatives should be able to be taken in any order. Therefore one can enforce in turn major,

minor and then total symmetry [90] to show that (no sum over repeated coefficients)

∂4Ψ

∂x4
i

= 3

4π
(Iii − Ii),

∂4Ψ

∂x2
i ∂x2

j

= 1

8π
(Iij + Ij i − Ii − Ij ), i �= j (B.48)

and odd derivatives are zero.

Appendix C: Cartesian Coordinates, Rotations and Tensors

Cartesian tensors are used throughout this article, referred to a fixed set of Cartesian coor-

dinates xi, i = 1,2,3. Some of the properties of Cartesian tensors are summarized shortly,

in particular those associated with higher order symmetries are discussed. After this a brief

review of rotations of Cartesian coordinates is given for completeness and the matrix for-

mulation of tensors is described. Tensors will be stated as A in invariant notation with com-

ponents Aij and Aijkℓ for second and fourth order tensors (see below).
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C.1 Second Order Cartesian Tensors

C.1.1 Isotropy

The second order identity tensor is Iij = δij and with α constant, the general second order

isotropic tensor is therefore Aij = αδij . Its inverse, with components Ãij is Ãij = 1
α
δij .

C.1.2 Transverse Isotropy

Upon defining the tensor

Θij = δij − δi3δj3, (C.1)

a second order transversely isotropic tensor (with symmetry axis x3) has the form

Aij = α1Θij + α3δi3δj3. (C.2)

The tensor Θij defined in (C.1) possesses the following properties:

Θij = Θj i, ΘikΘkj = Θij , ΘijΘij = 2. (C.3)

Using these properties, the inverse of A has components Ãij that can be written

Ãij = 1

α1

Θij + 1

α3

δi3δj3. (C.4)

This concept can easily be generalized to other symmetry axes either by use of rotations of

coordinate axes as will be described in Sect. C.3 or by use of the notation nij = ninj , where

ni are the components of the direction vector associated with the axis of symmetry (for

the example described above ni = δi3). The associated generalization of (C.1) is therefore

θij = δij − nij .

C.1.3 Orthotropy

A second order orthotropic tensor has components of the form

Aij = α1δi1δj1 + α2δi2δj2 + α3δi3δj3, (C.5)

which has as its inverse

Ãij = 1

α1

δi1δj1 + 1

α2

δi2δj2 + 1

α3

δi3δj3. (C.6)

C.2 Fourth Order Cartesian Tensors

The following tensors are used extensively in elasticity applications. See Walpole [124] for

a comprehensive derivation of all associated theory.
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C.2.1 Isotropy

First define the following tensors

I 1
ijkℓ = 1

3
δijδkℓ, (C.7)

I 2
ijkℓ = 1

2
(δikδjℓ + δiℓδjk) − 1

3
δijδkℓ, (C.8)

Iijkℓ = 1

2
(δikδjℓ + δiℓδjk) = I 1

ijkℓ + I 2
ijkℓ. (C.9)

These have the following properties

I 1
ijkℓ = I 1

kℓij , I 2
ijkℓ = I 2

kℓij , Iijkℓ = Ikℓij (C.10)

and

I 1
ijmnI

1
nmkℓ = I 1

ijkℓ, I 2
ijmnI

2
nmkℓ = I 2

ijkℓ, I 1
ijmnI

2
nmkℓ = 0, I 2

ijmnI
1
nmkℓ = 0. (C.11)

If σ is a second order tensor, whose components are written in the deviatoric/scalar form

σij = σ ′
ij + 1

3
σδij , (C.12)

where σ = σkk , then

I 1
ijkℓσkℓ = 1

3
σδij , I 2

ijkℓσkℓ = σ ′
ij . (C.13)

Given a fourth order isotropic tensor with components of the form

Aijkℓ = 3α1I
1
ijkℓ + 2α2I

2
ijkℓ, (C.14)

then due to (C.13)

Aijkℓσkℓ = 3α1σδij + 2α2σ
′
ij . (C.15)

Introduce a second fourth order isotropic tensor Bijkℓ = 3β1I
1
ijkℓ + 2β2I

2
ijkℓ and then

AijmnBnmkℓ = BijmnAnmkℓ = 9α1β1I
1
ijkℓ + 4α2β2I

2
ijkℓ (C.16)

and the inverse of Aijkℓ, denoted by Ãijkℓ, such that AijmnÃnmkℓ = Iijkℓ is

Ãijkℓ = 1

3α1

I 1
ijkℓ + 1

2α2

I 2
ijkℓ. (C.17)

C.2.2 Cubic System

Define the cubic tensor

Aijkℓ = α1I
1
ijkℓ + α2I

2
ijkℓ + α3δijkℓ, (C.18)
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where δijkℓ has the property that δijkℓ = 1 only if i = j = k = ℓ and is zero otherwise.

Furthermore

I 1
ijmnδnmkℓ = I 1

ijkℓ, I 2
ijmnδnmkℓ = δijkℓ − I 1

ijkℓ. (C.19)

One can write the inverse of Aijkℓ as

Ãijkℓ = α2
2 + α1α3

α2
2(α1 + α3)

I 1
ijkℓ + 1

α2

I 2
ijkℓ − α3

α2
2

δijkℓ. (C.20)

C.2.3 Transverse Isotropy

The Hill tensor basis shall be employed for transversely isotropic tensors. There are several

slight variants on this but the Hill basis is used commonly in the micromechanics literature

and so it appears sensible to adopt it here. This basis set enables a fourth order transversely

isotropic tensor Aijkℓ to be written in the form

Aijkℓ =
6

∑

n=1

αnH
n
ijkℓ, (C.21)

where αn are constants. In general it should be noted that α2 �= α3 since contraction of a

transversely isotropic tensor with another transversely isotropic tensor does not result in a

tensor with α2 = α3. The basis tensors Hn
ijkl are defined by

H
1
ijkℓ = 1

2
ΘijΘkℓ, H

2
ijkℓ = Θijδk3δℓ3, H

3
ijkℓ = Θkℓδi3δj3, (C.22)

H
4
ijkℓ = δi3δj3δk3δℓ3, H

5
ijkℓ = 1

2
(ΘikΘℓj + ΘiℓΘkj − ΘijΘkℓ), (C.23)

H
6
ijkℓ = 1

2
(Θikδℓ3δj3 + Θiℓδk3δj3 + Θjkδℓ3δi3 + Θjℓδk3δi3), (C.24)

where Θij = δij − δi3δj3. The notation H signifies the Hill basis.

Let us define the shorthand notation

H
m
H

n = H
m
ijpqH

n
qpkℓ (C.25)

for contraction between the basis tensors defined in (C.22)–(C.24). The contractions defined

in (C.25) are then summarized in Table 2.

Note that it is often useful to write the fourth order isotropic identity tensor and basis

tensors in the Hill transversely isotropic basis form:

Iijkℓ = H
1
ijkℓ +H

4
ijkℓ +H

5
ijkℓ +H

6
ijkℓ, (C.26)

I 1
ijkℓ = 1

3

(

2H1
ijkℓ +H

2
ijkℓ +H

3
ijkℓ +H

4
ijkℓ

)

, (C.27)

I 2
ijkℓ = 1

3

(

H
1
ijkℓ −H

2
ijkℓ −H

3
ijkℓ + 2H4

ijkℓ + 3H5
ijkℓ + 3H6

ijkℓ

)

. (C.28)
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Table 2 Short-hand notation for contractions of the basis tensors Hn
ijkl

H1 H2 H3 H4 H5 H6

H1 H1 H2 0 0 0 0

H2 0 0 2H1 H2 0 0

H3 H3 2H4 0 0 0 0

H4 0 0 H3 H4 0 0

H5 0 0 0 0 H5 0

H6 0 0 0 0 0 H6

This allows the definition of the inverse of the tensor A as Ã in a straightforward manner.

Its components are

Ãijkℓ =
6

∑

n=1

α̃nH
n
ijkℓ, (C.29)

where

α̃1 = α4

2�
, α̃2 = − α2

2�
, α̃3 = − α3

2�
, (C.30)

α̃4 = α1

2�
, α̃5 = 1

α5

, α̃6 = 1

α6

(C.31)

and where � = α1α4/2 − α2α3.

C.2.4 Hill’s Shorthand Notation

Hill introduced a convenient short-hand notation regarding fourth order tensors. For a fourth

order isotropic tensor Aijkℓ defined via

Aijkℓ =
2

∑

n=1

αnI
n
ijkℓ, (C.32)

Hill denoted it in shorthand notation as A = (α1, α2), i.e., the tensor basis is assumed from

the outset so only the coefficients are to be prescribed. Commonly for linear isotropic elas-

ticity, the case when α1 = 3κ , α2 = 2μ is assumed where κ and μ are as usual the bulk and

shear moduli. For a fourth order transversely isotropic tensor Aijkℓ defined via

Aijkℓ =
6

∑

n=1

αnH
n
ijkℓ, (C.33)

Hill denoted it in shorthand notation as A = (α1, α2, α3, α4, α5, α6). Commonly for linear

transversely isotropic elasticity, the case when α1 = 2K , α2 = α3 = ℓ, α4 = n, α5 = 2m,

α6 = 2g is assumed.

C.2.5 Orthotropy

Orthotropic basis tensors are described in the paper by Walpole [121] for example. For

practical purposes the matrix formulation of fourth order tensors is extremely useful for
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higher order tensors, including the orthotropic case. This formulation is described in C.4

below.

C.3 Cartesian Coordinates and Tensors in Rotated Frames

C.3.1 Rotations of Cartesian Coordinates

Consider a fixed Cartesian coordinate system xi, i = 1,2,3 and an associated Cartesian

coordinate system x ′
i, i = 1,2,3 having the same origin, having been rotated arbitrarily in

three dimensions. The general three dimensional rotation matrix is constructed as a product

of three planar rotation matrices, each of which corresponds to a rotation of the axes about

a given axis in three dimensional space, see Auld [7], p. 77. Begin by rotating clockwise

about the x3 axis (clockwise, when looking in the positive x3 direction) by use of the matrix

[

Q1
]

(ϕ) =

⎛

⎝

cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

⎞

⎠ , (C.34)

having an associated (Cartesian) tensor with components Q1
ij and the ij th component is

the ij th component of the matrix [Q1]. This generates the rotated coordinate system x̄i =
Q1

ij (ϕ)xj . This is followed by a clockwise rotation about the x̄2 axis by application of the

matrix

[

Q2
]

(ϑ) =

⎛

⎝

cosϑ 0 − sinϑ

0 1 0

sinϑ 0 cosϑ

⎞

⎠ , (C.35)

having an associated tensor with components Q2
ij . This generates the rotated coordinate

system x̂i = Q2
ij (ϑ)Q1

jk(ϕ)xk . Finally a clockwise rotation about the x̂3 axis is performed

by application of the matrix [Q1](ψ), so that our required fully rotated system in three

dimensions is derived as

x ′
i = Q1

ij (ψ)Q2
jk(ϑ)Q1

kℓ(ϕ)xℓ = Qiℓ(ϕ,ϑ,ψ)xℓ. (C.36)

The domains of the angles of rotation are ϑ ∈ [0,π ], ϕ ∈ [0,2π),ψ ∈ [0,2π). A 3 × 3

matrix [Q] is associated with the second order tensor Q, having components Qij .

C.3.2 Cartesian Tensors in Rotated Frames and Orientational Averaging

Employing tensor product notation ⊗, a second order Cartesian tensor A with components

Aij can be written

A = Aij ei ⊗ ej , (C.37)

where ej is the j th Cartesian unit basis vector. Similarly a fourth order tensor A is defined

as

A = Aijkℓei ⊗ ej ⊗ ek ⊗ eℓ. (C.38)
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The relation between components of second and fourth order tensors in the rotated sys-

tem x ′
i , generated by application of the general rotation matrix Q to the tensors in the origi-

nal system xi , i.e., A′
ij and A′

ijkℓ are defined via the following expressions

A′
ij = QikQjℓAkℓ, Aij = QkiQℓjA

′
kℓ, (C.39)

A′
ijkℓ = QimQjnQkpQℓqAmnpq, Aijkℓ = QmiQnjQpkQqℓA

′
mnpq . (C.40)

Often it is useful to determine the average of a general second order tensor, say A over

all possible rotations of Cartesian axes (uniformly). The natural way to do this is to take a

tensor with components A′
ij , diagonal in some coordinate system x ′

i . This frame has been

rotated from the fixed system xi . However it is natural to work in a “fixed” coordinate

system xi , which can be considered as being obtained from the system x ′
i via a rotation;

indeed xi = Qj ix
′
j . The components of A′

ij are diagonal and therefore the components Aij

are dependent on the angles ϕ, ϑ and ψ as in (C.36). If one wishes to determine the average

of the tensor Aij over all such orientations uniformly, it can be done by carrying out the

following integration

Aij = 1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

Aij (ϕ,ϑ,ψ) sinϑ dϑ dϕ dψ

= 1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

Qki(ϕ,ϑ,ψ)Qℓj (ϕ,ϑ,ψ)A′
kℓ sinϑ dϑ dϕ dψ, (C.41)

where the underline denotes orientation averaging. Alternatively there may be some orien-

tation distribution function, say p(ϕ,ϑ,ψ) that weights the importance of certain distribu-

tions. A weighted orientation average can then be defined as

Aij (p) = 1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

p(ϕ,ϑ,ψ)Qki(ϕ,ϑ,ψ)Qℓj (ϕ,ϑ,ψ)A′
kℓ sinϑ dϑ dϕ dψ

(C.42)

with Aij = Aij (1). Note the normalization condition on the weighting distribution

1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

p(ϕ,ϑ,ψ) sinϑ dϑ dϕ dψ = 1. (C.43)

Analogous expressions to (C.41) and (C.42) hold for the fourth order tensor case of course.

C.3.3 Invariance Properties of Averaging for Second Order Tensors

Weighted orientation averaging of second order tensors can be done mechanically via ro-

tation tensors as described above and as written explicitly in (C.42) or for uniform orien-

tations (C.41). Alternatively for uniform orientation averaging, a simple aspect of tensor

analysis associated with invariants can be exploited. Averaging uniformly would give rise to

an isotropic tensor with components of the form

Aij = αδij ,

where the underline denotes averaging. Performing a contraction in the original tensor gives

rise to a quantity that does not change with rotations, i.e., a = Akk is an invariant. Therefore

Akk = a = αδkk = 3α,
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so that α = a/3. The components of the averaged tensor therefore take the form

Aij = 1

3
aδij . (C.44)

If averages need to be taken with respect to some weighting function, then the mechanical

process of averaging over angles as in (C.42) needs to be followed.

In the case of a transversely isotropic second order tensor Aij with nij = δi3δj3, it is

easily shown that

nij = 1

3
δij , Θ ij = 2

3
δij , (C.45)

and so taking a uniform orientation average of Aij in (C.2) yields

Aij = 1

3
(2α1 + α3)δij . (C.46)

In the orthotropic case upon taking uniform averages of (C.5) it is shown that

Aij = 1

3
(α1 + α2 + α3)δij . (C.47)

C.3.4 Invariance Properties of Averaging for Fourth Order Tensors

In the case of uniform averaging of fourth order tensors, this would give rise to an isotropic

tensor with components of the form

Aijkℓ = αI 1
ijkℓ + βI 2

ijkℓ. (C.48)

Here Aiikk = a and Aikik = b are invariants of the original tensor. Therefore Aiikk = a = 3α

so that α = a/3. Furthermore Aikik = b = α + 5β so that β = b/5 − a/15. The components

of the averaged tensor take the form

Aijkℓ = 1

3
AppqqI

1
ijkℓ + 1

15
(3Apqpq − Appqq)I

2
ijkℓ. (C.49)

In the case of a transversely isotropic tensor of the form (C.21), taking contractions of

the tensor and equating to the averaged tensor in (C.48) yields

Appqq = 3α = 2α1 + 2α2 + 2α3 + α4, (C.50)

Apqpq = α + 5β = α1 + α4 + 2α5 + 2α6, (C.51)

which defines α and β in terms of the coefficients αn, i.e.,

Aijkℓ = 1

3
(2α1 + 2α2 + 2α3 + α4)I

1
ijkℓ + 1

15
(α1 − 2α2 − 2α3 + 2α4 + 6α5 + 6α6)I

2
ijkℓ.

(C.52)

C.4 Matrix Formulation of Tensors

C.4.1 Second Order Tensors

Matrix representation and manipulation of second order Cartesian tensors is of course trivial.

One can write the matrix [A] associated with a second order tensor A with components Aij
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as

[A] =

⎛

⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠ . (C.53)

Matrix operations can then be carried out, so that, for example, matrix multiplication

takes the place of tensor contraction, etc. Furthermore defining the matrix [Q] associ-

ated with the second order general rotation tensor Q as we have done below (C.36), the

operation of general rotation defined in tensor form in (C.39) can be written in matrix

form as

[

A′] = [Q][A][Q]T . (C.54)

C.4.2 Fourth Order Tensors

It is often of great utility to represent fourth order tensors in the form of six by six matrices,

see the reference of Auld [7] for more details. In particular a fourth order tensor A (satisfying

minor symmetries) with components Aijkℓ with respect to a Cartesian basis can be usefully

written in matrix form [A] as

[A] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1111 A1122 A1133 A1123 A1131 A1112

A2211 A2222 A2233 A2223 A2213 A2212

A3311 A3322 A3333 A3323 A3313 A3312

A2311 A2322 A2333 A2323 A2313 A2312

A1311 A1322 A1333 A1323 A1313 A1312

A1211 A1222 A1233 A1223 A1213 A1212

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (C.55)

Of specific importance is the ability to carry out the operations of tensor contraction and

inversion with the matrix form stated here. Defining the matrix [W ] as

[W ] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.56)

one can carry out the operation of tensor contraction between two fourth order tensors,

i.e., AijmnBnmkℓ, in matrix form as [A][W ][B]. Furthermore, defining [A−1] as the ma-

trix associated with the inverse of the tensor A it is straightforward to show that [A−1] =
[W ]−1[A]−1[W ]−1.

The matrix [W ] can be used in the formulation of matrix forms of the linear elastic

constitutive relations, i.e., given the tensor forms

σij = Cijkℓekℓ, eij = Dijkℓσkℓ, (C.57)

the equivalent matrix forms are
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[σ ] = [C][W ][e], [e] = [D][W ][σ ], (C.58)

where [σ ] = (σ11 σ22 σ33 σ23 σ13 σ12)
T is the 1 × 6 column vector of stresses and similarly

[e] = (e11 e22 e33 e23 e13 e12)
T . Multiplying the second of the equations in (C.58) from the

left by [W ], it follows that

[σ ] = [C][γ ], [γ ] = [D][σ ], (C.59)

where

[C] = [C], [D] = [W ][D][W ] = [C]−1 (C.60)

and [γ ] = [W ][e] is the engineering strain.

General rotations of fourth order tensors are non-trivial operations to define in matrix

form. Auld [7] goes into great detail regarding this using Bond’s method [13]. Here we state

the result that the operation of rotation about the x1 axis as defined above via the rotation

matrix [Q1] associated with the fourth order tensor operation A′
ijkℓ = Q1

imQ1
jnQ

1
kpQ1

ℓqAmnpq

can be shown to be equivalent to the matrix operation

[

A′] = [M](ϕ)[A][M]T (ϕ), (C.61)

where

[M](ϕ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos2 ϕ sin2 ϕ 0 0 0 sin 2ϕ

sin2 ϕ cos2 ϕ 0 0 0 − sin 2ϕ

0 0 1 0 0 0

0 0 0 cosϕ − sinϕ 0

0 0 0 sinϕ cosϕ 0

− 1
2

sin 2ϕ 1
2

sin 2ϕ 0 0 0 cos 2ϕ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (C.62)

The general rotation operation can be similarly defined via the operation

[

A′] = [N ](ϕ,ϑ,ψ)[A][N ]T (ϕ,ϑ,ψ), (C.63)

where

[N ](ϕ,ϑ,ψ) = [M](ψ)
[

M ′](ϑ)[M](ϕ) (C.64)

with

[

M ′](ϑ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos2 ϑ 0 sin2 ϑ 0 − sin 2ϑ 0

0 1 0 0 0 0

sin2 ϑ 0 cos2 ϑ 0 sin 2ϑ 0

0 0 0 cosϑ 0 sinϑ
1
2

sin 2ϑ 0 − 1
2

sin 2ϑ 0 cos 2ϑ 0

0 0 0 − sinϑ 0 cosϑ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (C.65)
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