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In order to analyze whether the use of the cortical activity, estimated from noninvasive EEG recordings, could be useful to detect
mental states related to the imagination of limb movements, we estimate cortical activity from high-resolution EEG recordings
in a group of healthy subjects by using realistic head models. Such cortical activity was estimated in region of interest associated
with the subject’s Brodmann areas by using a depth-weighted minimum norm technique. Results showed that the use of the
cortical-estimated activity instead of the unprocessed EEG improves the recognition of the mental states associated to the limb
movement imagination in the group of normal subjects. The BCI methodology presented here has been used in a group of disabled
patients in order to give them a suitable control of several electronic devices disposed in a three-room environment devoted to
the neurorehabilitation. Four of six patients were able to control several electronic devices in this domotic context with the BCI
system.
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1. INTRODUCTION

Brain-computer interface (BCI) is an area of research that
is rapidly growing in the neuroscience and bioengineering
fields. One popular approach to the generation of a BCI sys-
tem consists in the recognition of the patterns of electrical
activity on the scalp gathered from a series of electrodes by
a computer. One of the problems related to the use of sur-
face EEG is the blurring effect due to the smearing of the
skull on the transmission of the potential distribution from
the cerebral cortex toward the scalp electrodes. This happens
since the skull has a very low electric conductivity when com-
pared with the scalp or the brain one. The blurring effect
makes the EEG data gathered from the scalp electrodes rather
correlated, a problem not observed in the cortical EEG data
recorded from the invasive implants in monkeys and man.
Such correlation makes the work of the classifiers problem-
atic, since the features extracted from the different scalp elec-
trodes tend to be rather similar and this correlation is hard
to be disentangled with blind methods like principal compo-
nent analysis.

In this last decade, high-resolution EEG technologies
have been developed to enhance the spatial information con-
tent of EEG activity [1, 2]. Furthermore, since the ultimate
goal of any EEG recording is to provide useful information
about the brain activity, a body of mathematical techniques,
known as inverse procedures, has been developed to estimate
the cortical activity from the raw EEG recordings. Exam-
ples of these inverse procedures are the dipole localization,
the distributed source, and the cortical imaging techniques
[1–4]. Inverse procedures could use linear and nonlinear
techniques to localize putative cortical sources from EEG
data by using mathematical models of the head as volume
conductor.

More recently, it has been suggested that, with the use
of the modern high-resolution EEG technologies, it could
be possible to estimate the cortical activity associated with
the mental imagery of the upper limbs movements in hu-
mans better than with the scalp electrodes [4–6]. We cur-
rently use this technology to estimate the cortical current
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density in particular region of interest (ROI) on the mod-
eled brain structures from high-resolution EEG recordings to
provide high-quality signals for the extraction of the features
useful to be employed in a BCI system.

In this paper, we would like to illustrate how, with the use
of such advanced high-resolution EEG methods for the esti-
mation of the cortical activity, it is possible to run a BCI sys-
tem able to drive and control several devices in a domotic en-
vironment. In particular, we first describe a BCI system used
on a group of normal subjects in which the technology of
the estimation of the cortical activity is illustrated. Then, we
used the BCI system for the command of several electronic
devices within a three-room environment employed for the
neurorehabilitation. The BCI system was tested by a group of
six patients.

2. METHODOLOGY

Subjects

Two groups of subjects have been involved in the training
with the BCI system. One was composed of normal healthy
subjects while the second one was composed of disabled per-
sons who used the BCI system in attempt to drive electronic
devices in a three-room facility at the laboratory of the foun-
dation of Santa Lucia in Rome. The first group was composed
by fourteen healthy subjects that voluntarily participated to
the study. The second group of subjects were formed by six
patients affected by Duchenne muscular dystrophy. Accord-
ing to the Barthel index (BI) score for their daily activity, all
patients depended almost completely on caregivers, having a
BI score lower than 35. In general, all patients were unable to
walk since they were adolescent, and their mobility was possi-
ble only by a wheelchair which was electric in all (except two)
patients and it was driven by a modified joystick which could
be manipulated by either the residual “fine” movements of
the first and second fingers or the residual movements of
the wrist. As for the upper limbs, all patients had a residual
muscular strength either of proximal or distal arm muscles
that was insufficient for carrying on any everyday life activ-
ity. The neck muscles were as weak as to require a mechan-
ical support to maintain the posture in all of them. Finally,
eye movements were substantially preserved in all of them.
At the moment of the study, none of the patients was using
technologically advanced aids.

2.1. Patient’s preparation and training

Patients were admitted for a neurorehabilitation program
that includes also the use of BCI system on a voluntary base.
Caregivers and patients gave the informed consent for the
recordings in agreement with the ethical committee rules
adopted for this study. The rehabilitation programs aimed
to allow to the patients the use of a versatile system for the
control of several domestic devices by using different input
devices, tailored on the disability level of the final user. One
of the possible inputs for this system was the BCI by using
the modulation of the EEG.

The first step of the clinical procedure consisted of an in-
terview and a physical examination performed by the clini-
cians, wherein several levels of the variables of interest (and
possible combinations) were addressed as follows: the degree
of motor impairment and of reliance on the caregivers for
everyday activities as assessed by current standardized scale,
that is, the Barthel Index (BI) for ability to perform daily ac-
tivities; the familiarity with transducers and aids (sip/puff,
switches, speech recognition, joysticks) that could be used as
the input to the system; the ability to speak or communi-
cate, being understandable to an unfamiliar person; the level
of informatics alphabetization measured by the number of
hours per week spent in front of a computer. Information
was structured in a questionnaire administered to the pa-
tients at the beginning and the end of the training. A level
of system acceptance by the users was schematized by asking
the users to indicate, with a number ranging from 0 (not sat-
isfactory) to 5 (very satisfactory), their degree of acceptance
relative to each of the controlled output devices. The train-
ing consisted of weekly sessions; for a period of time ranging
from 3 to 4 weeks, the patient and (when required) her/his
caregivers were practicing with the system. During the whole
period, patients had the assistance of an engineer and a ther-
apist in their interaction with the system.

2.2. Experimental task

Both normals and patients were trained by using the BCI sys-
tem in order to control the movement of a cursor on the
screen on the base of the modulation of their EEG activity.
In particular, the description of the experimental task per-
formed by all of them during the training follows. Each trial
consisted of four phases.

(1) Target appearance: a rectangular target appeared on
the right side of the screen, covering either the upper
or the lower half of the side.

(2) Feedback phase: one second after the target, a cursor
appeared in the middle of the left side of the screen
and moved at a constant horizontal speed to the right.
Vertical speed was determined by the amplitude of sen-
sorimotor rhythms (see Section 2.6). A cursor sweep
lasted about three seconds.

(3) Reward phase: if the cursor succesfully hit the target,
the latter flashed for about one second. Otherwise, it
just disappeared.

(4) Intertrial interval: the screen stayed blank for about
two seconds, in which the subject was allowed to blink
and swallow.

Subjects were aware that the increase or decrease of a spe-
cific rhythm in their EEG produces a movement of the cur-
sor towards the top or the bottom of the screen. They were
suggested to concentrate on kinesthetic imagination of upper
limb movements (e.g., fist clenching) to produce a desyn-
chronization of the µ rhythm on relevant channels (cursor
up), and to concentrate on kinesthetic imagination of lower
limb movements (e.g., repeated dorsiflexion of ankle joint) to
produce a contrasting pattern (with possible desynchroniza-
tion of µ/β rhythm over the mesial channels, cursor down).
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Using this simple binary task as performance measure, train-
ing is meant to improve performances from 50–70% to 80–
100% of correct hits.

2.3. Experimental training

The BCI training was performed using the BCI2000 software
system [7]. An initial screening session was used to define the
ideal locations and frequencies of each subject’s spontaneous
µ- and β-rhythm activity. During this session, the subject was
provided with any feedback (any representation of her/his µ
rhythm), and she/he had to perform motor tasks just in an
open loop. The screening session consisted in the alternate
and random presentation of cues on opposite sides of the
screen (either up/down -vertical- or left/right -horizontal).
In two subsequent runs, the subject was asked to execute
(first run) or to image (second run) movements of her/his
hands or feet upon the appearance of top or bottom target,
respectively. This sequence was repeated three times. From
the seventh run on, the targets appeared on the left or right
side of the screen, and the subject was asked to move (odd
trials) or to image (even trials) her/his hands for a total of 12
trials. The offline analysis based on pairs of contrasts for each
task aimed at detecting two, possibly independent, groups of
features which will be used to train the subject to control two
independent dimensions in the BCI. Analysis was carried on
by replicating the same signal conditioning and feature ex-
traction that was also used in the online processing (training
session). Datasets are divided into epochs (usually 1-second
long) and spectral analysis is performed by means of a maxi-
mum entropy algorithm, with a resolution of 2 Hz.

Different from the online processing, when the system
only computes the few features relevant for BCI control,
all possible features in a reasonable range are extracted and
analyzed simultaneously. A feature vector is extracted from
each epoch composed by the spectral value at each frequency
bin between 0 and 60 Hz for each spatially filtered channel.
When all features in the two datasets under contrast have
been extracted, a statistical analysis is performed to assess
significant differences in the values (epochs) of each feature
in the two conditions. Usually an r2 analysis is performed,
but in the case of 2-level-independent variables (such in case
tasks = {T1,T2}, t-test, ANOVA, etc.) would provide the
analogous results. At the end of this process, the results were
available (channel-frequency matrix and head topography of
r2 values) and evaluated to identify the most promising set of
features to be enhanced with training.

Using information gathered from the offline analysis, the
experimenter set the online feature extractor so that a “con-
trol signal” was generated from the linear combination of
time-varying value of these features, and then passed to a lin-
ear classifier. The latter’s output controls how the position of
the feedback cursor was updated. During the following train-
ing sessions, the subjects were thus fed back with a represen-
tation of their µ-rhythm activity, so that they could learn how
to improve its modulation.

Each session lasted about 40 minutes and consisted of
eight 3-minute runs of 30 trials. The task was increased in

difficulty during the training, so mainly two different task
classes can be defined.

During the training sessions, subjects were asked to per-
form the same kinaesthetic imagination movement they were
asked during the screening session. An upward movement
of the cursor was associated to the bilateral decrease of µ
rhythm over the hand area (which usually occurs during
imagination of upper limb movement). Consequently, the
(de)synchroinization pattern correlated to imagination of
lower limb movements made the cursor move downwards.
With the same principle, the horizontal movement of the
cursor to the left (right) was linked to the lateralization of µ
rhythm due to imagination of movement of the left (right).

To do so, two different control signals were defined. The
vertical control signal was obtained as the sum of the µ-
rhythm amplitude over both hand motor areas; the value
of µ-rhythm amplitude over the foot area was possibly sub-
tracted (depending on the individual subject’s pattern). The
horizontal control channel was obtained as the difference be-
tween the µ-rhythm amplitudes over each hand motor areas.

During the first 5–10 training sessions, the user is trained
to optimize modulation of one control signal at a time,
that is, overall amplitude (“vertical control”) or lateralization
(“horizontal control”) of the µ rhythm. Either control chan-
nel was associated with vertical or horizontal movement of a
cursor on the screen, respectively.

For the training of “vertical” control, the cursor moved
horizontally across the screen from left to right at a fixed
rate, while the user controlled vertical movements towards
appearing targets, justified to the right side of the screen.
Analogously, for the training of “horizontal” control, the cur-
sor moved vertically across the screen from top to bottom at
a fixed rate, while the user controlled horizontal movements
towards appearing targets justified to the bottom side of the
screen.

This phase was considered complete when the healthy
subjects reached a performance of 70–80% correct hits (60–
65% for patients) on both monodimensional tasks. In case
of bidimensional task that was performed only by the nor-
mal subjects, the cursor appeared in the center, and its move-
ment was entirely controlled by the subject, using both con-
trol channels (“horizontal” and “vertical”) simultaneously.

2.4. Domotic system prototype features

The system core that disabled patients attempted to use in
order to drive electronic devices in a three-room laboratory
was implemented as follows. It received the logical signals
from several input devices (including the BCI system) and
converted them into commands that could be used to drive
the output devices. Its operation was organized as a hierar-
chical structure of possible actions, whose relationship could
be static or dynamic. In the static configuration, it behaved
as a “cascaded menu” choice system and was used to feed the
feedback module only with the options available at the mo-
ment (i.e., current menu). In the dynamic configuration, an
intelligent agent tried to learn from the use which would have
been the most probable choice the user will make. The user
could select the commands and monitor the system behavior
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Figure 1: A realistic head model employed for the estimation of
the cortical activity. Three layers are displayed, namely, representing
dura mater, skull, and scalp. Also the electrode positions are visible
on the scalp surface.

through a graphic interface. The prototype system allowed
the user to operate remotely electric devices (e.g., TV, tele-
phone, lights, motorized bed, alarm, and front door opener)
as well as monitoring the environment with remotely con-
trolled video cameras. While input and feedback signals were
carried over a wireless communication, so that mobility of
the patient was minimally affected, most of the actuation
commands were carried via a powerline-based control sys-
tem. As described above, the generated system admits the
BCI as one possible way to communicate with it, being open
to accept command by other signals related to the residual
ability of the patient. However, in this study we report only
the performance of these patients with the BCI system in the
domotic applications.

2.5. Estimation of the cortical activity from
the EEG recordings

For all normal subjects analyzed in this study, sequential MR
images were acquired and realistic head models were gener-
ated. For all the patients involved in this study, due to the
lack of their MR images, we used the Montreal average head
model. Figure 1 shows realistic head models generated for a
particular experimental subjects, together with the employed
high-resolution electrode array. Scalp, skull, dura mater, and
cortical surfaces of the realistic and averaged head models
were obtained. The surfaces of the realistic head models were
then used to build the boundary element model of the head
as volume conductor employed in the present study. Con-
ductivities values for scalp, skull, and dura mater were those
reported in Oostendorp et al. [8]. A cortical surface recon-
struction was accomplished for each subject’s head with a
tessellation of about 5000 triangles on average, while the av-
erage head model has about 3000 triangles.

The estimation of cortical activity during the mental im-
agery task was performed in each subject by using the depth-
weighted minimum norm algorithm [9, 10]. Such estima-
tion returns a current density estimate for each one of the

thousand dipoles constituting the modeled cortical source
space. Each dipole returns a time-varying amplitude repre-
senting the brain activity of a restricted patch of cerebral
cortex during the entire task time course. This rather large
amount of data can be synthesized by computing the en-
semble average of all the dipoles magnitudes belonging to
the same cortical region of interest (ROI). Each ROI was de-
fined on each subject’s cortical model adopted in accordance
with its Brodmann areas (BAs). Such areas are regions of the
cerebral cortex whose neurons sharing the same anatomical
(and often also functional) properties. Actually, such areas
are largely used in neuroscience as a coordinate system for
sharing cortical activation patterns found with different neu-
roimaging techniques. In the present study, the activity in the
following ROI was taken into account: the primary left and
right motor areas, related to the BA 4, the left and right pri-
mary somatosensory and supplementary motor areas.

2.6. Online processing

Digitized EEG data were transmitted in real time to the
BCI2000 software system [7] which performed all necessary
signal processing and displayed feedback to the user. The
processing pipe can be considered of several stages, which
process the signal in sequence. Only the main ones will be
mentioned below: spatial filter, spectral feature extraction,
feature combination, and normalization.

Spatial filter

A general linear combination of data channels is imple-
mented by defining a matrix of weights that is multiplied
to each time sample of potentials (vector). This allowed im-
plementation of different spatial filters, such for instance the
estimation of cortical current density waveforms on the cor-
tical ROIs.

Spectral feature extraction

It was performed every 40 milliseconds, using the latest
300 milliseconds of data. An autoregressive spectral estima-
tor based on the maximum entropy algorithm yielded an
amplitude spectrum with resolution of 2 Hz. Maximum fre-
quency was limited to 60 Hz

Feature selection and combination

A small subset of those spectral features (frequency bins ×
EEG channels or ROIs) that were significantly modulated by
the motor imagery tasks was linearly combined to form a sin-
gle control signal. Selection of responsive channels and fre-
quency bins and determination of combination weights were
operated before each online session (see Section 2.7). In gen-
eral, only two or three spectral amplitude values (depend-
ing on individual patterns) were generally used to obtain the
control signal.
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(a) (b)

(c) (d)

Figure 2: Sequence of two healthy subjects that play the ping-pong with the use of the BCI described in the text. Subjects control the cursor
movement along the vertical directions. Sequence from (a) to (d).

Normalization

The control channel was detrended to avoid biases of the cur-
sor and scaled so that the resulting vertical deflection of the
feedback cursor was visible but not saturated. In fact, the ver-
tical position of the cursor was updated every 40 milliseconds
by a number of pixels (positive or negative) equal to the out-
put by this stage. Normalization was adaptive and based on
the estimate of the moving average and standard deviation of
the control signal. During the very first session of each sub-
ject (screening session), since no offline analysis was available
to guide feature selection and combination, the subject was
given no online feedback (targets only).

2.7. Offline analysis

After artifact rejection, the EEG interval corresponding to the
feedback phase were binned into two classes—up or down,
depending on the target appeared in each trial. The spatial
filtering and feature extraction stages of the online processing
were replicated. Since no feedback delay issue had to be con-
sidered during the offline analysis, spectral estimation was
computed on 1-second long epochs, overlapped by 50% (i.e.,
only five spectral estimates had to be computed for each 3-
second long trial yielding about 600 spectral estimates per
class for the whole session).

For each of the EEG channels or ROIs waveforms em-
ployed and for each one of the 30 frequency bins in which
the EEG spectral interval was divided, a contrast was per-
formed to assess statistically significant modulations induced
on a specific feature. To this aim, we computed for each fea-
ture (dependent variable) the coefficient of determination
(r2) that is the proportion of the total variance of the fea-
ture samples accounted for by target position. This index had
been previously utilized in literature for similar experimental

setups [11] and allows direct comparison with published re-
sults. A fictitious independent variable was created, using val-
ues +1 or −1 in correspondence of “down” or “up” epochs,
respectively. A negative sign was attributed to the r2 value
when dependent and independent variables were controvari-
ant. Viewing statistical results from a different point of view,
features characterized by a high r2 value are those that max-
imize prediction of the current target. Higher values of r2

indicate that the subject has gained steadier control of EEG
rhythms (in fact they generally increase during the training,
from values below 0.1 to values above 0.3).

3. RESULTS

By applying the mentioned signal processing techniques in
the context of the proposed BCI setup, we used the r2 as
an index of reliability of the recognition of subject’s men-
tal activity. The comparisons between the maximum values
of the r2 that takes into account the best usable feature (fre-
quency/ROI or scalp channel) were performed for the unpro-
cessed EEG data as well as for the estimated cortical activity
by using the procedure already described above. Mean r2 is
0.20±0.114 SD for the unprocessed EEG case, 0.55±0.16 SD
for the cortical current density estimation case. The differ-
ences are relatively constant across the subjects, and a paired
student’s t test returned a highly significant difference be-
tween the two conditions (P < 10−5). Once all the normals
have completed the training, we choose the two with the best
performance and we train them to use a different BCI appli-
cation, namely, the old game of electronic ping-pong.

Figure 2 shows a sequence with two subjects that played
a ping-pong game with the use of the BCI system realized
along the guidelines provided above. The subjects are able
to control the movement of the vertical cursors while the
white cursor, simulating the ball, moves across the screen.
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(a) (b)

(c) (d)

Figure 3: Two sequences of commands realized through the BCI systems at the foundation Santa Lucia in Rome. In the first row, foundations
(a) and (b), there is a sequence with the BCI system that opens a door. In the red circles of the first row, a person enters through a door that
was opened with the use of the BCI based on the EEG µ rhythm. The second row, (c) and (d), shows the closure of a light with the use of the
same BCI system. The BCI system is controlled with the cursor at the right of the screen.

The sequence reads from (a) to (d). The two subjects are
able to control the device by performing the 95 and 96% of
successful hits during a game lasting several minutes, with a
speed of about 5 correct hits per minute per subject.

3.1. Experimentation with the patients

As described previously in the methods section, all the pa-
tients underwent a standard BCI training. Over the 8–12 ses-
sions of training, four out six patients were able to develop a
sensorimotor reactivity sufficiently stable to control the cur-
sor with performance as high as over 63%. They could image
either foot or hand movements and the related sensorimo-
tor modulation was mainly located at midline centroparietal
electrode positions. Two patients were not able to control the
cursor with a percentage superior to 55% and were not taken
into consideration further here in the context of the use of
BCI system. At the end of the training, the four patients were
able to control the several system outputs, namely the do-
motic appliances. According to the early results of the ques-
tionnaire, these patients were independent in the use of the
system at the end of the training and they experienced (as
they reported) “the possibility to interact with the environ-
ment by myself.” A schematic evaluation of the degree of the
system acceptance revealed that amongst the several system
outputs, the front door opener was the most accepted con-
trolled device. Such application that controls the access to
the domotic environment in the three-room facility rehabil-
itation laboratory is illustrated in the first row of Figure 3. In
particular, the figure shows two sequences of commands re-
alized through the BCI system. In the first row, (a) and (b),

there is a sequence in which the BCI system was able to open
a door. The red circles of the first row highlight a person that
enters through the door that was opened by the successful
modulation of the EEG µ rhythm. The second row, (c) and
(d), shows the closure of a light with the use of the same BCI
system. The feedback from the BCI system is displayed on the
screen with the position of the cursor at the lower right of the
screen.

4. DISCUSSION

The data reported here suggest that it is possible to retrieve
the cortical activity related to the mental imagery by using
sophisticated high-resolution EEG techniques, obtained by
solving the linear inverse problem with the use of realistic
head models. Of course, the analysis of the distribution of
the potential fields associated to the motor imagery in hu-
mans has been already described [4–6, 11]. However, in the
context of the brain-computer interface, it assumes impor-
tance if the activity related to the imagination of arm move-
ment could be better detected by using such high-resolution
EEG techniques than with the use of the unprocessed EEG. It
is worth to note that the cortical estimation methodology il-
lustrated above is suitable for the online applications needed
for the BCI device. In fact, despite the use of sophisticated re-
alistic head models for scalp, skull, dura mater, and cortical
surface, the estimation of the instantaneous cortical distribu-
tion from the acquired potential measures required a limited
amount of time necessary for a matrix multiplication. Such
multiplication occurs between the data vector gathered and
the pseudoinverse matrix that is stored offline before the start
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of the EEG acquisition process. In the pseudoinverse matrix
is enclosed with the complexity of the geometrical head mod-
eling with the boundary element or with the finite element
modeling techniques, as well as the priori constraints used
for the minimum norm solutions.

The described methodologies were applied in the context
of the neurorehabilitation in a group of six patients affected
by the Duchenne muscular dystrophy. Four out of six were
also able to control with the BCI system several electronic
devices disposed in a three-room facility, we described previ-
ously. The devices guided by them with an average percent-
age score of 63% are as follows: (i) a simple TV remote com-
mander, with the capabilities to switch on and off the device
as well as the capability to change a TV channel; (ii) the open-
ing and closing of the light in a room; (iii) the switch on and
off of a mechanical engine for opening a door of the room.
These devices can be, of course, also controlled with differ-
ent inputs signals that eventually uses the residual degree of
muscular control of such patients. This experiment was here
reported because it demonstrates the capability for the pa-
tient to accept and adapt themselves to the use of the new
technology for the control of their domestic environment.

There is a large trend in the modern neuroscience field to
move toward invasive electrodes implants for the recording
of cortical activity in both animals and humans for the real-
ization of an efficient BCI device [12–14]. In this paper, we
have presented evidences that suggest an alternative method-
ology for the estimation of such cortical activity in a non-
invasive way, by using the possibilities offered by an accu-
rate modeling of the principal head structures involved in the
transmission of the cortical potential from the brain surface
to the scalp electrodes.
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