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THE ESTIMATION OF FIXED EFFECTS IN A MIXED LINEAR MODEL 

F. Nabugoomu and O.B. Allen 
University of Guelph 

Abstract 

The estimation of fixed effects is considered for small, 
unbalanced, mixed linear models. The two-stage estimator, in 
which the variance components are first estimated by ML or 
REML, is compared to the intra-block (IB) estimator, the 
ordinary least squares (OLS) estimator (ignoring the random 
effects) and the Gauss-Markov (GM) estimator. Comparison is 
made, based on 100 simulated data sets each, for 6 designs (3 
BIBD's and 3 unbalanced designs). In comparing loss of 
information, relative to the GM lower bound, the two-stage 
procedures (using either ML or REML) are recommended for all 
but the smallest and least balanced design. The study also 
compared estimates of the variance of the two-stage 
estimators, using either the GM lower bound or the Kackar­
Harville (KH) approximation. Estimators of the variance using 
REML estimates of the variance components are recommended, 
since estimators using ML estimates were seriously biased 
downward for all designs considered. 

Key Words: mixed model, variance components, REML, ML, two­
stage estimator, recovery of inter-block information, Kackar­
Harville variance approximation. 

1. Introduction 

Consider the classical mixed linear model 

y = X ~ + z u + e (1 ) 

where E(y) = X~, Cov (y) = V = <1>0 Va + <1>1 V1 , X and Z are 
taken to be of full column rank, Va = I and V 1 = Z Z'. If the 
variance components, <1>0 and <1>1' are known, the minimum variance 
linear unbiased (Gauss-Markov) estimator of ~ is 

and the variance- covariance matrix of this estimator is 

Var (~GM) = (X'V-1X)-1 

(2 ) 

(3 ) 

The usual two-stage 
components are unknown, is 

procedure, when the variance 
to retain the same form for the 
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estimator of ~, but to replace the variance components with 
estimates. In the context of incomplete block designs, this 
procedure is referred to as the recovery of inter-block 
information. Historically, the variance components have been 
estimated by equating selected quadratic forms to their 
expectations (Kempthorne, 1952). More recently, maximum 
likelihood (ML) and residual maximum likelihood (REML), 
usually assuming a multivariate normal likelihood, have been 
used to estimate the variance components (Harville, 1977). 

It is easily shown that the conditional expectation 
(conditioning on the estimated variance components) of the 
two-stage estimator of ~ remains unbiased, regardless of what 
the variance component estimates are, but the estimator will 
no longer be minimum variance. The unconditional expectation 
is also unbiased, provided the estimators of the variance 
components are even functions of y - X ~ (Kackar and Harville, 
1981) . 

When the variance components are accurately estimated, the 
above two-stage estimator will be very close to the optimal 
estimator. However, it is not obvious that the two-stage 
estimator will perform well for small data sets where the 
variance components may be poorly estimated. Historically, it 
was recommended not to recover inter-block information if the 
design has fewer than 10 degrees of freedom for estimating the 
block mean square (Cochran and Cox, 1957). 

For small incomplete block designs, the recommended 
procedure is to condition on the block totals (ie. treat the 
block effects as fixed), obtaining an estimator of ~ which 
utilizes only intra-block information. A third alternative is 
to ignore the blocks altogether and simply estimate ~ using 
the unadjusted treatment means. Both of these estimators are 
also unconditionally unbiased. 

In this paper the behavior of the two-stage estimators 
(using ML or REML) is compared with the Gauss-Markov (GM) 
estimator (assuming the variance ratio is known), the intra­
block (IB) estimator 

~ IB = (W I W) -lW' y (4 ) 

where W = (I - Z(Z'Z)-lZ')X, and the least squares estimator 
ignoring blocks (OLS) 

~OLS = (X'X) -1 X'y (5 ) 

for a series of small designs (both balanced and unbalanced) . 

since all estimators are unconditionally unbiased, the 
estimators will be compared based on their variances. 
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For the latter two estimators, the variances are 

Var ( ~ IB ) = <I> 0 ( w ' w) -1 ( 6 ) 

Var(~OLS) = (X'X)-lX'VX(X'X)-l (7) 

For the two stage estimators, the variance cannot be written 
simply as a matrix expression. However, we know that it is 
bounded below by Var (~GM) • 

The variance of ~ML and ~REML is commonly taken to be (3), 
with the variance components replaced by their estimates. The 
second question addressed by this paper is how well does this 
estimator of the variance of the two stage estimators behave. 
Kackar and Harville (1984) showed that 

var(a'~TS) =a' (X'V-1X)-la + E{a' (~TS - ~GM) ( ~TS - ~GM) 'a} (8) 

They approximated the second term by trace(A(<I» B(<I») where 

A ( <I> ) = Var ( a a' ~ GM) 

Jf 
A A A 

and B(<I» is the mean square error matrix of <I> = (<1>0' <1>1)'. 
Details of the evaluation of these expressions are given in 
Nabugoomu (1988). 

The numerical assessment of the loss of information due 
to estimation of the ratio of the variance components, has 
been carried out for incomplete block designs (t is the number 
of treatments, k the block size and r the number of 
replicates) in some special cases. Kempthorne (1952) found, 
for a lattice (t=25, k=5, r=3), that the average percent 
increase in average variance of treatment differences, due to 
estimation of the ratio of the variance components (ie. the 
percent loss of information) was never larger than 2.7% 
Yates (1940) reported that the percent loss of information for 
four lattice designs (t=25, k=5, r=2i t=16, k=4, r=3i t=27, 
k=3, r=3i 5x5 lattice square, r=3) ranged from 1.7% to 4.6% . 
Graybill and Deal (1959) provide an upper bound for the loss 
of information for balanced incomplete block designs for which 
the error degrees exceed 4 i for the three cases tabulated 
(t=6, k=3, r=10i t=6, k=4, r=10i t=10, k=3, r=9) the upper 
bounds fall between 7.8 and 9.8 %. Khatri and Shah (1975) 
presented methods for evaluating the exact variance of the 
two-stage estimator, when the variance components are 
estimated by the method of moments. They evaluated four BIB 
designs (the smallest being t=10, k=5, r=6) and 4 PBIB designs 
and in no case did the loss of information exceed 7.3%. Tong 
and Cornelius (1989) compared estimators of the slope of a 
simple linear regression, under a one-fold nested error 
structure. They compared two stage estimators using the method 
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of moments or ML to estimate the variance components, with the 
Gauss-Markov estimator, the ordinary least squares estimator 
and the intra-block estimator. All of the results above, with 
the exception of Tong and Cornelius, assume the variance 
components are estimated by equating certain quadratic forms 
to their expectations. 

2. Simulation Details 

In order to examine in more detail the loss of 
information due to the estimation of the ratio of variance 
components, especially for small and unbalanced designs, a 
simulation study was conducted. The simulated data were 
generated according to the following model 

where the e ij were independently sampled from a Normal 
population with mean 0 and variance <1>0 = 40 and the u j 

independently from a Normal population with mean 0 and 
variance <1>1' independently of e ij . For each of the designs 
considered, 100 data sets were generated. This was done for 
A = <1>1 / <1>0 = 0.0, 0.25, 0.5, 1, 2, 4, 8, 12, but the same random 
numbers were used for each of the ratios. This was done 
deliberately in order to improve the precision of the 
comparison of the effect of the ratio. 

We report here on the results from 6 "small" designs, three 
BIB designs and three unbalanced designs. The following BIB's 
were considered: 

t k r b Q E plan 
--------------------------------

4 2 3 6 1 .67 11.1 
5 3 6 10 3 .83 11.la 
7 4 4 7 2 .88 11. 8 

where b is the number of blocks, Q is the number of times 
treatments are blockmates, E is the efficiency factor and plan 
refers to the plan number in Cochran and Cox (1957). The three 
unbalanced designs considered are given below: 
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DESIGN 4 DESIGN 5 DESIGN 6 

TREATMENTS TREATMENTS TREATMENTS 
1 2 3 4 1 2 3 4 1 2 3 4 5 6 

Blocks 

1 x x x x x x x x 

2 x x x x x x x 

3 x x x x x x x x x 

4 x x x x x x 

5 x x x x x x x x x x 

6 x x x x x x x 

7 x x 

8 x x x 

9 x x x x 

10 x x 

REML and ML estimates were obtained for each data set, 
using BMDP program P3V. In those data sets where the 
likelihood (for either ML or REML) was maximized by a negative 
value of ~1' the estimate of ~1 was taken to be O. 

3. Results 

Table 1 below gives the loss in information of the 
estimated difference between treatments 1 and 2, based on the 
100 simulated data sets, relative to the Gauss-Markov 
estimator (2). The loss in information is defined as the 
variance of the estimator minus the Gauss-Markov variance 
expressed as a percent of the Gauss Markov variance. The loss 
of information is given for the two-stage estimator using 
either ML or REML, the ordinary least squares estimator (5) 
and the intra-block estimator (6). The variances of the two­
stage estimators were determined empirically from the 100 
simulated data sets, but the variance of the ordinary least 
squares estimator and intra-block estimator are true values. 

For ~1 = 0, the Gauss-Markov estimator is equivalent to the 
ordinary least squares estimator. When the ratio is large, the 
Gauss-Markov estimator is equivalent to the intra-block 
estimator. It is clear from Table 1 that the ordinary least 
squares estimator performs poorly when A is large and that the 
intra-block estimator performs poorly when A is near O. 
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For all of the designs considered, except design 5, the 
two-stage procedures perform well, revealing only a modest 
loss of information. If fact, for designs 2, 3, 4 and 6 the 
estimated loss in information is negative (the empirical 
variance of the two-stage estimator is actually less than the 
Gauss-Markov lower bound) alt.hough the 80% confidence interval 
on the true loss in informatLon for these procedures includes 
a in all cases. Because the same simulated random variables 
were used for all values of the ratio, the results tend to be 
very consistent as the ratio is varied. Design 5 is too small 
and unbalanced to effectively recover inter-block information. 
For this design the intra-block estimator should be used 
unless one is confident that the ratio is less than 1.0, In 
which case the ordinary least squares estimator is 
recommended. 

The two-stage estimators generally exhibit quite similar 
loss in information. ML generally performs slightly better for 
large values of the ratio but REML performs slightly better 
for small values of the ratio. On this basis, either is 
recommended, except for design 5. 

Table 1 also compares estimates of the variance of the two­
stage estimators of the difference between treatments 1 and 2. 
The lower bound (3) is evaluated at the true value of $ and at 
the ML and REML estimates. The Kackar-Harville approximation 
(8) is similarly evaluated at $, $~ and $u~. Each entry is 
the average of the evaluations for the 100 data sets, 
expressed as a percent loss of information relative to the 
Gauss-Markov lower bound (3). These can be compared to the 
empirical variance of the two-stage estimators (columns 2 and 
3), which are unbiased. 

The estimated variance (either the lower bound or the 
Kackar-Harville approximation) tends to be smaller than the 
quanti ty it is estimating, using either ML or REML. ML, 
however, is dramatically biased downward whereas REML 
generally exhibits only a modest to negligible downward bias. 
For small unbalanced designs, the Kackar-Harville 
approximation evaluated at the true variance parameters 
appears to underestimate the true variance, at least for large 
values of the ratio. Thus, whether one wishes to estimate the 
Gauss-Markov lower bound or the Kackar-Harville approximation, 
REML is recommended over ML. 
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Table 1: Loss of infor.mation and estimation of variance for 
two-stage procedures for estimation of fixed effects 

Column 1 gives the ratio of the variance components r $1/$0' All 
the remaining columns give the difference between that 
particular variance and the GM lower bound r expressed as a 
percent of the GM lower bound. All variances refer to the 
estimated difference between treatments 1 and 2. Columns 2 and 
3 represent the empirical variance (based on 100 data sets) of 
the two-stage estimator (with the variance components estimatd 
by REML and MLr respectively). Below each is the 80% 
confidence interval for the true loss of information. Columns 
4 and 5 give the true variance for the ordinary least squares 
and intra-block estimator r respectively. The last 5 columns 
deal with the average (based on 100 data sets) of the 
estimated variances of the two-stage estimators. Columns 6 and 
7 give the estimates of the GM lower bound using r 
respectivelYr REML and ML. Columns 9 and 10 give the estimates 
of Kackar-Harville approximation r using REML and ML. Column 8 
gives the KH approximation r evaluated at the true values of 
the variance components. 

DESIGN 1 

TWO STAGE LOWER BOUND KACKAR-HARVILLE 

RATIO REML ML OLS IB REML ML EXACT REML ML 

12 7.0 3.7 512 2.0 -8.1 -52 2.1 -3.2 -51 

(-10,30) (-13,26) 

8 9.3 7.1 335 2.9 -9.3 -54 3.1 -2.5 -53 

(-8,33) (-10,30) 

4 14.4 11.0 158 5.6 -13 -52 5.7 -1.7 -49 

(-4,39) (-6,35) 

2 12.1 11.2 71 10 -15 -53 9.8 -2.8 -49 

(-5,36) (-6,35) 

9.3 9.1 30 17 -22 -53 15 -3.9 -48 

(-8,33) (-8,33) 

.5 8.2 9.5 11 25 -25 -54 21 -6.1 -48 

(-9,32) ( -8,33) 

.25 7.6 9.6 3.7 33 -27 -54 26 -7.0 -49 

(-9,31) ( -8,33) 

0 9.0 11.8 0 50 -26 -53 33 -5.4 -47 

( -8,33) (-6,36) 
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DESIGN 2 

TWO STAGE LOWER BOUND KACKAR-HARVILLE 

RATIO REML ML OLS IB REML ML EXACT REML ML 

12 -3.0 -3.1 486 .5 7.3 -14 .2 7.6 -14 

(-18,18) (-18,18) 

8 -2.8 -3.0 320 .8 7.1 -14 .3 7.6 -14 

(-18,18) (-18,18) 

4 -2.4 -2.5 154 1.5 6.6 -14 .5 7.5 -14 

(-18,19) (-18,18) 

2 -2.2 -2.3 71 2.9 5.6 -14 1.0 7.1 -13 

(-18,19) (-18,19) 

-2.9 -3.0 31 5.0 4.0 -15 1.6 6.5 -14 

(-18,18) (-18,18) 

.5 -3.0 -3.0 13 8.0 2.5 -16 2.5 5.8 -14 

(-18,18) (-18,18) 

.25 -3.9 -3.8 4.5 11 1.0 -17 3.5 5.0 -14 

(-19,17) (-19,17) 

0 -2.7 -2.5 0 20 -1.1 -18 5.6 3.8 -15 

(-18,18) (-18,18) 

DESIGN 3 

TWO STAGE LOWER BOUND KACKAR-HARVILLE 

RATIO REML ML OLS IB REML ML EXACT REML ML 

12 -4.1 -4.1 514 0.3 1.8 -33 0.1 2.1 -33 

(-19,17) (-19,17) 

8 -3.9 -4.0 339 0.4 1.6 -33 0.2 2.0 -33 

(-19,17) (-19,17) 

4 -3.5 -3.6 165 0.8 1.3 -33 0.4 1.9 -33 

(-19,17) (-19,17) 

2 -2.8 -2.7 78 1.6 0.9 -33 0.7 2.0 -32 

(-18,18) (-18,18) 

-1.7 -1.9 35 2.9 0.2 -27 1.3 2.3 -26 

(-17,20) (-17,19) 

.5 -1.9 -1.9 15 4.8 -0.7 -27 2.2 2.5 -26 

(-17,19) (-17,19) 

.25 -2.9 -2.8 5.5 7.1 -1.9 -28 3.3 2.3 -26 

(-18,18) (-18,18) 

0 -3.5 -3.0 0 14 -3.9 -28 6.7 1.6 -26 

(-19,17) (-18,18) 
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DESIGN 4 
TWO STAGE LOWER BOUND KACKAR-HARVILLE 

RATIO REML ML OLS IB REML ML EXACT REML ML 

12 -12 -13 449 1.4 -.9 -28 .7 .3 -27 

(-26,7) (-26,6) 

8 -10 -11 294 2.0 -1.4 -28 1.0 .4 -27 

(-24,9) (-25,8) 

4 -7.1 -8.1 140 3.4 -2.4 -28 1.8 .4 -26 

(-22,13) (-23,12) 

2 -3.6 -.2 64 5.9 -4.1 -34 3.0 .3 -32 

(-19,17) (-16,21) 

1.3 .4 27 9.6 -5.6 -29 4.5 -.6 -27 

(-15,23) (-15,22) 

.5 5.0 4.7 10 14 -7.4 -30 5.8 -1.6 -27 

(-11,28) (-12,27) 

.25 5.6 5.6 3.6 19 -9.1 -31 6.8 -2.9 -28 

(-11,28) (-11,28) 

0 1.2 1.4 0 29 -13 -34 8.0 -6.7 -30 

(-15,23) ( -15,23) 

DESIGN 5 

TWO STAGE LOWER BOUND KACKAR-HARVILLE 

RATIO REML ML OLS IB REML ML EXACT REML ML 

12 68 56 309 12 51 -35 14 85 -30 

(42,104) (32,90) 

8 58 50 201 15 27 -42 19 57 -38 

(33,92) (27,83) 

4 50 47 93 23 -2.0 -54 26 22 -51 

(27,83) (24,79) 

2 49 50 41 34 -16 -60 30 5.6 -56 

(25,81) (26,82) 

47 56 16 48 -20 -62 31 .4 -58 

(24,79) (32,90) 

.5 51 63 5.8 62 -22 -61 29 -2.0 -58 

(27,83) (37,98) 

.25 50 65 1.9 73 -23 -60 27 -3.1 -57 

(27,83) (39,101) 

0 57 63 0 91 -24 -57 25 -4.8 -54 

(32,91) (38,99) 
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DESIGN 6 

TWO STAGE LOWER BOUND KACKAR-HARVILLE 

RATIO REML ML OLS IB REML ML EXACT REML ML 

12 -10 -10 155 .3 -7.1 -30 .1 -7.0 -30 

(-24,9) (-24,9) 

8 -10 -10 101 .4 -7.2 -30 .1 -7.0 -30 

(-24,9) (-24,9) 

4 -10 -10 48 .8 -7.3 -30 .3 -7.0 -30 

(-24,9) (-24,9) 

2 -11 -10 22 1.4 -7.4 -29 .4 -6.9 -29 

(-25,9) (-24,9) 

1 -11 -11 9.3 2.3 -7.1 . -29 .7 -6.4 -28 

(-25,8) ( -25,8) 

.5 -11 -11 3.6 3.4 -7.4 -28 .9 -6.6 -28 

(-25,8) (-25,8) 

.25 -11 -11 1.2 4.5 -8.2 -28 1.1 -7.2 -28 

(-25,8) (-25,8) 

0 -12 -12 0 6.9 -12 -30 1.2 -11 -30 

(-26,6) (-26,7) 
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