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The estimation of nominal and real yield curves from 

government bonds in Israel 

Abstract 
We develop and test a mathematical method of deriving zero yield curve from market prices of 

government bonds. The method is based on a forward curve approximated by a linear (or 

piecewise constant) spline and should be applicable even for markets with low liquidity. The best 

fitting curve is derived by minimizing the penalty function.  The penalty is defined as a sum of 

squared price discrepancies (theoretical curve based price minus market closing price) weighted by 

trade volume and an additional penalty for non-smoothness of the yield curve.  We apply this 

method to both nominal and CPI linked bonds traded in Israel (some segments of these markets 

have low liquidity). The resulting two yield curves are used for derivation of market expected 

inflation rate.  The main problems are low liquidity of some bonds and imperfect linkage to 

inflation in the CPI linked market. Usage of forward curves as the state space for the minimization 

problem leads to a stable solution that fits the data very well and can be used for calculating 

forward rates. 

 

1. Introduction 

The term structure of default free rates is a key element in economic and financial analysis that 

involves analyzing comparisons of payment streams over time.  This term structure data is 

typically derived from traded government bonds. The term structure appropriate for discounting is 

based on the zero coupon equivalent yield.  If the term structure is to be used in order to derive 

market expectations for specific time periods in the future, it should also allow for the smooth 

derivation of the corresponding forward yields.  The task of deriving such a curve is much more 

complex in a relatively illiquid market with noisy data.  This task is even further complicated 

when deriving the term structure of yields on CPI1-indexed bonds, due to the presence of 

indexation lags, as the CPI is announced once a month, on the 15th of the following month. This 

time delay means that indexation is only partial for the most recent calendar period.  The 

                                          
1 Consumer Price Index – the average level of consumer prices during the previous month which is reported on a 
monthly basis by the Central Bureau of Statistics. 
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combination of nominal and real forward rates contains information on market expectations of 

inflation.  These rates reflect the basic discount factors used for pricing all fixed income securities. 

There are several principal methods used for deriving the zero coupon yield curve.  Many 

European central banks use the Nelson and Siegel (1987) method or its modification by Svensson 

(1994).  However, the US, Japan and the United Kingdom use the “smoothing splines” method 

(see BIS paper no 25, Zero-coupon yield curves: technical documentation, October 2005).  Many 

private companies supplying financial data also use variations of the spline method.   

In this paper, we develop and test a robust algorithm that derives smooth zero yield curves 

from bond market data in Israel.  The Israeli bond market is based on two main types of linkage – 

nominal bonds and CPI linked bonds.  While the nominal bonds are relatively liquid, many 

segments of the CPI linked bond market suffer from low and time varying liquidity.  The CPI 

linked yield curve is very important since in Israel significant parts of the economic activity 

(including many legal agreements) are linked to the CPI.  The Bank of Israel uses the CPI curve 

for the derivation of market expected inflation.  The zero-coupon yield curves are important input 

for all of the above.  The method described below calculates these curves in a smooth and robust 

manner. 

By smooth we mean that one can derive forward rates from the same curve and get 

reasonable results, even if the market is not very liquid (infrequent trades, low volume and slow 

adjustment of prices).  By robust we mean an algorithm that does not suddenly change shape from 

one day to another due to technical reasons. We also expect the shape of the yield curve to be 

stable, relative to the input data set.  For example, when dropping one bond with a small volume of 

trade we should not expect a significant change in the whole term structure. 

The advantage of using the zero-coupon yield curve is that it allows an immediate discount 

of every single future payment.  The alternative that is often used is based on yield to maturity.  

This yield can be calculated much more easily, but its use is very limited, as it is appropriate only 

for a given schedule of payments and can not be used for any other cashflow, (which differs either 

in the coupon amounts or in timing). Thus, the yield to maturity of a coupon bond is not a good 

measure of the time value of money and it should be stripped before it is used for discounting.  

The derivation of forward rates is a mathematical procedure that requires taking the derivative of 

the term structure with respect to the time to maturity.  Thus any non-smooth yield curve will lead 

to artificial jumps in the forward rates and consequently to incorrect conclusions regarding market 

expectations. 
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The liquidity of the Israeli government bond market is low in some segments (short term 

CPI linked bonds for example).  Thus the market data is often noisy and can not be used without 

taking this into account. 

We describe below an algorithm that overcomes these difficulties as it searches for the best 

fitted yield curve based on forward splines, where the fitting penalty takes into account the 

liquidity of each issue.  Moreover, for the CPI linked bonds we break up the holding period into 

CPI linked and unlinked periods and discount each cashflow appropriately. 

 

2. Government bonds in Israel 
 

The Israeli government bond market has (at the end of 2005) a market capitalization of 262B NIS2 

with an average daily trade volume in 2005 of about 1.1B NIS.  In comparison, the stock market in 

Israel has a market value of about 506B NIS with an average daily trade volume of  965M NIS, the 

corporate bond market has a value of 105B NIS with an average daily trade volume of about 250M 

NIS.  Most institutional investors rely on the government bonds as the core of their portfolios.  

There are 4 main types of government bonds issued in the local market.  They are named Makam, 

Shahar, Gilon, and Galil.  The table below summarizes their main characteristics.  The shekel 

dollar exchange rate in 2005 was around the level of   4.5 NIS = 1 USD. 

Name Original 

maturity 

Linkage Coupon Outstanding 

notional 

Average daily 

trade volume 

Makam Up to 1 year nominal Zero coupon NIS 71 B NIS 585 M 

Shahar 2-15 years nominal Fixed, annual NIS 89 B NIS 559 M 

Gilon 2-10 years nominal Floating, annual NIS 57 B NIS 163 M 

Galil 7-20 years CPI-linked Fixed, annual NIS 114 B NIS 351 M 

 

 

3. Methods of calculating zero-coupon yield curves 

 
There are three types of methods used for the estimation of a zero-coupon yield curve from bond 

market data.  The first one is based on an assumption of a parametric form of a yield curve.  The 

                                          
2 NIS stands for New Israeli Shekel which is the name of the Israeli currency, also referred to as the shekel. 
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most popular version of this method was developed by Nelson and Siegel (1987).  This method 

assumes that the instantaneous forward rates take the following functional form: 

τ
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Here β0, β1, and τ are parameters that determine the shape of the term structure.  Although this 

functional form allows for several different shapes of the term structure, Svensson (1994) 

suggested a richer family with an additional term (and two more parameters). 
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This form allows for two humps and it includes the Nelson Siegel model as a special case (when 

β3=0).  The problem with the parametric methods like these is that the functional form assumed 

from mathematical convenience does not reflect the economic behavior of interest rates.  Another 

problem is that a small change in a price of a long term bond can lead to a change of the short end 

of the derived zero-coupon yield curve for purely technical reasons.  The third problem is that 

often the shape of the yield curve based on a parametric model is not robust and changes 

significantly after a relatively small change in prices. 

 The second method is based on bootstrapping and can be used for a very efficient market 

only, where prices are observed simultaneously; there is a variety of liquid bonds with different 

maturities covering the whole range of time.  This method is not appropriate for a smaller market 

with few bonds, suffering from low liquidity. 

 The third method is based on splines (functions defined piecewise).  This method was 

developed in Vasicek and Fong (1982), and Fisher, Nychka, and Zervos (1995).  It is based either 

on a fixed or variable grid and an optimization procedure that minimizes some penalty functions. 

The goal of this paper is to construct a robust algorithm for calculating the term structure of 

interest rates from market prices of traded government bonds.  The term structure we are looking 

for is a zero-coupon term structure that can be directly used for discount factor.  Moreover, we 

would like to have as a result a smooth term structure.  The trade off between better matching 

market prices, robustness and smoothness will be described below. The algorithm is implemented 

for both nominal and CPI linked sectors. 

We use a fixed time grid, and interpolate forward rates between grid nodes using a simple 

linear function.3  Then, for any given set of key forward rates one can calculate the theoretical 

                                          
3 The same method will work for other types of interpolation between nodes. 
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prices and the degree of non-smoothness of the resulting curve. The minimization of these two 

penalties (with some weights) leads to the zero-coupon term structure of interest rates. 

 

4. Data 

 
The input of the model is based on the (almost) fixed data base of future cashflows that are 

reflected in the market price, the daily closing prices of government bonds, the volume of trade, 

and the anticipated inflation for the period between the last CPI report and the input date. 

Due to low liquidity occasionally there are very noisy observations.  We apply a filter that 

excludes any suspicious data, such as bonds that have negative yields, low trade volume, or very 

unusual price changes. 

In order to identify unusual price changes, we analyze the history of each bond over 45-60 

days, and calculate the canonical correlations of the past with the current change. This method 

uses the STATESPACE procedure of SAS and represents a stationary multivariate time series X(t) 

of dimensions R in the following form: 

)()1()( tEGtZFtZ ⋅+−⋅=  (AIC - Akaike's information criterion) 

Where Z(t) is the vector process of dimension S=R+1. The first R components of Z(t) are in fact 

X(t) and the last component is the prediction of X(t+1) based on the history. F is an S-by-S 

transition matrix, and G is an S-by-R matrix calculated by SAS. E(t) is an R-dimensional noise 

independent of X(t). 

The procedure fits a sequence of vector autoregressive models using Yule-Walker equations and 

selects the order for which Akaike's Information Criterion (AIC) is minimized (0.0001). After 

using this procedure, we have a residual for each price of each bond. We calculate the average 

residual for this date over all bonds and compute the ratio of the actual residual of a bond to the 

average of all bonds on the same date. If the ratio is greater than 3, we ignore this observation. 

 Typically the daily set consists of 10-12 bills (Makam), 6-8 notes (Shahar), and 8-34 CPI-

linked securities (Galil).  The nominal bonds are almost always liquid, while CPI-linked bonds are 

less liquid, especially those with a time to maturity of up to two years.  The CPI –linked bonds 

also have big price fluctuations (probably also due to illiquidity). 
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5. Description of the algorithm for the nominal yield curve 

 
For the nominal yield curve we use the following time grid:  

(T1, T2, …, TN) = (0, 3M, 6M, 9M, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y). Define the yet unknown vector of 

forward rates by (F1, F2, …, FN). Interpolate the forward rate linearly between the grid nodes by 

using linear interpolation.  For Ti<t<Ti+1 we have 

(1)  1
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An example of a graph showing piecewise linear interpolation between the nodes of the fixed grid 

is provided below, in figure 1. This graph is based on the following forward rates: 

F=(3.58%,3.84%,4.09%,4.32%,4.54%,5.53%,6.67%,8.82%,8.91%,6.82%). 

The forward rates are shown as represented by the dots connected by the thin line and the spot 

curve is represented by the smoother, thicker line. The graph demonstrates the way that the spot 

curve is smooth, even when the curve of the forward rates is not. 
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Figure 1. Example of forward (thin) and spot (thick) zero-coupon curves as a function of maturity. 

 

For this forward curve one can calculate the whole yield curve of zero-coupon interest rates 

by using the following formula (here )(τf  are interpolated forward rates) as explained in 

Appendix B: 
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Then, using this yield curve, one can find a theoretical price for every bond and compare the 

resulting prices with the actual prices on the Tel Aviv stock exchange.  For each bond there will be 

some difference between the actual and predicted price.  We use the sum of squares of all of these 

differences with weights as a first penalty function P(F). 

 We use the relative volume of trade as weights for the procedure.  This automatically gives 

a higher weight to a difference between the actual and expected price for a bond with high 

liquidity. In fact we do not have to calculate the spot curve from the forward rates and then price 

all of the bonds theoretically.  We price each bond from the forward curve directly using the 

following formula for a present value of one SHEKEL paid at time s: 
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By working with fixed coupons, we can immediately price each traded bond by summing up its 

discounted cash flow.  The total penalty of the first type is defined as: 
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 The second type of penalty is a penalty for a non-smoothness of the forward curve.  It is 

defined as  
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The formula above calculates the difference in slopes of the forward curve at each pair of 

consecutive segments as shown in the figure below.  

Figure 2. The non-smoothness penalty Q(F) 
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In other words, this penalty measures something similar to the second derivative or degree of non-

smoothness in the forward curve. One can introduce weights for different time intervals. For 

example, one can demand more smoothness in the short segment or in the long segment of the 

term structure.  In the current algorithm all weights are the same, but in fact the grid nodes are 

denser in the short part of the term structure, where the lack of smoothness typically takes place. 

 For each hypothetical tem structure (vector F) we have two types of penalties.  The total 

penalty is defined as 

(6)   )()( FQwFP ⋅+  

Notice that the parameter w reflects the relative importance of smoothness versus price matching. 

A higher w corresponds to a higher importance of smoothness and a lower w corresponds to a 

higher importance of better price matching. Based on a set of experiments we have chosen the 

value of w to be equal 1, as this leads to a good balance of price matching and smoothness. 

Now we perform a multidimensional optimization procedure in which we search for an 

“optimal” term structure that matches the two criteria simultaneously by minimizing the 

expression (6) over all admissible forward yield curves.  A result of this minimization is a forward 

rate vector F.  As soon as the optimal forward curve is found, one can calculate the spot curve, 

using (2).  This gives the resulting nominal zero-coupon yield curve. 

We observed several cases in which the optimization procedure is not well defined due to a 

high ratio of the biggest and the smallest eigenvalue of the matrix of second derivatives.  In such a 

case we recommend using the conjugate gradient instead of the method of steepest descent (the 

gradient method). 

 

6. CPI linked bonds 
 

The CPI linked government bonds provide only an approximate indexation due to the fact that the 

CPI index is measured discretely with a time delay.  In fact the “known index” is used each time 

that a payment occurs.  This index is the one that was measured on most recent 15-th day of a 

month and it reflects the average price level during the month that ended 15 days earlier.  For 

example, if a payment takes place on May 31, the index that was announced on May 15 will be 

used.  This index corresponds to the average price level during the month of April.  This creates a 

delay of approximately a month and a half.  
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 A similar situation exists when we need to price a linked bond on, say May 10.  Then the 

last reported index was announced on April 15 and it corresponds to the average price level of 

March.  This can create a delay of up to two months.  

  In general, at any date one can divide the indexation to three areas a, b, c as described in 

Figure 3 below.  Here t is today, c is the payment date, b is the last CPI-linkage (i.e. payment at c 

will be linked to price changes up to b). Currently (at time t) the CPI index is officially known up 

to time a.  The change of CPI between a and b will affect the payment but is not released yet and 

should be estimated, the CPI change between b and c will not affect the payment at c (but may 

affect later payments of the same security). 

 
Figure 3. CPI indexation 

 

One can calculate the present value of a single CPI indexed payment in two equivalent ways.  

First, as an expected nominal payment which is discounted at the nominal interest rate.  In this 

case we have: 
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where A is the accumulated CPI index till time a. Here r(b+c) is the zero nominal yield to time 

(b+c) calculated by the algorithm described above. The equation (7) can be used to derive the 

expected price level at time b from the bond prices directly.  

On the other hand, by discounting the CPI-linked payment at real interest rates, the 

payment can be valued in the following form: 
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here R(b) is the current zero-coupon real interest rate at time b and f(b, b+c) is the current nominal 

forward interest rate for the period starting at b and ending at the time of actual payment b+c. 

a t    b c 
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Assuming that we have a reliable estimate of CPI(t,) one can use equation (8) in order to derive 

the real interest rates from the prices of traded linked bonds. 

 Similarly to the unlinked bonds, we will use forward rates as a basis for a search for a real 

zero-coupon yield curve that reflects the observed prices and remains smooth enough. Notice that 

sometimes the payment is so close that b occurs before t, like in the figure below.  

 
Figure 4. Another possibility of a partial indexation schedule 

 

In this case we should change the pricing formula (8) to 
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Notice that this can occur for a single payment of a bond.  Here r is the nominal interest rate and 

CPI(b) is the estimated CPI index at date b.  This means that at each date on which we wish to 

derive the yield curve, we use the estimated CPI index CPI(t) and the estimated CPI index for the 

last linkage date CPI(b) (typically the 15-th of last month).  For example on August 3, 2005 we 

need to use an estimate of CPI(03-Aug-05) and estimate of CPI(15-Jul-05). This means that we 

have to use the two estimates of the CPI by economists as input, one for the month after a and 

another for the month thereafter. 

 

7. CPI linked yield curve, algorithm 

 
The same time grid that we used for calculating the nominal rate is used for calculating the CPI 

linked yield curve, however, we included only the points on the grid which are one year or longer: 

(0, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y, 15Y, 20Y). The reason for this is that there are very few CPI linked 

bonds with a time to maturity of less than one year. 

a b t c 
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Assume that we have already found the nominal yield curve (including forward rates) as 

described above.  We will choose the same grid for the CPI linked yield curve.4  Again, define the 

two penalty functions PCPI  and QCPI so that PCPI measures the cumulative price discrepancy and 

QCPI measures the total degree of non-smoothness. 

 As in (6), the total penalty is defined as 

(9)  )()( CPICPICPICPICPI FQwFP ⋅+  

A similar multi-dimensional minimization procedure5 is used to derive the real forward rates.  The 

resulting real zero coupon yield curve is constructed based on forward rates (again linearly 

interpolated between grid nodes).   

 After a series of tests we conclude that a good balance of smoothness and price matching 

can be reached with wCPI=1. 

  

 

8. Examples of the yield curves 

 
We provide below a few examples of the algorithm for the market data on selected dates. The 

figure below shows the yields to maturity of the Galil (big dots), the forward rates (thin piecewise 

linear line), and the resulting real zero coupon yield curve (thick line).  All this is based on data 

from 30-Dec-04 (Figure 5) and 26-Jan-06 (Figure 6) using the weight of wCPI=1. 

 

                                          
4 Note that in reality there are very long CPI linked bonds (till 2024) and we do not have such a long nominal yield 
curve.  We ignored all real bonds with more than TN=10 years to maturity, unless longer nominal bonds are available. 
5 Part of the problem here is that we minimize a function with a not well-defined matrix of second derivatives.  This 
takes place when some types of change lead to a very fast change of penalty, while others lead to a much slower 
change.  There are mathematical methods, like conjugate gradient method that make the convergence significantly 
faster. 
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Figure 5. Forward (thin) and spot (thick) curves on 30-Dec-04 versus the naïve yield on 

government CPI linked bonds. 
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Figure 6. Forward (thin) and spot (thick) curves on 26-Jan-06 versus the naïve yield on 

government CPI linked bonds. 
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9. Conclusions 
We described the algorithm for the calculation of nominal and real zero coupon yield curves based 

on the market prices of actively traded government bonds.  The algorithm was checked on a set of 

test dates.  The results are stable in the nominal sector (where most securities have large volumes 

of trade) and less stable in the CPI linked sector (where there are many similar securities, but the 

volume of trade is significantly lower).  We did not treat the problem of differential taxation.  

 The methods described above were used for the time interval between 2002 and 2005. The 

results are summarized in the table below. 

Table I. Nominal market 

Year Average 

penalty P(F) 

Average 

penalty Q(F) 

Average maximal 

price discrepancy6  

Maximal7 

penalty P(F)

Maximal 

penalty Q(F) 
1995 0.00019912 0.00004231 0.00271058 0.00202867 0.00191745 
1996 0.00061616 0.00038577 0.00301742 0.00376206 0.04295497 
1997 0.00036961 0.00012041 0.00268151 0.00129135 0.0040675 
1998 0.00044543 0.00037451 0.00392317 0.00286292 0.03180163 
1999 0.00030895 0.00020416 0.00317214 0.00422597 0.01969284 
2000 0.00015075 0.00005678 0.00220443 0.00105488 0.00050604 
2001 0.00009783 0.00063031 0.00168517 0.00049505 0.01041794 
2002 0.00052569 0.0008972 0.00312008 0.0019481 0.01376081 
2003 0.00029558 0.00020568 0.00225065 0.00132057 0.00424967 
2004 0.00006877 0.00012146 0.00128336 0.00026141 0.00039588 
2005 0.00006066 0.00011118 0.00104553 0.0003632 0.00079519 

 

Table II. CPI-linked market 

Year Average 

penalty P(F) 

Average 

penalty Q(F) 

Average maximal 

price discrepancy8  

Maximal9 

penalty P(F)

Maximal 

penalty Q(F) 
1995 0.00445278 0.00138223 0.03150984 0.00788276 0.02491381 
1996 0.00469162 0.00037321 0.03959047 0.01228763 0.0065063 
1997 0.00506843 0.00052505 0.04449232 0.01081413 0.01506305 
1998 0.00608959 0.00028228 0.03930329 0.01731635 0.0028997 
1999 0.00565758 0.00047301 0.03164155 0.01222326 0.00615298 
2000 0.00651909 0.0005244 0.03548496 0.01477713 0.01517334 
2001 0.00474502 0.00000417 0.03116842 0.01126441 0.00019656 
2002 0.0065881 0.00004717 0.03065667 0.01998013 0.00631004 
2003 0.003049 0.00000819 0.01763947 0.01298504 0.00051435 
2004 0.00253383 0.00001512 0.01528335 0.01352882 0.00062942 
2005 0.0027984 0.00005492 0.01271862 0.02142882 0.00303158 

                                          
6 We take the maximal price discrepancy in percents each business day and take the average of this number over the 
year.  
7 Maximal daily penalty over a specific year. 
8 We take the maximal price discrepancy in percents each business day and take the average of this number over the 
year.  
9 Maximal daily penalty over a specific year. 
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We provide in the Figure 7 below the cumulative distribution function of the pricing error 

based on the nominal bonds between 1995 and 2006 (61,131 data points).  The horizontal axis 

represents the pricing error in basis points (10bp means 0.1%), while the vertical axis is the 

cumulative distribution function of the price discrepancies. 
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Figure 7.  The cumulative distribution function of the pricing error based on nominal bonds during 

1995-2006. Price discrepancies (the horizontal axis) are in basis points. 

 

All the price discrepancies are between -150 and +150 basis points.  Out of the sample of 

61,131 observations 99.9755% are between -1% and +1%, and 99% of the price discrepancies are 

between -36bp and +36bp. For a market with low liquidity (especially during 1995-1998) this is a 

very good result. 

Based on these results, the monetary department of the Bank of Israel switched over to this 

new method of defining the zero-coupon yield curve for the purpose of inflation forecast. Similar 

algorithms are used by many companies world-wide, like RiskMetrics (www.riskmetrics.com), 

Kamakura (www.kamakuraco.com), and Episolutions (www.episolutionsinc.com). 
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Appendix A. Discrete and continuous discounting 
 

According to the Monetary Department of the Bank of Israel, the discrete discounting method used 

in Israel is based on the following formula: 
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where c is the coupon rate, Di is the number of days between the current date and the coupon 

payment. This is the act/365 method and the actual coupon payments are bigger in leap years. 

This means that the continuously compounded zero-coupon yield based on 365 days in a 

year can be translated to discrete yield according to: 
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or equivalently 

(A3)   ( )dc yy += 1ln  

and the final formula for translating continuously compounded  yield into daily yield is: 

(A4)   1−= cy
d ey . 

 

Appendix B. Forward rates 
Definitions: 

Denote by t – current time (date) and by B(s) price of a zero coupon bond maturing at s. Then 

using continuous discounting we can define the zero-coupon yield curve as )()( ssresB −= , or 

equivalently ( )
s

sBsr )(ln)( −= . 

As soon as the whole term structure of interest rates is known, one can derive the implied 

forward rates by using the following algorithm:   

 Denote by r(t) the zero coupon continuously compounded interest rate.  Then a forward 

loan (of size 1) starting at S and maturing at T can be valued as follows: 

(B1)   TTrSSr exe )()(10 −− ⋅−⋅=  

thus SSrTTrex )()( −= , this means that the continuously compounded interest on this loan is 
ySTSSrTTr ee )*()()( −− =  and (see also formula 4.1 in Hull) the forward rate between S and T: 
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(B2)   
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−
−
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Note that this formula is very similar to differentiation and the fact that we use a piecewise linear 

interpolation will lead to artificial jumps near our grid points.  For example, if the two years zero 

coupon rate r(2)=10% and a similar 3 years rate is r(3)=10.75%, the corresponding forward rate is 

y(2,3)=12.25%. 

An instantaneous forward rate can be derived when the two dates S and T are very close.  

In order to derive the limit rate when T->S we can use the L’Hopitale rule (see Hull p. 95): 
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The instantaneous forward rate is  
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Note that the discounting can be done easily with the forward rates.  The present value of 1 paid at 

time T is  
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Appendix C. Example of a difference between naive and correct rates 
 

Due to the special features of CPI linked bonds there can be a significant difference between naive 

and properly calculated interest rates.  To demonstrate such an example, see the following Figure 

8, where the points represent the naively calculated yields on Galil and the thick line shows the 

calculated CPI linked zero coupon curve as of 18-May-2003.  It seems that the calculated yield 

curve is too low (at least for long time horizon). However when looking at the price match one can 

see that the differences between actual and predicted prices are distributed around zero. To explain 

this phenomenon let us consider the following example. 
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Figure 8.  Example of misleading appearance. 

 

Consider a CPI linked bond issued today without coupons. It will pay 100 CPI linked shekels at 

time T.  However the linkage to CPI is until time b only.  Typically T-b is about 1-1.5 months.  

Then the correct formula for continuously compounded yield is 

(C1)   )(100 bTfbR eep −⋅−⋅−⋅=  

Here p is the current price of the bond, R is the continuously compounded CPI linked zero coupon 

yield for maturity b, f is the nominal forward rate starting at t and ending at T.  The formula for R 

through price becomes: 
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The naive formula for yield would be 

(C3)   Trep ⋅−⋅= 100  

And the corresponding naive yield is  
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Let’s use some numbers to see the difference. Assume that b = 1 year, T = 1 year and 1 month, and 

the forward nominal rate f = 10%, and price p = 93.  Then we get 

(C5)   R = 6.4%, 

(C6)   r = 6.7%, 

The difference is similar to what we get on Figure 8. 

 


