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ABSTRACT

Having constructed a data-based estimation rule, perhaps a logistic regression or a clas-

sification tree, the statistician would like to know its performance as a predictor of future

cases. There are two main theories concerning prediction error: (1) penalty methods such as

Cp, AIC, and SURE that depend on the covariance between data points and their correspond-

ing predictions; (2) Cross-validation and related nonparametric bootstrap techniques. This

paper concerns the connection between the two theories. A Rao-Blackwell type of relation

is derived, in which nonparametric methods like cross-validation are seen to be randomized

versions of their covariance penalty counterparts. The model-based penalty methods offer

substantially better accuracy, assuming that the model is believable.

Keywords: Cp, SURE, parametric bootstrap, degrees of freedom, Rao-Blackwellization, non-

parametric estimates.
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1. Introduction Prediction problems arise in the following way: a model m(·), for

example an ordinary linear regression, is fit to some data y producing an estimate µ̂ =

m(y); we wonder how well µ̂ will predict a future data set independently generated from

the same mechanism that produced y. Two quite separate statistical theories are used to

answer this question, cross-validation and what we will call covariance penalties, the latter

including Mallow’s Cp, Akaike’s Information Criterion (AIC) and Stein’s Unbiased Risk

Estimate (SURE). This paper concerns the relationship between the two theories.

Figure 1 illustrates a simple prediction problem. Data (xi, yi) has been observed for 157

healthy volunteers, with xi age and yi a measure of total kidney function. The original goal

was to study the decline in function over time, an important factor in kidney transplanta-

tion. The response variable y is a composite of several standard kidney-function indices. A

robust locally linear smoother “lowess(x,y, f = 1/3)” (f controlling the local window width)

produces µ̂, the indicated regression curve, with sum of squared residuals

err ≡
157∑
i=1

(yi − µ̂i)2 = 495.1 . (1.1)

Figure 1. Kidney Data: An omnibus measure of kidney function plotted versus age for

n = 157 healthy volunteers. Fitted curve is lowess(x,y, f = 1/3); sum of squared residuals

495.1. How well can we expect this curve to predict future (x, y) pairs?

However err, the apparent error, in an optimistic assessment of how well the curve in Figure

1 would predict future y values since lowess has fit the curve to this particular data set. How

well can we expect µ̂ to perform on future data?
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In this case the two theories give almost identical estimates of “Err”, the true predictive

error of µ̂: Êrr = 538.8 for cross-validation and 538.3 for the covariance penalty method, 9%

larger than (1.1). Sections 2-4 describe these calculations.

Cross-validation, and the related bootstrap techniques of Efron (1983), are completely

nonparametric. Covariance penalties on the other hand are model-based, in this case re-

lying on an estimated version of the standard additive homeskadastic model yi = µi + εi.

Nonparametric methods are often preferable, but we will show that cross-validation pays a

substantial price in terms of decreased estimating efficiency.

The model used to estimate a covariance penalty can also be employed to improve cross-

validation, by averaging the cross-validation estimate of Err over a collection of the model’s

possible data sets. This is the subject of Section 4, where it is shown that the averaged cross-

validation estimate nearly equals the covariance penalty estimate of Err. Roughly speaking,

covariance penalties are a Rao-Blackwellized version of cross-validation, (and also of the

nonparametric bootstrap, Section 6) and as such enjoy increased efficiency for estimating

prediction error.

Covariance penalties originated in the work of Mallows (1973), Akaike (1973), and Stein

(1981). The formula was extended to Generalized Linear Models in Efron (1986). Sections 2

and 3 broaden the penalty formula to include all models, and also develop it in a conditional

setting that facilitates comparisons with cross-validation and the nonparametric bootstrap.

Versions of the covariance penalty appear in Breiman (1992), Ye (1998), and Tibshirani and

Knight (1999), with Ye’s article being particularly relevant here.

2. Cp and SURE Covariance penalty methods first arose in the context where prediction

error, say Q(yi, µ̂i), is measured by squared error,

Q(yi, µ̂i) = (yi − µ̂i)2 . (2.1)

Mallows (1973) considered prediction error for the homoskedastic model

y ∼ (µ, σ2I) , (2.2)

the notation indicating that the components of y are uncorrelated, yi having mean µi and

variance σ2.

Suppose that we are using a linear estimation rule

µ̂ = My , (2.3)
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M an n× n matrix not depending on y. Define

erri = (yi − µ̂i)2 and Erri = Eo(y
o
i − µ̂i)2 (2.4)

the expectation “Eo” being over yoi ∼ (µi, σ
2) independent of y, with µ̂i held fixed. Mallows

showed that

Êrri ≡ erri + 2σ2Mii (2.5)

is an unbiased estimator for the expectation of Erri, leading to the Cp formula for estimating

Err =
n∑
i=1

Erri,

Êrr = err + 2σ2 trace(M)
[
err =

n∑
i=1

erri

]
. (2.6)

In practice we usually need to replace σ2 with an estimate σ̂2 as in the examples that follow,

see Section 7 of Efron (1986).

Dropping the linearity assumption, let µ̂ = m(y) be any rule at all for estimating µ

from y. Taking expectations in the identity

(yi − µi)2 + (µi − µ̂i)2 = (yi − µ̂i)2 + 2(µ̂i − µi)(yi − µi), (2.7)

and using E(yi − µi)2 = E0(y0
i − µi)2, gives a convenient expression for the expectation of

Erri, (2.4),

E{Erri} = E{erri + 2cov(µ̂i, yi)} . (2.8)

Since cov(µ̂i, yi) equals σ2Mii for a linear rule, (2.8) is seen to be a generalization of (2.5).

In words, we must add a covariance penalty to the apparent error erri in order to unbiasedly

estimate Erri.

Formula (2.8) is not directly applicable since cov(µ̂i, yi) is not an observable statistic.

Stein (1981) overcame this impediment in the Gaussian case

y ∼ N(µ, σ2I) (2.9)

by showing that

covi = σ2E{∂µ̂i/∂yi} (2.10)

(assuming (2.9) and a differentiability condition on the mapping µ̂ = m(y).) Since ∂µ̂i/∂yi

is observable, this leads to Stein’s unbiased risk estimate (SURE) for total prediction error,

Êrr = err + 2σ2

n∑
i=1

∂µ̂i/∂yi . (2.11)
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In the linear case it is now common, as in Hastie and Tibshirani (1990), to define

trace(M) as the degrees of freedom (df) of the rule µ̂ = My. If we are in the usual regression

or ANOVA situation where M is a projection matrix then trace(M) = p, the dimension of

the projected space, agreeing with the usual df definition. As in Ye (1998) we can extend

this definition to

df =
n∑
i=1

cov(µ̂i, yi)/σ
2 (2.12)

for a general rule µ̂ = m(y).

Traditional applications of linear models try to keep df << n. Since
∑n

i=1 Mii = df ,

this can be interpreted as Mii = O(1/n) in reasonable experimental designs. Similarly, the

informal order of magnitude calculations that follow assume

cov(µ̂i, yi) = O(1/n) . (2.13)

This might better be stated an “O(df/n)”, the crucial ingredient for the asymptotics being

a small value of df/n.

The bootstrap, or more exactly the parametric bootstrap, suggests a direct way of esti-

mating the covariance penalty cov(µ̂i, yi). Let f̂ be an assumed density for y. In the Gaussian

case we might take f̂ = N(µ̂, σ̂2I) with µ̂ = m(y) and σ̂2 obtained from the residuals of

some “big” model presumed to have negligible bias. We then generate a large number “B”

of simulated observations and estimates from f̂ ,

f̂ → y∗ → µ̂∗ = m(y∗) , (2.14)

and estimate covi = cov(µ̂i, yi) from the observed bootstrap covariance, say

ĉovi =
B∑
b=1

µ̂∗bi (y∗bi − y∗·i )/(B − 1) [y∗·i =
∑
b

y∗bi /B] , (2.15)

leading to the Err estimate

Êrr = err + 2
n∑
i=1

ĉovi . (2.16)

Both Breiman (1992) and Ye (1998) propose variations on (2.14) intended to improve the

efficiency of the bootstrap estimation procedure, see Remark A.

Figure 2 displays SURE and parametric bootstrap estimates of the coordinate-wise de-

grees of freedom dfi for the kidney data. The two sets of estimates ∂µ̂i/∂yi and ĉovi/σ̂
2
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are plotted versus agei, vividly demonstrating the decreased stability of the lowess fitting

process near the extremes of the age scale. The resampling algorithm (2.14) employed

y∗ = µ̂+ ε∗ , (2.17)

with the components of ε∗ a random sample of size n from the empirical distribution of the

observed residuals ε̂j = yj − µ̂j, (having σ̂2 = 3.17). Almost identical results were obtained

taking ε̂∗i ∼ N(0, σ̂2). The lowess estimator was chosen here because it is non-linear and

unsmooth, making the df calculations more challenging.

Figure 2. Coordinate-wise degrees of freedom for lowess fit of Figure 1, plotted versus

age. Open circles SURE estimate d̂fi = ∂µ̂i/∂yi; Solid line parametric bootstrap estimates

ĉovi/σ̂
2, (2.14-2.15), B = 1000. Total df estimates 6.85 (SURE) and 6.67 (parametric

bootstrap). The coordinate-wise bootstrap estimates are noticeably less noisy.

The two methods gave similar estimates for the total degrees of freedom df =
∑
dfi : 6.85

using SURE and 6.67 ± .30 with the bootstrap, the ± value indicating simulation error,

estimated as

n

σ̂2

[∑
(C∗b − C∗·)2

B(B − 1)

] 1
2

[C∗b =
n∑
i=1

µ̂∗bi (y∗bi − y∗·i )/n, C∗· =
∑

C∗b/B] . (2.18)

However the component-wise bootstrap estimates are noticeably less noisy, having standard

deviation 2.5 times smaller than the SURE values over the range 20 ≤ age ≤ 75.

Remark A It is not necessary that the bootstrap model f̂ in (2.14) be based on µ̂ = m(y).

The solid curve in Figure 2 was recomputed starting from the bigger model (more degrees
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of freedom) f̂ = N(µ̄, σ̂2I), with µ̄ the fit from lowess(x,y, f = 1/6), but still using f = 1/3

for m(y∗) at the final step of (2.14). This gave almost the same results as in Figure 2.

The ultimate “bigger model” is

f̂ = N(y, σ̂2I) . (2.19)

This choice, which is the one made in Ye (1998), Shen, Huang, and Ye (2002), Shen and

Ye (2002), and Breiman (1992), has the advantage of not requiring model assumptions. It

pays for this luxury with increased estimation error: the d̂f i plot looks more like the open

circles than the solid line in Figure 2. The author prefers checking the d̂f i estimates against

moderately bigger models, such as lowess(x,y, 1/6), rather than going all the way to (2.19),

see Remark C.

In fact the exact choice of f̂ is often quite unimportant. Notice that dfi ≡ cov(µ̂i, yi)/σ
2

is the linear regression coefficient of µ̂i on yi. If the regression function E{µ̂i|yi} is roughly

linear in yi than its slope can be estimated by a wide variety of devices. Algorithm 1 of Ye

(1998) takes y∗ in (2.14) from a shrunken version of (2.19),

y∗ ∼ N(y, cσ̂2I) , (2.20)

with c a constant between 0.6 and 1, and estimates dfi by the linear regression coefficient

of µ̂i on y∗i . Breiman’s “Little Bootstrap” (1992) employs a related technique, the “little”

referring to using c < 1 in (2.20), and winds up recommending c between 0.6 and 0.8 (though

c = 1 gave slightly superior accuracy in his simulation experiments.) Shen and Ye (2002)

use an equivalent form of covariance estimation, with c = 0.5.

Remark B The parametric bootstrap algorithm (2.14)-(2.15) can also be used to assess

the difference between fits obtained from two models, say Model A and Model B. We will

think of A as the smaller of the two, that is the one with fewer degrees of freedom, though

this is not essential. The estimated difference of prediction error is

∆Êrr = ∆err + 2
n∑
i=1

ĉov(∆µ̂∗i , y
∗
i ) , (2.21)

∆ denoting “Model A minus Model B”.

Calculation (2.21) was carried out for the kidney data with lowess(x,y, f = 2/3) for

Model A and lowess(x,y, f = 1/3) for Model B; ∆err = 498.5 − 495.1 = 3.4. With f̂ in

(2.14) estimated from Model A, 1000 parametric bootstraps (each requiring both model fits)
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gave -18.4 for the second term in (2.21), so

∆Êrr = 3.4− 18.4 = −15.0,

favoring the smaller Model A.

The 1000 pairs of bootstrap fits µ̂(A)∗ and µ̂(B)∗ contain useful information, beyond

evaluating the second term of (2.21). Figure 3 displays the thousand values of

∆Êrr
∗

= ∆err∗ − 18.4 . (2.22)

Figure 3. 1000 bootstrap replications of ∆Êrr
∗

for the differences between

lowess(x,y, 2/3) and lowess(x,y, 1/3), kidney data; the point estimate ∆Êrr = −15.0 is

in the lower part of the histogram.

This can be considered as a null hypothesis distribution for testing “Model B is no improve-

ment over Model A”. In this case the observed ∆Êrr falls in the lower part of the distribution,

but for a larger observed value, say ∆Êrr = 20.0, we might use the histogram to assign the

approximate p-value #{∆Êrr
∗
> ∆Êrr}/1000.

This calculation ignores the fact that the penalty -18.4 in (2.22) is itself variable. For

linear models the penalty is a constant, obviating concern. In general the penalty term is an

order of magnitude smaller than ∆err, and not likely to contribute much to the bootstrap

variability of ∆Êrr
∗
. This was checked here using a second level of bootstrapping, which

made very little difference to Figure 3.

Remark C The parametric bootstrap estimate (2.14-2.15), unlike SURE, does not depend

on µ̂ = m(y) being differentiable or even continuous. A simulation experiment was run
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taking the true model for the diabetes data to be y ∼ N(µ, σ2I), with σ2 = 3.17 and µ the

lowess(x,y, f = 1/6) fit, a noticeably rougher curve than that of Figure 1. A discontinuous

adaptive estimation rule µ̂ = m(y) was used: polynomial regressions of y on x for powers of

x from 0 to 7 were fit, with the one having the minimum Cp value selected to be µ̂.

Because this is a simulation experiment we can estimate the true expected difference

between Err and err, (2.8): 1000 simulations of y gave

E{Err− err} = 33.1± 2.02 . (2.23)

The parametric bootstrap estimate (2.14-2.16) worked well here, 1000 replications of y ∼
N(µ̂, σ2I), with µ̂ from lowess(x,y, f = 1/3), yielding

Êrr− err = 31.4± 2.85 . (2.24)

In contrast, bootstrapping from y∗ ∼ N(y, σ2I) as in (2.19) gave 14.6 ± 1.82, badly un-

derestimating the true difference 33.1. Starting with the true µ equal the seventh degree

polynomial fit gave nearly the same results as (2.23).

3. General Covariance Penalties The covariance penalty theory of Section 2 can be

generalized beyond squared error to a wide class of error measures. The q-class of error

measures, Efron (1986), begins with any concave function q(·) of a real-valued argument.

Q(y, µ̂), the assessed error for outcome y given prediction µ̂, is then defined to be

Q(y, µ̂) = q(µ̂) + q̇(µ̂)(y − µ̂)− q(y) [q̇(µ̂) = dq/dµ|µ̂] . (3.1)

Q(y, µ̂) is the tangency function to q(·), as illustrated in Figure 4; (3.1) is a familiar construct

in convex analysis, Rockafellar (1970). The choice q(µ) = µ(1 − µ) gives squared error,

Q(y, µ̂) = (y − µ̂)2.

Our examples will include the Bernoulli Case y ∼ Be(µ), where we have n independent

observations yi,

yi =

1

0
probability

µi

1− µi
for µi ∈ [0, 1] . (3.2)

Two common error functions used for Bernoulli observations are counting error

q(µ) = min(µ, 1− µ)→ Q(y, µ) =

0

1
if y, µ

on same side of 1/2

on different sides of 1/2 ,
(3.3)
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Figure 4. Tangency construction (3.1) for general error measure Q(y, µ̂); q(·) is an

arbitrary concave function. The illustrated case has q(µ) = µ(1−µ) and Q(y, µ̂) = (y− µ̂)2.

(see Remark F) and binomial deviance

q(µ) = −2[µ log(µ)+(1−µ) log(1−µ)]→ Q(y, µ) =

−2 log µ

−2 log(1− µ)

if y = 1

if y = 0 .
(3.4)

By a linear transformation we can always make

q(0) = q(1) = 0 , (3.5)

which is convenient for Bernoulli calculations.

We assume that some unknown probability mechanism “f” has given the observed data

y, from which we estimate the expectation vector µ = Ef{y} according to the rule µ̂ = m(y),

f → y→ µ̂ = m(y) . (3.6)

Total error will be assessed by summing the component errors,

Q(y, µ̂) =
n∑
i=1

Q(yi, µ̂i) . (3.7)

The following definitions lead to a general version of the Cp formula (2.8). Letting

erri = Q(yi, µ̂i) and Erri = Eo{Q(yoi , µ̂i)} (3.8)
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as in (2.4), with µ̂i fixed in the expectation and yoi from an independent copy of y, define

the

Optimism Oi = Oi(f ,y) = Erri − erri (3.9)

and

Expected optimism Ωi = Ω(f) = Ef{Oi(f ,y)} . (3.10)

Finally, let

λ̂i = −q̇(µ̂i)/2 . (3.11)

For q(µ) = µ(1 − µ), the squared error case, λ̂i = µ̂i − 1
2
; for counting error (3.3), λ̂i = −1

or 1 as µ̂i is less or greater than 1/2; for binomial deviance (3.4),

λ̂i = log(µ̂i/(1− µ̂i)) , (3.12)

the logit parameter. (If Q(y, µ̂) is the deviance function for any exponential family then λ̂

is the corresponding natural parameter, Section 6, Efron 1986.)

Optimism Theorem For error measure Q(y, µ̂), (3.1), we have

E{Erri} = E{erri + Ωi} . (3.13)

where

Ωi = 2cov(λ̂i, yi) , (3.14)

the expectations and covariance being with respect to f , (3.6).

Proof Erri = erri +Oi by definition, immediately giving (3.13). From (3.1) we calculate

Erri = q(µ̂i) + q̇(µ̂i)(µi − µ̂i)− E{q(yoi )}
erri = q(µ̂i) + q̇(µ̂i)(yi − µ̂i)− q(yi)

(3.15)

and so, from (3.9)-(3.11),

Oi = 2λ̂i(yi − µi) + q(yi)− E{q(yoi )} . (3.16)

Since E{q(yoi )} = E{q(yi)}, yoi being a copy of yi, taking expectations in (3.16) verifies

(3.14). 2

The optimism theorem generalizes Stein’s result for squared error, (2.8), to the q-class of

error measures. It was developed by Efron (1986) in a Generalized Linear Model (GLM) con-

text but as verified here it applies to any probability mechanism f → y. Even independence
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is not required among the components of y, though it is convenient to assume independence

in the conditional covariance computations that follow.

Parametric bootstrap computations can be used to estimate the penalty Ωi = 2cov(λ̂i, yi)

as in (2.14), the only change being the substitution of λ̂∗i = −q̇(µ̂∗i )/2 for µ̂∗i in (2.15):

ĉovi =
B∑
i=1

λ̂∗bi (y∗bi − y∗·i )/(B − 1) . (3.17)

Method (3.17) was suggested in Remark J of Efron (1986). Shen, Huang, and Ye (2002),

working with deviance in exponential families, employ a “shrunken” version of (3.17), as in

(2.20).

Section 4 relates covariance penalties to cross-validation. In doing so it helps to work

with a conditional version of covi. Let y(i) indicate the data vector with yi deleted,

y(i) = (y1, y2, . . . , yi−1, yi+1, . . . , yn) , (3.18)

and define the conditional covariance

cov(i) = E{λ̂i · (yi − µi)|y(i)} ≡ E(i){λ̂i · (yi − µi)} , (3.19)

E(i) indicating E{·|y(i)}; likewise Ω(i) = 2cov(i). In situation (2.1)-(2.3) cov(i) = covi =

σ2Mii, but in general we only have E{cov(i)} = covi. The conditional version of (3.13),

E(i){Erri} = E(i){erri + Ω(i)} (3.20)

is a more refined statement of the optimism theorem. The SURE formula (2.10) also applies

conditionally, cov(i) = σ2E(i){∂µ̂i/∂yi}, assuming normality (2.9).

Figure 5 illustrates conditional and unconditional covariance calculations for subject

i = 93 of the kidney study (the open dot in Figure 1). Here we have used squared error and

the Gaussian model y∗ ∼ N(µ̂, σ̂2I), σ̂2 = 3.17, with µ̂ = lowess(x,y, 1/3). The conditional

and unconditional covariances are nearly the same, ĉov(i) = .221 versus ĉovi = .218, but the

dependence of µ̂∗i on y∗i is much clearer conditioning on y(i).

The conditional approach is computationally expensive: we would need to repeat the

conditional resampling procedure of Figure 5 separately for each of the n cases, whereas a

single set of unconditional resamples suffices for all n. Here we will use the conditional co-

variances (3.19) mainly for theoretical purposes. The less expensive unconditional approach

performed well in all of our examples.
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Figure 5. Conditional and unconditional covariance calculations for subject i = 93,

kidney study. Open circles: 200 pairs (y∗i , µ̂
∗
i ), unconditional resamples y∗ ∼ N(µ̂, σ̂2I);

ĉovi = .218; Dots: 100 conditional resamples, y∗i ∼ N(µ̂i, σ̂
2), y(i) fixed; ĉov(i) = .221.

Vertical line at µ̂93 = 1.36.

There is however one situation where the conditional covariances are easily computed:

The Bernoulli case y ∼ Be(µ). In this situation it is easy to see that

cov(i) = µi(1− µi)[λ̂i(y(i), 1)− λ̂i(y(i), 0)] , (3.21)

the notation indicating the two possible values of λ̂i with y(i) fixed and yi either 1 or 0. This

leads to estimates

ĉov(i) = µ̂i(1− µ̂i)[λ̂i(y(i), 1)− λ̂i(y(i), 0)] . (3.22)

Calculating ĉov(i) for i = 1, 2, . . . , n requires only n recomputations of m(·), one for each i,

the same number as for cross-validation. For reasons discussed next, (3.22) will be termed

the “Steinian”.

There is no general equivalent to the Gaussian SURE formula (2.10), i.e. an unbiased

estimator for cov(i). However a useful approximation can be derived as follows. Let ti(y
∗
i ) =

λ̂i(y(i), y
∗
i ) indicate λ̂∗i as a function of y∗i , with y(i) fixed, and denote ṫi = ∂ti(y

∗
i )/∂y

∗
i |µ̂i ;

in Figure 5 ṫi is the slope of the solid curve as it crosses the vertical line. Suppose y∗i has

bootstrap mean and variance (µ̂i, V̂i). Taylor series yield a simple approximation for ĉov(i),

ĉov(i) = E(i){λ̂i · (y∗i − µ̂i)} =̇ E(i){[ti(µ̂i) + ṫi · (y∗i − µ̂i)](y∗i − µ̂i)} = V̂iṫi , (3.23)
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only y∗i being random here. The Steinian (3.22) is a discretized version of (3.23), applied to

the Bernoulli case, which has V̂i = µ̂i(1− µ̂i).

If Q(y, µ̂) is the deviance function for a one-parameter exponential family then λi is the

natural parameter and dλ̂i/dµ̂i = 1/V̂i. Therefore

ĉov(i) =̇ V̂i
∂λ̂i
∂y∗i

∣∣∣
µ̂i

= V̂i
1

V̂i

∂µ̂i
∂y∗i

∣∣∣
µ̂i

=
∂µ̂i
∂y∗i

∣∣∣
µ̂i
. (3.24)

This is a centralized version of the SURE estimate, where now ∂µ̂i/∂yi is evaluated at µ̂i

instead of yi. (In the exponential family representation of the Gaussian case (2.9), Q(y, µ̂) =

(y − µ̂)2/σ2, so the factor σ2 in (2.10) has been absorbed into Q in (3.24).)

Remark D The centralized version of SURE in (3.24) gives the correct total degrees of

freedom for maximum likelihood estimation in a p-parameter generalized linear model, or

more generally in a p-parameter curved exponential family, Efron (1975A):

n∑
i=1

∂µ̂i
∂yi

∣∣∣
y=µ̂

= p . (3.25)

The usual uncentralized version of SURE does not satisfy (3.25) in curved families.

Using deviance error and maximum likelihood estimation in a curved exponential family

makes erri = −2 log fµ̂i(yi) + constant. Combining (3.14), (3.24), and (3.25) gives

Êrr =̇ − 2
[∑

i

log fµ̂i(yi)− p+ constant
]
. (3.26)

Choosing among competing models by minimizing Êrr is equivalent to maximizing the pe-

nalized likelihood
∑

log fµ̂i(yi) − p, which is Akaike’s Information Criterion (AIC). These

results generalize those for GLMs in Section 6 of Efron (1986), and will not be verified here.

Remark E It is easy to show that the true prediction error Erri, (3.8), satisfies

Erri = Q(µi, µ̂i) +D(µi) [D(µi) ≡ E{Q(yi, µi)}] . (3.27)

For squared-error this reduces to the familiar result Eo(y
o
i − µ̂i)2 = (µ̂i − µi)2 + σ2. In the

Bernoulli case (3.2), D(µi) = q(µi) and the basic result (3.16) also simplifies,

Bernoulli case : Oi = 2λ̂i(yi − µi) , (3.28)

using (3.5).
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Remark F The q-class includes an asymmetric version of counting error (3.3) that allows

the decision boundary to be at a point π1, in (0, 1) other than 1/2. Letting πo = 1− π1 and

ρ = (πo/π1)1/2,

q(µ) = min{ρµ, 1

ρ
(1− µ)} → Q(y, µ̂) =

0 if y, µ̂ same side of π1

ρ if y = 1 and µ̂ ≤ π1.
1
ρ

if y = 0 and µ̂ > π1 .

(3.29)

Now Q(1, 0)/Q(0, 1) = πo/π1. This is the appropriate loss structure for a simple hypothesis-

testing situation in which we want to compensate for unequal prior sampling probabilities.

4. The Relationship With Cross-Validation Cross-validation is the most widely

used error prediction technique. This section relates cross-validation to covariance penalties,

more exactly to conditional parametric bootstrap covariance penalties. A Rao-Blackwell type

relationship will be developed: if we average cross-validation estimates across the bootstrap

data sets used to calculate the conditional covariances then we get, to a good approximation,

the covariance penalty. The implication is that covariance penalties are more accurate than

cross-validation, assuming of course that we trust the parametric bootstrap model. A similar

conclusion is reached in Shen, Huang, and Ye (2002).

The cross-validation estimate of prediction error for coordinate i is

Ẽrri = Q(yi, µ̃i) , (4.1)

where µ̃i is the ith coordinate of the estimate of µ based on the deleted data set y(i) =

(y1, y2, . . . yi−1, yi+1, . . . , yn), say

µ̃i = m(y(i))i . (4.2)

(See Remark H). Equivalently, cross-validation estimates the optimism Oi = Erri − erri by

Õi = Ẽrri − erri = Q(yi, µ̃i)−Q(yi, µ̂i) . (4.3)

Lemma Letting λ̃i = −q̇(µ̃i)/2 and λ̂i = −q̇(µ̂i)/2 as in (3.11),

Õi = 2(λ̂i − λ̃i)(yi − µi)−Q(µ̃i, µ̂i)− 2(λ̂i − λ̃i)(µ̃i − µi) . (4.4)

This is verified directly from definition (3.1).

The Lemma helps connect cross-validation with the conditional covariance penalties of

(3.19)-(3.20). Cross-validation itself is conditional, in the sense that y(i) is fixed in the
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calculation of Õi, so it is reasonable to suspect some sort of connection. Suppose that we

estimate cov(i) by bootstrap sampling, as in (3.17) but now with y(i) fixed and only y∗i

random, say with density f̃i. The form of (4.4) makes it especially convenient for y∗i to have

conditional expectation µ̃i, (rather than the obvious choice µ̂i) which we denote by

Ẽ(i){y∗i } ≡ Ef̃i{y
∗
i |y(i)} = µ̃i . (4.5)

In a Bernoulli situation we would take y∗i ∼ Be(µ̃i).

Denote the bootstrap estimates of µi and λi as µ̂∗i = m(y(i), y
∗
i ) and λ̂∗i = −q̇(µ̂∗i )/2.

Theorem 1. With y∗i ∼ f̃i satisfying (4.5), and y(i) fixed,

Ẽ(i){Õ∗i } = 2ĉov(i) − Ẽ(i){Q(µ̃i, µ̂
∗
i )} , (4.6)

ĉov(i) being the conditional covariance estimate Ẽ(i){λ̂∗i · (y∗i − µ̃i)}.

Proof Applying the Lemma with µi → µ̃i, yi → y∗i , λ̂i → λ̂∗i , and µ̂i → µ̂∗i , gives

O∗i = 2(λ̂∗i − λ̃i)(y∗i − µ̃i)−Q(µ̃i, µ̂
∗
i ) . (4.7)

Notice that µ̃i and λ̃i stay fixed in (4.7) since they depend only on y(i), and that this same

fact eliminates the last term in (4.4). Taking conditional expectations Ẽ(i) in (4.7) completes

the proof. 2

In (4.6), 2ĉov(i) equals Ω̂(i), the estimate of the conditional covariance penalty Ω(i), (3.20).

Typically Ω̂(i) is of order Op(1/n), as in (2.13), while the remainder term Ẽ(i){Q(µ̃i, µ̂
∗
i )} is

only Op(1/n
2). See Remark H. The implication is that

Ẽ(i){Õ∗i } =̇ Ω̂(i) = 2 · ĉov(i) . (4.8)

In other words, averaging the cross-validation estimate Õ∗i over f̃i, the distribution of y∗i used

to calculate the covariance penalty Ω̂(i), gives approximately Ω̂(i) itself. If we think of f̃i as

summarizing all available information for the unknown distribution of yi, i.e. as a sufficient

statistic, then Ω̂(i) is a Rao-Blackwellized improvement on Õi.

This same phenomenon occurs beyond the conditional framework of the Theorem. Fig-

ure 6 concerns cross-validation of the lowess(x,y, 1/3) curve in Figure 1. Using the same

unconditional resampling model (2.17) as in Figure 2, B = 200 bootstrap replications of the

cross-validation estimate (4.3) were generated,

Õ∗bi = Q(y∗bi , µ̃
∗b
i )−Q(y∗bi , µ̂

∗b
i ), i = 1, 2 . . . n, and b = 1, 2 . . . B . (4.9)
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Figure 6. Small dots indicate 200 bootstrap replications of cross-validation optimism

estimates (4.9); triangles, their averages, closely match the covariance penalty curve from

Figure 2. (Vertical distance plotted in df units.)

The small points in Figure 6 indicate individual values Õ∗bi /2σ̂
2. The triangles show averages

over the 200 replications, Õ∗·i /2σ̂
2. There is striking agreement with the covariance penalty

curve ĉovi/σ̂
2 from Figure 2, confirming Ê{Õ∗i } =̇ Ω̂i as in (4.8). Nearly the same results

were obtained bootstrapping from µ̃ rather than µ̂.

Approximation (4.8) can be made more explicit in the case of squared error loss applied

to linear rules µ̂ = My that are “self-stable”, that is where the cross-validation estimate

(4.2) satisfies

µ̃i =
∑
j 6=i

M̃ijyj [M̃ij = Mij/(1−Mii)] . (4.10)

Self-stable rules include all the usual regression and ANOVA estimations as well as spline

methods, see Remark I. Suppose we are resampling from yi ∼ f̄i with mean and variance

y∗i ∼ (µ̄i, σ̄
2) , (4.11)

where µ̄i might differ from µ̂i or µ̃i. The covariance penalty Ωi is then estimated by Ω̂i =

2σ̄2Mii.

Using (4.10) it is straightforward to calculate the conditional expectation of the cross-

validation estimate Õi,

Ef̄i{Õ
∗
i |y(i)} = Ω̂i · [1−Mii/2]

[
1 +

( µ̃i − µ̄i
σ̄

)2]
. (4.12)
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If µ̄i = µ̃i then (4.12) becomes Ê(i){O∗i } = Ω̂i[1 −Mii/2], an exact version of (4.8). The

choice µ̄i = µ̂i results in

Ef̄i{O
∗
i |y(i)} = Ω̂i · [1−Mii/2]

[
1 +

(
Mii

yi − µ̂i
σ̄

)2]
. (4.13)

In both cases the conditional expectation of O∗i is Ω̂i · [1 +Op(1/n)], where the Op(1/n) term

tends to be slightly negative.

The unconditional expectation of Õi with respect to the true distribution y ∼ (µ, σ2I)

looks like (4.12),

E{Õi} = Ωi · [1−Mii/2]
[
1 +

∑
j 6=i

M̃2
ij + ∆2

i

]
, (4.14)

Ωi equaling the covariance penalty 2σ2Mii and

∆2
i =

[
(µi −

∑
j 6=i

M̃ijµj)/σ
]2

. (4.15)

For M a projection matrix, M2 = M , the term
∑
M̃2

ij = Mii/(1−Mii); E{Õi} exceeds Ωi,

but only by a factor of 1 +O(1/n) if ∆2
i = 0. Notice that∑

j 6=i

M̃ijµj − µi = E{µ̃i − µi} , (4.16)

so that ∆2
i will be large if the cross-validation estimate µ̃i is badly biased.

Finally suppose y ∼ N(µ, σ2I) and µ̂ = My is a self-stable projection estimator. Then

the coefficient of variation of Õi is

CV {Õi} =
2 + 4(1−Mii)∆

2
i

(1 + 2(1−Mii)∆2
i )

2
=̇ 2 , (4.17)

the last approximation being quite accurate values unless µ̃i is badly biased. This says that

Õi must always be a highly variable estimate of its expectation (4.14), or, approximately, of

Ωi = 2σ2Mii. However it is still possible for the sum Õ = ΣiÕi to estimate ΣiΩi = 2σ2df

with reasonable accuracy.

As an example µ̂ = My was fit to the kidney data, where M represented a natural spline

with 8 degrees of freedom (including the intercept.) One hundred simulated data vectors

y∗ ∼ N(µ̂jσ̂
2I) were independently generated, σ̂2 = 3.17, each giving a cross-validated df

estimate d̃f
∗

= Õ∗/2σ̂2. These had empirical mean and standard deviation

d̃f
∗
∼ 8.34± 1.64 . (4.18)
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Of course there is no reason to use cross-validation here since the covariance penalty estiamte

d̂f always equals the correct df value 8. This is an extreme example of the Rao-Blackwell

type result in Theorem 1, showing the cross-validation estimate d̃f as a randomized version

of d̂f .

Remark G Theorem 1 applies directly to grouped cross-validation, in which the obser-

vations are removed in groups rather than singly. Suppose group i consists of observations

(yi1, yi2, . . . , yiJ), and likewise µi = (µi1, . . . , µiJ), µ̂i = (µ̂i, . . . µ̂iJ); y(i) equals y with group

i removed, and µ̃i = m(y(i))i1,i2,... ,iJ . Theorem 1 then holds as stated with Õ∗i =
∑

j Õ
∗
ij,

ĉov(i) =
∑

j ĉov(ij), etc. Another way to say this is that by additivity the theory of Sections

2-4 can be extended to vector observations yi.

Remark H The full data set for a prediction problem, the “training set”, is of the form

v = (v1, v2. . . . , vn) with vi = (xi, yi) , (4.19)

xi being a p-vector of observed covariates, such as age for the kidney data, and yi a response.

Covariance penalties operate in a regression theory framework where the xi are considered

fixed ancillaries whether or not they are random, which is why notation such as µ̂ = m(y)

can suppress x. Cross-validation, however, changes x as well as y. In this framework it is

more precise to write the prediction rule as

m(x,v) for x ∈ X , (4.20)

indicating that the training set v determines a rule m(·,v), which then can be evaluated at

any x in the predictor space X ; (4.2) is better expressed as µ̃i = m(xi,v(i)).

In the cross-validation framework we can suppose that v has been produced by random

sampling (“i.i.d.”) from some p+ 1 dimensional distribution F ,

F
i.i.d.→ v1, v2, . . . , vn . (4.21)

Standard influence function arguments, as in Chapter 2 of Hampel et al. (1986), give the

first-order approximation

µ̂i − µ̃i = m(xi,v)−m(xi,v(i)) =̇
IFi − IF (i)

n
, (4.22)

where IFj = IF (vj;m(xi,v), F ) is the influence function for µ̂i evaluated at vj, and IF (i) =∑
j 6=i IFj/(n− 1).

19



The point here is that µ̂i− µ̃i is Op(1/n) in situations where the influence function exists

boundedly, see Li (1987) for a more careful discussion. In situation (4.10), µ̂i− µ̃i = Mii(yi−
µ̃i) so that Mii = O(1/n) as in (2.13) implies µ̂i− µ̃i = Op(1/n). Similarly µ̂∗i − µ̃i = Op(1/n)

in (4.6). If the function q(µ) of Figure 4 is locally quadratic near µ̃i then Q(µ̃i, µ̂
∗
i ) in (4.6)

will be Op(1/n
2) as claimed in (4.8).

Order of magnitude asymptotics are only a rough guide to practice, and are not crucial

to the methods discussed here. In any given situation bootstrap calculations such as (3.17)

will give valid estimates whether or not (2.13) is meaningful.

Remark I A prediction rule is “self-stable” if adding a new point (xi, yi) that falls exactly

on the prediction surface does not change the prediction at xi; in notation (4.20) if

m(xi,v(i) ∪ (xi, µ̃i)) = µ̃i . (4.23)

This implies µ̃i =
∑

j 6=iMijyj + Miiµ̃i for a linear rule, which is (4.10). Any “least-Q”

rule, that chooses µ̂ by minimizing
∑
Q(yi, µi) over some candidate collection of possible

µ’s, must be self-stable, and this class can be extended by adding penalty terms as with

smoothing splines. Maximum likelihood estimation in ordinary or curved GLMs belongs to

the least-Q class.

5. A Simulation Here is a small simulation study intended to illustrate covariance

penalty/cross-validation relationships in a Bernoulli data setting. Figure 7 shows the under-

lying model used to generate the simulations. There are 30 bivariate vectors xi and their

associated probabilities µi,

(xi, µi) i = 1, 2, . . . , 30 , (5.1)

from which we generated 200 30-dimensional Bernoulli response vectors

y ∼ Be(µ) (5.2)

as in (3.2). (The underlying model (5.1) was itself randomly generated by 30 independent

replications of

Yi ∼ Be
(1

2

)
and xi ∼ N2((Yi −

1

2
, 0), I

)
, (5.3)

with µi the Bayesian posterior Prob{Yi = 1|xi}.)

Our prediction rule µ̂ = m(y) was based on the coefficients for Fisher’s linear discrimi-

nant boundary α̂ + β̂′x = 0:

µ̂i = 1/[1 + e−(α̂+β̂′xi)] . (5.4)
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Figure 7. Underlying model used for simulation study: n = 30 bivariate vectors xi and

associated probabilities µi, (5.1).

Equation (2.13) of Efron (1983) describes the (α̂, β̂) computations. Rule (5.4) is not the

logistic regression estimate of µ̂i, and in fact will be somewhat more efficient given mechanism

(5.3), Efron (1975B).

Binomial deviance error (3.4) was used to assess prediction accuracy. Three estimates

of the total expected optimism Ω =
∑30

i=1 Ωi, (3.10), were computed for each of the 200 y

vectors: the cross-validation estimate Õ =
∑
Õi, (4.3); the parametric bootstrap estimate

2
∑

ĉovi, (3.17) with y∗ ∼ Be(µ̂); and the Steinian 2
∑

ĉov(i), (3.22).

The results appear in Figure 8 as histograms of the 200 df estimates (i.e. estimates of

optimism/2.) The Steinian and parametric bootstrap gave similar results, correlation 0.72,

with the bootstrap estimates slightly but consistently larger. Strikingly, the cross-validation

estimates were much more variable, having about three terms larger standard deviation

than either covariance penalty. All three methods were reasonably well centered near the

true value Ω/2 = 1.57.

Figure 8 exemplifies the Rao-Blackwell relationship (4.8), which guarantees that cross-

validation will be more variable than covariance penalties. The comparison would have been

more extreme if we had estimated µ by logistic regression rather than (5.4), in which case

the covariance penalties would be nearly constant while cross-validation would still vary.

In our simulation study we can calculate the true total optimism (3.28) for each y,

O = 2
n∑
i=1

λ̂i · (yi − µi) . (5.5)

21



Figure 8. Degrees of freedom estimates (optimism/2); 200 simulations (5.2), (5.4). The

two covariance penalty estimates, Steinian and parametric bootstrap, have about one-third

the standard deviation of cross-validation. Error measured by binomial deviance (3.4); true

Ω/2 = 1.57.

Figure 9 plots the Steinian estimates versusO/2 for the 200 simulations. The results illustrate

an unfortunate phenomenon noted in Efron (1983): optimism estimates tend to be small

when they should be large, and vice-versa. Cross-validation or the parametric bootstrap

exhibited the same inverse relationships. The best we can hope for is to estimate the expected

optimism Ω.

If we are trying to estimate Err = err +O with Êrr = err + Ω̂ then

Êrr− Err = Ω̂−O , (5.6)

so inverse relationships like those in Figure 9 make Êrr less accurate. Table 1 shows estimates

of E{(Êrr− Err)2} from the simulation experiment.

None of the methods did very much better than simply estimating Err by the apparent

error, i.e. taking Ω̂ = 0, and cross-validation was actually worse. It is easy to read too

much into these numbers. The two points at extreme right of Figure 9 contribute heavily

to the comparison, as do other details of the computation, see Remarks J and L. Perhaps

the main point is that the efficiency of covariance penalties helps more in estimating Ω than

estimating Err. Estimating Ω can be important in its own right since it provides df values for

the comparison, formal or informal, of different models, as emphasized in Ye (1998). Also,

the values of dfi as a function of xi, as in Figure 2, are a useful diagnostic for the geometry
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Figure 9. Steinian estimate versus true optimism/2, (5.5), for the 200 simulations. Similar

inverse relationships holds for parametric bootstrap or cross-validation.

Table 1 Average (Êrr−Err)2 for the 200 simulations; “Apparent” takes Êrr = err, (i.e. Ω̂ = 0).

Outsample averages discussed in Remark L. All three methods outperformed err when prediction

rule was ordinary logistic regression.

Steinian ParBoot CrossVal Apparent

E(Êrr− Err)2: 53.9 52.9 63.3 57.8

Outsample: 59.4 58.2 68.9 64.1

Logistic Regression: 36.2 34.6 33.2 53.8

of the fitting process.

The bottom line of Table 1 reports E(Êrr−Err)2 for the prediction rule “ordinary logistic

regression”, rather than (5.4). Now all three methods handily beat the apparent error. The

average prediction Êrr was much bigger for logistic regression, 6.15 versus 2.93 for (5.4), but

Err was easier to estimate for logistic regression.

Remark J Four of the cross-validation estimates, corresponding to the rightmost points

in Figure 9, were negative (ranging from -9 to -28). These were truncated at zero in Figure

8 and Table 1. The parametric bootstrap estimates were based on only B = 100 replications

per case, leaving substantial simulation error. Standard components-of-variance calculations

for the 200 cases were used in Figure 8 and Table 1, to approximate the ideal situation

B =∞.
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Remark K The asymptotics in Li (1985) imply that in his setting it is possible to es-

timate the optimism itself rather than its expectation. However the form of (5.5) strongly

suggests that O is unestimable in the Bernoulli case, since it directly involves the unobserv-

able component-wise differences yi − µi.

Remark L Err = ΣErri, (3.8), is the total prediction error at the n observed covariate

points xi. “Outsample error”,

Errout = n · Eo{Q(yo,m(xo,v))} , (5.7)

where the training set v is fixed while vo = (xo, yo) is an independent random test point

drawn from F , (4.9), is the natural setting for cross-validation. (The factor n is included for

comparison with Err.) See Section 7 of Efron (1986). The second line of Table 1 shows that

replacing Err with Errout did not affect our comparisons. Formula (4.14) suggests that this

might be less true if our estimation rule had been badly biased.

Table 2 shows the comparative ranks of |Êrr − Err| for the four methods of Table 1

applied to rule (5.4). For example the Steinian was best in 14 of the 200 simulations, and

worst only once. The corresponding ranks are also shown for |Êrr−Errout|, with very similar

results: cross-validation performed poorly, apparent error tended to be either best or worst,

the Steinian was usually second or third, while the parametric bootstrap spread rather evenly

across the four ranks.

Table 2 Left: comparative ranks of |Êrr−Err| for the 200 simulations (5.1)-(5.4). Right: same

for |Êrr− Errout|.

Stein ParBoot CrVal App Stein ParBoot CrVal App

1: 14 48 33 105 17 50 32 101

2: 106 58 31 5 104 58 35 3

3: 79 56 55 10 78 54 55 13

4: 1 38 81 80 1 38 78 83

Mean Rank: 2.34 2.42 2.92 2.33 2.31 2.40 2.90 2.39

6. The Nonparametric Bootstrap Nonparametric bootstrap methods for estimating

prediction error depend on simple random resamples v∗ = (v∗1, v
∗
2, . . . , v

∗
n) from the training

set v, (4.17), rather than parametric resamples as in (2.14). Efron (1983) examined the
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relationship between the nonparametric bootstrap and cross-validation. This section devel-

ops a Rao-Blackwell type connection between the nonparametric and parametric bootstrap

methods, similar to Section 4’s cross-validation results.

Suppose we have constructed B nonparametric bootstrap samples v∗, each of which

gives a bootstrap estimate µ̂∗, with µ̂∗i = m(xi,v
∗) in notation (4.18). Let N b

i indicate the

number of times vi occurs in bootstrap sample v∗b, b = 1, 2, . . . , B; define the indicator

Ibi (h) =
1

0
if N b

i

= h

6= h
, (6.1)

h = 0, 1, . . . , n; and let Q̄i(h) be the average error when N b
i = h,

Q̄i(h) =
∑
b

Ibi (h)Q(yi, µ̂
∗b
i )
/∑

b

Ibi (h) . (6.2)

We expect Q̄i(0), the average error when vi not involved in the bootstrap prediction of yi,

to be larger than Q̄i(1), which will be larger than Q̄i(2) etc.

A useful class of nonparametric bootstrap optimism estimates takes the form

Ôi =
n∑
h=1

B(h)S̄i(h), S̄i(h) = [Q̄i(0)− Q̄(h)]/h , (6.3)

the “S” standing for “slope”. Letting Pn(h) be the binomial resampling probability

pn(h) = Prob{Bi(n, 1/n) = h} =

(
n

h

)
(n− 1)n−h

nn
, (6.4)

section 8 of Efron (1983) considers two particular choices of B(h),

“ω̂(boot)” : B(h) = h(h− 1)pn(h) and “ω̂(0)” : B(h) = hpn(h) . (6.5)

Here we will concentrate on (6.3) with B(h) = hpn(h), which is convenient but not crucial

to the discussion. Then B(h) is a probability distribution,
n∑
1

B(h) = 1, with expectation

n∑
1

B(h) · h = 1 + (n− 1)/n . (6.6)

The estimate Ôi =
∑n

1 B(h)S̄i(h) is seen to be a weighted average of the downward slopes

S̄i(h). Most of the weight is on the first few values of h since B(h) rapidly approaches the

shifted Poisson(1) density e−1/(h− 1)! as n→∞.
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We first consider a conditional version of the nonparametric bootstrap. Define v(i)(h)

to be the augmented training set

v(i)(h) = v(i) ∪ {h copies of (xi, yi)} , h = 0, 1, . . . , n , (6.7)

giving corresponding estimates µ̂i(h) = m(xi,v(i)(h)) and λ̂i(h) = −q̇(µ̂i(h)/2. For v(i)(0) =

v(i), the training set with vi = (xi, yi) removed, µ̂i(0) = µ̃i, (4.2), and λ̂i(0) = λ̃i. The

conditional version of definition (6.3) is

Ô(i) =
n∑
h=1

B(h)Si(h), Si(h) = [Q(yi, µ̃i)−Q(yi, µ̂i(h)]/h . (6.8)

This is defined to be the conditional nonparametric bootstrap estimate of the conditional

optimism Ω(i), (3.20). Notice that setting B(h) = (1, 0, 0, . . . , 0) would make Ô(i) equal Õi,

the cross-validation estimate (4.3).

As before we can average Ô(i)(y) over conditional parametric resamples y∗ = (y(i), y
∗
i ),

(4.5), with y(i) and x = (x1, x2, . . . , xn) fixed. That is, we can parametrically average the

nonparametric bootstrap. The proof of Theorem 1 applies here, giving a similar result:

Theorem 2 Assuming (4.5), the conditional parametric bootstrap expectation of Ô∗(i) =

Ô(i)(y(i), y
∗
i ) is

Ẽ(i){Ô∗(i)} = 2
n∑
h=1

B(h)ĉov(i)(h)/h−
n∑
h=1

B(h)Ẽ(i){Q(µ̃i, µ̂
∗
i (h)}/h , (6.9)

where

ĉov(i)(h) = Ẽ(i){λ̂i(h)∗(y∗i − µ̃i)} . (6.10)

The second term on the right side of (6.9) is Op(1/n
2) as in (4.8), giving

Ẽ(i){Ô∗(i)} =̇ 2
n∑
h=1

B(h)
ĉov(i)(h)

h
. (6.11)

Point vi has h times more weight in the augmented training set v(i)(h) than in v = vi(1);

so, as in (4.20), influence function calculations suggest

µ̂∗i (h)− µ̃i =̇ h · (µ̂∗i − µ̃i) and ĉov(i)(h) =̇ h · ĉov(i) , (6.12)

µ̂∗i = µ̂∗i (1), so that (6.11) becomes

Ẽ(i){Ô∗(i)} =̇ 2ĉov(i) = Ω̂(i) : (6.13)
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averaging the conditional nonparametric bootstrap estimates over parametric resamples

(y(i), y
∗
i ) results in a close approximation to the conditional covariance penalty Ω̂(i).

Expression (6.9) can be exactly evaluated for linear projection estimates µ̂ = My, (using

squared error loss),

M = X(X1X)−1X ′ [X ′ = (x1, x2, . . . , xn)] . (6.14)

Then the projection matrix corresponding to v(i)(h) has ith diagonal element

Mii(h) =
hMii

1 + (h− 1)Mii

[Mii = Mii(1) = x′i(X
′X)−1xi] , (6.15)

and if y∗i ∼ (µ̃i, σ̂
2) with y(i) fixed, then ĉov(i) = σ̂2Mii(h). Using (6.6) and the self-stable

relationship µ̂i − µ̃i = Mii(yi − µ̃i), (6.9) can be evaluated as

Ẽ(i){Ô∗i } = Ω̂(i) · [1− 4Mii] . (6.16)

In this case (6.13) errs by a factor of only [1 +O(1/n)].

Result (6.12) implies an approximate Rao-Blackwell relationship between nonparametric

and parametric bootstrap optimism estimates when both are carried out conditionally on v(i).

As with cross-validation, this relationship seems to extend to the more familiar unconditional

bootstrap estimator. Figure 10 concerns the kidney data and squared error loss, where this

time the fitting rule µ̂ = m(y) is “loess(tot ∼ age, span = .5)”. Loess, unlike lowess, is a

linear rule µ̂ = My, though it is not self-stable. The solid curve traces the coordinate-wise

covariance penalty dfi estimates Mii as a function of agei.

The small points in Figure 10 represent individual unconditional nonparametric boot-

strap dfi estimates Ô∗i /2σ̂
2, (6.3), evaluated for 50 parametric bootstrap data vectors y∗

obtained as in (2.17), Remark M providing the details. Their means across the 50 replica-

tions, the triangles, follow the Mii curve. As with cross-validation, if we attempt to improve

nonparametric bootstrap optimism estimates by averaging across the y∗ vectors giving the

covariance penalty Ω̂i, we wind up close to Ω̂i itself.

As in Figure 8 we can expect nonparametric bootstrap df estimates to be much more

variable than covariance penalties. Various versions of the nonparametric bootstrap, particu-

larly the “.632 rule”, outperformed cross-validation in Efron (1983) and Efron and Tibshirani

(1997), and may be preferred when nonparametric error predictions are required. However

covariance penalty methods offer increased accuracy whenever their underlying models are

believable.
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Figure 10. Small dots indicate 50 parametric bootstrap replications of unconditional non-

parametric optimism estimates (6.3); triangles, their averages, closely follow the covariance

penalty estimates (solid curve.) Vertical distance plotted in df units. Here the estimation

rule is loess(span = .5). See Remark M for details.

A general verification of the results of Figure 10, linking the unconditional versions of the

nonparametric and parametric bootstrap df estimates,is conjectural at this point. Remark

N outlines a plausibility argument.

Remark M Figure 10 involved two resampling levels: parametric bootstrap samples

y∗a = µ̂+ε∗a were drawn as in (2.17) for a = 1, 2, . . . , 50, with µ̂ and the residuals ε̂j = yj−µ̂j
determined by loess(span = .5); then B = 200 nonparametric bootstrap samples were drawn

from each set v∗a = (v∗a1 , v
∗a
2 , . . . , v

∗a
n ), with say Nab

j repetitions of v∗aj = (xj, y
∗a
j ) in the

abth nonparametric resample, b = 1, 2, . . . , B. For each “a”, the n × B matrices of counts

Nab
i and estimates µ̂∗abi gave Q̄i(h)∗a, S̄i(h)∗a, and Ô∗ai , as in (6.2)-(6.3). The points Ô∗ai /2σ̂

2

(with σ̂2 =
∑
ε̂2j/n) are the small dots in Figure 10, while the triangles are their averages

over a = 1, 2, . . . , 50. Standard t-tests accepted the null hypotheses that the averages were

centered on the solid curve.

Remark N Theorem 2 applies to parametric averaging of the conditional nonparametric

bootstrap. For the usual unconditional nonparametric bootstrap, the bootstrap weights Nj

on the points vj = (xj, yj) in v(i) vary so that the last term in (4.4) is no longer negated by
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assumption (4.5). Instead it adds a remainder term to (6.9).

−2
∑
h=1

B(h)Ẽ(i){(λ̂∗i (h)− λ̃∗i )(µ̃∗i − µ̃i)}/h . (6.17)

Here µ̃∗i = m(xi,v
∗
(i)), where v∗(i) puts weight Nj on vj for j 6= i, and λ̂∗i = −q̇(µ̃∗i )/2.

In order to justify approximation (6.13) we need to show that (6.17) is op(1/n). This

can be demonstrated explicitly for linear projections (6.14). The result seems plausible in

general since λ̂∗i (h)− λ̃∗i is Op(1/n) while µ̃∗i − µ̃i, the nonparametric bootstrap deviation of

µ̃∗i from µ̃i, would usually be Op(1/
√
n).

7. Summary Figure 11 classifies prediction error estimates on two criteria: parametric

(model-based) versus nonparametric; and conditional versus unconditional. The classifica-

tion can also be described by which parts of the training set {(xj, yj), j = 1, 2, . . . , n} are

varied in the error rate computations: the Steinian only varies yi in estimating the ith error

rate, keeping all the covariates xj and also yj for j 6= i fixed; at the other extreme the

nonparametric bootstrap simultaneously varies the entire training set.

Figure 11. Two-way classification of prediction error estimates discussed in this paper.

The conditional methods are local in the sense that only ith case data is varied in estimating

ith error rate.

Here are some comparisons and comments concerning the four methods.

• The parametric methods require modeling assumptions in order to carry out the covariance

penalty calculations. When these assumptions are justified, the Rao-Blackwell type results
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of Sections 4 and 6 imply that the parametric techniques will be more efficient than their

nonparametric counterparts, particularly for estimating degrees of freedom.

• The modeling assumptions need not rely on the estimation rule µ̂ = m(y) under investi-

gation. We can use “bigger” models as in Remark A, i.e. ones less likely to be biased.

• Modeling assumptions are less important for rules µ̂ = m(y) that are close to linear. In

genuinely linear situations like those needed for the Cp and AIC criteria, the covariance

corrections are constants that do not depend on the model at all. The centralized version of

SURE (3.25), extends this property to maximum likelihood estimation in curved families.

• Local methods extrapolate error estimates from small changes in the training set. Global

methods make much larger changes in the training set, of a size commensurate with actual

random sampling, which is an advantage in dealing with “rough” rules m(y) such as nearest

neighbors or classification trees, see Efron and Tibshirani (1997).

• Stein’s SURE criterion (2.11) is local, since it depends on partial derivatives, and parametric

(2.9) without being model-based. It performed more like cross-validation than the parametric

bootstrap in the situation of Figure 2.

• The computational burden in our examples was less for global methods. Equation (2.18),

with λ̂∗bi replacing µ̂∗bi for general error measures, helps determine the number of replications

B required for the parametric bootstrap. Grouping, the usual labor-saving tactic in applying

cross-validation, can also be applied to covariance penalty methods as in Remark G, though

now it is not clear that this is computationally helpful.

• As shown in Remark B, the bootstrap method’s computations can also be used for hy-

pothesis tests comparing the efficacy of different models.

Accurate estimation of prediction error tends to be difficult in practice, particularly

when applied to the choice between competing rules µ̂ = m(y). In the author’s opinion

it will often be worth chancing plausible modeling assumptions for the covariance penalty

estimates, rather than relying entirely on nonparametric methods.

Acknowledgment I am grateful to Dr. Bryan D. Myers for bringing the kidney function
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