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Abstract

The purpose of this paper is to locate and estimate the eigenvalues of stochastic matrices. We present several estimation

theorems about the eigenvalues of stochastic matrices. Meanwhile, we obtain the distribution theorem for the eigenvalues

of tensor product of two stochastic matrices. We will conclude the paper with the distribution for the eigenvalues of

generalized stochastic matrices.
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1. Introduction

In the past two decades, due to study on matrix theory and some engineering background problems, many scholars

dedicated to special matrix , and obtained some important and valuable results (TingZhu, 2007 - Yigeng Huang, 1994).

But in combination matrix theory, combinatorics, probability theory (especially Markov chain), mathematical economics

and reliability theory etc. areas there is a special class of non-negative stochastic matrix, which in recent years becomes

concerned. This article discusses location, distribution and estimate of the eigenvalue for stochastic matrix . Section 2

introduces the concepts of stochastic matrix and generalized stochastic matrix. Section 3 gives a few estimation theorems

of stochastic matrix eigenvalue, also the eigenvalue distribution for tensor product of two stochastic matrices is obtained.

In section 4, we discuss the eigenvalue distribution for generalized stochastic matrices.

2. Basic concept

Definition 1. If the sum of elements in every row in the n order non-negative matrix A is 1, A is row stochastic matrix; If

the sum of elements in every column in the n order non-negative matrix A is 1, A is column stochastic matrix; If both A
and AT are row stochastic matrices, A is double stochastic matrix; Row stochastic matrix, column stochastic matrix and

double stochastic matrix are called stochastic matrix, denoted by S (n).

Definition 2. If the sum of elements in every row in the n order non-negative matrix A is s, A is called the first generalized

row stochastic matrix; If the sum of elements in every column in the n order non-negative matrix A is s, A is called the first

generalized column stochastic matrix; If both A and AT are the first generalized row stochastic matrices, A is called the first

generalized double stochastic matrix; The first generalized row stochastic matrix, the first generalized column stochastic

matrix and the first generalized double stochastic matrix are called the first generalized stochastic matrix, denoted by

S I(n).

Definition 3. If the absolute value sum of elements in every row in the n order matrix A is 1, A is called the second gen-

eralized row stochastic matrix; If the sum of elements in every column in the n order matrix A is 1, A is called the second

generalized column stochastic matrix; If both A and AT are the second generalized row stochastic matrices, A is called

the second generalized double stochastic matrix; The second generalized row stochastic matrix, the second generalized

column stochastic matrix and the second generalized double stochastic matrix are called the second generalized stochastic

matrix, denoted by S II(n).

Definition 4. If the absolute value sum of elements in every row in the n order matrix A is s, A is called the third

generalized row stochastic matrix; If the sum of elements in every column in the n order matrix A is s, A is called the

third generalized column stochastic matrix; If both A and AT are the third generalized row stochastic matrices, A is called

the third generalized double stochastic matrix; The third generalized row stochastic matrix, the third generalized column

stochastic matrix and the third generalized double stochastic matrix are called the third generalized stochastic matrix,

denoted by S III(n).

S I(n), S II(n) and S III(n) are called generalized stochastic matrices. Obviously, for S (n), S I(n), S II(n) and S III(n), we have

the following simple conclusions: (1).S (n) ⊂ S I(n) ⊂ S III(n); (2).S (n) ⊂ S II(n); (3).S (n) ⊂ S II(n) ⊂ S III(n).

3. Eigenvalue estimate of stochastic matrix

Theorem 1. Suppose A = (ai j)n×n is a row stochastic matrix and m = min{aii, i = 1, 2, · · · , n}, then

λ(A) ⊂ G(A) = {z : |z − m| ≤ 1 − m},
where λ(A) is denoted the whole eigenvalues of matrix A, G(A) is Gerschgorin disc of matrix A.
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Proof: Since λ is an arbitrary eigenvalue of matrix A = (ai j)n×n and X = (x1, x2, · · · , xn)T ∈ Rn×1 is the corresponding

column eigenvector, let

yi =
xi

ti
,where ti(i = 1, 2, · · · , n)is positive number,

and

|ym| = max|yi|(i = 1, 2, · · · , n),

and from AX = λX, we get

λtiyi =

n∑
j=1

ai jt jy j,

λtmym =

n∑
j=1

am jt jy j = tmammym +

n∑
j=1, j�m

t jam jy j.

Multiply right each item of the above equation with y∗m, then

λtmymy∗m = tmammymy∗m +
n∑

j=1, j�m

t jy jy∗m,

i.e.

λtm − tmamm =

n∑
j�m

t jam jy jy∗m

|ym|2 .

By using trigonal inequality, we get

|λtm − tmamm| ≤
n∑

j=1, j�m

|t jam j|,

i.e.

|λ − amm| ≤ Pm =

n∑
j=1, j�m

|am j| = 1 − amm.

Therefore,

|λ − m| = |λ − amm + amm − m| ≤ |λ − amm| + |amm − m| ≤ 1 − amm + amm − m = 1 − m.

Since λ is an arbitrary eigenvalue of matrix A = (ai j)n×n, then we have

λ(A) ⊂ G(A) = {z : |z − m| ≤ 1 − m},
so the eigenvalues of A are located in the Gerschgorin disc whose center is m = min{aii, i = 1, 2, · · · , n} and radius is

1 − m.

Theorem 2. Suppose A = (ai j)n×n is a row stochastic matrix and Mi = m
i
ax{ai j, j = 1, 2, · · · , n}, then

λ(A) ⊂ G(A) = {z : |z − Tr(A)

n
| ≤

√√
n − 1

n
(

n∑
i=1

Mi − (Tr(A))2

n
)},

where λ(A) is denoted the whole eigenvalues of matrix A, G(A) is denoted disc whose center is Tr(A)
n and radius is√

n−1
n (

n∑
i=1

Mi − (Tr(A))2

n ).

Proof: From paper (Yixi Gu, 1994) and for arbitrary matrix A, we have

|λ − Tr(A)

n
| ≤

√
n − 1

n
(‖A‖2

F −
(Tr(A))2

n
).

And because A = (ai j)n×n ∈ S (n), ‖A‖2
F ≤

n∑
i=1

Mi. So we have

λ(A) ⊂ G(A) = {z : |z − Tr(A)

n
| ≤

√√
n − 1

n
(

n∑
i=1

Mi − (Tr(A))2

n
)},
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Similarly, we get

λ(A) ⊂ G(A) = {z : |z − Tr(A)

n
| ≤

√
(n − 1)(1 − (

Tr(A)

n
)2}.

Theorem 3. Suppose A = (ai j)n×n and B = (bi j)m×m are row stochastic matrices, m1 = min{aii, i = 1, 2, · · · , n} and

m2 = min{b j j, j = 1, 2, · · · ,m}, then

λ(A ⊗ B) ⊂ G(A ⊗ B) = {z : |z − m1| ≤ 1 − m1} · {z : |z − m2| ≤ 1 − m2},
where λ(A⊗ B) is denoted the whole eigenvalues of tensor product for matrix A and matrix B, G(A⊗ B) is the oval region

of the product for elements of Gerschgorin disc whose center is m1 = min{aii, i = 1, 2, · · · , n} and radius is 1 − m1 and

Gerschgorin disc whose center is m2 = min{b j j, j = 1, 2, · · · ,m} and radius is 1 − m2.

Proof: Let λ(A) = {λ1, λ2, · · · , λn} and λ(B) = {μ1, μ2, · · · , μm}. From theorem 1, we have

λ(A) ⊂ {z : |z − m1| ≤ 1 − m1},
λ(B) ⊂ {z : |z − m2| ≤ 1 − m2}.

And since λ(A ⊗ B) = {λiμ j|i = 1, 2, · · · , n, j = 1, 2, · · · ,m}, we get

λ(A ⊗ B) ⊂ G(A ⊗ B) = {z : |z − m1| ≤ 1 − m1} · {z : |z − m2| ≤ 1 − m2}.
Therefore, the eigenvalues of tensor product for matrix A and matrix B are located in the oval region G(A ⊗ B).

Theorem 4. Suppose A = (ai j)n×n is a row stochastic matrix and Mi = m
i
ax{ai j, j = 1, 2, · · · , n}, then

λ(A) ⊂ G(A) =

n⋃
i=1

{z : |z − aii| ≤
√

(n − 1)Mi(1 − aii)},

where λ(A) is denoted the whole eigenvalues of matrix A, G(A) is denoted generalized Gerschgorin disc of matrix A.

Proof: Because λ is an arbitrary eigenvalue of matrix A = (ai j)n×n and X = (x1, x2, · · · , xn)T ∈ Rn×1 is the corresponding

column eigenvector. For AX = λX, we get
n∑

j=1

am jx j = λxm.

So

(λ − amm)xm =

n∑
j=1, j�m

am jx j.

From Schwarz inequality and trigonal inequality, we have the following result:

|λ − amm| = |
∑
j�m

am jx jx∗m

|xm|2 | ≤
√∑

j�m

|am j|2 ·
√∑

j�m

| x j

|xm| |
2| x∗m
|xm| |

2 ≤
√

(n − 1)
∑
j�m

|am j|2 =
√

n − 1Rm,

where Rm =
√ ∑

j�m
|am j|2,m = 1, 2, · · · , n. And since

Rm =

√∑
j�m

|am j|2 ≤
√

Mm

∑
j�m

|am j| =
√

Mm(1 − amm),m = 1, 2, · · · , n,

|λ − amm| ≤
√

(n − 1)Mm(1 − amm)

holds.

Because λ is an arbitrary eigenvalue of matrix A,

λ(A) ⊂ G(A) =

n⋃
i=1

{z : |z − aii| ≤
√

(n − 1)Mi(1 − aii)}.

The theorem is proven.
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4. Eigenvalue Estimate for Generalized Stochastic Matrix

Theorem 5. (Brauer. A., 1964) Suppose A = (ai j)n×n ∈ S I(n), aii and a j j are the most small diagonal elements in A, then

λ(A) ⊂ G(A) = {z : |z − aii||z − a j j| ≤ (s − aii)(s − a j j)},
where λ(A) is denoted the whole eigenvalues of matrix A, G(A) is denoted Cassini oval region of matrix A.

Theorem 6. Suppose A = (ai j)n×n ∈ S I(n) and B = (ai j)m×m ∈ S I(m) are row stochastic matrices, then

λ(A ⊗ B) ⊂ G(A ⊗ B) = {z : |z − aii||z − a j j| ≤ (s − aii)(s − a j j)} · {z : |z − bii||z − b j j| ≤ (s − bii)(s − b j j)},
where λ(A⊗ B) is denoted the whole eigenvalues of tensor product for matrix A and matrix B, G(A⊗ B) is the oval region

of the product for Cassini oval region elements of matrix A and Cassini oval region elements of matrix B.

Proof: The method is same to theorem 3, which is leaven for readers.

Theorem 7. Suppose A = (ai j)n×n ∈ S III(n) and m = min{|aii|, i = 1, 2, · · · , n}, then

λ(A) ⊂ G(A) = {z : |z − m| ≤ s + m},
where λ(A) is denoted the whole eigenvalues of matrix A, G(A) is the disc whose center is m = min{|aii|, i = 1, 2, · · · , n}
and radius is s + m.

Proof: From Gerschgori disc theorem, we have

|λ − amm| ≤ Pm =

n∑
j=1, j�m

|am j| = s − |amm|.

Therefore

|λ − m| = |λ − amm + amm − m| ≤ |λ − amm| + |amm − m| ≤ s − |amm| + |amm| + m = s + m.

Because λ is an arbitrary eigenvalue of matrix A = (ai j)n×n,

λ(A) ⊂ G(A) = {z : |z − m| ≤ 1 + m}.
So the eigenvalues of matrix A are located in the disc whose center is m = min{|aii|, i = 1, 2, · · · , n} and radius is s + m.

Theorem 8. Suppose A = (ai j)n×n ∈ S III(n) , B = (ai j)m×m ∈ S III(m) and m1 = min{|aii|, i = 1, 2, · · · , n}, m2 =

min{|b j j|, j = 1, 2, · · · ,m}, then

λ(A ⊗ B) ⊂ G(A ⊗ B) = {z : |z − m1| ≤ s + m1} · {z : |z − m2| ≤ s + m2},
where λ(A ⊗ B) is denoted the whole eigenvalues of tensor for matrix A and matrix B, G(A ⊗ B) is the oval region of the

product for elements of disc whose center is m1 = min{|aii|, i = 1, 2, · · · , n} and radius is s + m1 and disc whose center is

m2 = min{|b j j|, j = 1, 2, · · · ,m} and radius is s + m2.

Proof: The method is same to theorem 3, which is omitted.

Theorem 9. Suppose A = (ai j)n×n ∈ S III(n) , aii and a j j are the most small module diagonal cross elements in A, then

λ(A) ⊂ G(A) = {z : |z − aii||z − a j j| ≤ (s + |aii|)(s + |a j j|)},
where λ(A) is denoted the whole eigenvalues of matrix A, G(A) is denoted Cassini oval region of matrix A.

Theorem 10. Suppose A = (ai j)n×n ∈ S I(n) and B = (ai j)m×m ∈ S I(m) are row stochastic matrices, then

λ(A ⊗ B) ⊂ G(A ⊗ B) = {z : |z − aii||z − a j j| ≤ (s + |aii|)(s + |a j j|)} · {z : |z − bii||z − b j j| ≤ (s + |bii|)(s + |b j j|)},
where λ(A⊗ B) is denoted the whole eigenvalues of tensor product for matrix A and matrix B, G(A⊗ B) is the oval region

of the product for Cassini oval region elements of matrix A and Cassini oval region elements of matrix B.
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