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The Eshelby Tensors in a Finite
Spherical Domain—Part II:
Applications to Homogenization
In this part of the work, the Eshelby tensors of a finite spherical domain are applied to
various homogenization procedures estimating the effective material properties of multi-
phase composites. The Eshelby tensors of a finite domain can capture the boundary effect
of a representative volume element as well as the size effect of the different phases.
Therefore their application to homogenization does not only improve the accuracy of
classical homogenization methods, but also leads to some novel homogenization theories.
This paper highlights a few of them: a refined dilute suspension method and a modified
Mori–Tanaka method, the exterior eigenstrain method, the dual-eigenstrain method,
which is a generalized self-consistency method, a shell model, and new variational
bounds depending on the different boundary conditions. To the best of the authors’
knowledge, this is the first time that a multishell model is used to evaluate the Hashin–

Shtrikman bounds for a multiple phase composite �n�3�, which can distinguish some of

the subtleties of different microstructures. �DOI: 10.1115/1.2711228�

1 Introduction

In the first part of this work �1�, which is referred to as Part I

hereafter, the exact solutions of the elastic fields of a spherical

inclusion embedded in a finite spherical representative volume

�RVE� are obtained under both the prescribed displacement �Di-

richlet� boundary condition and the prescribed traction �Neumann�
boundary condition.

For simplicity, we refer to the Dirichlet– and Neumann–

Eshelby tensors of a finite domain as the finite Eshelby tensors. A

salient feature of the finite Eshelby tensors is their ability to cap-

ture both the boundary effect, or image force effect, of an RVE

and the size effect, i.e., the dependency on the volume fraction of

the different phases of a composite. This offers great advantages

and flexibilities in homogenization procedures, which is the focus

of this second part of our work. Using the new finite Eshelby

tensors we can modify the classical homogenization schemes and

obtain some remarkable results. Furthermore several new homog-

enization schemes can be constructed by the application of the

finite Eshelby tensors.

In recent years, nanocomposites have emerged as promising

materials for future technologies e.g., Refs. �2,3�, because of their

high strength, excellent conductivity in both heat transfer and

electricity. Considerable attention has been devoted to study the

interfacial strength, size effects, and agglomeration effects of

nanocomposites �e.g. Fisher et al. �4�, Odegard et al. �5�, Shi et al.

�6�, and Sharma and Ganti �7��. The classical homogenization

techniques have shown limitations to deal with the above issues.

There is a call for a refined micromechanics theory for nanocom-

posites, e.g, Ref. �8�. One of the objectives of this research is

towards establishing a refined micromechanics homogenization

theory for nanocomposites.

We proceed, in the following section, by deriving expressions

for the average finite Eshelby tensors in a RVE. These are needed

to characterize the average disturbance fields, which have some

important properties. In Sec. 3 we re-examine two conventional

homogenization methods by using the average finite Eshelby ten-
sor. Further, in Sec. 4, we discuss the so-called dual eigenstrain
method, which is a combination of an exterior and interior eigen-
strain homogenization method. This scheme is a generalized self-
consistency method, which leads to a new class of predictor–
corrector schemes. In Sec. 5, a shell model is proposed to capture
microstructure effects on the homogenization of a multiphase
composite. Finally, in Sec. 6, the Hashin–Shtrikman �HS� varia-
tional bounds are rederived using the finite Eshelby tensors to
incorporate the boundary conditions. A multishell model is used to

evaluate the exact HS bounds for a multiphase composite with n

�3 using a multivariable optimization procedure. Conclusions are
drawn in Sec. 7.

2 Average Eshelby Tensors and Average Disturbance

Fields

In Part I we derived the finite Eshelby tensors, S·,D and S·,N,

which are valid for a spherical inclusion �I embedded at the cen-

ter of a finite, spherical RVE � �see Fig. 1 of Part I�. In accor-
dance with Part I we adopt the following nomenclature to describe

the problem: The radii of inclusion and RVE are denoted by a and

A, their ratio by �0=a /A. Any point x inside the RVE can be

written as x= tAx̄, where t= �x� /A and x̄=x / �x� denote the normal-

ized radial distance and direction of x. The elasticity tensors of the

two domains �I and �E are denoted by CI and CE=C.
For clarity, we first derive the expression of the average finite

Eshelby tensors and discuss their relation with the average distur-
bance strain field.

2.1 Average Eshelby Tensors. The spatial averaging operator
is defined as

�. . .�� =
1

����
�

. . . d� �1�

where ��� denotes the volume of the spatial domain �. Due to the

radial isotropic structure of the finite Eshelby tensors, Sijmn
·,� �x�

=�ijmn
T �x̄�S·,��t� �·= I, E; �=D, N�, their average over the RVE

domain � can be written as
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�Sijmn
·,� �x��� =

1

����
�

S·,��t� · �ijmn�x̄�d� = �3t2S·,���0,1� · ��ijmn�S2

�2�

where S2 denotes the surface of a sphere with unit radius, and
where

��ijmn�S2
ª

1

4�
�

S2

�ijmn dS2 �3�

�3t2S·,���a,b� ª
1

b3 − a3�
a

b

3t2S·,� dt �4�

The above decomposition is possible since S is independent of the

orientation x̄ and �ijmn is independent of the radial distance t.

Performing the averaging of �ijmn over the unit sphere yields

��ijmn�S2
=

1

4�
�

S2

�ijmn dS2 = 	
3Eijmn

�1�

2Eijmn
�1� + 2Eijmn

�2�

Eijmn
�1�

Eijmn
�1�

4

3
Eijmn

�1� +
4

3
Eijmn

�2�

1

3
Eijmn

�1� +
2

15
Eijmn

�2�


 = 	
3 0

2 2

1 0

1 0

4

3

4

3

1

3

2

15



��Eijmn

�1�

Eijmn
�2� � �5�

where E
ijmn

�1�
and E

ijmn

�2�
are the following isotropic basis tensors

Eijmn
�1� =

1

3
�ij�mn, Eijmn

�2� =
1

2
��im� jn + �in� jm� −

1

3
�ij�mn �6�

For each boundary condition �Dirichlet or Neumann�, we have

two Eshelby tensors, interior SI,��x� for x��I, or exterior SE,��x�
for x�� /�Iª�E. Their average over the respective domains
follows as

�Sijmn
I,� ��I

= �3t2SI��0,�0� · ��ijmn�S2
,

�Sijmn
E,� ��E

= �3t2SE���0,1� · ��ijmn�S2
�7�

Since the averaging of �ijmn over S2 is an isotropic tensor, we
obtain

�Sijmn
I,� ��I

= s1
I,�
Eijmn

�1� + s2
I,�
Eijmn

�2� �8�

�Sijmn
E,� ��E

= s1
E,�

Eijmn
�1� + s2

E,�
Eijmn

�2� �9�

The coefficients s1
I,�, s2

I,� and s1
E,�, s2

E,� depend on the volume

fraction f ª�0
3 and are given as

s1
I,D =

�1 + ���1 − f�

3�1 − ��
, s2

I,D =
2�4 − 5���1 − f�

15�1 − ��
− 21�u�f��1 − f2/3�

�10�

s1
E,D = −

�1 + ��f

3�1 − ��
, s2

E,D = −
2�4 − 5��f

15�1 − ��
+ 21�u�f�f

1 − f2/3

1 − f

�11�

for the Dirichlet boundary condition �BC� and

s1
I,N =

1 + � + 2�1 − 2��f

3�1 − ��
,

s2
I,N =

2�4 − 5�� + �7 − 5��f

15�1 − ��
+ 21�t�f��1 − f2/3� �12�

s1
E,N =

2�1 − 2��f

3�1 − ��
, s2

E,N =
�7 − 5��f

15�1 − ��
− 21�t�f�f

1 − f2/3

1 − f
�13�

for the Neumann BC. Here we have denoted

�u�f� ª
f�1 − f2/3�

10�1 − ���7 − 10��
, �t�f� ª

4f�1 − f2/3�

10�1 − ���7 + 5��

�14�

In fact, Eqs. �10�–�13� are the precise formulas of the size-effect
characterization of of the inclusion problem. One can find that this
effect is linear for the bulk modulus, whereas it is nonlinear in the
shear modulus. In contrast to the average finite Eshelby tensors
we recall the average Eshelby tensor for a spherical inclusion in
an unbounded medium

�Sijmn
·,	 ��·

= s1
·,	
Eijmn

�1� + s2
·,	
Eijmn

�2� , · = I or E �15�

s1
I,	 =

1 + �

3�1 − ��
, s2

I,	 =
2�4 − 5��

15�1 − ��
�16�

s1
E,	 = 0, s2

E,	 = 0 �17�

Figure 1 displays the behaviors of all the coefficients si
·,� in de-

pendence of f . The Poisson’s ratio is chosen as �=0.2. We observe
that for the Dirichlet case the coefficients decrease, while for the

Neumann case they increase with growing f . The classical Es-

helby tensors do not depend on f .

Note that when f →0 in Eqs. �10�–�13� we recover the expres-
sions for the average of the classical Eshelby tensors. The fact that

si
E,	=0 implies the well-known Tanaka–Mori Lemma �see below�.

Let us define the difference 
si
�=si

I,�−si
E,�; we have

Fig. 1 Average Eshelby tensor coefficients s1
I , s1

E „i=1… and s2
I ,

s2
E „i=2…
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s1
D = 
s1

N = 
s1
	 =

1 + �

3�1 − ��
�18�


s2
D = 
s2

	 − 21�u�f�
1 − f2/3

1 − f
, 
s2

	 =
2�4 − 5��

15�1 − ��
�19�


s2
N = 
s2

	 + 21�t�f�
1 − f2/3

1 − f
�20�

2.2 The Average Disturbance Fields. The finite Eshelby ten-
sors can be conveniently used to represent the average disturbance
fields. Recall the classical Tanaka–Mori Lemma �9�: the exterior
average disturbance strain in the exterior domain is zero �see Eq.
�17��

��d��E
= �SE,	��E

:�* = �s1
E,	

E�1� + s2
E,	

E�2��:�* = 0 �21�

A similar result holds for the disturbance stress field for a linear

elastic medium. Using the new finite Eshelby tensors SD and SN

the original Tanaka–Mori Lemma result is modified. The exterior
average disturbance strain field is neither zero for the Dirichlet
problem

��d��E
= �SE,D��E

:�* = �s1
E,D

E�1� + s2
E,D

E�2��:�*
� 0 �22�

nor is it zero for the Neumann problem

��d��E
= �SE,N��E

:�* = �s1
E,N

E�1� + s2
E,N

E�2��:�*
� 0 �23�

�unless f =0�. However, in view of Eqs. �11� and �13�, we find that
for both problems

��d��E
= O�f� �24�

which can be viewed as a modified Tanaka–Mori Lemma. One

then recovers the original result as f →0.
Moreover, consider the Dirichlet problem. We can exactly sat-

isfy a key assumption, the average strain theorem

���� = ��0 + �d�� = �0 + ��d�� = �0 �25�

since the average disturbance strain field in � is zero

��d�� = f��d��I
+ �1 − f���d��E

= �f�SI,D��I
+ �1 − f��SE,D��E

�:�* = 0

�26�

Likewise, for the Neumann problem, the average stress theorem

���� = �0 �27�

is exactly satisfied since ��d��= f��d��I
+ �1− f���d��E

=0 due to

f�TI,N��I
+ �1 − f��TE,N��E

= O �28�

where TI,N and TE,N are the conjugate Neumann Eshelby tensors
related to the Neumann Eshelby tensors by the expressions

�SI,N��I
+ �TI,N��I

= Is

and

�SE,N��E
+ �TE,N��E

= O �29�

where Is is the fourth-order symmetric unit tensor and O is the
fourth-order null tensor.

3 Improvement of the Classical Homogenization

Methods

We now use the finite Eshelby tensors in two classical homog-
enization procedures to estimate effective material properties,
namely, the homogenization for composites with dilute suspension
and the Mori–Tanaka model.

3.1 Dilute Suspension Model. The dilute suspension method
predicts two different effective elastic tensors depending on the
different boundary conditions e.g., Ref. �10�. We first consider the

prescribed macrostrain BC, i.e., the Dirichlet boundary value

problem �BVP� �ud=0 on ���, as discussed in Part I. The average
stress consistency condition for the considered homogenization

scheme �for prescribed eigenstrain within �I as motivated in Part
I� is

CI:��0 + ��d��I
� = C:��0 + ��d��I

− �*�, ∀ � �I �30�

Note that CI, C, �0, and �* are considered constant. From Eq. �30�
we obtain

�0 + ��d��I
= A:�* �31�

where Aª �C−CI�−1 :C. Consider the interior average of the dis-

turbance strain field

��d��I
= �SI,D��I

:�* �32�

and substitute Eq. �32� into Eq. �31�. This yields

�* = �A − �SI,D��I
�−1:�0 �33�

and consequently,

����I
= �0 + ��d��I

= A:�A − �SI,D��I
�−1:�0 �34�

Following the standard procedure, e.g., Ref. �10�, we find the
estimate of the effective elasticity tensor for the prescribed mac-
rostrain BC

C̄ = C − fC:�A − �SI,D��I
�−1 �35�

The only difference between Eq. �35� and the classical solution for
dilute suspension is that a different Eshelby tensor is used. Con-
sidering isotropic materials, the effective bulk and shear moduli
become

�̄ = � − f�
 1

1 − �I/�
− s1

I,D�−1

, �̄ = � − f�
 1

1 − �I/�
− s2

I,D�−1

�36�

For the prescribed macrostress boundary condition, the new
dilute suspension estimate is

D̄ = D + fD:�A − �SI,N��I
�−1 �37�

where �SI,N��I
is the interior average Neumann–Eshelby tensor.

For isotropic composites, the corresponding effective bulk and
shear moduli are

�̄−1 = �−1 + f�−1
 1

1 − �I/�
− s1

I,N�−1

,

�̄−1 = �−1 + f�−1
 1

1 − �I/�
− s2

I,N�−1

�38�

Figure 2 shows the curves of the normalized bulk modulus, �̄ /�,

and shear modulus, �̄ /�, in dependence of the volume fraction f
of the inclusion. The material properties of the inclusion are cho-

sen as �I /�=10, �I /�=4, with �=0.1. We have plotted the result

Eq. �35� using the Dirichlet–Eshelby tensor SI,D �dark� and �37�
using the Neumann–Eshelby tensor SI,N �light�. We compare the
new results with the conventional dilute suspension results using

the infinite Eshelby tensor SI,	 in Eq. �35� �dashed line 2� and in
Eq. �37� �dashed line 1�.

From this figure, we can observe the well-known result that the

classical solution is not self-consistent, i.e D̄� C̄−1. When we use
the new finite Eshelby tensors this situation is significantly im-
proved. For the effective bulk modulus, the new scheme is self

consistent, i.e., the two �̄ in Eqs. �36� and �38� are equal. The
estimated effective shear modulus is not self consistent, but it is
quite close as shown in Fig. 2.
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3.2 A Refined Mori–Tanaka Model. The original Mori and
Tanaka model �11� is derived for an infinite RVE. In the follow-
ing, we rederive the Mori–Tanaka estimate for a two-phase com-
posite in a finite RVE.

In reality, the boundary condition of an RVE is neither a pre-
scribed displacement boundary condition nor is it a prescribed
traction boundary condition. One can thus define a “general finite
Eshelby tensor” as the linear combination of the Dirichlet–
Eshelby tensor and the Neumann–Eshelby tensor corresponding to
general boundary conditions

S·,F = 
S·,D + �1 − 
�S·,N, · = I, or E �39�

For detailed justification, derivation, and discussion of this con-
cept, readers are referred to Ref. �12�.

The essence of the Mori–Tanaka procedure is the following
incremental homogenization procedure. Let us denote the current

background strain of the RVE as ��b��, which may or may not be

the average strain of the RVE. Adding an inclusion �or a cluster of
inclusions represented by a single inclusion� into the RVE, the

new average strain ��� in each phase will be the sum of the back-

ground strain and the disturbance strain

����I
= ��b�� + ��d��I

�40�

����E
= ��b�� + ��d��E

�41�

The classical Tanaka–Mori Lemma states that ��d��E
=0. This is

only true when the RVE is infinite, since �SE,	��E
=0. For a finite

RVE, we have to take into account the change of the effective
material properties in the matrix

����I
= ��b�� + �SI,F��I

:�* �42�

����E
= ��b�� + �SE,F��E

:�* �43�

Consider the average stress consistency condition �for x��I�

CI:����I
= C:�����I

− �*� �44�

Solving Eqs. �44� for ����I
yields

����I
= A:�* �45�

where A= �C−CI�−1 :C. Considering Eq. �42�, we can express the

eigenstrain in terms of the background strain as

�* = �A − �SI,F��I
�−1:��b�� �46�

Considering the basic average equation of the strain

���� = f����I
+ �1 − f�����E

�47�

and substituting Eqs. �42�, �43�, and �46� into Eq. �47�, we can

express the average strain ���� in terms of the background strain

as

���� = A
F:��b�� �48�

Here AF is the concentration tensor defined as

A
F = �A − �1 − f���SI,F��I

− �SE,F��E
��:�A − �SI,F��I

�−1 �49�

By virtue of Eqs. �45� and �46�, the average stress field inside the
inclusion can now be written as

����I
= C:�A − I�4s��:�A − �SI,F��I

�−1:��b�� �50�

Applying the basic equation for mixture to the stress field,

���� = f����I
+ �1 − f�����E

�51�

and substituting Eqs. �42�, �43�, and �46� into Eq. �51�, we can

express the average stress ���� in terms of the background strain

as

���� = B
F:��b�� �52�

with

B
F = C:�A − fI�4s� − �1 − f���SI,F��I

− �SE,F��E
��:�A − �SI,F��I

�−1

�53�

Finally from ����= C̄ : ����, we obtain the effective elastic tensor

C̄ = C − fC:�A − �1 − f���SI,F��I
− �SE,F��E

��−1, D̄ = C̄−1

�54�

We note in passing that this model is self consistent.

The homogenization procedure with finite Eshelby tensors, SI,F

and SE,F, furnishes a refined Mori–Tanaka model. For isotropic
two-phase composites, the corresponding formulas are

�̄ = � − f�� 1

1 − �I/�
− �1 − f�
s1

F�−1

,

�̄ = � − f�� 1

1 − �I/�
− �1 − f�
s2

F�−1

�55�

Note that the differences 
s1
F=s1

I,F−s1
E,F and 
s2

F=s2
I,F−s2

E,F are
given by Eqs. �18�–�20�.

Figure 3 displays the profiles of the normalized effective

moduli �̄ /� and �̄ /� over the volume fraction of the second
phase. The same material data is used for the results shown in
Fig. 2.

In the case of the bulk modulus the dark, dashed and the light
curves match exactly, i.e., they are the same analytically. Indeed,

�̄ in Eq. �55� is mathematically identical when applying S·,	, S·,D,

Fig. 2 Effective moduli �̄, �̄ „or �eff and �eff… obtained by using
the dilute suspension method

Journal of Applied Mechanics JULY 2007, Vol. 74 / 787

Downloaded 20 Jul 2007 to 169.229.157.231. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



or S·,N, since 
s1
	=
s1

D=
s1
N as noted in Eq. �18�. For the shear

modulus �̄ Eq. �55� gives three distinct lines when applying S·,	,

S·,D, or S·,N.
Remarkably, when comparing Figs. 2 and 3, we find that the

dark and light lines match exactly. In other words, it can be shown
that by using the finite Eshelby tensors, the dilute suspension
method Eqs. �35� and �37� is equivalent to the Mori–Tanaka

method Eq. �54�, when using the corresponding S·,D and S·,N. The

finite Eshelby tensors S·,D and S·,N unify the previously distinct
homogenization methods.

4 Exterior/Interior Eigenstrain Method

In the classical eigenstrain homogenization method, since the
ambient space �i.e., matrix phase� is assumed to be unbounded,
the eigenstrain can only be prescribed inside the inclusion. There-
fore the stress or strain consistency condition, i.e., the equivalent
eigenstrain principle, is only applicable to the interior. Consider-
ing the eigenstrain to be prescribed in the interior domain is the
case we have considered so far.

For a finite RVE, the equivalent eigenstrain principle can be
equally applied to its interior �inclusion phase� or exterior region
�matrix phase�. By treating the interior and exterior homogeniza-
tion scheme with equal footing, one may be able to characterize
certain patterns of the phase distribution in an RVE in addition to
merely considering the volume fraction of the phases. Such pat-
terns may be the concentration of inhomogeneities towards the
center or boundary of the RVE. The exterior eigenstrain method
has been studied before by Castles and Mura �13�, however, with-
out the knowledge of the finite Eshelby tensor. In this section, we
first discuss the exterior eigenstrain method, which relies on the

interior eigenstrain results previously obtained. Second we intro-
duce a method which considers the simultaneous prescription of
interior and exterior eigenstrains.

4.1 Exterior Eigenstrain Method. Analogously to the inte-
rior eigenstrain method, the idea of the exterior eigenstrain
method is as follows. We choose the interior phase, characterized

by elasticity CI, as the comparison solid of the RVE. To account
for the difference of elastic properties, a uniform eigenstrain is
prescribed in the exterior region of the RVE, i.e.

�*�x� = �0, ∀x � �I

�*, ∀x � �E

� �56�

The concept is illustrated in Fig. 4.
It follows that the constitutive relation between the disturbance

stress and strain fields has the form

�d�x� = CI:��d�x� − �*�x��, ∀ x � � �57�

Accordingly, Somigliana’s identity reads

um
d �x� = −�

�E

Cijk�

I Gim,j
	 �x − y�d�y�k�

* +�
��

Cijk�

I uk
d�y�Gim,j

	 �x

− y�n��y�dSy +�
��

Cijk�

I uk,�
d �y�n j�y�Gim

	 �x − y�dSy �58�

By considering either the Dirichlet or Neumann boundary condi-
tion prescribed on the RVE boundary, the above equation can be
solved to relate the disturbance strain field to the prescribed exte-
rior eigenstrain through the so called exterior Eshelby tensors

denoted by S̄·,�. They are defined from

�d�x� =�S̄E,��x�:�*, ∀x � �E

S̄I,��x�:�*, ∀x � �I

� �59�

where the superscripts ·= I or E denote the tensors evaluated at the

interior or exterior regions, and where �=D or N stands for either
the Dirichlet �prescribed displacement� or Neumann boundary
�prescribed traction� condition.

The disturbance fields in Eq. �58� can be solved exactly by

means of superposition. Since �E=� /�I the resulting exterior
eigenstrain Eshelby tensors can be written as a combination of the
interior eigenstrain Eshelby tensors, which have been solved in
Part I, as

S̄E,� = SI,��CI, f = 1� − SE,��CI, f I�, x � �E �60�

S̄I,� = SI,��CI, f = 1� − SI,��CI, f I�, x � �I �61�

We emphasize that for this case �the exterior eigenstrain method�
the Eshelby tensor S·,� in the above equations takes the material

Fig. 3 Effective moduli �̄, �̄ „or �eff and �eff… obtained by using
the Mori–Tanaka method

Fig. 4 Illustration of interior and exterior eigenstrain method
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property CI of the inclusion �the comparison solid�, and the vol-

ume fraction f I of the inclusion phase. Given the boundary con-

dition �=D or N, the first term of the equations above can be

easily evaluated �see Part I for the expressions of SI,��

SI,D�CI, f = 1� = O

and

SI,N�CI, f = 1� = Is �62�

where O and Is are the fourth-order zero tensor and identity tensor,
respectively. Therefore the exterior eigenstrain Eshelby tensors
can be related explicitly to the interior eigenstrain Eshelby tensors
by

S̄·,D = − S·,D�CI, f I�, x � � �63�

S̄·,N = Is − S·,N�CI, f I�, x � � �64�

To proceed further, the average of the exterior eigenstrain Eshelby

tensors S̄·,� is needed. Following Sec. 2, we find

�S̄ijmn
I,� ��I

= s̄1
I,�
Eijmn

�1� + s̄2
I,�
Eijmn

�2� �65�

�S̄ijmn
E,� ��E

= s̄1
E,�

Eijmn
�1� + s̄2

E,�
Eijmn

�2� �66�

with

s̄1
I,D = −

�1 + ���1 − f�

3�1 − ��
, s̄2

I,D = −
2�4 − 5���1 − f�

15�1 − ��
+ 21�u�1 − f2/3�

s̄1
E,D =

�1 + ��f

3�1 − ��
, s̄2

E,D =
2�4 − 5��f

15�1 − ��
− 21�uf

1 − f2/3

1 − f
�67�

for the Dirichlet BVP and

s̄1
I,N =

2�1 − 2���1 − f�

3�1 − ��
, s̄2

I,N =
�7 − 5���1 − f�

15�1 − ��
− 21�t�1 − f2/3�

s̄1
E,N = 1 −

2�1 − 2��f

3�1 − ��
, s̄2

E,N = 1 −
�7 − 5��f

15�1 − ��
+ 21�tf

1 − f2/3

1 − f

�68�

for the Neumann BVP. Here �u and �t are as given in Eq. �14�.
Note that we have omitted all superscripts on the right hand sides,
with the understanding that all material properties in the above

expressions �and in �u and �t� are in terms of the inclusion phase

�i.e., �=�I�. Further, the volume fraction above is that of the in-

clusion �i.e., f = f I�. Substituting f I=1− fE above and comparing
Eqs. �67� and �68� with Eqs. �10�–�13�, the following connections
can be established between the exterior and interior eigenstrain
Eshelby tensors

s̄1
I,���, fE� = s1

E,���, f I�, s̄2
I,���, fE� � s2

E,���, f I� �69�

s̄1
E,���, fE� = s1

I,���, f I�, s̄2
E,���, fE� � s2

I,���, f I� �70�

where �=D ,N. Note that the equality holds between the bulk

coefficients s1, whereas the deviatoric coefficients s2 are only ap-

proximately equal. Likewise we can substitute f I=1− fE into Eqs.
�10�–�13� and compare these equations to Eqs. �67� and �68�.
Then we obtain

s̄1
I,���, f I� = s1

E,���, fE�, s̄2
I,���, f I� � s2

E,���, fE� �71�

s̄1
E,���, f I� = s1

I,���, fE�, s̄2
E,���, f I� � s2

I,���, fE� �72�

Next we consider the Mori–Tanaka model as an example to illus-
trate the exterior eigenstrain method and its relation to the interior
eigenstrain method. Recall the Mori–Tanaka formula for the inte-
rior eigenstrain homogenization Eq. �54�

C̄ = CE − f IC
E:��CE − CI�−1:CE − fE��SI,��CE, f I���I

− �SE,��CE, f I���E
��−1 �73�

Let us consider a two-phase composite with elasticities C1 and C2.
Geometrically, the two phases can be arranged in two ways. We

either let phase 1 be the matrix and phase 2 the inclusion �CE

=C1, CI=C2� or vice versa �CI=C1, CE=C2�. The equation above
then takes the two forms

C̄ = C1 − f2C1:��C1 − C2�−1:C1 − f1��SI,��C1, f2���I

− �SE,��C1, f2���E
��−1 �74�

C̄ = C2 − f1C2:��C2 − C1�−1:C2 − f2��SI,��C2, f1���I

− �SE,��C2, f1���E
��−1 �75�

Reexamining the Mori–Tanaka method via exterior eigenstrain
homogenization, we obtain

C̄ = CI − fEC
I:��CI − CE�−1:CI − f I��S̄

E,��CI, f I���E

− �S̄I,��CI, f I���I
��−1 �76�

which we call the exterior eigenstrain Mori–Tanaka formula. For
a two-phase composite with elastic stiffnesses C1 and C2, we then
have

C̄ = C2 − f1C2:��C2 − C1�−1:C2 − f2��S̄E,��C2, f2���E

− �S̄I,��C2, f2���I
��−1 �77�

C̄ = C1 − f2C1:��C1 − C2�−1:C1 − f1��S̄E,��C1, f1���E

− �S̄I,��C1, f1���I
��−1 �78�

Equations �74�, �75�, �77�, and �78� constitute the four flavors of
the Mori–Tanaka method. In view of relations �69�–�72� we can
see that Eq. �77� is approximately equal to Eq. �75� and that Eq.
�78� is approximately equal to Eq. �74�. In fact, for the effective

bulk modulus �̄ this approximation becomes an equality. For the

effective shear modulus �̄, however, there are slight differences.
These differences can be seen in Fig. 5, which shows the effective

shear modulus �̄ for the four cases.

The material properties used in the calculation are �2=4�1,

�2=10�1, and �2=0.3. The traction boundary condition ��=N� is

used in the calculation. One can see how close the pairs 1, 4 and
2, 3 are. In the case of the effective bulk modulus these pairs are
equal. We can therefore conclude that exchanging the material
phases is approximately equal to exchanging the regions where
the eigenstrain is prescribed.

This, however, does not mean that the exterior eigenstrain
method has no technical merits. In the following sections we shall
discuss two new models that are built upon the idea of the exterior
eigenstrain method. The first, the dual eigenstrain method, fur-
nishes a method that allows the smooth transition between curves
1 and 3 or between 2 and 4. Second, in Sec. 5, the shell model, a
novel multiphase model, is a further generalization of this idea.

4.2 Dual Eigenstrain Method. We have seen in Fig. 5 that,
for fixed phase distribution, the interior and exterior eigenstrain
methods give very different homogenization results �i.e., the dif-
ference between 1 and 3 or between 2 and 4�. We therefore want
to consider a model that prescribes an eigenstrain field in both the
interior and exterior regions of the inclusion simultaneously

�*�x� = ��I
*, ∀x � �I

�E
* , ∀x � �E

� �79�

The model, termed the dual eigenstrain method is discussed in
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detail in Ref. �12� and we only illustrate the main concept of the
method here. The central idea of the dual eigenstrain method is to
treat the homogenization of both the inclusion and matrix phase
equally. Such a model has no preference between the two material
phases, because neither phase is chosen as the reference state. The

comparison solid for the RVE is rather characterized by C̃, which

can be considered as an estimate of the effective modulus C̄. Con-

crete choices for C̃ are considered later.

Denoting the average background strain as �b, the dual stress
consistency conditions then become

CI:��b + �d�x�� = C̃:��b + �d�x� − �I
*�, ∀ x � �I �80�

CE:��b + �d�x�� = C̃:��b + �d�x� − �E
*�, ∀ x � �E �81�

The disturbance strain field �d is the superposition of the distur-
bance strain field due to the interior eigenstrain and the distur-
bance strain field due to the exterior eigenstrain field, i.e.

�d�x� =� SI,�:�I
* + S̄I,�:�E

* , ∀x � �I

SE,�:�I
* + S̄E,�:�E

* , ∀x � �E

� �82�

Here S·,� is the interior eigenstrain finite Eshelby tensor as derived

in Part I and S̄·,� is the exterior eigenstrain Eshelby tensor as given

in the preceding section; �both accepting ·= I or E and �=D or N�.
Both S·,� and S̄·,� take C̃ as the comparison solid. We note that the

dual eigenstrain method contains the two special cases �E
* =0, with

C̃=CE and �I
*=0, with C̃=CI, which are the interior and exterior

eigenstrain methods, respectively.
From here on the derivation proceeds in a similar manner as the

interior eigenstrain case �see Sec. 3�. The effective elasticity
modulus is obtained as

C̄ = �fCI:AE + �1 − f�CE:AI�:�fAE + �1 − f�AI�
−1 �83�

with the concentration tensors

AE = Is − C̃−1:�C̃ − CE�:
S�

AI = Is − C̃−1:�C̃ − CI�:
S� �84�

and the difference


S� ª �SI,��C̃, f = f I���E
− �SE,��C̃, f = f I���I

�85�

Here we have indicated that S·,� depends on the comparison solid

C̃ and the volume fraction f = f I. We note that the coefficients of


S� follow from Eqs. �18�–�20� given in Sec. 2, with setting �

= �̃ and f = f I. Choosing either C̃=CE or C̃=CI, the method degen-
erates to the interior homogenization Eq. �73� or the exterior ho-

mogenization Eq. �76�, respectively. If we let C̃ assume a value

between CI and CE, the effective modulus C̄ given by the dual
eigenstrain method can be expected to lie in between these two
special cases. As an example consider the convex combination

C̃ = aCI + �1 − a�CE, 0 � a � 1 �86�

Figure 6�a� shows the effective shear modulus �̄ obtained from

Eq. �83� using Eq. �86� for a= �0,0.2,0.4,0.6,0.8,1�.
The material properties have been chosen as before ��I=4�E,

�I=10�E, and �E=0.3�. The boundary condition in Fig. 6�a� is

chosen as the Dirichlet BC ��=D�. We observe that �̄, computed

Fig. 5 Mori–Tanaka homogenization for the interior and exte-
rior eigenstrain methods

Fig. 6 Effective shear modulus for: „a… C̃=aCI+ „1−a…CE, and „b…

C̃= C̄
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by the dual eigenstrain method, lies in between the two special
cases, the interior and exterior eigenstrain MT method obtained

for a=0 and a=1, respectively. We remark that there are other

interesting choices for C̃ to consider �see Ref. �12��. For instance,

we can use C̃ as a predictor of the effective modulus C̄. One such
predictor is the Voigt bound. Equation �83� then becomes a cor-

rected value for C̄. This predictor–corrector scheme can be viewed
as a generalization of the classical self-consistent method. An im-

plicit self-consistent method arises when considering C̃= C̄ in Eq.
�83�. The effective shear modulus for this case is shown in Fig.

6�b� for both �=D and N. For comparison the original self-
consistent method is also shown. The material data are the same
as before.

As a final remark, let us consider the dual eigenstrain method in
view of the two possible ways of arranging the material phases.
As we have discussed in the preceding section we can either have

CE=C1 and CI=C2 or the flipped case CI=C1 and CE=C2. Thus the
dual eigenstrain method Eq. �83� results in two distinct formulas.

5 A Shell Model

To utilize the finite Eshelby tensors to represent different mi-
crostructures, a so-called spherical shell model is developed, that

is a n-phase composite RVE modeled by n concentric spherical
shells. To illustrate the model, we present the detailed study of a
three-layer shell model �see Fig. 7�.

For the three-layer shell model, the RVE consists of three con-
centric spherical shells, which are labeled as

�1�x� = �x��x� � r1�, �2�x� = �x�r1 � �x� � r2� ,

�3�x� = �x�r2 � �x� � r3�

Here the radius of the RVE is r3, and the volume fraction of the
three shells are

f1 = 
 r1

r3

�3

, f2 =
r2

3 − r1
3

r3
3

, f3 =
r3

3 − r2
3

r3
3

�87�

with

f1 + f2 + f3 = 1

To derive the Eshelby tensors for each shell, we consider three
partially overlapped concentric spheres

�I�x� = �x��x� � r1�, �II�x� = �x��x� � r2�, �III�x� = �x��x� � r3�

The interior and exterior Eshelby tensors for each sphere �J are
denoted as

SJ,F�x� ª � SI,F�x� , ∀x � �J, J = I,II,III

SE,F�x� , ∀x � �/�J, J = I,II,III
� �88�

where the superscript F represents the general boundary condi-
tions, see Eq. �39�. Subsequently the average of the Eshelby ten-
sor is required for each shell. We first denote the average of the
Eshelby tensor of the overlapping spheres

SJj,F ª �SJ,F��j
, J = I,II,III and j = 1,2,3 �89�

where the first superscript J �Roman numbers� denotes the sphere,

�J, in which the eigenstrain is prescribed, and where the second

superscript j �Arabic numbers� denotes the shell, � j, over which
the average is taken. Similarly we denote the average Eshelby
tensor of the shell domains as

Sij,F ª �Si,F��j
, i = 1,2,3 and j = 1,2,3 �90�

Again, the first subscript index, i, refers to the shell region, �i, in

which the eigenstrains are prescribed, and the second index, j,

denotes the shell region, � j, over which the average is taken. As
we have shown in Sec. 2 the average Eshelby tensors can be
written as

Sij,F = s1
ij,F

E�1� + sij,FE�2�, i, j = 1,2,3 �91�

The idea is to use the Eshelby tensors of three overlapping
spheres to represent the Eshelby tensors of the shells via superpo-
sition. For the first spherical shell �the inner most shell� we write

S11,F = SI1,F = s1
11,F

E�1� + s2
11,F

E�2�

S1j,F = SIj,F = s1
1j,F

E�1� + s2
1j,F

E�2� �92�

Here, s

11,F are the coefficients of the interior Eshelby tensor,

whereas s

1j,F, j=2,3 are the coefficients of the exterior Eshelby

tensors. Using superposition, the Eshelby tensors for the second
and third spherical shells can be obtained by using the combina-
tion of the average Eshelby tensors of the three overlapping
spheres

S2i,F = SIIi,F − SIi,F, i = 1,2,3 �93�

S3i,F = SIIIi,F − SIIi,F, i = 1,2,3 �94�

Therefore, for 
=1,2

s

2i,F = s


IIi,F − s

Ii,F

and

s

3i,F = s


IIIi,F − s

IIi,F, i = 1,2,3 �95�

To this end, all the coefficients of the Eshelby tensors for each
shell layer are expressed in terms the of the Eshelby coefficients

for solid spheres, �I, �II, and �III, which are documented in the
Appendix for a three-sphere RVE.

To illustrate the application of the shell model, we consider a
simple homogenization example of a two-phase composite mate-

rial, with elastic modulus C2=Ce in �2 and C1=C3=C in �1 and

�3. We prescribe the eigenstrain in �2,

�*�x� = ��*, ∀x � �2

0, otherwise
� �96�

We assume the RVE is subjected to the macrostrain boundary

condition, i.e., u=�0x, ∀x��� and impose the following stress
consistency condition

Ce:��
0 + �d� = C:��0 + �d − �*�, ∀ x � �2 �97�

One can then derive the effective elastic stiffness similar to the
formula of dilute suspension homogenization Eq. �35�

C̄ = C − fC:�Ae − S22,D�−1, �98�

where Ae= �C−Ce�−1 :C. We note that here S22,D is a function of

both volume fraction of the second phase �2 �i.e., f = f2�, and the
geometric allocation or separation of the first phase, which can be

characterized by a nondimensional parameter �ª f1 / �f1+ f3�
= f1 / �1− f�. The coefficients of S22,D are found to be

s1
22,D =

�1 + ���1 − f�

3�1 − ��
�99�

Fig. 7 A three-layer shell model
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s2
22,D =

8 − 10�

15�1 − ��
�1 − ���1 − f� − 21�u���1 − f� + f� · �1

−
���1 − f� + f�5/3 − ���1 − f��5/3

f
� +

2��1 − f�

15�1 − ��
+ 21�u���1

− f��
f − ��1 − f� − ���1 − f� + f�5/3 + ���1 − f��5/3

f − ��1 − f�
�100�

For the general boundary condition of Eq. �39�, the following
stress consistency is imposed

Ce:��
b + �d� = C:��b + �d − �*�, ∀ x � �2 �101�

This leads to the usual relationships between the average strain
and eigenstrain, as well as between the eigenstrain and the back-
ground strain, i.e.

����2
= Ae:�

* �102�

and

�* = �Ae − S22,F�:�b, with Ae = �C − Ce�
−1:C

Then the average strain in the RVE will be

���� = f1����1
+ f2����2

+ f3����3

= �b + f1S
21,F:�* + f2S

22,F:�* + f3S
23,F:�*

= �Ae + f1S
21,F − �f1 + f3�S22,F + f3S

23,F�:�Ae − S22,F�−1:�b

�103�

Further, the average stress in the RVE becomes

���� = f1����1
+ f2����2

+ f3����3
= ��f1C + f2Ce + f3C�:�Ae

− S22,F� + �C�f1S
21,F + f3S

23,F� + f2CeS
22,F��:�Ae

− S22,F�−1:�b �104�

Substituting Eq. �103� into Eq. �104� leads to the effective elastic
tensor

C̄ = C − fC:�Ae − �1 − f��S22,F − �S21,F − �1 − ��S23,F��−1,

�105�

where f = f2 and

� =
f1

f1 + f3

=
f1

1 − f

It is interesting to point out that the above formalism resembles
the classical Mori–Tanaka model Eq. �54�. For the shell model

with the eigenstrain prescribed in �2, the contribution from the
exterior Eshelby tensor is represented by a linear combination of

S21,F and S23,F through parameter �� �0,1�, which can be used to

characterize the evolution of the microstructure. Figure 8 shows
that the microstructure evolution can have some influence on the
effective shear modulus. In Fig. 8�a�, the range of the effective

shear modulus for �=0,0.1, . . . ,0.9,1.0 is plotted for the Dirich-

let, Neumann, and averaged �
=0.5 in Eq. �39�� boundary condi-
tions, respectively. The differences can be seen more clearly if, for

a given volume fraction, the effective modulus is plotted over �.

This is shown in Fig. 8�b� for the volume fraction f =0.5, which
demonstrates the dependency of the shell model on the micro-
structure. Note that this dependency has little influence for the
average case but is considerably stronger for both the Dirichlet
and Neumann case.

6 New Variational Bounds

One of the useful homogenization methods for composite ma-
terials are the Hashin–Shtrikman variational principles, which
have been extensively used in deriving bounds for effective ma-
terial properties. In the procedure of deriving the variational

bounds, the Eshelby tensor is needed in order to estimate the
disturbance strain field due to stress polarization or to estimate the
disturbance stress field due to the eigenstrain.

Since the classical Eshelby tensor is obtained for an inclusion
solution in an unbounded region, in principle, it can not be di-
rectly used in the derivation of the variational bounds of a com-
posite with finite volume. In the past, additional probability argu-
ments and approximations based on assumptions of the statistical
nature of the inclusion distribution, have been employed to justify
the use of the classical Eshelby tensor, e.g., Ref. �14�.

In this section, we show that the finite Eshelby tensors are a
perfect fit for the Hashin–Shtrikman variational principles �15,16�.
They can be directly used in combination with the Hashin–
Shtrikman principles to derive variational bounds without resort-
ing to additional statistical arguments. By using the shell model
proposed in the previous section, a systematic, multivariable op-
timization procedure is developed for multiphase composites.

We consider the case that the finite spherical RVE is subjected
to a displacement boundary condition, i.e.

u�x� = �0x, ∀ x � �� �106�

The standard statement of the Hashin–Shtrikman principles may
be expressed in the following form

Fig. 8 Influence of � on the effective shear modulus
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I�p�p,�d� � inf
�d

�E

W��d� � Īp�p,�d� �107�

where

W��� =
1

2����
�

�:� d� �108�

is the strain energy density, and

Ip�p,�d� = W0��0� −
1

2����
�

�p:�C − C0�−1:p − p:�d − 2p:�0�d�

�109�

Here C is the elastic tensor of the composite and C0 is the elastic
tensor of a comparison solid such that

Ip = � Īp, if 
C = C − C0 � 0

I�p, if 
C = C − C0 � 0
� �110�

Here W0��0� is the strain energy density of the comparison solid;

p is the stress polarization; and �d is the disturbance strain field
due to the stress polarization. They are related by the following
subsidiary boundary value problem

� · �C0:�ud�x� + p�x�� = 0, ∀ x � �, ud�x� = 0, ∀ x � ��

�111�

We consider the composite to be made of n distinct phases and
assume that each phase may be represented by a hollow spherical
shell inside the RVE. The homogenization or statistical model of
the composite is that any macropoint of the composite is modeled

as a RVE consisting of n distinct concentric spherical shells with

domain �i so that �i
n�i=� and 	i=1

n �i=�. The stress polariza-
tion is chosen as a piecewise constant tensorial field

p�x� = �
i=1

n

pi���i�

with

���i� = �1, ∀x � �i

0, ∀x � �i

� �112�

Let us consider

pi = piI
�2� + �iJ

�2� �113�

where I�2� is the second-order unit tensor and J�2� is its counter-
part, the so-called deviatoric unit tensor, both defined as

I�2� = �ijei � e j, �ij = �1, i = j

0, i � j
� ,

J�2� = �ijei � e j, �ij = �0, i = j

1, i � j
� �114�

Based on the finite spherical inclusion model, the average distur-
bance strain will be the summation of the average disturbance
strain in each phase

��d�� = − �
i=1

n

�
j=1

n

C0
−1:�Sij,D�:pi �115�

As shown in Sec. 2, the average Eshelby tensor can be written as

�Sij,D� = s1
ij,D

E�1� + s2
ij,D

E�2� �116�

We choose the prescribed boundary field as

�0 = �̄I�2� + �̄J�2� �117�

so that we obtain

Ip = W0��̄� −
1

2����
�

�p:�C − C0�−1:p − p:�d − 2p:�̄�d�

=
9

2
�0�̄2 + 6�0�̄2 − �

i=1

n � f ipi
2

2��i − �0�
+

3f i�i
2

2��i − �0�
�

− �
i=1

n

�
j=1

n 
 f is1
ji,Dpip j

2�0

+
3f is2

ji,D�i� j

2�0

� + �
i=1

n

�3f ipi�̄ + 6f i�i�̄�

�118�

We first let �Ip /�pi=0. One can thus find

−
pi

�i − �0

−
s1

ii,Dpi

�0

− �
j�i

s1
ji,Dp j

2�0

+ 3�̄ = 0, ∀ i = 1,2, ¯ n

�119�

Hence the stationary value of each pi can be obtained through the
following system of equations

	
�

¯ ¯ 
 s1
ii,D

�0

+
1

�i − �0

� ¯
s1

ji,D

2�0

¯

�

�

�


	
p1

]

pi

]

p j

]

pn


 = 3�̄	
1

]

]

1

]

]

1



�120�

We further let �Ip /��i=0, which leads to

−
3f i�i

�i − �0

−
3f is2

ii,D�i

�0

− �
j�i

3f is2
ji,D� j

2�0

+ 6f i�̄ = 0 �121�

or in matrix form

	
�

¯ ¯ 
 s2
ii,D

�0

+
1

�i − �0

� ¯
s2

ji,D

2�0

¯

�

�

�


	
�1

]

�i

]

� j

]

�n


 = 2�̄	
1

]

]

1

]

]

1



�122�

Remark 6.1. In the past, when deriving variational bounds for
multiphase composites, the same infinite Eshelby tensor was used
for all the phases �except the comparison phase� without discrimi-
nation. This procedure excludes the interactions among different
phases at the outset. By applying the shell model, proposed in the
last section, with the finite Eshelby tensor this interaction can now
be taken into account.

6.1 Two-Phase Composites. We now consider an isotropic

two-phase composite, with �2��1 and �2��1. For the effective
bulk modulus, we find the following bound under the prescribed
displacement boundary condition

�1 +
f2

1

�2 − �1

+
s1

22,D

�1

� �̄ � �2 +
f1

1

�1 − �2

+
s1

11,D

�2

�123�

where
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s1
22,D =

�1 + �1�f1

3�1 − �1�

and

s1
11,D =

�1 + �2�f2

3�1 − �2�
�124�

A similar result can be derived for the Neumann boundary
condition

�1
−1 +

f2

1

�2
−1 − �1

−1
+

1 − s1
22,N

�1
−1

� �̄−1 � �2
−1 +

f1

1

�1
−1 − �2

−1
+

1 − s1
11,N

�2
−1

�125�

where

s1
22,N =

1 + �1 + 2�1 − 2�1�f2

3�1 − �1�

and

s1
11,N =

1 + �2 + 2�1 − 2�2�f1

3�1 − �2�
�126�

It can be shown, by algebraic manipulation, that the bounds
�123� and �125� are identical. Furthermore, they are equal to the
original Hashin–Strikman bounds, because the coefficients �124�
and �126� are equal to those of the original infinite Eshelby tensor.

Similarly, the bounds for the shear modulus can be obtained as

�1 +
f2

1

�2 − �1

+
s2

22,D

�1

� �̄ � �2 +
f1

1

�1 − �2

+
s2

11,D

�2

�127�

where

s2
22,D =

2�4 − 5�1�f1

15�1 − �1�
−

21f2�1 − f2
2/3�2

10�1 − �1��7 − 10�1�
�128�

s2
11,D =

2�4 − 5�2�f2

15�1 − �2�
−

21f1�1 − f1
2/3�2

10�1 − �2��7 − 10�2�
�129�

and

�1
−1 +

f2

1

�2
−1 − �1

−1
+

1 − s2
22,N

�1
−1

� �̄−1 � �2
−1 +

f1

1

�1
−1 − �2

−1
+

1 − s2
11,N

�2
−1

�130�

where

s2
22,N =

2�4 − 5�1� + �7 − 5�1�f2

15�1 − �1�
+

84f2
2�1 − f2

2/3�2

10�1 − �1��7 + 5�1�

�131�

s2
11,N =

2�4 − 5�2� + �7 − 5�2�f1

15�1 − �2�
+

84f1
2�1 − f1

2/3�2

10�1 − �2��7 + 5�2�

�132�

Now the shear modulus bounds �127� and �130�, are distinct, and
they are different from the original Hashin–Shtrikman bounds
based on the classical Eshelby tensor in an unbounded RVE. The
new variational bounds for both bulk and shear modulus are dis-

played in Fig. 9 with respect to f2. The material data is chosen as

�2=4�1, �2=10�1, and �1=0.3 �implying �2=0.083�.
Figure 9�a� shows that the boundary conditions have no effect

on the bulk modulus, whose bounds coincide with the original HS
bounds. On the other hand the boundary conditions do affect the
variational bounds of the shear modulus. In Fig. 9�b�, the three
sets of the variational bounds �Dirichlet, Neumann, and the origi-

nal� for the shear modulus are juxtaposed in comparison. We note
that the difference between these three pairs is solely caused by

the second term in coefficients s2
ii,D and s2

ii,N. Without the second
term in Eqs. �128�, �129�, �131�, and �132�, the three sets of
bounds will coincide.

Remark 6.2. There is a difference between material ordering,

i.e., �1��2� ¯ ��n and geometric ordering, i.e., concentric

spherical shells r1�r2� ¯ �rn. Since one does not necessarily
place the phase with the smallest material constants in the inner
most region of the RVE, the combination of mappings between
material ordering and geometric ordering is multiple. There are
differences in the homogenization results due to these different
combinations.

For a two-phase composite, there are two ways to place the
phase which is not the comparison phase in an RVE: either in the
interior of the RVE or in the exterior of the RVE. By alternating
the material phase from the interior region of the RVE to the
exterior region of the RVE, the interior homogenization becomes
the exterior homogenization, and they correspond to different fi-
nite Eshelby tensors as seen in Sec. 4. Therefore, in principle, we
can obtain for each boundary condition two distinct pairs of the
variational bounds, namely one corresponding to the interior
eigenstrain and one corresponding to the exterior eigenstrain
method �see Fig. 5 illustrating the different combinations possible
for each boundary condition�. For isotropic composites, alternat-
ing the phase position has no effect on the variational bounds for
the bulk modulus, because the bulk part of the interior eigenstrain
Eshelby tensor equals the bulk part of the exterior eigenstrain
Eshelby tensor and thus the two pairs of bounds coincide.

Fig. 9 Improved Hashin–Shtrikman bounds for the effective
bulk and shear moduli
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On the other hand, for the shear modulus, alternating the phase
position yields new variational bounds. �These are not shown in
Fig. 9 since they will only deviate slightly from the bounds shown
in the figure.� Altogether we have two pairs of distinct variational
bounds for the shear modulus under each boundary condition.

For multiphase composites �n�3�, the dependence on phase

position may become more pronounced.

6.2 Three-Phase Composites. Consider a three-phase isotro-

pic composite with �3��2��1 and �3��2��1. To obtain the

lower bound, we choose �0=�1 and p1=0. One can then solve the

stationarity condition Eq. �120� for p2 and p3

p2 = 3�̄p� 2, p� 2 =
1


�1


 s1
33,D − 0.5s1

32,D

�1

+
1

�3 − �1

� �133�

p3 = 3�̄p� 3, p� 3 =
1


�1


 s1
22,D − 0.5s1

23,D

�1

+
1

�2 − �1

� �134�

where


�1 = 
 s1
22,D

�1

+
1

�2 − �1

�
 s1
33,D

�1

+
1

�3 − �1

� −
s1

32,Ds1
23,D

4�1
2

�135�

Similarly, one can solve Eq. �120� for the stationary values of p1

and p2 for the upper bound by setting �0=�3 and p3=0, i.e.

p1 = 3�̄p̄1, p̄1 =
1


u1


 s1
22,D − 0.5s1

21,D

�3

+
1

�2 − �3

� �136�

p2 = 3�̄p̄2, p̄2 =
1


u1


 s1
11,D − 0.5s1

12,D

�3

+
1

�1 − �3

� �137�

where


u1 = 
 s1
11,D

�3

+
1

�1 − �3

�
 s1
22,D

�3

+
1

�2 − �3

� −
s1

12,Ds1
21,D

4�3
2

�138�

Substituting the stationary values Eqs. �133�, �134�, �136�, and
�137�, into the Hashin–Shtrikman variational principle Eq. �107�,
we find the explicit variational bounds of the bulk modulus for
three-phase composites

�1 − � f2p� 2
2

��2 − �1�
+

f3p� 3
2

��3 − �1�
� −

1

�1

�f2p� 2
2s1

22,D + f2p� 2p� 3s1
32,D

+ f3p� 2p� 3s1
23,D + f3p� 3

2s1
33,D� + 2�f2p� 2 + f3p� 3� � �̄ � �3

− � f1p̄1
2

��1 − �3�
+

f2p̄2
2

��2 − �3�
� −

1

�3

�f1p̄1
2s1

11,D + f1p̄1p̄2s1
21,D

+ f2p̄1p̄2s1
12,D + f2p̄2

2s1
22,D� + 2�f1p̄1 + f2p̄2� �139�

Similarly, for the bounds of the shear modulus we have

�1 − � f2��2
2

��2 − �1�
+

f3��3
2

��3 − �1�
� −

1

�1

�f2��2
2s2

22,D + f2��2��3s2
32,D

+ f3��2��3s2
23,D + f3��3

2s2
33,D� + 2�f2��2 + f3��3� � �̄ � �3

− � f1�̄1
2

��1 − �3�
+

f2�̄2
2

��2 − �3�
� −

1

�3

�f1�̄1
2s2

11,D + f1�̄1�̄2s2
21,D

+ f2�̄1�̄2s2
12,D + f2�̄2

2s2
22,D� + 2�f1�̄1 + f2�̄2� �140�

where

��2 =
1


�2


 s2
33,D − 0.5s2

32,D

�1

+
1

�3 − �1

� �141�

��3 =
1


�2


 s2
22,D − 0.5s2

23,D

�1

+
1

�2 − �1

� �142�

�̄1 =
1


u2


 s2
22,D − 0.5s2

21,D

�3

+
1

�2 − �3

� �143�

�̄2 =
1


u2


 s2
11,D − 0.5s2

12,D

�3

+
1

�1 − �3

� �144�

and


�2 = 
 s2
22,D

�1

+
1

�2 − �1

�
 s2
33,D

�1

+
1

�3 − �1

� −
s2

23,Ds2
32,D

4�1
2

�145�


u2 = 
 s2
11,D

�3

+
1

�1 − �3

�
 s2
22,D

�3

+
1

�2 − �3

� −
s2

12,Ds2
21,D

4�3
2

�146�

Figure 10 shows the variational bounds for the effective bulk
and shear modulus of a three-phase composite using the modulus

ratios �3:�2:�1=4:2:1, �3:�2:�1=10:5:1 and Poisson’s ratio �1

=0.3. The unique features of variational bounds �139� and �140�
are: �1� the boundary conditions are accurately taken into account
without resorting to any approximation and ad hoc arguments; �2�
interaction among different phases, or in other words, the correla-
tion among different phases are precisely taken into account by

Fig. 10 Variational bounds for a three-phase composite mate-
rial: „a… bounds for bulk modulus; and „b… bounds for shear
modulus.
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the cross-term Eshelby tensor Sij,D, i� j. This feature is absent in
the classical HS bounds; �3� Microstructures of the composite are
distinguished by mapping different combinations of the geometric
ordering to the material ordering. For the bounds shown in Fig.
10, the geometric ordering coincides with the material ordering in

ascending order, i.e., ��1 ,�1�⇒�1, ��2 ,�2�⇒�2, and

��3 ,�3�⇒�3.

To examine the effect of the microstructure on the variational

bounds, we exchange the material ordering within the domains �2

and �3. Figure 11�a� shows a plot of the two lower bound sur-
faces of the shear modulus. The contour of the difference is shown
in Fig. 11�b�. One can see that the maximum difference is about
0.2, demonstrating the the material ordering has little impact for
this case.

7 Closure

In this paper, the finite Eshelby tensors obtained in Part I of our
work are applied to develop various homogenization methods. It
is shown that the special features of the finite Eshelby tensors can
improve the accuracy of conventional homogenization methods
and lead to more accurate predictions on effective material prop-
erties of composites.

For instance, we have found that for two-phase composites,
there are at least two sets of Hashin–Shtrikman variational bounds
corresponding to two different boundary conditions. This discov-
ery may be instrumental for numerical homogenization proce-
dures.

Furthermore, we have developed some new homogenization
schemes such as the exterior eigenstrain method, dual eigenstrain
method, i.e., a generalized self-consistency method, the shell
model, and multiphase Hashin–Shtrikman bounds, which will en-
rich the engineering homogenization repertoire and provide
sharper estimates on effective material properties of multi-phase
composites.

The applications of the finite Eshelby tensor are multitude, and
they are not limited to applications of homogenization theory. As
indicated by the multilayer shell model, the finite Eshelby tensors
provide the basic module to construct the multi-inclusion model
and interface model, which can be used in modeling quantum
dots, nano-onions, spinodal decomposition, and functionally
graded materials. Some of these studies will be reported in sepa-
rate papers.
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Appendix: Table of the Eshelby Coefficients for the

Three-Layer Shell Model

In this Appendix, a complete list of the coefficients for the
average Eshelby tensors of a three-sphere RVE is documented.
The notation of these coefficients is explained and defined in Sec.
5

s1
I1,D =

�1 + ���1 − f1�

3�1 − ��

s1
I1,N =

�1 + �� + 2�1 − 2��f1

3�1 − ��

s2
I1,D =

2�4 − 5���1 − f1�

15�1 − ��
− 21�u�f1��1 − f1

2/3�

s2
I1,N =

2�4 − 5�� + �7 − 5��f1

15�1 − ��
+ 21�t�f1��1 − f1

2/3�

s1
I2,D = −

�1 + ��f1

3�1 − ��

s1
I2,N =

2�1 − 2��f1

3�1 − ��

s2
I2,D = −

2�4 − 5��f1

15�1 − ��
− 21�u�f1��1 −

�f1 + f2�5/3 − f1
5/3

f2

�
s2

I2,N =
�7 − 5��f1

15�1 − ��
+ 21�t�f1��1 −

�f1 + f2�5/3 − f1
5/3

f2

�
s1

I3,D = −
�1 + ��f1

3�1 − ��

s1
I3,N =

2�1 − 2��f1

3�1 − ��

s2
I3,D = −

2�4 − 5��f1

15�1 − ��
+ 21�u�f1�

�f1 + f2��1 − �f1 + f2�2/3�

f3

s2
I3,N =

�7 − 5��f1

15�1 − ��
− 21�t�f1�

�f1 + f2��1 − �f1 + f2�2/3�

f3

Fig. 11 Influence of phase position on three-phase variational
bounds
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s1
II1,D =

�1 + ��f3

3�1 − ��

s1
II1,N =

�1 + �� + 2�1 − 2���f1 + f2�

3�1 − ��

s2
II1,D =

2�4 − 5��f3

15�1 − ��
− 21�u�f1 + f2��1 − f1

2/3�

s2
II1,N =

2�4 − 5�� + �7 − 5���f1 + f2�

15�1 − ��
+ 21�t�f1 + f2��1 − f1

2/3�

s1
II2,D =

�1 + ��f3

3�1 − ��

s1
II2,N =

�1 + �� + 2�1 − 2���f1 + f2�

3�1 − ��

s2
II2,D =

2�4 − 5��

15�1 − ��
f3 − 21�u�f1 + f2��1 −

�f1 + f2�5/3 − f1
5/3

f2

�
s2

II2,N =
2�4 − 5�� + �7 − 5���f1 + f2�

15�1 − ��

+ 21�t�f1 + f2��1 −
�f1 + f2�5/3 − f1

5/3

f2

�
s1

II3,D = −
�1 + ���f1 + f2�

3�1 − ��

s1
II3,N =

2�1 − 2���f1 + f2�

3�1 − ��

s2
II3,D = −

2�4 − 5��

15�1 − ��
�f1 + f2� + 21�u�f1

+ f2�
�f1 + f2��1 − �f1 + f2�2/3�

f3

s2
II3,N =

7 − 5�

15�1 − ��
�f1 + f2� − 21�t�f1 + f2�

�f1 + f2��1 − �f1 + f2�2/3�

f3

s1
III3,D = 0

s1
III3,N = 1

s2
III3,D = 0

s2
III3,N = 1

s1
III1,D = 0

s1
III1,N = 1

s2
III1,D = 0

s2
III1,N = 1

s1
III2,D = 0

s1
III2,N = 1

s2
III2,D = 0

s2
III2,N = 1

where

�u�x� ª
x�1 − x2/3�

10�1 − ���7 − 10��

and

�t�x� ª
4x�1 − x2/3�

10�1 − ���7 + 5��
�A1�
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