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The essential work of fracture and Jy curves
for the double cantilever beam specimen:
an examination of elastoplastic
crack propagation

By A. G. ATKINS!, Z. CHEN! AND B. COTTERELL?

! Department of Engineering, University of Reading, PO Box 225,
Whiteknights, Reading RG6 6AY, UK
2 Institute of Materials Research and Engineering, National University of Singapore,
Singapore 119260, Republic of Singapore

The propagation of a crack in a double-cantilever beam (DCB) geometry where
there is extensive remote plastic flow both preceding and accompanying fracture is
analysed. Experiments show that there is an appreciable path dependence in load-
deflection-crack length behaviour because of the remote residual plastic zones left in
the wake of the crack front. The deflection for a propagated crack is greater than the
deflection predicted by nonlinear fracture mechanics since in real plasticity the plastic
deformations cannot be recovered and their ‘energy’ released back into the system.
A Griffith energy approach is employed to uncouple the work increments of elastic
strain energy, the remote plastic work and the essential crack-tip fracture work.
For geometries other than the DCB these components cannot be easily uncoupled.
Analyses are given for elastic perfectly plastic solids and for elastic power-law work-
hardening materials. There is good agreement with experiments on side-grooved
double cantilever beam specimens made from 6082-TF aluminium alloy (which is
almost elastic perfectly plastic) and from annealed a-brass (which work hardens
appreciably). Varying degrees of elastoplasticity during propagation are obtained by
altering the height of the beam arms; globally elastic fracture results are obtained
with adequately deep arms.

It is found that the load-deflection curves can be predicted by assuming the essen-
tial work of fracture at the crack tip is constant, at initiation and propagation, for
both these materials. In contrast the Jg curves calculated from the load—-deflection
diagram by the conventional method are dependent on the specimen size because
they contain non-recoverable global plastic work.

Keywords: elastoplastic fracture mechanics; fracture; ductile fracture;
crack resistance curves; Jr curves; DCB testpiece

1. Introduction

The load and displacement at fracture initiation, in a body undergoing extensive
irreversible plastic flow prior to cracking, can be predicted using a deformation theory
of plasticity which is the same as assuming that the material is reversibly nonlinear



elastic (NLE) (Kachanov 1971). Because of this equivalence, it is possible to use NLE
theories for the initiation of ductile fracture. In particular the J integral at initiation
gives the essential work of fracture, R, in the fracture process zone (FPZ) at the
crack tip (Rice 1968)

b¢
R= / o ds, (1.1)
0

where o is the stress in the FPZ, § is the crack-opening displacement across the FPZ
and 6¢ is the crack opening at which the fracture becomes complete. The J-integral
can also be obtained from the rate change in the NLE potential energy, II, with
fracture area A, at initiationt,

R:J:_dﬂ__[a/l] o0

a4~ |ea), [aﬁ]; (1.2)

where A and {2 are the NLE strain and complementary energy, respectively, P is the
external load and wu is the load-line deflection. In an elastoplastic solid, stress and
strain ratios at a point are nearly constant before fracture initiation and are exactly
constant for the special case of the double cantilever beam (DCB) specimen. Hence
an effective nonlinear strain energy, A, can be identified by

A=A, +T,, (1.3)

where A, is the elastic strain energy and I, is the plastic work.

The J-integral has been extended by many authors to cover crack growth. There
are obvious difficulties in extending an NLE theory to elastoplastic (ELP) crack
propagation where near the tip of the crack elastic unloading causes the stress and
strain ratios to change radically. It was argued by Hutchinson & Paris (1979) that
crack growth would be J-controlled for limited crack extensions and that under these
conditions the Jg crack growth resistance curves would be dependent only on the
crack extension. However, unless the plastic zone is well contained within an elastic
stress field, Jg is independent of size and geometry only for small crack extensions
(Hancock et al. 1993; Joyce & Link 1995; Xia et al. 1995: Xia & Shih 1995).

Jr curves are generally size and geometry dependent because the energetic inter-
pretation of J includes the work in the plastic zone as well as the work in the FPZ
(Cotterell & Atkins 1996). In the work-rate equation for elastoplastic crack propaga-
tion (Havner & Glassco 1966), the work rate of the external forces dW/dA is given
by

dw du d4. 4,
| a - fa~atatk (14)
Equation (1.4) without I, is, of course, the displacement-reversible elastic fracture
mechanics’ relation used by Griffith (1921) in his seminal study. There is no a priori
assumption that R is constant in equation (1.4). The FPZ can be identified with the
region of strain softening that causes localization of the deformation into a narrow
zone. Within the FPZ voids nucleate and grow causing strain softening. The defor-
mation within the FPZ can be modelled by constitutive equations that take account

t The equivalence between J and the potential energy release rate is strictly true only if Barenblatt’s
(1962) two hypotheses of a small FPZ and steady-state propagation with no change in the shape of
the FPZ are valid. However, though in theory J is not exactly given by equation (1.1) the difference in
practice is usually negligible (Cotterell & Atkins 1996).



of the effect of the growing voids on the macroscopic stress and which, unlike plastic
deformation of solid materials, is sensitive to the hydrostatic stress. A variety of
constitutive equations has been proposed which are basically very similar; the most
popular is the Gurson model (1977) as modified by Tvergaard (1982). There is an
interactive relationship between the deformation within the FPZ and the surround-
ing plastic zone. Within the FPZ there is void growth and its compliance is much
greater than that in the surrounding plastic zone; as a consequence under plane
strain conditions the FPZ deforms nearly uniaxially with an increase in volume. The
effect of variation in constraint caused by different specimen geometries is, therefore,
most likely to be felt in the surrounding plastic zone rather than in the FPZ itself.

In this paper a very particular geometry, the deep side-grooved double-cantilever
beam (DCB) specimen, is considered. In this geometry, if the tip is loaded by a
moment, the crack propagation is steady-state and R must be constant (Cotterell et
al. 1996). Such behaviour is unusual and in all other geometries, unless the plastic
zone is small compared with the crack length, crack growth is far from steady-state.
Thus, the deep side-grooved DCB specimen is very suited to studying spurious crack
growth resistance. For a force-loaded DCB specimen, provided that the length to
height ratio is reasonably large, the crack propagation will be practically steady-state
from initiation and the variation in the specific work of fracture, R, is negligible. In
general the terms in equation (1.4) depend upon the crack-propagation history and
are not easily separable. There are two unique properties of the DCB specimen. If
the load increases then there is no unloading anywhere. On the other hand, if the end
load is constant or decreases, plastic deformation occurs only ahead of the crack tip.
No other geometries have these properties. Therefore if the load rises, ELP behaviour
is identical to NLE and equation (1.2) applies to propagation as well as initiation.
The case of crack propagation under falling end load in a real ELP material needs to
be considered in more detail. Equation (1.4) can be written in terms of the partial
derivatives

dw oul| dP ou o dP o
A “P{ [aﬁhaf [EZL} = [ﬁ‘(Ae*FP)LW [a—A“e”P)L*R’

(1.5)
where, because there is no plastic deformation behind the crack tip under falling
load, ‘

ory,
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The effective strain energy for an ELP material is I, + A, ahead of the crack tip
and I, behind the crack tip where there is no plastic work during crack propagation.
Note that during propagation the effective complementary strain energy, {2, for an
ELP material cannot be obtained directly from the load-deflection diagram.
Alternatively v and A can be chosen as the independent variables and equa-



tion (1.4) can be written as

dw du du 0
1A PdA [ (4o p)]AdAJr[aA(AeqLFp)LJFR, (1.9)
where, since in ELP the plastic work term, I}, is not simply a function of u and A
but depends upon whether an element is loading or unloading, the crack must be
imagined to propagate at constant deflection « and then for the deflection to increase
to its new equilibrium value at constant crack length. There is no plastic work except
at the crack tip if the incremental crack growth takes place in this order, as is the
case during natural crack growth, and

ory,|

[5&—] L 0. (1.10)
By Castigliano’s theorem

a4,

P = [(%] . (1.11)
Hence
0 oA

R__[BA(A +F)L:_[EZL’ (1.12)

where the effective strain energy for an ELP material is A, + I, ahead of the crack
tip and A, behind the crack tip and the effective strain energy, A, cannot be obtained
directly from the load—deflection diagram. Therefore, for the special case of the DCB
specimen, equations (1.8) and (1.12) are identical to equation (1.2) provided that
the partial derivatives of A and {2 are properly calculated. Thus the essential work
of fracture, R, and by definition, J, are given by equation (1.2) during propagation
as well as initiation. At initiation there is no distinction between NLE and ELP
behaviour for the DCB specimen since there is no unloading. There is little distinction
for other geometries too at initiation and both A and {2 can be obtained from a
load—deflection diagram. However, during crack propagation in the DCB specimen,
the effective strain and complementary strain energies, that must be used in order
that equation (1.2) gives the correct value of J and R, must reflect the true ELP
behaviour where unloading takes place along a linear elastic line and not back down
the loading curve. These effective strain and complementary strain energies cannot
be obtained from the load-deflection curve as is assumed in the Ernst et al. (1981)
scheme for calculation of J during propagation as we shall show.

One of us examined the problem of an elastic perfectly plastic cantilever glued
to a massive block loaded at its end by a moment (Atkins & Mai 1986). In that
case, because the end moment is constant during crack propagation and there is
no unloading, the moment-rotation diagram for a real ELP material is identical to
that for an NLE material. Hence in this case the effective strain and complementary
strain energies can be obtained from the moment-rotation diagram for propagation
as well as initiation. Williams (1993) also considered elastic perfectly plastic bending
of beams in a review of energy release rates for strips in tension and bending,.

During propagation the accumulated work, from which the plastic component of
Jr is usually determined by the use of an 7, factor, is the sum of plastic work
and the essential work. The Jg approach makes no attempt to distinguish between
the essential work of fracture in the FPZ and the work dissipated in the plastic
zone. While these two terms are usually coupled, in some situations the plastic work



can be altered independently of the essential work of fracture within the FPZ. For
example in the quasi-mode III tearing of a strip from the edge of a ductile metal
sheet the plastic work term relates to plastic bending and unbending of the strip
and can be altered independently of the essential work of tearing within a narrow
FPZ by altering the width of the strip torn off (Mai & Cotterell 1984). In this
case it is obvious that Jgr depends directly on the specimen size. Experimentally
determined Jg curves can be predicted by embedding a FPZ{, which models the
strain-softening behaviour with the Gurson model, in incremental plasticity finite
element analyses. The values of the strain-hardening exponent and the initial void
volume fraction, that give the best fit to one specimen geometry and size in these
analyses, are used very successfully to predict the load—deflection and Jr curves for
other geometries and specimen sizes (Xia et al. 1995; Xia & Shih 1995). Unfortunately
there is no separation of the essential work of fracture from the plastic work of
fracture in these analyses. However, the essential work of fracture can be obtained
at initiation because Ji. & R. The essential work of fracture, R, can vary in these
analyses because the deformation within the FPZ is dependent on the constraint.
However, as already argued, the deformation within the FPZ must be nearly one
of uniaxial strain. Therefore the major influence of constraint occurs prior to the
material entering the FPZ. Hence the essential work of fracture in the FPZ may not
vary greatly with specimen geometry and size even though the constraint provided
by the specimen can be very different.

The deeply side-grooved DCB geometry studied in this paper has been chosen
because it eliminates many complications in ductile fracture and a closed-form solu-
tion is possible. The invariant nature of crack propagation and the deep side grooves,
produce a straight fracture front without the complication of thumbnail-crack-front
tunnelling and the build up of shear lips during propagation which can cause a real
increase in the essential work of fracture. Hence crack propagation in the DCB spec-
imen is nearly steady-state and it will be shown to take place at a constant value of
the essential work of fracture, R.

2. A preliminary experiment

Figure 1 shows the load-deflection curves for two deeply side-grooved 6082-
TF aluminium alloy DCB specimens (see table 1) having different initial fatigued
crack lengths, but otherwise identical. This particular alloy’s stress-strain behaviour
approximates well to an elastic perfectly plastic solid. The specimen 1A with the
shorter initial crack length was loaded until the crack had propagated to the same
length as the initial crack length of the second specimen, 2A. Specimen 2A was then
loaded up to initiation. In both specimens, the arms were partially plastic before
a crack was initiated. The load—deflection (P—u) coordinates of the two specimens
under load at the same crack length would be identical for a true NLE material. Fig-
ure 1 demonstrates that this is obviously not the case: the deflection under load of
specimen 2A, which had an initial crack length of 70 mm, is only 14 mm, whereas the
deflection of specimen 1A, which was propagated to a crack length of 140 mm from
a 70 mm crack, is 25 mm. Furthermore, the unloaded deflections are very different
(1 mm compared with 12 mm).

1 It is simpler to embed a strip of Gurson material ahead of the crack tip, rather than attempt to
define the length of the FPZ.



Table 1. Material properties and dimensions of DCB specimens

((a) Aluminium alloy 6082-TF (these were unequal arm specimens, with one arm elastic).
Young’s modulus, E, 68 GPa. Yield strength, oy, 291 MPa.)

height of height of gross beam net beam initial crack
elastic beam  plastic beam width width length [;

specimen (mm) 2h (mm) 2b (mm) 2by (mm) (mm)

1A 12.7 8.6 4.92 1.11 70

2A 12.7 8.6 4.92 1.11 140

3A 12.5 7.95 4.92 111 101

4A 12.7 8.6 4.92 1.11 80

5A 12.7 8.6 4.92 1.11 142.5

6A 16.0 16.0 4.92 1.11 82.5

((b) o~brass. (These were equal arm specimens.) Young’s modulus, F, 106 GPa. Yield strength,
oy, 230 MPa. Strain hardening index, n, 0.33.)

beam height gross beam specimen net beam width initial crack

2h (mm) width 2b (mm) 2b, (mm) length ; (mm)
1B 6.0 6.37 0.4 90
2B 6.0 6.37 0.4 130
3B 24.5 6.37 0.4 170

The cause of the extra deflection is to be found in the different plastic zones in the
arms of the two specimens. In figure 2a, BCDB and the corresponding zone below
the neutral axis represent the plastic zone at crack initiation in the specimen with
a 70 mm starter crack. The plastic deformation, as detected by strain gauges and
estimated from the yield strength, extended some 20 mm back from the crack tip
along the arms of the DCB specimen. Calculations show that the maximum depth
of yielding CD to be 2.4 mm. When the crack has propagated to a total length of
140 mm, the plastic zone is given by BEFDB in figure 2b. In contrast the plastic
zones at initiation in the second specimen, having a 140 mm initial crack, are given
by GEFG, figure 2¢, and extend some 40 mm back from the crack tip, but with the
same maximum depth EF as in the first specimen. The depth of the plastic zone is the
same in both cases because experiment shows that elastoplastic propagation in the
DCB specimen occurs at constant crack tip moment, Pl. The irreversible deformation
associated with the zone BGFDB is the origin of the greater deflection for the first
specimen. In NLE, the deformation in the zone BGFDB is elastic and there is no
locked-in residual elastic strain. All the energy is recoverable in NLE. However, in real
ELP bodies such zones represent irreversible work and even the linear elastic strain
energy cannot be fully recovered. Incorporation of the irreversibly deformed zones
left behind the moving crack front is crucial for proper elastoplastic propagation
analyses in this and other geometries. NLE, which is the basis of the Jr approach,
cannot predict the experimental results shown in figure 1.
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Figure 1. Load-deflection P—u curves for two elastoplastic DCB specimens 1A, 2A (6082-TF
aluminium alloy) having different initial crack lengths, but otherwise identical, showing the ELP
and NLE difference.

3. The post yield fracture mechanics of the DCB specimen

The fracture analysis of the related problem of an elastic perfectly plastic cantilever
glued to a massive block was given by Chang et al. (1972). However, their solution
cannot be applied to propagation, because they did not consider the residual zones of
plasticity and non-recoverable elastic energy. Hence theirs is really an NLE solution.

All the equations are given for a symmetrical DCB specimen with equal arms. The
modification to an asymmetrical DCB specimen is trivial and is not presented.

(a) Fracture of an elastic perfectly plastic deeply side-grooved DCB specimen

The DCB specimen can be analysed using the engineers’ theory of bending. How-
ever, the deep side grooving introduces considerable compliance at the tip of the
crack and deformation in the deeply side-grooved region has to be considered. The
main effect of the increased compliance due to the side grooving will be elastic,
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Figufe 2. The different elastoplastic zones in the two cases of figure 1. (a) BCDB is the plastic
zone at crack initiation for the 70 mm initial crack. (b) After propagation to 140 mm, plasticity
extends over BCGEFDB. (¢) GEFG is the plastic zone at crack initiation for the 140 mm initial

crack.

though the cantilever beams will also actually yield slightly ahead of the crack tip
and a fracture process zone will exist. Hence in this analysis a small elastic rotation
and a very small deflection are allowed at the crack tip which is calculated from the
theory of beams on elastic foundations (Timoshenko 1956). A fuller treatment of the
effect of the deep side-grooving allowing for plastic deformation in the side-grooved
section and the beam ahead of the crack tip has been given by Cotterell et al. (1996).
Hence the load-line deflection at initiation, u;, of an elastic perfectly plastic deeply



side-grooved DCB has been obtained from the expression of Chang et al. (1972) by
the addition of a deflection due to the ‘elastic foundation’ and is given by

160 03b2h3_4(4aybh2 + PI) 3P[1+2(8l) + 2(81)?]
- 2TP2EY 9P2E 4FEbh333 ’

Y
where F is the Young’s modulus and the height and gross width of the beams are
2h and 2b, respectively. If the side grooves are square sided with a height of 2h, and
width 2b,, the elastic foundation parameter can be approximated by

o= sz (H]/ (32

where v is the Poisson’s ratio, assuming that the stress within the grooved section
is uniform across the width and height. However, because both square and vee-
grooves were used in the experiments, the value of the # used in the analysis was
experimentally determined from the elastic load-deflection using independent values
for £ and v.

At the crack tip no unloading occurs even during propagation and hence the
curvature at the crack tip, x;, can be written in terms of the crack tip bending
moment, M, which is given by

Ui

\/203b(60,bh? — 3PL)+

3
M, = Pl = 2bE [ey/ﬂ - —y—2] . (3.3)
3k
The effective strain energy density (including plastic as well as elastic deformation)
per unit length of the beam at the crack tip, A;, can be written in terms of the crack-
tip beam curvature and is given by

3
A = 2Eb [—?;Z—l + eymih?® — sf,h] , (3.4)

where e, is the uniaxial yield strain. Adding to this the small rate of change in
elastic strain energy stored in the ‘elastic foundation’ and beam ahead of the crack
tip, the partial derivative of the effective strain energy with respect to the crack area
at constant load for the specimen is

oAl b [e s 3(P1)2(1 +281)
[aAL = 2Ebn [3;@1 +eyrih® — e2h| + SEbb R (G (3.5)
Thus
J—p<[22] _ P +3(Pz)2(1+2ﬂz) _[o4
S 0Al, T b 4Ebb,h3(B1)? Al ,
b [ o, 2637 3(P2(1+281)
= ZEbn [5yh 3m, + SEbbL (B (3.6)

Equation (3.6) can be rewritten in terms of the full plastic moment M, and the ratio
§=M/M, as

_2M? 2 3¢£2(1 + 201)
R_3bnEI [1—75\/1—§+——], (3.7)

4(B1)?



where [ is the second moment of area of the beam. The first two terms in equa-
tion (3.7) are identical to an expression given by Williams (1993) who did not con-
sider the possibility of rotation of the beam at the crack tipf.

Although the equilibrium load is the same for a crack of length ! whether that
is the initial crack length or the current crack length after some crack growth, the
deflection is different as noted in the discussion of the preliminary results given in
§2. The deflection in the propagated crack is greater than that for a crack, of the
same length, at initiation because of unrecovered accumulated plastic deformation.
The curvature during unloading behind the crack tip is given by

(M; — M)

K= K TR (3.8)
where k; and M, are the values of the curvature and the moment at crack initiation.
There are three different deformation regions in the arms of the DCB specimen (see
figure 3).

(1) That part of the beam which has always been elastic.
(2) That part of the beam from the elastic boundary to the tip of the initial crack.
(3) That part of the beam formed by the crack extension.

The curvature has to be integrated separately in these three regions. Thus the

deflection, u, at the tip of the DCB specimen which has propagated at constant R
from an initial crack length [;, to a crack length [ (Al =1 — ), is given by

_ 16003°h* _ 4(40y b + Bl

\/203b(60,bh? — 3R)

27 PE 9P’E
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where P, is the load at initiation and P is the load after propagation to a crack length
[. The first three terms of equation (3.9) are the NLE compliance. The rest of the
terms are the history-dependent components of compliance in the elastoplastic case.

(b) Fracture of an elastic power-law-hardening DCB specimen
Similar expressions have been derived for a power-law hardening material defined
by

Ee, for € < gy,
= " 3.10
’ oy <£) , fore>ey. (8.10)

A closed-form solution for the deflection is not possible because of the complex k—M
relationship and numerical solutions have been used. However, a closed form does
exist for the essential work of fracture, R, for both initiation and propagation, which

t Williams’s expression is for a single cantilever arm, but the two expressions look identical because
we define by, as half the width of the grooved section.
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Figure 3. Unloading of an arm of a DCB specimen during equilibrium crack propagation and the
three regions of deformation. During crack propagation from l; to 1 the load decreases from P; to
P giving partial unloading of the cantilever arms. The height of the shaded are ABC represents
the history of elastic unloading moments behind the crack tip.

can be obtained using the same method outlined in §3a and is given by

neykih? mh\" | (L=n)he} 2(1-n)e; 3(P1)? (1+2p0)
R=4abg- {(1+n)(2+n) (‘5;) 2(1+n) _3(2+n)f<4} 8Ebb,h®  (B1)?
(3.11)

(¢) The Jg curve and accumulated work

For both initiation and propagation, there are schemes for calculation of the J inte-
gral from the area under the load—deflection curve for the standard fracture geome-
tries such as compact tension and three-point bend (ASTM 1987). These schemes
effectively ignore the real ELP nature of crack propagation and are the causes of spu-
rious crack growth resistance because they include plastic work remote from the crack
tip in Jg. The J integral in these schemes is obtained from equation (1.2) despite
the fact that during crack propagation the effective strain energy is not obtainable
from the load—deflection diagram.

For an NLE DCB specimen the load, P, can be expressed in terms of the displace-
ment between the arms, u, by the functlonal form

P= 2th g (“;,f) (3.12)




For initiation the J integral is given by equation (1.2) and is

oA h%boy, [ 2uh _,
o[]S Pl e o

where F' indicates the derivative of F' with respect to its argument. Integrating by
parts one obtains

h2b0'0 v 1 v
J = T [2F /0 qu] 5 1[2Pu /0 Pdu]. (3.14)
Splitting the displacement into elastic, ue, and plastic, up, displacements, the J
integral can be decomposed into an elastic component, J,, which is equal to the

energy release rate,
3(PI)? (14 2010)

Jo = SEDbI {1 + (A7 } , (3.15)
and a plastic component J,. Assuming rigid perfectly plastic deformation for the
plastic deformation as in previous analyses of the notch bend (Rice et al. 1973) and
compact tension geometries (Clarke & Landes 1979), the plastic component, J,,, for
the DCB geometry at initiation can be written as

(3.16)

p_2bl

where 7, = 1f. It will be seen in §4 that Jj. calculated from equations (3.15) and
(3.16) agree with that given by equations (3.7) and (3.11) and we have no quarrel
with this method. However, the difficulty arises when Jg is calculated making use
of equation (3.16) because here the behaviour of an ELP and an NLE material are
really quite different but they are treated as if they were the same.

Ernst et al. (1981) have derived a scheme for the calculation of J during crack
propagation that applies to the compact tension and the three-point bend specimen.
This method has been incorporated into the Jg standard ASTM E1152. For the DCB
geometry, as in the analysis of Ernst et al. (1981), the elastic, J., and plastic, Jp,
components are treated separately. The elastic component, J,, during propagation is
given by equation (3.15). Since the crack tip bending moment is practically constant
during crack growth in the DCB specimen, the increment in the plastic component
of the J integral, taking n, = 1, can be rewritten as

Ay = 5 d( ) . (3.17)
Hence if at the rth increment J;, = J7, then
Pl U,
r+1 __ g7 i -p P
=g [(8),-(B).] (318)

Equations (3.15), (3.16) and (3.18) have been used to construct Jg curves from our
experimental DCB load—deflection records in the spirit of the method recommended
by ASTM E1152.

1 An alternative approximate analysis is to separate the plastic deflection from an elastic perfectly
plastic DCB and to calculate 7, at the point of plastic collapse. In this case np = 1.08.
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Figure 4. Load-deflection curves for two aluminium alloy DCB specimens, 4A and 5A, of the
same beam height but different initial crack lengths.

4. Experiments and results

Two series of tests on deeply side-grooved DCB specimens have been made (see
table 1). In the first series, A, the specimens were made from aluminum alloy 6082 TF
which approximates to elastic perfectly plastic behaviour and in the second series, B,
an a-brass with pronounced strain hardening was used. In each series different initial
crack lengths and beam heights were employed. The brass specimens were symmetric
(same height for each arm), but the aluminium alloy specimens were asymmetric in
beam height, so that only one beam was elastoplastic during propagation. However,
the elastic strain energy in the other beam was included in the energy balance. The
initial cracks were all extended by fatigue at bending moments significantly below
those necessary to cause yielding in the arms. In specimens 6A and 3B the beam
heights were such that fracture took place under globally elastic conditions with no
plasticity in either arm.

Figure 4 shows the P—u diagrams for the aluminium alloy specimens, 4A and 5A,
which differed only in the initial crack lengths. As in the preliminary experiments
described in § 2, it is clear that the P—u behaviour, at given propagated crack length,
is path dependent. Figure 5 shows the behaviour of specimen 6A in which fracture
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Figure 5. Load-deflection curve for an aluminium alloy DCB specimen, 6A, that is globally
elastic.

was globally elastic. Figures 6 and 7 show the corresponding representative results
for the a-brass.

Superimposed on the plots in figures 4-7 are the theoretical load—deflection plots
for both initiation and propagation obtained from the analysis given in §3, using
the essential work, R, that gives the best fit. There is some underestimation of the
deflection despite using a correction to allow for elastic deformation in the deeply
side-grooved ligament, because the grooved section yields plastically before fracturet,
but the elastoplastic fracture behaviour is largely reproduced. The effect of plastic
stretching in the ligament can be seen in figure 7 for the globally elastic a-brass
specimen, 3B, but is not evident in figure 5 for the globally elastic aluminum alloy
specimen, 6A. Since the effective parameter, 3, was obtained from the average elastic
slope, the elastic slope predicted for specimen 6A is greater than observed.

The essential work of fracture, R, that gives the best fit is 25kJ m~2 for the
aluminium alloy and 75 kJ m™? for the brass. It is once again clear that the curves
for nonlinear elastic fracture mechanics (NLEFM) predictions, which are identical to
elastoplastic initiation predictions, do not give the true P—u—{ elastoplastic behaviour

T A treatment of a full solution allowing for plastic as well as elastic deformation in the deeply grooved
ligament is given in Cotterell et al. (1996).
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Figure 6. Load-deflection curves for two brass DCB specimens, 1B and 2B, of the same beam
height but different initial crack lengths.

during propagation. However, the constant R loci predicted by NLEFM pass through
the initiation coordinates. ‘

The Jgr curves presented in figures 8 and 9 for the aluminium and brass specimens
have been obtained from the P—u curves using equations (3.15), (3.16), and (3.18).
The initiation value, Ji., for the two materials are close to the estimated values of
the essential works of fracture, R. There is no increase in Jg for series A specimens
and little for series B specimens that are globally elastic, as is expected because here
the NLE theory is exact and J = R. Since the increase in Jg comes from plastic
work performed in deforming the arms, the beams of smallest height show the most
increase. The Jg curves for beams of the same height, but with different initial crack
lengths, are very similar as is predicted since the crack propagation is very close to
steady-state. Superimposed on figures 8 and 9 are the Jg curves predicted from the
theoretical P—u—I curves. There is excellent agreement with all the Jg curves except
for specimen 3A where the theoretical Jr curve overestimates the experimental one.

5. Discussion and conclusions

It has been shown that because plastic deformation in the DCB specimen occurs
under constant stress and strain ratios, the essential work of fracture, R, can be
separated from the remote plastic work during crack propagation as well as at initi-
ation. The energetic expression for J (equation (1.2)) holds for both initiation and
propagation, if the effective strain and complementary strain energies for a DCB
specimen that account for real unloading of an ELP material are used.

The results in figures 4 and 6 show that the loads and displacements at crack ini-
tiation in beams with different initial crack lengths all lie on the constant-R NLEFM
locus. However, the results also make it clear that an NLEFM approach for ductile
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Figure 7. Load-deflection curve for a brass DCB specimen, 3B, that is globally elastic.

crack propagation is inappropriate. During propagation the path-dependent addi-
tional load-point displacements produced by the residual plastic zones left behind
the crack and the associated unrecovered energies, invalidate NLEFM methods in
practical elastoplastic fracture. The analysis given in this paper takes account of
these factors, and our experiments show that the theoretical model well describes
the results. Furthermore, it is important to note that our experiments show the
propagation in a DCB specimen to occur at the same constant value of R dur-
ing elastoplastic fracture as during displacement-reversible elastic fracture. In other
words, the resistance to cracking is controlled throughout by the essential work of
fracture. In other geometries where steady-state crack propagation is not possible,
there can be a variation in the essential work of fracture, R, because there is either
a development of real fracture resistance with crack growth, such as caused by the
formation of shear lips (Krafft et al. 1961) or the size of the fracture process zone
changes significantly (Cotterell & Atkins 1996).
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Figure 8. Jr curves for the aluminjum alloy DCB specimens.

Fracture in the DCB specimen with deep side grooves does not meet an increase
in resistance with crack extension. We have clearly shown that the essential work
of fracture, R, is constant whether the arms of the DCB specimen remain elastic or
suffer considerable plastic deformation. However, the Jg curves obtained from the
load—deflection diagrams in the conventional manner show an increase with crack
extension. Only the globally elastic specimens display a constant Jgr. The increase
in Jr depends on the height of the beams in the DCB specimen and becomes more
pronounced as the height gets smaller. This conclusion is similar to the inferences
in the work of Shih and his co-workers (Xia & Shih 1995; Xia et al. 1995) who by
modelling the behaviour of the FPZ obtain Jr curves that show a larger increase
with crack growth as the size decreases. The increase in Jr does not represent a real
increase in toughness but is the result of using the load—deflection curve that contains
a permanent plastic and locked-in residual elastic deformation. Since Jr contains
plastic work from outside the fracture process zone as well as the essential work of
fracture, R, performed in the fracture process, it cannot be used to predict fracture in
any other geometry unless the two work components are separated. For side-grooved
DCB specimen we have shown that the material size-independent term is the essential
work of fracture, R. For other geometries, R may be somewhat dependent on crack
growth and particular geometry, but the dependence is unlikely to be nearly as great
as for Jg.

The deeply side-grooved DCB specimen examined in this paper is a highly special
geometry and it is not the intention of the authors to suggest that such a specimen
should be considered for a standard fracture test. However, what we have demon-
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strated is that the fundamental elastoplastic fracture parameter is the essential work
of fracture, R. At initiation the J integral is identical to R. In general, J ceases
to have a theoretical basis during propagation because it is only strictly applies to
NLE materials but, because of the special nature of the DCB specimen, the energy
expression for J is valid for propagation as well as initiation if the effective strain
and complementary strain energies are correctly calculated. We have shown that J
calculated from the load—deflection diagram after the manner of Ernst et al. (1981)
is fallacious and gives a Jg that increases with crack extension, because it includes
remote plastic work from outside the FPZ. The amount of plastic work depends upon
the geometry, making Jr as calculated according to the ASTM E1152 unsuitable as a
fracture parameter for crack propagation to enable the critical load to be determined
for a structure. The essential work of fracture, R, which is not necessarily a constant,
is a fundamental fracture parameter and it behoves the fracture community to seek
suitable fracture tests for its measurement and to devise methods that can utilize it
in design. One possibility that may give the essential work of fracture approximately
for all geometries, is to construct an effective NLE load—deflection diagram by sub-
tracting from the deflection the accumulated residual deformation which increases
with crack extension which could perhaps be obtained from NLE empirical expres-
sions similar to those used by Orange (1990). The Ernst et al. (1981) scheme for
calculating J could then be used on this effective NLE load—deflection diagram and
give a value of J that would not include remote plastic work and give the essential
work of fracture, R. This method is not exact, but may be less objectionable than
the present conventional method for calculating Jg curves and a way forward.
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