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ABSTRACT 

The authors propose a bootstrap procedure which estimates the distribution of an estimating function by 
resampling its terms using bootstrap techniques. Studentized versions of this so-called estimating function 
(EF) bootstrap yield methods which are invariant under reparametrizations. This approach often has 
substantial advantage, both in computation and accuracy, over more traditional bootstrap methods and it 
applies to a wide class of practical problems where the data are independent but not necessarily identically 
distributed. The methods allow for simultaneous estimation of vector parameters and their components. 
The authors use simulations to compare the EF bootstrap with competing methods in several examples 
including the common means problem and nonlinear regression. They also prove symptotic results showing 
that the studentized EF bootstrap yields higher order approximations for the whole vector parameter in a 
wide class of problems. 

Les auteurs proposent une procedure bootstrap qui estime la loi d'une fonction d'estimation en 
dkchantillonnant ses termes au moyen de techniques d'auto-amoqage. Les versions studentiskes de ce 
bootstrap dit de la fonction d'estimation (FE) conduisent ti des mkthodes invariantes par reparamktrisation. 
Cette approche, qui s'avkre souvent plus rapide et plus pdcise que les mkthodes bootstrap traditionnelles, 
s'applique 21 de tr&s nombreuses situations conc&tes oh les observations sont indkpendantes mais pas 
nkcessairement de meme loi. Elle permet l'estimation simultanke de plusieurs paramktres vectoriels et de 
leurs composantes. Les auteurs pdsentent des simulations permettant de comparer le bootstrap FE ti ses 
compktiteurs dans diffkrents contextes, notamment celui de la dgression non lintaire et du problkme des 
moyennes communes. 11s dkmontrent kgalement des dsultats asymptotiques prouvant que dans beaucoup 
de situations, le bootstrap FE studentisk fournit une meilleure approximation du vecteur des paramktres. 

1. INTRODUCTION 

Since the work of Efron (1979), the bootstrap has been among the most influential recent devel- 
opments in statistics. Like many basic ideas, the principle behind the bootstrap, that of resam- 
pling from the empirical distribution function, is simple yet elegant and powerful. The methods 
are described, e.g., in Hall (1992), Efron & Tibshirani (1993), Davison & Hinkley (1997) and 
DiCiccio & Efron (1996). The greatest potential value of the bootstrap lies in complex situa- 
tions, such as nonlinear regression, for example. In such situations, standard inferential methods 
encounter serious difficulty. However, in these more complex problems, resampling from the 
empirical distribution function is also not generally appropriate and extending the bootstrap to 
non iid situations requires special arguments. 

'Presented at the 28th Annual Meeting of the Statistical Society of Canada in Ottawa (Ontario) on 4 June 
2000. Discussion and rejoinder follow on pp. 482-499. The Editor would like to express his gratitude to 
the Centre de recherches mathkmatiques for their generous financial support for this discussion event. 
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The most studied problem in the bootstrap literature is that of determining reliable confidence 
limits; see, for examples Efron (1987), Efron & Tibshirani (1986), DiCiccio & Romano (1988) 
and DiCiccio & Efron (1996). In the iid situation, basic bootstrap methods are asymptotically 
correct to first order and various approaches have been suggested to obtain higher order accu- 
racy. For example, the BC,, the classical bootstrap percentile-t method and the ABC method 
are asymptotically second order accurate under fairly general conditions in the iid case. The 
percentile-t method requires a stable estimate of the variance which is sometimes very difficult 
to specify, and it has been found to give unreliable results in some instances. The BC, and ABC 
methods are in many ways preferable as DiCiccio and Efron (1996) discuss and document in 
some detail. They are intuitively, however, less appealing in that they are less transparent than 
the percentile-t method and seem less connected to the basic bootstrap tenet of mimicking the 
population sampling through sampling the empirical distribution function. 

In this paper, we investigate and extend a new bootstrap method, the Estimating Function 
(EF) bootstrap, a precursor of which was proposed and discussed in Hu & Kalbfleisch (1997). 
As the name suggests, the method concentrates attention, not on the estimator as is traditional, but 
rather on the estimating function and equation from which the estimator is obtained. We consider 
situations in which the estimating function is a sum of independent terms. The EF bootstrap then 
proceeds by resampling the estimates of these terms and so obtaining a bootstrap estimate of the 
distribution of the estimating function or a studentized version of the estimating function. By 
using the estimating function as the basis of a testing procedure, hypotheses about parameter 
values can be tested and corresponding confidence intervals obtained. The methods are extended 
to deal with nuisance parameter problems where the inference is based on the generalized score 
function and its bootstrap analog. 

The EF bootstrap often has substantial advantages over more traditional approaches. First, 
it is often computationally much simpler than classical methods. The bootstrap calculations for 
approximating the distribution of the estimating function are essentially those for estimating a 
population mean or total and so are easily applied. Especially when the parameter estimate has 
no closed form and must be obtained iteratively, calculations are greatly simplified. Second, 
there are straightforward ways of defining studentized versions of the EF bootstrap that are func- 
tionally invariant under reparametrizations and require very little additional computation. Third, 
the method is widely applicable as it applies immediately to cases where the estimating function 
is the sum of independent mean zero terms. As a consequence, it handles quite complex situ- 
ations that are not easily amenable to standard approaches. And fourth, the method applies to 
situations where the estimating function is not smooth. This is of particular importance in certain 
nonparametric or robust estimating functions. 

As mentioned above, the EF bootstrap was introduced in Hu & Kalbfleisch (1997) who give 
some examples of its use. The idea is also closely related to, and derives from, that in Hu & 
Zidek (1995) who discuss bootstrap methods in the context of the linear model. Other related 
work is found in Parzen, Wei & Ying (1994) who consider parametric bootstraps in a related 
context. 

In Section 2, the linear estimating function is introduced, and the EF bootstrap is defined. 
Although there is no usual or classical approach to bootstrap estimation in the class of problems 
being considered here, Section 2 also gives a natural generalization, termed the C bootstrap, 
of an approach that involves resampling the estimator. Section 3 considers a number of exam- 
ples involving a single parameter including the classical problem of estimating a common mean 
(Neyman & Scott 1948). 

In Section 4, the multiparameter case is considered explicitly. Methods based on general- 
ized score statistics are developed to estimate subsets or functions of the parameters, or to test 
hypotheses specified in various ways. The methods are exemplified in an example on binary 
logistic regression. In Section 5, the EF bootstrap is related to calibration of the usual normal or 
chi squared asymptotic score tests, and a further calibration of the EF bootstrap itself is outlined. 
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Section 6 considers nonlinear regression models and compares the EF bootstrap, and an iid EF 
bootstrap suitable for iid errors, with other methods and procedures that have been proposed. 
Section 7 considers application to Lq estimation of a linear regression. Section 8 concludes the 
paper with a number of comments and suggestions for further investigation. The appendices 
summarize the asymptotic results. 

2. ESTIMATING EQUATIONS AND THE BOOTSTRAP 

Let y l ,  . . .,y, be a sequence of independent random vectors of dimension q and 8 E fl c 
RP be an unknown parameter vector. For specified functions gi : Rq -+ RP, suppose that 
E{gi (yi, e)) = 0 for all i = 1,. . . , n and 8 E fl. We suppose that 8 is to be estimated as the 
solution 8 of the unbiased linear estimating equation 

(cf., e.g., Godambe & Kale 1991). Note that the normalizing constant n- l I2  is chosen for conve- 
nience of expressing asymptotic results. For simplicity, we suppose that S(y ,  8) is a one-to-one 
function of 8 and our main consideration will be the construction of confidence regions for the 
whole parameter vector 8, or for components or functions of 8 that are of particular interest. 

The estimating equation (1) typically arises through minimization (or maximization) of some 
objective function, 

n 

where gi (yi , 8) = dGi (yi , 8)ldO. This is the case, for example, when the estimating function is 
a score function from some likelihood or (possibly weighted) least squares. Note that a change of 
parameters to A, where 8 = 8(X) is a one-to-one differentiable function, results in an equivalent 
estimating function for X 

We generally prefer methods that are invariant or nearly invariant under such changes in param- 
eterization. 

If the random vector S (y ,  8) is exactly pivotal, exact methods for obtaining confidence or 
fiducial distributions (e.g., Buehler 1983, Parzen, Wei & Ying 1994) may be available. More 
usually, however, S (y ,  8) is only approximately pivotal and we rely on asymptotic normal and 
X2 approximations. 

There are two standard asymptotic results. First from a central limit theorem, we obtain 

and second, from a Taylor expansion, we find 

In these expressions, 

V(8) = var S(y ,  8) = n-I varigi (yi, 8))  

and 

are p x p matrices. 
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By estimating V  (6 )  and W(6)as necessary, we can construct approximate confidence regions 
for 8.  %O distinct estimates of V ( 8 )are used here. In the first, V ( 8 ) is estimated, for given 0,  
with 

where g(y ,  8 )  = n-l  Cgi (yi  ,8 ) .  In the second, we use the estimate 

Similarly, W ( B )can be estimated as 

A 

or W = W ( y ,8 ) .  
In many applications such as nonlinear regression or generalized linear models, W ( 6 )itself 

is easily computed and simpler in form than (6). In these situations, either W  (8)  or w( 8 ) is often 
used. As we shall see, use of W ( 8 )in the generalized score statistic also leads to procedures that 
are invariant under repararneterization. 

The result (3) with V ( 8 )and W ( 8 )  estimated using and @ or w ( B )  is most commonly 
used for inference. It has distinct advantage in the simplicity of the inference about components 
or functions of 8.  It has, however, the serious drawback that it is not functionally invariant so 
that different results are obtained for different parameterizations. As a consequence, it can lead 
to very inaccurate inferences unless parametric representation are carefully selected. 

2.1. The estimating function (EF) bootstrap. 

The procedure we now define is allied with (2) since it approximates the distribution of the 
estimating function, and S ( y ,  8) itself forms the basic tool for inference. 

The EF bootstrap based on S ( y ,  8 )  in (1): 
Let zi = gi(y i ,B ) ,  1 5 i 5 n. From ( 2 1 , .. .,z,) ,  

1. Draw the bootstrap sample (2 ;  , . . . , z : ) ;  

2.  Compute9 = n-'I2 C z f .  

The empirical or bootstrap distribution of S* approximates the distribution of S( y, 8) .  

This approximation is usually accurate only to first order, ~ , ( n - ~ / ~ ) .Studentization gives 
an approximation of asymptotic higher order. 

The StudentizedEF bootstrap: 

We approximate the distribution of 

st(^, ' )= o ) - 1 1 2  '),V ( Y >  S ( ~ 7  

where V ( y ,  8 )  is dejned in (4), with the empirical distribution of 

s; = v*-112S* , 

where V *  = n-l  x ( z f  - z * ) ~  n - l  C 2:.Z*)(zf- andz* = 
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Under fairly general conditions, the approximation to the distribution of St(y, 8) is asymp- 
totically second order accurate and often leads to substantial improvement in the accuracy of 
confidence intervals. It should be emphasised that the approximate pivotal in the formula (7) and 
the Studentized EF bootstrap procedure are invariant under reparameterization. 

In the next subsection, we consider the case of scalar 8. Vector and nuisance parameters are 
discussed in Section 4. 

2.2. The case ofa single parameter. 

If the parameter 0 is a scalar and S(y, 8) is monotone decreasing in 8, approximate confidence 
intervals for 0 based on the EF bootstrap are particularly simple to obtain. For any specified a,  
we can find Si,), the a quantile of the bootstrap distribution of 9,which can be determined 
to any accuracy required. The interval (-m, 8;,)) where S(y, eta)) = S* 

(1-ff). 
is the one-sided 

100a%EF bootstrap confidence interval for 8. To obtain this interval, the equatlon S(y, 8) = S* 
need only be solved at one point. The asymptotic accuracy of this interval is 0, (n-'I2). 

Higher order accuracy can be obtained by using the studentized version based on (7). Let 
S;(41be quantiles of the distributionof S: . If St(y, 8) is monotone in 8, solving St(y, 8) = S;(,, 
yiel s the endpoints of the intervals. Figure 1 illustrates the relationship between the bootstrap 
approximation to the distribution of St and the confidence intervals for 8. 

In the univariate case, when St(Y, 8) is a monotone function of 8, the bootstrap distribution 
of S; generates a bootstrap confidence distribution for 0. Specifically, even though it would not 
make sense to do so in practice, we can envisage solving the equation St(y, 8) = S; to obtain 0; 
for each bootstrap sample. It is easy to see that the bootstrap distribution of 8; - 8  ̂ approximates 
the sampling distribution of 0 - B^. Even using the studentized version, this approximation is typ- 
ically 0, (n-'I2) since it is based on the Taylor approximation used to obtain (3). Nonetheless, 
the order Op(n-l) approximation inherent in the studentized EF bootstrap translates here to a 
statement about the confidence distribution generated by 8; ; specifically the a quantile, Or(,), 
as discussed above gives the upper bound of a 100a%confidence interval for 0. In this single 
parameter case, the sequence of bootstrap estimates 8; generates an approximate confidence dis- 
tribution for 8 that is accurate to order O,(n-l). Symmetric intervals are accurate at least to 
order 0, TI-^/'). The confidence distribution is also illustrated in Figure 1. 

FIGURE1: The EF-t statistic, St (y, 8), plotted as a function of 8. The EF bootstrap sample from S* 
generates the upper and lower a/2 percentilesA* and B*on the vertical axis. Confidence intervals for 8 

are obtained by solving St (y, 8) at two points to give (Oil 8;). 
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Remark 1 .  This method of generating bootstrap confidence (or fiducial) distributions for 8, by 
solving St( y ,  8 )  = S,*for 19; would apparently extend to the multiparameter case. A conceptu-
ally simple, though computationally intensive, approach to constructing confidence intervals for 
components or functions of 8 could be based on the corresponding marginal distributions. Such 
procedures would typically yield one side intervals that are accurate only to order n - l l 2 .  To ob- 
tain order n-' accuracy, the procedure generating confidence intervals must be directly related 
to a test or pivotal based on St( y ,  8 ) .  This relates to the fact that margins of a fiducial distribution 
are not in general confidence distributions. 

Remark 2.  The studentized statistic S t ( y ,  8 )  in (7) and the related studentized EF bootstrap 
give results that are invariant under reparameterization. The unstudentized EF bootstrap is not 
invariant. 

Remark 3. Hu & Kalbfleisch (1997) use a studentized statistic different from (7). Specifically, 
they suggest using St to approximate 

where ? = n-' Cy=,ziz:;  cf. (5) .  Second order results generally hold for (7) and not for 
(8) though in many situations, the standardization in (8) works well. It should be noted that 
(8) is not invariant under reparameterizations, and can break down rather badly in, e.g., highly 
nonlinear situations. In these instances, the variance of S ( y ,  0 )  changes rapidly as 8 changes and 
the constant estimate ? is quite inadequate. We included (8) in almost all simulations but have 
not reported the results on it since methods based on (7) are generally preferable. 

2.3. Bootstrap resampling o f 8 :  the C bootstrap. 

There has been no systematic discussion of bootstrap methods in the context of the linear 
estimating equation (1). In this section, we define an approach which focuses on the estimator 8 
and seems in keeping with traditional ideas of the bootstrap. 

The C bootstrap: 
Let wj(8)  = gi(yi ,  O ) ,  i = 1 , .  . . ,n.  From { w l ( 0 ) ,. . . , ~ ~ ( 0 ) )  

1 .  Draw the bootstrap sample {w;( B ) ,  . . . , w,t (0)} .Note that the specijicfunctions of 0 are 
being resampled with replacement. 

as the solution to Cy="=,ulf 0.(8 )  = 

The empirical distribution of 6 - 8 appmximates the distribution of - 8. 

This approach is akin to the asymptotic approximation in (3). Although it does not seem to 
have been proposed as a general technique, it does give the ordinary or classical bootstrap when 
the yi are iid and gi = g, i = 1, . . . ,n .  More generally, it leads to well accepted practices in other 
problems such as, for example: bootstrap resampling of (yi,u i ) , i = 1 , . . . ,n in the common 
means problem with known variances (cf. Example 2 below); or bootstrap resampling of (yi, x i )  
in the paired bootstrap procedure for linear or nonlinear regression (cf. Section 6). In these cases, 
C can be taken to stand for "classical." More generally, C stands for "comparison" in some of 
the examples below. 

The C bootstrap is typically accurate to order n-lI2  and, depending on the application, can 
be improved in various ways. We shall consider studentized versions based on the asymptotic 
approximation in (3). Specifically, we construct a studentized C bootstrap by considering an 
approximate pivotal of the form 

Q - l f 2 @ ( e  - e ) .  

8; Define2.  
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The distribution of this can be approximated by the bootstrap distribution of 

where V; = V(y*,8;) and W: = W(y*, 8;); cf. Equations (4) and (6). This generally yields 
a better approximation although, in some instances, the variance estimates can be quite unstable. 
Alternative approaches might be based, e.g., on the BC, or ABC approach as discussed, in 
DiCiccio & Efron (1996) although these may need some extensions to apply to the class of linear 
estimating equations. 

Remark 4 .  The C bootstrap is computationally much more intensive than the EF Bootstrap when- 
ever e must be calculated iteratively. With each bootstrap sample, a new estimating equation must 
be solved to obtain @. In contrast, with a single parameter 8, the EF procedure only requires 
solving the estimating equation at the end points of the desired confidence interval. 

Remark 5. Neither the C bootstrap nor the studentized C bootstrap is invariant under reparam- 
eterizations. It is important to select a good parameterization in order to get accurate intervals. 
Efron & Tibshirani (1993, pp. 162-166) give some discussion. 

3. SOME EXAMPLES IN THE SINGLE PARAMETER CASE 

Example 1 below relates to the estimation of a population mean based on an iid sample. In 
this classical, very simple problem, the EF bootstrap and the classical bootstrap yield identical 
numerical results. Nonetheless, the emphasis is different and the example serves to illustrate 
the different view. Examples 2 and 3 deal with the more complex and also classical problem of 
estimating a common mean. 

Example 1(Estimating the population mean). Observations yl , . . . ,yn are made on independent 
and identically distributed random variables, each with an unspecified distribution function, F. 
Interest focuses on the mean, p, which is estimated with ji = y.  In the usual (or C) bootstrap, 
we (i) draw the bootstrap sample {y; , . . . , y:) from {yl, . . .,yn) and (ii) calculate the bootstrap 
sample mean ji; = n-' C y:. These steps are repeated and the empirical distribution of the 
(b*, - fi) is the bootstrap approximation to the sampling distribution of fi - p. 

In contrast, the EF bootstrap begins with the estimating equation C ( y i  - p) = 0, whose 
solution is fi = y. The component functions yi -p are estimated with zi = yi - y, i = 1, . . ., n. 
The method proceeds as follows: (i) draw a bootstrap sample { z ; , . . . ,zA) from {zl, . . . ,zn);  
(ii) Calculate S' = n-'1' C z:. The bootstrap distribution of S* approximates the sampling 
distribution of S(y, p) = f i ( f i  - p). Note that if p* is the solution to S(y, p) = S*,  the 
bootstrap distribution of p* - P approximates the distribution of p - fi. 

The difference between the methods is evident, even though they give, in the end, identical 
results. With the C bootstrap, fig - /2 approximatesji - p whereas in the EF procedure, p* - fi 
approximates p - P. As a consequence, p* is "bias corrected". The comparison between the 
studentized versions is similar. 

Example 2 (Common mean with known variances). Suppose that yl , . . .,yn are from populations 
with Eyi = p and var(yi) = o: with u: known. The estimating equation 

gives rise to the weighted least squares estimator, 
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The EF and C bootstraps can be applied to this problem in a straightforward way. (As 
noted above, the C bootstrap is equivalent to the classical procedure of resampling ( y i ,a i ) ,  
i = 1 ,  . . . , n . ) .  If the ai 's  are not all equal, the EF and C procedures give different results here, 
as can be seen by directly applying the procedures above. Hu & Kalbfleisch (1997) compare 
the EF bootstrap with the classical bootstrap and the asymptotic normal approximation assuming 
normal and uniform errors. All methods do reasonably well, though the studentized versions of 
the EF and C bootstraps are better than the other methods with non normal errors. 

Example 3 (Common means problem with unknown variances). Suppose there are k independent 
strata and, in the ith stratum, yij -- N ( p ,a;),j = 1 ,  . . . , n i ,  independently where ni 2 3 and 
i = 1 ,  . . . ,k .  The variances a: are unknown and interest centers on the estimation of p .  This 
problem has received much attention in the literature; cf., e.g., Bartlett (1936), Neyman & Scott 
(1948), Kalbfleisch & Sprott (1970), Barndorff-Nielsen (1983) and Cox & Reid (1987). Neyman 
and Scott showed that the maximum likelihood estimator can be inefficient. They (and many 
others) proposed the estimating equation 

where T,( p )  = C;;,( y i j  - p)' and yi = C;;, y i j / n i .  More generally, we could relax the 
condition of normal errors and still use (9) for estimation of p .  

When the number k of strata is large and the individual ni 's are small, usual inferential tech- 
niques can cause substantial difficulty. This is the case considered here, though other situations 
are, also of interest and will be discussed elsewhere. 

Let yi = (y i l  , . . .,yin,) and gi (y i  ,p )  = ni (n i  -2 )(yi -p ) /Z ( p ). Thus, (9) can be rewritten 

and EF and C bootstraps can now be applied in a straightforward manner. 
We compare five methods: 

1 .  The Normal Approximation (Norml), k1I2( j i- p )  M N ( 0 ,  u ) ,  where 

2.  The Normal Approximation ( N o d ) ,  St ( y ,  p )  M N ( 0 , l ) ;  

3. The C bootstrap (C) obtained by resampling wi ( p )  = gi ( y i ,  p ) ;  

4. The Studentized C Bootstrap (C-t) using the variance estimator (10); 

5. The Studentized EF Bootstrap (EF-t). 

We consider k = 30 ,  p  = 0 ,  n l  = . . . = nlo  = 4 ,  n11 = . . . = 7220 = 5 ,  1221 = 
. . .  _- n30 = 6, ( u l , .. . , U I O )  = ( 0 . 5 , 0 . 6 , .. .,1 .4 ) ,  ( a l l , .. . , u20) = ( 1 . 0 , 1 . 2 , .. . , 2 . 8 )  and 
( u ~ ~ ,  = ( 0 . 5 , 1 . 0 ,. . . , 5 . 0 ) .The errors were taken to be standard normal or Laplacian . . . , 0 3 0 )  

(p.d.f. exp(-1x - p ) / 2 ) / 4 ) .  Table 1 gives the estimated coverage probabilities and average 
confidence intervals based on 1000 simulations of 500 bootstrap samples. 
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TABLE1:Coverage percentages and average confidence intervals (with standard deviations of the 
endpoints) for the common means problem (Example 3) with k = 30 strata. Entries are based on 1000 

replications of 500 bootstrap samples. 

Standard normal errors 

80% 90% 95% 

Laplacian errors 


80% 90% 95% 


The methods C, C-t and Norml all perform very poorly. In addition, the C bootstrap gives rise 
to substantial computational problems. Newton's method often does not converge for calculating 
p;7 and a slower bisection method is needed. The C-t bootstrap gives confidence intervals that 
are, on average, substantially wider than all other methods. This is because the variance estimator 
in (10) is not stable for small ni's. For normal errors, the observed standard deviations of the 
terminals of the confidence intervals are reported in Table 1 and, for the C-t bootstrap, reflect the 
unstable variance estimate. 

The EF-t bootstrap gives much more accurate results and, from the average lengths of the 
confidence intervals, appear to have good power properties. Calculation of a confidence interval 
require only two solutions to the estimating equations for each of the 1000 simulations. For the 
C bootstrap, 500 solutions are required for each simulation. 

Norm2 performs very much better than Norml. With k = 30, the EF bootstrap offers little 
gain over Norm2. To further compare EF-t with Norm2, we considered a smaller sample size 
with k = 12, nl  = . . . = n4 = 4 , n 5  = . . .  = n8 = 5, n9 = . . .  = n12 = 6 andvariances 
similar in range to the larger sample size. The results are reported in Table 2. With the smaller 
sample size, EF-t does better, but the normal approximation still does reasonably well. 

TABLE2: Estimated coverage percentages for EF-t and the normal approximation (Norm2) for the 
common means problem of Example 3 with k = 1 2  strata. Entries are based on 1000 replications of 1000 

bootstrap samples. 
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The C and C-t bootstraps are included here for comparison purposes. This approach has 
not been advocated in the literature and there may be better ways to proceed, based on more 
traditional bootstrap methods. We do not, however, see simple alternatives. With small nj, 
e.g., resampling within strata is not at all stable, since singular samples occur with relately high 

4. THE MULTIPARAMETER CASE 

In this section, we consider inference techniques for the joint estimation of the whole p dimen-
sional parameter vector 8, or for estimation of components or functions of 8. We henceforth only 
consider studentized EF procedures since simulations we have done show substantial advantage 
to studentization. 

4.1. Joint estimation of 8. 

Consider the approximate pivotal 

which, under fairly general conditions, is asymptotically distributed as a X2 variate withp degrees 
of freedom. The distribution of Q(y, 8) can be estimated with the bootstrap distribution of 

using the calculations described in Section 2. 
To construct a confidence region for 8, we find q z  to satisfy P*(Q* > q z )  = a. An approx- 

imate 100(1- a )% confidence region for 8 is defined by 

since 

P{Q E Cl-a(y)) = P{Q(y, 8) < q a }  m P*(Q*Iq,) = 1- a. (13) 

It is shown in the appendix that the approximation in (13) is asymptotically accurate to or- 
der 0,(72-~/~).Computations here are again simplified by the fact that, for a given confidence 
coefficient 1 - a ,  one need only solve (12) once for the relevant contour. 

A test of the global hypothesis Zo : 8 = 80 can be obtained using Q(y, 80) as a test statistic. 
The approximate significance level of the data with reference to ?lois 

in an obvious notation. The confidence region CI-, also has an interpretation as a significance 
interval. That is C1-, = (8 : SL(8) > a} .  

4.2. Nuisance parameters. 

Suppose that 8 = (8; ,8:)' where dim(81)= pl, dim(82) = p2 and pl +pz =p. Suppose that dl 
is of interest. The estimating function in (1) can be written as S(y, 8) = (Sl(y, 8)', Sz(y, @)')I, 
where 5'1 is a vector of dimension pl and S2is of dimension p2. Note that we are assuming that 
the estimating function arises from minimization of a certain objective function in Section 2 and 
so S1 is associated with 81. Let $2 (81) be the (assumed unique) solution in 82 to the equation 
Sz(y, 81,192) = 0. Let 8" = (8{,6)'.The matrix V(y, 8) is partitioned as 
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with similar expressions for c,V*,W (y ,  8 )  ,and W( 8 ). Finally, we define 

As has been noted by several authors and is nicely summarized in Boos (1992), a standardized 
form of z l ( y ,  81)  can be used as the basis of inference about R1. From a Taylor expansion of 
S ( y ,8) about 82, it can be seen that 51(y ,  81) = Sp(y,  8 )  + op(n-'I2),where 

b = and the subscript "P" represents "projection." ~ ~ ~ ( 8 ) ~ ~ ~ ( 8 ) - ~ ,  Thus, the asymptotic 
covariance matrix of 31 is the probability limit of 

where Kj= Kj( y ,  8 ) .  Now, (15) is not a useful estimate of the asymptotic variance of since 
it involves 82. We therefore consider instead 

where V and W in (15) are replaced with c = V ( y ,8") and @ = ~ ( 8 ) .We consider the 
following approximate pivotals: 

By standard theory, each of these has an asymptotic x2distribution with pl degrees of freedom. 
The statistic (18) is sometimes referred to as the generalized score statistic. 

We now consider a bootstrap approximation to (17) and (18). We can approximate S p ( y ,  8 )  
with the bootstrap quantity 

S; = S; - b*S,*, 

where b* = w ; ~w;i1and W;2and Wz2are obtained as follows. Define the p x p matri-
ces ai ( 8 )  = E { d g j  ( y j ,  8 ) / d R 1 ) .  Then W* = n-I x;=,af where a ; ,  . . . , a; is the boot- 
strap sample of a l ( 0 ) ,. . . ,a,(e) corresponding to z ; ,  . . . ,z;. Let U;, = V;, - b*V,l -
~ ; ~ b * ~  u;;' S>provides the required bootstrap approximations. + b*V22b*T, and QT1 = s>~ 
As discussed in the appendix, is a direct approximation to Q11 in (17) to asymptotic or- 
der ~ , ( n - ~ / ~ ) .In the linear model, Q11 depends only on 81 (in fact, in the linear model, 
Sp ( y ,  8 )  = 51 and Q11 = 011 )  and the 0,( n - 3 / 2 )  approximation applies. More generally, Q l l  
depends on $2 and is not directly useful for inference. But 6 1 1  ( y ,R 1 )  approximates Q l l  and its 
distribution is also estimated by but to asymptotic order O p ( n - l )  only. 

Remark 6. The result (18), depends on the expected matrix of second derivatives, W ( 8 ) ,which 
could be replaced with W (y ,  8 ) .  We chose to use W( 8 )since the estimation procedures are then 
invariant under reparameterization. This invariance does not in general hold with W ( y ,  8 ) .  The 
invariance of the pivotal (18) is also noted in Boos (1992). In some applications, W ( 8 )is difficult 
to compute or, as in some examples with censoring, may not be obtainable at all. In those cases, 
W ( y ,0) can be used. In other situations, such as those considered in Section 6,  W also has the 
advantage of being simpler to compute. 
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4.3. Testing hypotheses specified by constraints. 

We now consider situations in which we wish to test a hypothesis of the form 310 : h(0 )  = 0 
where h : RP --+ R' is differentiable. Let 

and suppose that H ( 0 )  is of full row rank r < p. This case is considered by Boos (1992), White 
(1982), Gallant (1987) and others who give approximate pivotals suitable for testing 310. Let 
8" be the constrained estimate of 0 which satisfies S ( y ,  8 )  - n - 1 / 2 ~ ( 0 ) ' ~= 0 and h(0 )  = 0, 
where A' = (A1 ,. . . ,A,) is a vector of Lagrange multipliers. 

Following arguments in White (1982), it can be shown that 

where 3 = S ( y ,i),H = H(R) ,  S  = S ( y ,  0 )  and W = W ( 0 ) . It follows that the asymptotic 
variance of 3 is the probability limit of 

where again the arguments y and 0 are suppressed. It can be verified that 

is the (Moore-Penrose) generalized inverse of U so that 

is asymptotically chi-squared with r degrees of freedom. Since Q generally involves all of 0 , it 
is not useful for inference. However, the relationship (19) gives the statistic 

where W, H and V in U - have been replaced with W, H, and e.It is easy to see that Qh=o = 
Qh=0 + O p ( n - l )  is also asymptotically chi-squared and can be used to test 310. Note that 
equations (22) and (23) are analogous to (17) and (18) respectively. 

A bootstrap approximation to (22) is given by 

where U * - is obtained by replacing W and V in U - with their bootstrap analogs and replacing 
H  ( 0 )  with H ( e ) .  

It can be verified that the results in the previous section arise as the special case h(0 )  = 
01 - 0:. It then follows that H = ( I ,  I 0 ) , where I, is the r x r identity matrix. Substitution 
shows, for example, that (19) reduces exactly to (14), and 0h=0 reduces to 011. Like 011 ,  ah=o 
is invariant under reparameterizations of 0.  

The above results can also be extended to the estimation of a parameter y = h ( 0 ) .  In this 
case, we can consider testing the hypothesis y = yo or equivalently 310 : h(0 )  - yo = 0. 
It follows that H ( 0 )  and ~ ( 8 )  is,are independent of yo. The bootstrap distribution of Q&, 
therefore, unaffected by the value of yo and confidence regions for y can be obtained by solving 
the inequality 

0 h = y  = S(Y ,Y ) u - ( Y ,  Y ) ~ ( Y ,  (25)7 )< 
in an obvious notation. Here, qz is the upper a! quantile of the bootstrap distribution of Q* and 
8 ( y ) has been replaced with y .  
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Example 4 (Application to binary logistic regression). Consider a logistic regression model for 
a binary response Y, P(E;: = 1 I x i )  = r ,  where logit(ni) = xi0, i = 1 , . . . ,n. In this, 0 is 
a column vector of p regression parameters and xi is a vector of constants with xi1 = 1. The 
corresponding estimating or maximum likelihood equation is 

We find that V ( y ,8) = C xixi ( y i  - C X ~ X ; T ~ ( ~~ i ) .Hypotheses about the and W(8)= -

nils or about the 8's can now be evaluated using the results of this section. 


DiCiccio & Efron (1996, Table 4, p. 198) consider an example of logistic regression applied 
to a study on 1843 independent cell cultures. The response (y = 1 or 0 )  was the success or 
failure of the culture and there were two factors, each on five levels. The model was additive on 
the logit scale so that logit(rij) = p +ai + ,Oj, i,j = 1, . . . , 5 , where, r i j  is the probability of a 
successful culture at levels i and j of the factors. For identifiability, we assume a5 = ,OF,= 0 .  In 
the context of the preceding paragraph, we have p = 9 with 0 = ( p ,al , . . . ,a s , PI,. . .,P 4 )  and 
xi ,  i = 1, . . . , n specifying the design matrix. DiCiccio and Efron consider the estimation of the 
parameter y = The methods are invariant under reparameterizations, and it is simplest T ~ ~ / T ~ ~ .  

to work with h ( 0 )  = - log yo. Straightforward calculation gives the corresponding 1 0 g ( r 1 ~ / r ~ 1 )  

Jacobian matrix, H ( 0 ) .The signed square root of (25), 


can be used for inference about y .  
A bootstrap sample of S;=, ,  the signed square root of Q;= ,  from (24) based on 

100,000 replications gave the critical values, qz = (-1.908,  -1.614,1.681,2.009) for a = 
.025, .05, .95, .975. (Note that the sign is that of 3 obtained from (19) using fi,W*,and 9.) 
The corresponding 90% confidence interval for y is (3.20S.48) in very good agreement with the 
ABC interval given by DiCiccio and Efron of (3.20,5.43). The standard Wald type interval is 
symmetric about the mle ;l= 4.16 and yields (3.06,5.26), so both the ABC and the EF boot- 
strap are making similar corrections. The interval based on the normal approximation to 'Th=., is 
(3.20S.54). Corrections here are relatively small since the sample size (n=1843) is so large. 

Figure 2 displays a plot of S L ( y )  = P*(S ;= ,  5 s h  = y ) .  This can be interpreted as the 
confidence distribution function for y and from it, all approximate confidence intervals are easily 
determined. 

I..,' , , , I, , 
I C I ' I ' I 0.65 0.70 0.75 0.80 OBI

3 0  4.0 3.0 (1.0 
Za 

FIGURES2 A N D  3: On the left, the one-sided significance level from a test of 7 in Example 4. 
This can be interpreted as a confidence distribution; the 90%confidence interval is indicated. 

On the right, approximate confidence regions from the EF bootstrap in Example 4. 
In this example, essentially the same contours arise from the chi-square approximation. 
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We took a very large bootstrap sample here in order to get a very accurate estimate of the 
bootstrap quantiles. One advantage of the EF approach is that large bootstrap samples can be 
easily taken. Even so, a bootstrap sample of 100,000 is much larger than would typically be 
needed for most practical purposes; 10,000 is more than adequate and can be quickly obtained. 

We can also consider joint estimation of X = ( X I ,  X Z )  = ( ~ 1 5 ,~ 5 1 ) .The Jacobian ma- 
trix H = 8A/801 is easily computed as is the test statistic (25). The corresponding boot- 
strap distribution is obtained from (24) and for a = ( .50 ,  .80, , 9 0 ,  .95) yields critical values 
q: = (1.384,  3.217, 4.609, 5.990) again from 100,000bootstrap replications. The correspond- 
ing EF bootstrap confidence regions from (25) are displayed in Figure 3. 

The bootstrap critical points here are essentially those of the xt2)distribution. A more in- 
teresting example can be obtained by considering a smaller sample size. For example, if the 
frequencies in this study are divided by 10, the EF bootstrap method makes a substantial adjust- 
ment from the asymptotic chi-squared approximation. The calculation of the contours for the 
joint estimation of ( ~ 1 5 ,AS^) is, however, no different than that illustrated above for the larger 
sample size. 

In this example, a strong case can be made for stratifying and resampling the terms in the 
estimating function holding constant the number njj of samples in each of the 25 treatment 
combinations. In this example, this constraint yields results that are essentially identical to those 
obtained without constraining the resampling as above. The question of constrained resampling 
needs further consideration. Some additional comments are made in Section 8. 

4.4. Hypotheses that are parametrically specified. 

In some problems, the hypothesis of interest is most naturally described in terms of a new set of 
parameters, 17, say. Thus, the hypothesis is E0 : 6 = k ( q )  where 17 is of dimension p - r and 
k : RP-' -+ Rp.Goodness-of-fit tests, e.g., are typically formulated in this way where 6 is the 
parameter of the multinomial model and the hypothesis corresponds to a parametric model with 
parameters 17. 

Let K ( q )  = 8k(17)/617' and suppose that K is of full column rank p - r. In this case, the 
generalized score statistic for testing Eo is given by Boos (1992)as 

Note that the notation here follows the conventions of the last section with "tilde" indicating that 
the matrix is evaluated at the estimate subject to the hypothesis, i.e., at 8 = k( i j ) .  

Boos (1992) notes that (26) can be derived from the previous result (23) if there exists an 
alternative and equivalent representation of the hypothesis of the form h(6 )  = 0 where h : 
RP+Rr. From this it follows that Hli' = 0 .  Gallant (1987, p. 241) gives the identity 

which holds for arbitrary positive definite symmetric A,,,, Hrxpof full rank r, and of 
rank p - r. Substitution of this into (19) gives the result 

which provides the needed link between ?and Sfor a bootstrap procedure. The remaining results 
for parametrically specified hypotheses can be found by substituting (27) into (20) and (21). 

Construction of the corresponding bootstrap procedure is straightforward. Applications of 
this to goodness-of-fit and other problems where parametric hypotheses naturally arise is the 
subject of further investigation. 
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5. CALIBRATION AND THE EF BOOTSTRAP 

Calibration of approximate confidence procedures has been discussed by various authors. Hall 
(1986,1987), Beran (1987) and Loh (1987,1991) first discussed the procedures as applied to the 
bootstrap. See also Efron & Tibshirani (1993, Chapter 18) and DiCiccio & Efron (1996). For 
simplicity of presentation, we restrict discussion to the case of a scalar parameter. 

The studentized EF bootstrap can be viewed as a calibration of the asymptotic normal ap- 
proximation applied to the studentized statistic 

To make specific contact with the discussion in DiCiccio & Efron (1996), we note that the ap- 
proximate (one-sided) 100a% confidence interval from the normal approximation is 

where t(,)is the standard normal quantile and it is assumed that St(y,6)is monotone decreasing 
in 0 for each y. The calibration function, P(a)  = P(O < e(,)), can be estimated using the 
bootstrap approximation 

This estimate can be used to obtain a corrected interval by finding X such that cr = p(A) for the 
given cr, and then using the corresponding interval, 

This is the EF bootstrap interval since, by construction, = q; is the 100a% percentile point 
of the bootstrap distribution of S: . 

In some instances, a further calibration may be useful Let t;,. . . , t: be a first level EF 
bootstrap sample as discussed in Section 2. Let wi(0) = gi (yi , 0), ?: = 1,. . . , n and note that we 
can write ti'= w;(8). We proceed by finding 8; to satisfy 

* *  Let .if= w,* (0;). The second stage now proceeds exactly as the first: we sample t,",. . . , t, 
from 27, . . . , 2: and, in an obvious notation, approximate the calibration curve P' (a )  = P(St < 
q;) with p' ( a )  = P*(St*< q r ) .  Now p' (A)  can be obtained at a grid of X values from a 
suitably large number of bootstrap samples for each of the first stage samples. 

This procedure is computationally intensive since it requires perhaps 1000 replications of 
each of 1000 first level bootstraps. At the second stage, we need to solve for the C bootstrap 
estimators &. Thus we must solve the estimating equation 1001 times. This is, however, still 
within the bounds of reasonable computation in many problems and could be routinely done. 
By contrast, a 1000 x 1000 calibration of the C bootstrap would require the solution of about 
1,000,000 equations. Simulation assessment of either calibrated procedure requires yet another 
level of replications. 

6. NONLINEAR MODELS 

In Section 6.1, we consider univariate nonlinear models and ordinary least squares, and the var- 
ious methods are compared in simulations for scalar and vector parameter in Section 6.2. Sec- 
tion 6.3 considers extensions to multivariate nonlinear regression and weighted least squares. 
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6.1. Univariate nonlinear models. 


Let yi be a univariate response variable and consider the model 


Here, p is a p x 1 vector of unknown parameters, f is a known nonlinear function of p, x i  is a 
k x 1 vector of constants, and the ~i are independent errors with mean zero and variance a:. We 
suppose that the a; are bounded away from 0 and m,and that 

is continuous in p. The ordinary least squares estimating equation is 

and the corresponding estimator is jLs. 
Following the outline above, we find 

The matrix of second partial derivatives is 

and W(P)= E{ W( y ,  P ) )  has the simpler form 

n 

w(8)= C A ( x i 1  P ) A ( x i l P ) ' .  
i=l 

Let V 
A 

= ~ ( y ,  and W^= W ( ~ L S ) .~ L S )  

Consider inference about c 'p ,  where c is a p x r matrix of known constants. All of the 
bootstrap procedures described in Sections 2 and 4 can be applied. In addition, there are more 
efficient approaches which can be applied when the errors are iid. 

1. Classical bootstrap based on residuals iid C-t. Huet & Jolivet (1989) and Huet, Jolivet 
& MessCan (1990) suggest this approach for inference in the nonlinear model with iid errors; 
cf. also Efron (1979) for a parallel discussion of the linear case. Let rj = yi - f  ( x i l  ~ L S ) ,  
i = 1 ,  . . . , n and F = C r i / n .  Let e ; ,  . . .,e: be a bootstrap sample from r l  - F ,  . . .,rn - F and 

Note that is an adjustment for the degrees of freedom. The bootstrap estimate / ? L ~  
is the solution to 

n 

C A ( X ~ , B ) { Y :- f ( x i 1 P ) )  = 0. 
i=l 

The corresponding studentized bootstrap is obtained as follows: the asymptotic covariance 
matrix of n1/2c'(,8 - p)  is estimated by C'W^-~G~~W^-'where cid= W 3  

-
and 8 =c 

n-' C(ri- F)'. An appropriate studentized statistic is then 
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whose distribution can be approximated by that of its bootstrap analog, viz. 

where u*' = n-I C ( r f  - F * ) ~ ,rf = yt - f ( x i ,  p i S ) ,  and F* = C rt ln .  

2. Paired or C bootstrap (Paired-t). When the ai's are not equal, the above method is not 
consistent. We can, however, resample pairs (xf , yf ), i = 1, . . . , n,  from ( x i ,  yi), i = 1, . . .,n. 
This is analogous to the paired bootstrap in the linear case discussed, e.g., in Freedman (1981) 
and Hinkley (1988), and is exactly equivalent to the C bootstrap of Section 2. The corresponding 
paired bootstrap estimator, &, is a solution to 

The studentized paired statistic is 

and the corresponding studentized bootstrap statistic is 

where %; and ?$ are exactly analogous to ? and %except computed on the bootstrap sample, 
(yf ,x f ) ,i = 1, . . . , n.  

3. Studentized EF bootstrap (EF-t). Inference about y = cl,f?can be based on the results in 
Section 4.3. Specifically, consider a hypothesis of the form h(@)= cl,f?= yo where yo is a 
hypothesized value of y. The relevant statistic from (23) is 

where p = p(yo)is the estimate of ,f?constrained by the hypothesis clp = yo and 6-is given in 
(21) with @ = ~ ( p ) ,H = c1and = V ( y ,p ) .  The analogous bootstrap statistic is obtainable 
directly from (24) and inference proceeds as described in (25). If c1/3= /31 where ,f?1comprises 
the first r components of /3, the simpler and equivalent expression (18) from Section 4.2 can be 
used. This EF-t procedure, like the paired bootstrap is valid for the heteroscedastic case. 

4. EF bootstrap based on iid residuals (iid EF-t). When the ~i 's are iid, the asymptotic covariance 
matrix of S(y ,p) is estimated more efficiently by replacing the variance estimate V ( y ,p)  with 

where 82 = n-I C ( y i  - fi - ?/ + f ) 2 ,  fi = f (x i ,  p)  and f = f i /n .  Thus, with reference to 
(23) and (21), we use the studentized statistic 

where -u.7 = 
11d c?-~w(~)-~c{c'w(/?)-~c)-~c~w(/?)-~. 

As for the iid C bootstrap above, the iid EF bootstrap proceeds by resampling the residuals. Let 
e i ,  . . . , e: be a bootstrap sample from (rl - F ) ,  . . . , (r ,  - F )  and let 
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The bootstrap statistic corresponding to (29) is 

where u*-= a*-z@-lC(C~@-lC)-lC~@-l 

11d 

and = (n- p) - l  C(er- E * ) ~ .  

If clp= it can be verified that the statistic (29) reduces to 

and the corresponding bootstrap statistic is 

- A A h  

where s ; ~ ~= sid - bsid2,and b = ~ 1 2W G ~ .  

Remark 7. In the discussion of the iid EF bootstrap (Point 4. above) corrections of degrees of 
freedom are made in two places: in the definition of SGd and in the definition of a*'. These two 
corrections are in opposite directions and cancel. Similar corrections could have been introduced 
in the studentized EF bootstrap and also would have cancelled. The corrections were included 
in the discussion of the iid EF bootstrap to keep a parallel with the iid C bootstrap as defined in 
Huet, Jolivet & MessCan (1990) or Efron (1979). 

Remark 8. The paired and iid C bootstraps involve solving a system of nonlinear equations for 
every bootstrap sample and are computationally extremely intensive. The procedures based on 
EF and iid EF retain the substantial advantage of requiring solutions to the equation only at the 
final stage. 

TABLE3: Coverage percentages and average confidence intervals (with standard derivations of the 
endpoints) for Example 5. Entries are based on 1000replications of 1000bootstrap samples. 

Homoscedastic Heteroscedastic 
emrs errors 

Norm1 

Ave CI 

(s.d.) 


Norm2 


Ave CI 


(s.d.) 

iid C-t 


Ave CI 

(s.d.) 


Paired-t 


Ave CI 


(s.d.) 

EF-t 


Ave CI 

(s.d.) 


iid EF-t 


Ave CI 

(s.d.) 
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Remark 9. Linear models (f(xi,P) = xi@) are a special case of the above and the same four 
methods can be applied. In the linear model, the iid C bootstrap method above was proposed 
by Efron (1979) and the paired or C method is also often discussed. In the context of the linear 
model, Hu & Zidek (1995) considered the (unstudentized) EF and iid EF bootstraps and explored 
normality and robustness properties. 

Remark 10. To summarize aspects of asymptotic properties, both EF-t and iid EF-t are generally 
accurate to first order for the estimation of components or linear functions of ,B and are second 
order accurate in the linear model. They are also second order accurate for estimation of the 
whole parameter vector in general. For the nonlinear regression model, Huet & Jolivet (1989) 
show that the iid C-t bootstrap is second order accurate for the homoscedastic case. Both it and 
the iid EF bootstrap are generally inconsistent if the errors are heteroscedastic. 

6.2. Some examples in the nonlinear model. 

Example 5 (A one parameter nonlinear model). We consider first the model 

for which computations and comparisons among all the methods can be relatively easily done. In 
Table 3, we report two simulations. For the first, the errors ~i are iid N(O,0.25). For the second, 
the errors are ~i = aiUj where ui - N(0,l)  and ai = (0.05)i, i = 1 , .. . ,20. For both, we 
chosep= . l , n =  20andxj = -2,-1.9 ,..., -1.1,1.1,. . . ,  2.TheresultsinTable3arebased 
on 1000 simulations of 1000 bootstrap samples. In addition to the four bootstrap procedures (iid 
C-t, Paired-t, EF-t, iid EF-t), we also include normal approximations, Norml based on (3), and 
Norm2 based on (7). Other simulations using non normal errors also give similar results. 

For the homoscedastic case, all methods work reasonably well, though the Norml approx- 
imation is less accurate than the others. The iid EF-t procedure gives the best results, though 
the EF-t also performs well. In the homoscedastic case, the iid EF-t bootstrap is, as expected, 
somewhat more efficient. 

In the heteroscedastic case, only the EF-t, Paired-t and Norm2 methods are consistent and the 
iid C and iid EF procedures perform less well. The paired, EF and Norm2 give the most accurate 
coverages, although the coverage probabilities are all somewhat low. A further calibration could 
be done here as in the next example. 

The next example was also investigated in simulations by Huet, Jolivet & MessCan (1990). 
We compare the EF-t bootstrap, the asymptotic approximations applied to the estimating function 
(Norm2 or x2app2) and to the least squares estimate (Norml or X2appl, and the iid EF-t boot- 
strap. We have not included the Paired or iid C bootstraps. The iid C bootstrap was the subject 
of the investigation of Huet, Jolivet & MessCan (1990) who essentially conclude that the normal 
approximation (Norml) works as well as iid C-t. We have included Norml in our simulations. 

Example 6 (The exponential model). This model, an extension of that in Example 5, has been 
considered by several authors (cf. Seber & Wild 1988 for examples and references). Rasch & 
Schirnke (1983) and Ratkowsky (1984), as well as Huet, Jolivet & MessCan (1990) have stud- 
ied various bootstrap procedures and asymptotic approximations in simulations. The particular 
model examined has mean function 

with (approximate) true values = 1122, P2 = -1309, P3 = -0.087. The independent 
variable x takes values X i  = i, i = 1, . . .,15. We consider one, two and three replicates of 
this for total sample sizes of 15, 30 or 45. Errors were taken to have mean zero and were either 
assumed to be homoscedastic with variance 402, or heteroscedastic with variance at xi = i of 
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4 0 ~ ( i / 7 . 5 ) ~ .Error distributions considered were the normal, Laplacian and uniform. These 
parameter values were chosen to correspond to those used in Huet, Jolivet & MessCan (1990)for 
the homoscedastic case. They did not consider the heteroscedastic case. 

TABLE4: Estimated size and powers for tests (x 1000) of a hypothesis about P3 in the nonlinear 
exponential model of Example 6. The null (true) value is -.0875 and alternatives are considered at rfr.005. 
Sample sizes are n = 15 and n = 30 with homoscedastic double exponential errors (a= 40) and normal 

heteroscedastic errors. 

n = 15 size, P3 = -.087 power,P3 = -.092 power,pp = -.082 

homo. 025 050 950 975 025 050 950 075 025 050 950 975 

Norml 064 103 904 938 105 152 942 966 042 063 856 900 

Norm2 041 073 938 967 065 134 958 975 021 054 913 925 

L.R.  044 071 923 958 064 105 953 975 027 045 887 929 

EF-t 022 054 943 974 041 088 968 990 014 042 913 955 

iidEF-t 034 056 942 965 052 089 963 986 020 038 910 947 

n = 30 size, P3 = -.087 power, /33 = -.092 power, P3 = -.082 

homo. 025 050 950 975 025 050 950 075 025 050 950 975 

Norml 041 073 926 957 089 138 967 984 021 033 860 914 

Norm2 034 063 929 966 064 120 973 988 016 031 872 922 

L.R.  030 062 941 970 071 117 973 987 014 027 878 936 

EF-t 035 063 933 969 067 118 973 988 015 032 878 929 

iidEF-t 025 054 946 975 054 107 979 991 012 022 893 941 

n = 15 size, P3 = -.087 power,pp = -.092 power, /33 = -.082 

hetero 025 050 950 975 025 050 950 075 025 050 950 975 

Norml 076 107 920 950 110 161 950 973 045 072 878 923 

L.R.  039 070 946 969 063 109 965 980 028 043 912 952 

EF-t 025 049 956 981 039 079 969 990 018 034 932 967 

iidEF-t 028 049 954 976 043 081 970 986 019 033 929 960 

n = 30 size, p3 = -.087 power, P3 = -.092 power, P3 = -.082 

hetero 025 050 950 975 025 050 950 075 025 050 950 975 

Norml 053 080 937 967 090 143 970 985 024 042 895 929 

Norm2 033 071 935 966 072 125 968 984 017 031 896 931 

L.R. 029 055 948 976 057 107 977 988 015 026 910 948 

EF-t 028 058 949 972 057 110 975 988 016 028 911 947 

Table 4 reports the results of some simulations done on estimation of P3 with sample sizes of 
n = 15and n = 30, and with homoscedastic Laplacian errors and normal heteroscedastic errors. 
The entries in the table give 1000 times the estimated size or power of the corresponding one 
sided test procedure at specified nominal levels cr = .025, .050, .950, .975. Each of the four 
sections in the table is based on 2000 replications of 1000 bootstrap samples. Estimates of the 
true coverage probabilities of a symmetric 95% confidence interval, e.g., can be obtained as the 
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difference of the "size" estimates in the first and fourth columns of the table at nominal values 
of .025 and .975. 

The EF and the iid EF bootstraps do well in all simulations we have done on estimating 
a single parameter. Similar results, for example, are obtained for the estimation of ,LIZ. Any 
gain in power or efficiency through use of the iid procedure with homogeneous errors is ap- 
parently relatively small. The iid procedure appears to be quite robust against heteroscedastic 
errors. The differences seen in Example 5 corresponded to a very high degree of heteroscedas- 
ticity. With the more moderate and practical differences here, the iid EF bootstrap performs 
well. The approximate Norm2 applied to the studentized EF statistic (or the generalized score 
statistic) does surprisingly well. In the nonlinear examples we considered, Norm2 substantially 
outperforms Norml. The latter, often used as the basis for comparison with bootstrap methods 
(e.g., Huet, Jolivet + & MessCan 1990), is itself very poor. The likelihood ratio test based on ho- 
moscedastic normal errors also generally does well. As expected, however, it does less well in 
the heteroscedastic case and its parametric dependence makes it somewhat less attractive than 
other methods considered. 

Table 5 reports the results of simulations on the simultaneous estimation of (PI, P2, P 3 )  We 
have only reported results for the size of a test based on the competing methods (or equivalently 
on the coverage probability of the corresponding confidence regions). The results in the table 
are for homoscedastic Laplacian error. Other error distributions and heteroscedastic errors gave 
similar results. The entries in each column of the table give the estimated probability of rejection 
of the (true) null hypothesis based on 2000 replications of 1000 bootstrap samples. 

Only the iid EF bootstrap gives good results here and, in fact, it also works reasonably well 
when the errors are heteroscedastic, at least to the degree considered in this example. The X2 

approximation(x2app2) to the generalized score statistic (1 1) gives substantial under coverage. 
For example, with n = 30, the nominal 90% confidence region has estimated coverage proba- 
bility of 85.0%. As noted in Section 5, the EF bootstrap can be viewed as a calibration of this 
procedure and gives an estimated coverage probability 93.7%, a substantial overcorrection. The 
X2 appl based on the quadratic form from the least squares estimate performs very badly. The 
likelihood ratio is better but also has substantial under coverage. 

TABLE5: Estimated sizes of tests of a simple hypothesis about (PI,  p2,PB)in the nonlinear model of 
Example 6. The iid-x2 is based on the X2 approximation to the iid quadratic form (29). 

X2 appl .617 .536 .485 .482 .393 .334 .414 .334 .279 


X2 app2 .357 .233 .I34 .270 .I50 .074 .231 .I18 .062 


L. R. .291 .168 .092 .235 .116 .067 .216 .lo5 .048 

EF-t .lo7 .024 .008 .168 .063 .025 .I66 .072 .028 

iid EF-t .215 .lo5 .042 .200 .098 .046 .I85 .094 .042 

iid-x2 .265 .138 .068 .230 .I11 .054 .205 .I00 .043 

The results in Table 5 suggest the need, in this example, for a further calibration of the EF 
bootstrap as described in Section 5. Table 6 gives the results of such a calibration for a sample 
size of n = 30, again with Laplacian errors. This further calibration results in estimated coverage 
probabilities much closer to the nominal values. 

Some difficulties arise due to the singularity at P 3  = 0. With the sample size of 30, about 
one in one thousand first level replications results in one or more second level bootstraps for 
which the singularity causes difficulties. (In these instances, the maximized likelihood continues 
to increase as ,LI3 0.) This happens when the first level bootstrap gives a P 3  estimate that is 
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unusually close to 0.For sample size 30, there was little lost through ignoring these cases. With 
smaller sample sizes, the problem occurs more frequently and some difficulties with calibration 
can result. 

The Michaelis-Menten model, 

was also considered by Huet, Jolivet & Mess6an (1990). We also investigated the procedures 
within that model and our simulations gave similar results to those in Example 6. 

Remark 11.All of the calculations for the vector and nuisance parameter procedures were done 
on a PC with a Pentium I1 processor. The simulations took less than 20 minutes per 1000 x 1000 
run. The calibration example (2000 x 600 x 600)was more extensive since it involved the 
construction of about 720 million samples, each of size 30. Each of the 2000 replications required 
solving the least squares equations 601 times. The calculation required about 50 hours. This 
corresponds to about 90 seconds for each replication, which is the time required to cany out the 
calibration for a particular sample. In an application, one might wish to have a larger calibration 
sample of say 1000 x 1000and this is certainly feasible. 

TABLE6: Estimated size and power for tests of a simple hypothesis about (P I ,,LJ2,,LJ3) in the model (30) 
for the uncalibrated and the calibrated EF bootstrap. Entries are based on 2000 replications of 600 first 

level and 600 second level bootstrap samples. 

Uncalibrated EF-t bootstrap 


size (0,O) (0,-1) (O,+l) (-1,O) (-1,-1) (-l,+l) (+l,O) (+I,-1) (+l,+l) 

.800 .825 .997 .995 .955 .956 1.000 .954 1.000 .969 


Calibrated EF-t bootstrap 

size (0,O) (0,-1) (O,+l) (-LO) (-1,-1) (-l,+l) (+l,O) (+I,-1) (+l,+l) 

The column (a ,  j )  designates ,LJ2 = -1309 + 25; and p3 = -.087 + .005 j .  

The true values are p 2  = -1309, P3 = -.087; ,LJ1 = 1122 throughout. 


6.3. Nonlinear regression with multivariate response. 

Let y,!= (yil,. . . , yin,) be the response variable for the i-th individual and consider the model 

where, as before, xi is a k x 1 vector of known constants, P' = ( P I ,. . . , P,) is a vector of 
regression parameters, and fi is a (nonlinear) function of P. The errors E: = ( E i l ,  . . . ,€ in , )  in 
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(31) are independent with zero mean and unknown covariance matrix Xi.In order to estimate P, 
we consider the weighted least squares objective function 

where Bj is a ni x ni matrix of constants which can be interpreted as a "working" covariance 
matrix. The corresponding estimating equation is 

where Ai(xi,p) = d f ,  ( x ,, P)/dP1is an n, x p matrix. We suppose that Ai (xi,P) is continuous 
in p. The weighted least squares estimator bwl,is the (assumed unique) solution to (33). Note 
that the estimating equation (33) is exactly of the form (1) and methods developed above can 
be applied directly. We have not recorded specific results here, though they can be written in a 
straightforward manner. 

Standard methods of analysis utilize the "sandwich" estimators of the variance of Pwl,. The 
methods based on the EF bootstrap provide a relatively simple alternative to this approach that 
has the potential to better reflect small sample properties and perhaps to increase accuracy. This 
area is the subject of further investigations. 

In some applications, Biis a function of P. When this is the case, it would be inappropriate 
to minimize (32), though the estimating function (33) can still be used. Typically it is solved 
through an iterative reweighting with the estimate of Bi being updated with each iteration. This 
is a further extension which would allow the applicability of these methods to the area of Gener- 
alized Estimating Equations and Generalized Linear Models (cf., e.g., Liang & Zeger 1986 and 
Zeger, Liang & Albert 1988). 

7. L, ESTIMATION 

In this section, we consider a linear estimating equation in which gi (yi, 0) is not differentiable . . 
with respect to 6'. Such situations arise in nonparametric and semiparametric models (cf., e.g., 
Koenker & Bassett 1978 and Hettmansperger 1984) and in robust regression (e.g., Huber 1981). 

We consider the general regression model (28) and suppose that P is to be estimated by 
minimization of 

n 

for some a, 1 5 a 5 2. When a = 2, this yields the least squares estimator, but for other 
values of a, a more robust procedure than least squares is obtained. For example, a = 1yields 
the median regression; cf., e.g., Koenker & Bassett (1978). In general, we have the following 
estimating equation, 

We consider a = 1.5for which both the multidimensional and nuisance parameter problems 
can be addressed. We confine attention to simple linear regression, f (xi,P)  = x:P, and the 
corresponding estimating equation 
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The EF bootstrap procedures for estimating the whole parameter P or components of P can be 
applied to this problem in a straightforward manner. The following simulations are based on 
1000 replications of 1000 bootstrap samples. 

For the first simulation, we consider two models for a problem with a single regressor vari- 
able: 

-	 homoscedastic errors: The model is X = Pza+ ej, i = 1 ,  . . . , n ,  where n = 20 ,  the errors 
are iid N(O,0 .25) ,Xi = -2 ,  - 1 . 9 , .  . . , -1 .1 ,1 .1 ,  . . . , 2 and /3 = 1. 

-	 heteroscedastic errors: The model is = /3zi + z:ei, i = 1 ,  . . . , n with n ,z i ,  p, and 
errors defined as above. 

TABLE7: Coverage percentages and average confidence intervals (with standard deviations) for the L, 
estimating function of Section 7. 

Homoscedastic Heteroscedastic 

errors errors 

Norm 1 

Ave CI 


(s.d.) 


Norm2 


Ave CI 


(s.d.) 


iid C-t 

Ave CI 


(s.d.) 


Paired-t 


Ave CI 

(s.d.) 


EF-t 


Ave CI 


(s.d.) 


iidEF-t 


Ave CI 


(s.d.) 


Table 7 summarizes average confidence intervals for the various methods in this example and 
the results are similar to those reported in Table 3 and discussed in Section 6. The normal ap- 
proximation (Norm2) based on the score or estimating function St performs considerably better 
than Norml. The EF and iid EF procedures do well overall; they have good coverage properties 
and relatively smaller average interval size than the other bootstrap competitors. 

For the second simulation. we consider the model 

with x l i ,  x2i and ei all generated independently from the standard normal distribution. (This 
is a random design matrix where, for each simulation, a new set of independent variables is 
generated). We take n = 20, and the true parameters Pi are set at 0. In the first simulation we took 
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ci = 1and in the second, we considered heteroscedastic errors with ci = 0.li, i = 1,. . . ,20.  
Simulation results are reported in Table 8 for estimation of the vector parameter ,D and in Table 9 
for estimation of P3. 

TABLE8: Coverage probabilities of approximate confidence regions for the vector parameter in the L,  
estimation problem of Section 7. 

homoscedastic errors heteroscedastic errors 

testlnomlevel 0.80 0.90 0.95 0.975 0.80 0.90 0.95 0.975 

x2 a ~ ~ 2 0.67 0.792 0.879 0.925 0.718 0.834 0.885 0.933 
EF-t 0.825 0.928 0.974 0.99 0.849 0.935 0.976 0.991 

iid-x2 0.755 0.876 0.93 0.968 0.777 0.89 0.943 0.982 

iid EF-t 0.793 0.897 0.948 0.974 0.82 0.91 0.96 0.983 

The results in Tables 8 and 9 are similar to those in Tables 5 and 4 for the nonlinear model 
simulation of Example 6. The EF-t bootstrap does very well for both homoscedastic and het- 
eroscedastic errors in the estimation of P3 with accurate coverage probabilities. As before, there 
is some over coverage in the EF procedures for the vector case and an additional calibration 
would improve this. 

TABLE9: Coverage probabilities for the regression parameter P 3  in the linear regression model (L, 
estimation) in Section 7. 

homoscedastic errors heteroscedastic errors 

8. COMMENTS AND DISCUSSION 

The estimating function bootstrap works well in many situations and provides a good alterna- 
tive to other bootstrap methods or asymptotic approximations. The EF bootstrap methods are 
straightforward, intuitively appealing and simple to implement. They generally involve much 
less computation than many competing bootstrap methods. 

It is mentioned in Remark 3 but bears repeating that our methods are based on the studentized 
variables with variance estimates based on f and @ as, for example, in (16). This gives a 
functionally invariant statistic so that issues of parameterization do not arise and the properties of 
inferential procedures based on this score appear to be very good. Standardizing or studentizing 
the estimating function or generalized score function through use of and Ŵ can give very poor 
results in models with a high degree of nonlinearity or with independent variables that exert a 
high degree of influence on the estimates. 

In the results reported for estimating P3 in Table 4 and in other simulations we have done, 
the EF bootstrap works well for the estimation of a single parameter in the nuisance parameter 
case. On the other hand, estimation of a vector parameter in Table 5 gave poorer results for the 
EF bootstrap. This difficulty with vector estimation seemed generally to be the case in examples 
where there are observations that have relatively high influence. The following points are worth 
mentioning: 

i. It is encouraging that the EF bootstrap does so well in examples involving estimation in 
the presence of nuisance parameters. This is a more important applied problem than that 
of estimating a vector parameter. 
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ii. The vector EF procedure is shown in the appendix to generate confidence regions that are 
accurate to order n - 3 / 2 whereas, for nuisance parameters, the EF bootstrap confidence 
regions are generally accurate to asymptotic order n-l .  This is a striking illustration that 
the asymptotic results may not provide much guidance in a particular example; cf. Lee & 
Young (1996) for interesting comment on this point. 

iii. The calibration of the EF bootstrap would apparently increase the asymptotic accuracy of 
the vector procedure to order n - 2  (cf. Hall 1986 and Beran 1987). In examples we con- 
sidered, this calibration does remedy the difficulty with the EF the vector results. Hall & 
Martin (1996) advocate the use of "the double bootstrap" on percentile methods as a gen- 
eral tool for constructing accurate confidence intervals. In following this recommendation, 
the EF bootstrap offers a substantial advantage since computation for the double bootstrap 
is well within reasonable bounds. 

iv. There appears to be very little in the literature on simultaneous estimation of vector pa- 
rameters. It appears however, that this is a difficult problem and one where many of the 
conventional bootstrap and other procedures perform very poorly. Yatrakos, in an unpub- 
lished report, presents some results which suggest that estimation of a vector parameter is 
inherently difficult for the bootstrap process. 

There are many areas which require further investigation. 

1. The interplay (and conflict) between bootstrap procedures and conditionality is a general 
area that requires careful consideration. There are potential advantages in estimating the 
distribution of the pivotal through reflecting more of the observed sample characteristics 
in the bootstrap sample. Respecting stratification in the study in the bootstrap sampling, 
or even introducing post hoc stratification may be a way to do this. On the other hand, 
the notion of conditioning on strata can also result in insufficient latitude to estimate the 
distribution with sufficient accuracy using bootstrap methods. The common means prob- 
lem with small ni and large k offers an example where one apparently cannot stratify in 
resampling. On the other hand, if ni is large and k is small, then stratification is essential. 
What general strategies should be used? 

2. 	It would be possible to develop an EF Jackknife procedure or a "wild bootstrap (cf., 
e.g., Wu 1986) that we would expect to work well in some instances. In the context of 
a regression model with iid errors, the permutation (or randomization) distribution sug- 
gested by Fisher (1937) and further developed by Kempthorne (1954) and Hinkelman & 
Kempthorne (1994, pp. 41-44) could be applied. It would involve bootstrap resampling 
without replacement rather than with replacement, but otherwise would parallel the iid C 
or iid EF procedures. 

3. 	In this paper, we have restricted attention to linear estimating functions with independent 
terms. The general idea, however, of estimating the distribution of the estimating function 
is useful more generally. Extending these ideas to include, e.g., simple time series models 
is an area of current investigation. 

4. Asymptotic normal and x2 approximations to the generalized score statistics (the studen- 
tized EF statistics) do remarkably well. They give rise to procedures that are invariant 
under reparameterization and which have much better accuracy than methods based for 
example on the estimator directly. It may be possible to develop more accurate analytical 
approximations to the generalized score and this may be worth investigation. 

APPENDIX: ASYMPTOTIC PROPERTIES 

In this Appendix, we establish the asymptotic properties of the EF bootstraps. In subsections 1 
and 2, we obtain the Edgeworth expansions of St (y ,  O ) ,  and S: as defined in Section 2 of the 
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paper and so establish the second order approximations. We also show the validity of Edgeworth 
expansions for Q ( y ,  0 )  and Q* as defined in Section 4. Subsection 3 establishes the asymptotic 
results for the EF bootstraps for nuisance parameters. In subsection 4, we consider the asymp- 
totic results for the EF-iid bootstrap in both linear and non-linear regression applications with 
homogeneous errors discussed in Sections 6 and 7. The main aspect of these results which re- 
quire new development relates to the replacement of 0 with 0 in the resampling associated with 
S* and S,*. The condition A5 is needed to address this and allows the proof of Lemma 3. 

I. Edgeworth expansions and EF bootstraps. 

From the central limit theorem, it follows that 

v-1/2s*3NP(O, I ) ,  	 (36) 

where is defined in (5). If = Ve + o P ( n - l / ' ) ,the first order approximation of the distribu- 
tion of S* to that of S ( y ,  0 )  follows directly from (2) and (36). 

To examine whether a second order approximation holds, we compare the Edgeworth 
expansions of St (y ,  0 )  and St for general p = dim(0) .  For this purpose, we introduce 
some notation that follows Hall & Horowitz (1996). Let hi (y i ,  0 )  be the vector of dimen- 
sion of k (say) that contains the unique components (eliminating repetitions) of gj (yi  , 0 )  and 
gi (yi 0)gi ( y i ,  0)'. [Note that, k < p + p(p + 1 ) / 2 . ]  Similarly, for the bootstrap, we de- 
fine hi = hi ( y i ,  0) and let hr , i = 1 ,  . . . ,n be the corresponding bootstrap sample from 
{ h l ,. . .,h,) .  Let T, = n-l  C : = ,  hi(yi ,  0 ) ,  T,* = n-' C:=lh,*, Q ,  = n 1 I 2 { ~ ,- E(T,))  
and $ki = n 1 I 2 { ~ , *- E*(T,*)) .  

We require the following assumptions: 

Al. 	The true value 00 is an interior point of the compact parameter space 52. It is the unique 
solution in 52 to the equation Ee,S(y ,  0 )  = 0. Further 6 + 00 ( a . ~ . ) .  

A2. (i) the smallest eigenvalue of n-' Cy=,c o ~ { h i ( y i ,00))  is bounded away from zero; 
(ii) The average sixth moments n- l  Cy=lEllhi (yj , 0 0 )  [ I6 are bounded away from infinity 
and for every positive E ,  

A3. 	Let m be the vector of all possible moments of the fonn 

where 2 5 e 5 6,  w(l) = 0 i f e  is even and 112 i f e  is odd, and Qnjkis the jk component 
of the vector rk,. Similarly, let m ,  be the corresponding vector of moments of the fonn 

where 2 5 e < 6 and 9ijkis the jk component of the vector Q:. It is assumed that 
m ,  - m = o p ( n - I / ' ) .  

lim sup sup I<, ( t ,  00) I < 1 
n+W Iltll>b 

for every positive b. 

satisfiesh, ( y ,  , 0 )  of( t  , 0 )  <,The characteristicfunction A4. 
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A5. Let 
n 

fn ( t ,  8) = n-' C exp{ihj (y j ,  8) t )  
j=1 

For every b ,  6 > 0, thefunction 

is continuous at O0 a.s. 

Assumption A1 ensures that there is an open ball inside the parameter space Q,such that for 
all n large enough, the estimator is inside the open ball almost surely. Assumption A2(i) ensures 
that S ( y ,  8), V ( y ,  8), S t (y ,  8) and Q(y,  8) are smooth functions of T,, so that the Taylor ex- 
pansions about E(T,) are valid. The main difference between the EF bootstrap and the classical 
bootstrap is that the EF bootstrap is based on resampling hi, which depends on the estimator 0. 
To ensure a valid Edgeworth expansion of the bootstrap 4 ; ,  we need the condition (37), As- 
sumption A5 and Assumption Al.  Note that Assumption A4 implies that h, is non lattice. The 
case h, lattice is an important one that we do not consider here. 

We now state the main results regarding the Edgeworth expansions. Let U = 
limn,, var(4,) and Un = var*(4;).From Assumption A3, U, = U + o p ( n - I / 2 ) .Since 
St ( y ,8) = V ( y ,L ~ ) - ~ / ~ S ( ~ ,8) and both V ( y ,  8)-'I2 and S(y ,  8) are differentiable functions 
of T, in a neighbourhood of v = lim,,, we can write St(y ,  8) = n - ' 1 2 ~ ( ~ , ) .ET,, Let 
G be the p x k matrix, G = dB(v) /dvland note that G'UG = I, is the asymptotic variance 
of St.  Let 4, ( x ;  C )  be the q-variate normal density at x with mean 0 and covariance matrix C, 
and let Q q ( x ;C )be the corresponding distribution function. We will use 4,(x) = $,(x; I )  and 
@,(x)= Qq(x;I )  and the standard notation, 4 = $1 and @ = Ql for the univariate case. Let 
D = dldu'. 

THEOREM1 .  Under Assumptions A1-A4, the following two results hold: 
2 

(38)i) SUP P{St ( y ,8) 5 x ) -QP ( 2 )-zn-'l2 1 $,. ( D ;  m)mP (u)  du = ~ ( n - ~ / ' ) ,
x  ERP r=l u s x  

where y5, is a polynomial function (in p variables Dl, . . . , Dp)whose coeficients are continuous 
functions of m. 

(39)(ii) SU"P{Q(Y,8 )  < z )  - i 2 { l+ n- l r (u ,  m ) }  d ~ ( x ;< u)  = ~ ( n - ~ / ~ ) ,  

where n ( z ,  m )  is an odd polynomial function of z whose coeficients are continuous functions of 
m and Xiis a X 2  variable with p degrees of freedom. 

THEOREM2. Under Assumptions A1-A5, the following expansions are valid. 
2 

(i) sup - z $ P  ( D ,  m n ) 4 p ( ~ )  = ~ ~ ( n - ~ / ~ ) .P* (S; 5 x )  Qp ( x )  - n+l2 du 
XERP r=l 

THEOREM3. IfAssumptions A1-A5 hold, then 

sup IP{St(y,8 )  < x }  - P* (S; 5 x )1 = o P ( n - l )
xERP 

and 
sup IIP(Q(y, 8) < z)-P*(Q*< z)ll = ~ ~ ( n - ~ l ~ ) .  

2 
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To provide a better understanding of the above notation and theorems, we consider the 
scalar case @ = 1). In this case, hi(y i , d )  = ( g i ( y i ,d ) , g ; (y i ,  d ) ) ' ,  Tn = (8 ,j2) , where 
j = n- 'Cgi (y i ,d )  and32 = so that St = St(y ,d)  = n ' 1 2 ~ ( ~ , )n - ' C g ~ ( y i , d ) ,  = 

- j2)lI2.  St+ has the corresponding bootstrap form. The Edgeworth expansions for 
St ( y ,0) and St+are, respectively, 

and 

where 
v2 = lirn n-' B ) } ~ ,  v -2 =E O { ~ ~ ( Y . ,  n-' 

n-rw C { g i ( ~ , ,  

/13 = C{gi(~, p3 = lirn n-' C E ~ { ~ ~ ( K ,n-' n-tw 8)13. 

Here, $d(x, m )  is an odd polynomial function of x with coefficients depending on m. In the 
notation of (38), we find that $'(D, m )  = ,u3(-2D3 + 3D)/(6v3)and $2 is related to $I  and 
is quite complicated in form. The leading terms in (40) and (41) are identical. The second terms 
depend on the second and third moments and, from Assumption A3, agree to order n-l so that 

Thus, the studentized EF bootstrap is accurate to second order. 
Since Q(y,d )  = S:, it follows from (40) and (41) that 

and 

1 t 112P*(Q*< z)  = @ ( % ' I 2 )  -@(-z1I2)+ n- $2(z , mn)q5(z112) 

-n-'$f(-z1I2, mn)4(-z1I2) + ~ , ( n - ~ / ~ ) .  

The second term has been eliminated. Since m, - = ~ , ( n - ' / ~ ) ,m the terms involving 
agree to the higher order, n-3/2.In other words, 

This property of symmetric intervals is of course well known and, to some extent, can result 
from the cancellation of somewhat larger errors at both endpoints. 

It follows in general from Theorem 3 that the confidence region (13) based on the quadratic 
form Q is third order accurate Op(n-3/2).  

2. Proof o f  theorems. 

L E M M A1 .  Suppose Assumptions Al-A4 hold. Then 

(42)SUP P(\lrn 5 X )  - @k ( x ;U )- n P / 2 p ,  ( D ,m)4k( u ;U )  = ~ ( n - ~ l ~ ) ,  
X E R ~  

where p, ( D ,m) is a polynomial function in k variables whose coeficients are continuous func- 
tions of m and is defined in a manner similar to Bhattacharya & Rao (1976,p. 54, Equation 7.1I). 
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Proofi The {h i  (yi ,O o )  : i > 1 )  is a sequence of independentrandom vectors with value in R ~ .  
Assumptions A1-A4 ensure the conditions of Theorem 20.6 of Bhattacharya & Rao (1976, 
p. 216). The Edgeworth expansion (42) follows directly from that theorem and Corollary 20.4. 

LEMMA2. IfAssumptions AI-A5 hold, then 

For given n, h i ,  . . .,h i  are iid random vectors with values in R ~ ,and ?@A has zero mean and 
a finite sixth moment. To apply Theorem 20.1 of Bhattacharya & Rao (1976, p. 208), it would 
be sufficient to show that CramCr's condition holds for h i .  For a given n,however, hi  is discrete 
so Cramdr's condition is not satisfied. We therefore prove the following Lemma 3 first and then 
return to Lemma 2. We instead use a result Theorem 3.3 of Bhattacharya (1987), which in turn 
depends on a result of Babu & Singh (1984). The followingLemma 3 is analogous to Lemma 2 
of Babu and Singh and essentially extends their result to independentsequences as we require. 

LEMMA3. Suppose Assumptions A1-A5 hold. Then,for any b > 0, there exist positive constants 
E and 6 such that 

lirn sup sup 1 fn  (t,8 )I 5 1 - E a s . ,  
n-tm b l ( ( t ( ( S e 6 "  

(43) 

where fn  ( t ,8 )  = n-' Cy=lrxp{ ih j  (yj , 8 ) t )  is the characteristicfunction of h; 

proof. ~ i r s twe note that Efn  ( t ,$0) = n-' C;=l Zn (t, $0) and from Assumption A4, it follows 
that 

lim sup sup Efn  ( t ,O o )  < 1 
n-too ( ( t l (>b 

for any b > 0. This is an extension of Cramdr's condition for independent but not identically 
distributed random variables related to conditions discussed, e.g., in Liu (1988). This, together 
with the condition on the moments in Assumption A2, is sufficient to extend the argument in 
Babu & Singh (1984) to apply to the independentsequence {hn(yn,$0)).Thus, we find that for 
any b > 0, there exist positive constants E and 6 such that 

limsup sup J f n ( t , O o ) l < l - E ,  a.s. 
n- tw  b l ( l t ( l < e 6 "  

Now from Assumption A5, it follows that there exists a constant r > 0 such that 

sup lim sup sup I f n  ( t ,8) I < 1 - E ,  a.s. 
I le-eo(l<r n-tw b<lltll<@n 

From Assumption Al, I Idn - Oo 1 1  < I- a.s. and hence 

This is sufficient to establish (43) since 

limsup sup I fn ( t ,8 )1< sup limsup sup I f n ( t , O ) I < l - ~ a . s .  
n - tw  b<lltllSe6" Ile-eoll<f n-tw b<llt l (<e6" 

Proof of Lemma 2.  From Lemma 3, this lemma follows using a proof identical to that of Theo-
rem 3.3 of Bhattacharya(1987). 
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Proof of Theorem 1. Both V (y, 8) and S(y, 0) are smooth functions of T,.From Lemma 1, we 
have the Edgeworth expansion of @, to order 0, (n-3/2). From Theorem 2 and Remark 1 .1  of 
Bhattacharya & Ghosh (1978), the Edgeworth expansion for St(y, 8) = H(T,) can be obtained 
to order ~ , ( n - ~ / ~ ) .Then let s = 6 and use Theorem 1 and Remark (2.2) of Chandra & Ghosh 
(1979) to show that Q(y, 8) = S(y,  8)'V-'(y, 8)S(y,8) has Edgeworth expansion (39). 

The proof of Theorem 2 uses Lemma 2, but otherwise is identical to that of Theorem 1 .  
Theorem 3 follows immediately from Theorems 1and 2. 

3. Nuisance parameters. 

Following the notation of Section 4.2, we consider the Edgeworth expansions of Qll (y, 8),a1(Y,81) and Q;, . The only essential difference from Theorem 1 is that Q l l  (y, 8) depends 
on the derivatives of g, (y, , 8). Thus we let h, (yi ,0 )  be a vector containing the unique compo-
nents of gi (y, ,B), gi (yi ,0)gi(y, ,0) '  and agi (Y,,0)/80;. Following Theorems 1-3, we have 

THEOREM4. Suppose S(y, 8) is differentiable with respect to B2 and the Assumptions Al-A5 
hold with h, (yj ,8) as redefined immediately above. Then 

For the case of linear regression, Qll(y,  8) depends on el only, and one can construct a third 
order accurate confidence region of 81 based on Q;, and Q l l  (y, 8). In the nonlinear models, 
however, Ql l (y ,  8) depends on O2 and we use Gl l (y ,  81) instead. From Edgeworth expansions, 
it can be shown that 

which is only second order accurate. 

4. Asymptoticproperties of the EF-iid bootstraps. 

Asymptoticproperties of the EF-iid bootstrap and their studentizedversions can also be derived. 
We require assumptions similar to A1-A5, to establish a result analogous to Theorem 3 for the 
iid EF bootstrap. Thus, we find 

sup IP{S;~(~,8) < x) -P*(s~'~*5 x)1 = 0,(nV1) 
x E R P  

and 
sup (P{Q"~(y, 8) < Z )  - p*( Q ~ ~ ~ *< Z) I = 0, 

2 

giving second and third order accurate results respectively. The results for the nuisance parameter 
case are identical to those discussed in Section A3 for the EF bootstraps. 
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