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The estimation of the order of a mixture
model

DIDIER DACUNHA-CASTELLE'! and ELISABETH GASSIAT?2*

VEquipe de Modélisation Stochastique et Statistique, Unité de Recherche associée au CNRS 743,
Université Paris-Sud, 91405, Orsay Cédex, France
2Equipe d’Analyse et de Probabilités, Université d’Evry, 91025 Evry Cédex, France

We propose a new method to estimate the number of different populations when a large sample of a
mixture of these populations is observed. It is possible to define the number of different populations
as the number of points in the support of the mixing distribution. For discrete distributions having a
finite support, the number of support points can be characterized by Hankel matrices of the first
algebraic moments, or Toeplitz matrices of the trigonometric moments. Namely, for one-dimensional
distributions, the cardinality of the support may be proved to be the least integer such that the Hankel
matrix (or the Toeplitz matrix) degenerates. Our estimator is based on this property. We first prove the
convergence of the estimator, and then its exponential convergence under wide assumptions. The
number of populations is not a priori bounded. Our method applies to a large number of models such
as translation mixtures with known or unknown variance, scale mixtures, exponential families and
various multivariate models. The method has an obvious computational advantage since it avoids any
computation of estimates of the mixing parameters. Finally we give some numerical examples to
illustrate the effectiveness of the method in the most popular cases.

Keywords: Hankel matrix; mixture models; order estimation; penalization

1. Introduction

The estimation of the number of populations that compose a mixture is a classical statistical
problem.
Let {Gy, 0 € O} be a parametric family of distributions. We consider the mixture model

0= Gy = JGG du(O)., 0,40, for i 4}
i=1

where r is the order of the mixture and u = >/ ,7;0p, is a probability distribution on ©.

Assume that we observe an n sample X, ..., X, of the distribution O, where the
parameters (7y, ..., 7T,; 0, ..., 0,) are unknown, and we want to estimate the order r.
Indeed, this may be either the first step for a complete estimation of the mixture, or the
question of interest in itself. This problem is known to be in general quite hard partly
because estimating the parameters of the mixture, given the order r, is difficult.
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The aim of this paper is to propose a new method of estimation for the order r having
the following advantages:

(1) It leads to consistent estimators, even for non-dominated families where likelihood
methods do not exist. The method applies to a wide class of mixture models.

(2) There is no need to have a priori upper bounds for the order of the mixture.

(3) It has numerical interest since it avoids the computation of estimates of the mixing
parameters.

Let us first briefly survey the history of order estimation to see why it is difficult and
how previous workers proposed to deal with the problem. There exists a very large literature
on this subject and in particular that dedicated to clustering.

The first natural idea, when all Gy are dominated by a common measure, is to use
likelihood methods. Since the pioneering work of Akaike (1974) it is known that a
penalization term has to be added to the maximum-likelihood statistic to obtain a good
contrast function for the order. In the context of mixture models, this method implies
various difficulties, at the theoretical as well as at the practical level. First of all, the
asymptotic distribution of the maximum-likelihood statistic was not known in general.
Ghosh and Sen (1985) and later Self and Lieng (1987) gave the asymptotic behaviour of
likelihood ratios under a very restrictive assumption: some separability condition for the
parameter values, in order to avoid difficulties due to non-identifiability. This, in particular,
excluded the possibility of knowing the asymptotic of the maximum-likelihood statistic for
an overestimated order. However, very recently, we gave a general likelihood theory which
applies to finite mixture models. So, from a theoretical point of view, penalized likelihood
techniques can be used to estimate » without any condition except that the model is
dominated (Dacunha-Castelle and Gassiat 1995), and the parameters are bounded. Indeed, if
they are not bounded, the likelihood statistic may not converge (see Hartigan (1985) for
counterexamples). The use of these techniques requires the computation of maximum-
likelihood estimators of the parameters, which appears to be very difficult. Bootstrapping
may be a useful technique to study the maximum distribution (McLachlan 1987). However,
for overestimated orders, it is not possible to have consistent estimators of the mixture’s
natural parameters. This is due to the non-identifiability of the model.

Various workers have proposed to replace the likelihood by other contrast functions. For
instance, Ranneby (1984) has given a method which allows one to estimate the Kullback
distance when the likelihood is not relevant. Many papers on clustering include a
comparison of penalized likelihood techniques with other techniques using another kind of
divergence function or distance function. This was done by Bozdogan (1994), where a long
bibliography on clustering and ideas of information theory can be found.

The problem of the choice of the penalty term is of course not limited to mixture
models. It is well known from mixture theory but also from other popular theories such as
autoregressive moving-average models that it is difficult to choose the value of the penalty
term. Different workers give experimental or heuristic justifications for this choice; for
example Bock (1994) and Rissanen and Ristad (1994) used stochastic complexity as a
criterion.

Another approach is that of nonparametric techniques. Izenman and Sommer (1988)
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linked the order of the mixture with the number of modes of the distribution. An estimator
of the order is then based on a nonparametric estimator of the number of modes. Roeder
(1994) proposed a graphical technique based on sign changes of the differences of the
densities. All of this applies of course only to particular mixtures. Lindsay (1989) has given
a consistent moment method to estimate the order, but he did not use all the properties of
this simple idea: if y is the mixing distribution on ©, it is possible to know the number of
points of its support using Hankel moment matrices.

The organization of the paper is as follows. In Section 2, we present our general
estimation method: Hankel matrices, characterization of order, and the penalty criterion. We
then prove consistency and exponential convergence of the estimator. The method requires
the possibility of consistently estimating algebraic moments of the mixing distribution. In
Section 3 we given several examples: translation or scale mixtures, translation and scale
mixtures, and exponential mixtures. Section 4 contains some further considerations; other
criteria are presented, generalizing the idea of Hankel matrices. They could be used when
prior information is available (for instance, bounds on the support of the mixing distribution
). In particular, we propose an alternative method using the Toeplitz matrices of
trigonometric moments of the mixture. We also discuss other models where this method
could be exploited, as well as a discussion of likelihood methods. In Section 5, we give
some numerical examples to illustrate the effectiveness of our method, especially using
Toeplitz matrices. Proofs are given in the final section.

2. General method of estimation

Let us first describe the method for a one-dimensional parameter space, ® C R. The idea is
to characterize the discrete measures x4 with at most » points of support using functions of
their algebraic moments. Define then

@, = (0')1==2.

For any measure u on ©, u(®,) = [o® ,(0) du(6). For any vector ¢ in R, define ¢ as the
vector in R?? of the first 2p components of ¢: ¢? = (cy, ..., ¢2p). Define H(c?, p), the
Hankel matrix of order p, as the (p + 1) X (p + 1) matrix given by

H(c?, p)ij =l 2 I1<ij<p+1,

where ¢} = 1. If u is a measure with finite @, moments, H(u(®,), p) is said to be the
Hankel matrix of u. The use of Hankel matrices in the truncated moment problem can be
found in the books of Karlin and Studden (1966) and of Krein and Nudel’man (1977). We
just recall the fundamental properties that we shall use in the sequel.

Let K, be the subset of R?? of those vectors ¢” such that there exists a positive measure
u such that ¢ = u(®,). Define on R?? a function L(., p) by

L(c?, p) = det H(c", p).

The following result characterizes the probability measures with » points of support.



282 D. Dacunha-Castelle and E. Gassiat
Propeosition 1. H(c?, p) is a non-negative if and only if c¢? € K,. Moreover, a non-negative

H(c?, p) degenerates in at least one direction if and only if every probability measure u
satisfying w(® ) = c? is discrete and supported by at most p points.

The proof of this proposition is very easy and relies on the following identity:

2
j2
Yu € RPH ul-H(c?, p)u= J <Z ui+1-xi> dv(x)
R\ i=o

for any (positive or non-positive) measure v such that »(®,) = c?.
If u is a discrete probability measure having » points of support and if, for every integer
p, ¢ = u(®,), it is then obvious that the order r is characterized by

r=inf {p, L(c?, p) = 0}. )
Assume now that we have a consistent estimator ¢Z of ¢’ = u(®,), based on the
observations X1, ..., X,, supposed to be independent with common distribution Q. This is

the case in many useful situations and will be developed in the forthcoming sections. Then
(1) could lead us to choose the estimator of the order r as the minimizer in p of |L(¢?, p)|.
This in turn would lead us to choose r larger than the true value, since |L(¢2, p)| is close to
0 for sufficiently large n as soon as r is larger than the true value. To overcome this problem,
we introduce a penalty term, based on Akaike’s idea. Let I(n) be a positive function of n,
such that lim,_, ;. /(n) =0, and A(p) a positive, strictly increasing function. Define the
empirical penalized objective function by

Ju(p) = [L(&], p)l+ A(p)i(n). 2

The estimator 7, is now defined as the minimizer of .J, over all N.
The following theorem states sufficient conditions for the consistency of 7,.

Theorem 1. Assume that
1

© VpeN, c¢? — c? and
" I(n)

[L(ch, p)— L(c?, p)] = 0 as.

Then v, — r a.s.

The same result holds replacing everywhere the almost sure convergence by convergence
in probability.

Remarks.
(a) We do not need an upper bound for the order because of the positivity of the contrast
function |L(., p)|, as becomes clear in the proof. Also, the estimator exists since obviously

for any integer m
L ~Sm
?n $A71 | (Cn’ m)|+A(m) ,
I(n)

where 4! is the inverse function of 4 (4 is extended here as a strictly increasing function on
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the positive real numbers). In particular, this gives a recursive way to reduce the set where J,,
has to be minimized. This is an important consequence of taking the absolute value of L.
Indeed, with a given upper bound on the order, the analogous estimator obtained by
minimizing L(¢?, p) + A(p)l(n) (with no absolute value) over a bounded set of integers is
also consistent.

(b) The method requires the choice of the penalty term A(p)Il(n). As we already said in
the introduction it is well known that such a choice is difficult. If one chooses a suitable
Bayesian criterion (see, for example, Schwarz (1978)) or a stochastic complexity criterion,
then (plogn)/n'/?> can be considered as optimal. However, the problem cannot be
considered to be well solved from a theoretical point of view. Numerical investigations are
also necessary, but they are not included in this paper.

Assumption (C) concerns the asymptotic convergence of ¢/ as an estimator of c”, it
relates /(n) and the almost sure (respectively in probability) speed of convergence of ¢ to
cP. Indeed, using a Taylor expansion of order 1, (C) holds as soon as {1/I(n)}(¢P—
c?) — 0 almost surely (respectively in probability)

Section 3 will be devoted to the choice of the estimator ¢# of c¢”. For different situations
it is possible to construct ¢£ easily. An important situation is the case where ¢2 is a
function of the empirical moments of the observations; if

c? = f(Ey ,(X))), (3)
then

1 n
ey = I <;Z¢p(Xr)>,
=1

where ¢, and f,, are multidimensional real functions, say that 1, takes values in R9» for an
integer g,. In general, ¥, will be exactly ®,. In this case, we may determine exactly the
speed of convergence, which will be exponentially fast.

Theorem 2. Denote by F), the function L(f,(.), p). Assume that for every integer p < r the
Sunction F, is Lipschitz with respect to some norm in Ri», and that the generating functions
| exp (z, ¥ ,(x)) dO(x) are defined in a neighbourhood of 0. Assume also that

nl/zl(n) — 400.

Then there exists a positive constant d such that, for every integer n larger than ny (which
may be explicitly computed and depends on A(.) and I(.), and on the underlying distribution

0):
P(i, # 1) < 2q,exp {—dnl*(n)}.

Remarks. If the 1, are the algebraic functions, the assumption requires the distribution Q to
have a bounded support. However, in Section 4 we extend the method using trigonometric
moments instead of algebraic moments, and the Lipschitz assumption together with the
generating functions assumption hold when the 1y, are the trigonometric functions.
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The constants involved in the theorem may be approximated using (14) given in Section
6. Of course, d is larger for well-separated populations.

The next proposition may be used to reduce the multidimensional case ® C R* to the
real one © C R.

Proposition 2. Let u be a discrete probability on R® with r support points. For every unitary
vector v € RS, let vu be the distribution of (v, 0) ({., .) is the usual scalar product in R¥).
Then vu is discrete with r points of support except for at most r(r — 1)/2 values of v.

Proposition 2 may be used in the following way. Choose ¢ = (r(r — 1)/2) + 1 different
unitary vectors v;, i =1, ..., g. Assume that estimators of the algebraic moments of all
(v;, B) are available. Call them ¢?(v;). Define then 7, as the minimizer over N of

q
> ILE@L @), p)l + A(p)i(n).
i=1

Then, if the estimators of the involved algebraic moments satisfy the assumptions, Theorems
1 and 2 hold.

Note also that being able to estimate the algebraic moments of all possible (v, 8), v € R*
up to order p is the same as being able to estimate the moments of all monomials of
coordinates of 6 of degree less or equal to p, since

(@ 0H= Y %HU?E@@?")-
el E( L

kit ky=k

3. Examples

We first propose examples where the estimation of ¢” = u(®,) is obvious, owing to the
structure of the family (Gp)geco, such as translation mixtures and scale mixtures.

Let us again emphasize the fact that, at least for our three first examples, the family (Gy)
does not have to be dominated, so that our method applies in cases where it is not possible
to apply likelihood methods.

3.1. Translation mixtures

We assume here that ® C R. The family (Gy) is given by
dGy(x) = dG(x — 0),

where G is a known probability distribution on R. Note that the random variables X, may be
described as

Xt:Yt+Mta (4)
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where Y, and M, are mutually independent, Y; has distribution G and M, has distribution u.
We then have

0"y = Z l'(k G(x Hu(x*=1h.

Since G(x') is known, this relation leads to a triangular linear system for the computation of
u(x*), k=1,...,2p. If O(x*) is estimated by

- k 71 - k
Qn(x )7’/12)(1‘,

the triangular 11near system may be solved with 0,(x*) in place of Q(xk) leading to a

,,,,,

central limit theorem and law of the iterated logarithm. Then we have the following.

Proposition 3. As soon as, for all integer p, [xP dG(x) < +oo,

(i) (C) holds with n'/*(loglog n)~'/2I(n) — +oc0 for the a.s. convergence,
(ii) (C) holds with n'/*I(n) — 400 for the convergence in probability and Theorem |
applies and
(iii) Theorem 2 applies as soon as for all integer p, E(expy ,X*P)<oo for some y , >0,
where X has distribution G.

When G is an s-dimensional distribution as well as ® C R*, Proposition 2 may be used
by taking a scalar product in (4) with any s-dimensional vector ©.

3.2. Scale mixtures

Here, © = R" and the family (Gyp) is given by

dGa(x) = dG<§),

where G is a known probability distribution over R. Note that the random variables X, may
now be described by

X[ = U,Y[
where o, and Y, are mutually independent, Y; has distribution G and o, has distribution u.
Then we have
Vk € N, E(X¥) = E(c¥)-E(Y5),
O(x*) = G(*)-u(x¥).
If, for all integer k, G(x¥) # 0, u(x*) is estimated by Qn(xk)/ G(¢py) and Proposition 3 holds.
If, for some integer k, G(x*) = 0, we take squares everywhere, so that all G(x) are replaced

by G(x*¥) which are now always positive The method is the same, replacing G and u by
their images using the application x — x2, and Proposition 3 holds again.
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3.3. Covariance mixtures

Here we assume that Q is a distribution on R*, and ® C .Z,, where .7 is the space of
s X s symmetric matrices. Q is given by

0= Gz
i=1

where 2;1, i=1, ..., rare r different covariance matrices and G a given distribution in R*.
With no loss of generality we may assume that the covariance matrix of G is the identity. The
model may be described by

Xy =81,
where Y; and S, are mutually independent, Y; is a random vector with distribution G, S; is a
random matrix with distribution u on a space of dimension s(s + 1)/2. It is easy to see that

E(X1-X]) = E(S])
and for every integer k
E(X1-X])") = E(STHE((Y1-Y])")

so that all moments of ST can be estimated. Now, the distribution of ST has the same number
of points of support as that of S;. Our method thus applies using Proposition 2.

3.4. Translation mixtures with unknown scale

Let now Q be a mixture of a translation family (G(. — 0)) with an unknown scaling o/:

& X—G,‘
Q(dx);de< - > %)

0

Here again, G is known. We cannot directly use Hankel’s criterion for this model. So we have
to generalize the method for unknown scale parameters. This generalization holds when the
distribution G is in a certain class that we define now.

Definition. <~ is the set of distributions G with the following property. If U is a random
variable with distribution G, for any real c in 10, 1[, there exist two independent random
variables U and V., where U has distribution G and U = cU + V.

The class .4 is characterized at the end of this section in Proposition 5. Just note here
that Gaussian distributions are in class £

Let (5) hold with G in class 4. We have the following triangular system relating the
algebraic moments of u to those of Q:

Vk=1,...,2p, 0 <x)—Z l,(k pyy GO,
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If o is assumed to be a value of the scaling parameter, define u(6/, o), j=1, ..., 2p as the
solution of the following triangular system:

k
Vk=1,...,2p, Q(xk)—zl,( fy GO, o), (©)

Now let H(o, p) be the Hankel matrix built with the pseudo-moments u(6/, o), j=1, ...,
2p. (We call them pseudo-moments since it may happen that they are not moments of a
positive measure.) We have the following characterization of the scaling factor o and of the
order r.

Theorem 3.
(1) Yo <oy, Vp: det{H(o, p)} >0.
(ii) For 0 =0y, det{H(o, p)} =0 if and only if p=r

Theorem 3 is proved in Section 6. Its interpretation is the following: (o, r) is the
smallest root of the equation |det{H(o, p)}| =0, where ‘smallest’ means smallest in all
directions. It results in the idea of estimating o, by compensating the criterion, leading to
the contrast function K,,:

Ky(p, 0) = |det {H,(0, p)}| + A(p)li(n) + 0 MIy().

Here, /;(n) is a positive functions decreasing to 0 when n goes to infinity and M a positive
real number. H,(c, p) is the Hankel matrix built with the solution of the triangular system
(6) where Q(x¥) is replaced by Q,(x*). Then 7, and &, are defined by

Ky(#n, 6,) = min{K,(p, 0); peN, 0 € R"}.

We have the following.

Proposition 4. For sufficiently large M, Theorem 1 holds for r,. Moreover, ¢, is a consistent
estimator of oy under the same conditions as for 7.

The proof of the consistency of G, follows the same lines as that of 7, and will be
omitted.

Remark. The characterization given in Theorem 3 may be used for mixture models with
additive noise and with unknown signal-to-noise ratio. That is, when the observations are
given by

Zt XI+GOUI Mt+Yt+00Uf,
X; has a translation mixture distribution, and U, is independent of X and has a distribution in

class Z'; g is unknown. This model is of course useful in signal theory.

We recall now a different characterization of class £ (Petrov 1975, p. 83, Lemma 12).
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Proposition 5. £ is the set of infinitely divisible real distributions with arbitrary Gaussian

part and with absolutely continuous Levy measure, with density f, such that xf(x) decreases
on R* and R~.

3.5. Mixtures of exponential families

Let us first give some general considerations for ® C R*. To estimate the multidimensional
moments of u, we can try to find these moments using the structure of the statistical model
Gy(dx). This means that, for every k € N*, k = (k; ..., k;), we need a function v, such that

6" = [0 4Gt

Here 6% means 0{“ 0;‘3. This relation implies that
|6 au®) = [0 ageo

so that u(6;) can be obtained as a linear functional of the distribution Q.
Consider the situation where we can write

Go(dx) = > 0y r(x)v(dx), )
keNs
where the series converges in L'(v) N L*(v). Suppose moreover that (1) is a free and total
system in L?(v). Then the classical theory of biorthogonal systems (Brezinski 1992) allows us
to obtain (i) using the relations fwk(x)wl(x)dv(x):éi, k, I € N°. Here c‘}i is the
Kronecker symbol.

In general, the 3, need not be distinct for distinct k. We give an example below. If
k # k' implies that v, # 1, then all moments u(6*) can be estimated and our method
applies.

Now let us discuss the case where (Gy) is an exponential family, in order to have a
description of what can happen:

Go(dx) = exp (—¢(0)) exp ({0, x))S(dx),

where S is a positive measure on R*. We suppose that the support of S has a non-empty
interior. Then ® C R® is defined by

0= {0, JRS exp ({0, x)) dS(x) = exp {p(0)} < oo}.

We assume that the interior of © is not empty. Then we have

00 0 n
exp {(0)) Go(d) = 3 0

n=0

- S(dx)
n.

00

=3 > Clh, ..., O} .. 00X xPS(d),

n=0 hj+...+hy=n
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for suitable constants C(ky, ..., k). Now let it be defined by (dir/du)(6) = exp {—¢p(6)}.
Then u is discrete with » points of support if and only if the same holds for si. We estimate
(6%) by 0,(x*)/S(x*1px(x)). The set of functions x is a free and total system but, to recover
all the moments of 8, we require that they be different, which is not necessarily true. We can
illustrate the difficulty by the case of the general mixture of Gaussian distributions ./ (m, o).
Let 6 = (61, 6,), 0, = —m/202, 6, = 1/202, x = (x1, X2), x| = u, X, = u?>. To compute for
example all the moments of 6 of order two, we have to compute five moments (6, 0%, 0,, 0%
and 6,6,) based on four moments of u (u, u?, u® and u*), which is impossible. Here, our
method does not apply.

For full exponential families, the linear dimension of the support of S equals the
dimension of ®, and our method applies. The same remains true for curved families if
there is a unique representation of x*. This is true for instance for the beta family:

B~ Y(a, B)x“(1 — x)P 1o, (x) dx.

4. Further considerations

It appears that the proposed method applies in many other situations. Indeed, if one wishes to
estimate a discrete number, which may be modelled as the number of points of support of
some variables, if the observations allow one to estimate ® moments of this variable, then
one may use methods similar to those proposed here. Deconvolution of discrete signals may
be solved using Hankel methods (Gamboa and Gassiat 1994), even with additive noise
(Gassiat and Gautherat 1994). Source separation of discrete signals or circular complex
signals may also be performed via Hankel methods (Gamboa and Gassiat 1995).

4.1. Generalization of the method to other sets of moments

Here O is assumed to be a bounded interval. By translation and scaling, it is sufficient to
consider the case © = [0, 2;t]. We then replace the algebraic functions by the set of
functions:

D, = (@r(x)i<i=p = (expikn)i<i<p.
For any complex vector ¢# in C7, let T(c”, p) be the (p+ 1) X (p + 1) Toeplitz matrix of
order p, i.e.,

p ep . .
Ci—j ifi—j=0,

I 7 p o=4¢ 1
Vl,]E {13 -,p+1}T(C )p)l,j {C;)i, ifl_j<0

Let K, be the subspace of C” defined by c € K, if and only if there exists a positive
measure 4 on [0, 2] such that ¢ = u(®,). Now let L(c?, p) = det T(c?, p). We then have
the following proposition, similar to Proposition 1.
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Proposition 6. T(c?, p) is non-negative if and only if ¢ € K p- Moreover, T(c?, p) is non-
negative and degenerates in at least one direction if and only if every probability measure u
satisfying w(® ,) = c is discrete and supported by at most p points.

Proof (see Krein and Nudel’man (1977)). A similar criterion may then be used, replacing L
by L everywhere, with the same properties. O

Let us just show how it applies for the translation mixture model
Xy =Y+ M,

where M, is a discrete random variable known to lie in [0, 2m], and Y; has distribution G. We
obviously have O(¢r) = G(@i)-u(pr). Assume that Vk € N, G(px) # 0. Then Q(ey) is
estimated by

A 1<
On(on) =7, 2 ox(X,

so that the estimation ¢2 of ¢” = u(®,) will be defined as

Gon ) -\,

and ¢? is obviously consistent. We then have the following.

Proposition 7. If G(¢y) # 0, then

(i) (C) holds as soon as n'/*(loglog n)~"/?1(n) — +o0 for the a.s. convergence and

(ii) (C) holds as soon as n'?I(n) — +oco for the convergence in probability and
Theorem 1 applies.

Moreover, Theorem 2 applies without any restriction.

Proof. For all p, L(, p) is infinitely differentiable. Assumption (C) results from a Taylor
expansion of order 1, and from the law of the iterated logarithm for independent sequences
for the a.s. convergence, or from the central limit theorem for the convergence in
probability. O

A closer look at Toeplitz and Hankel methods shows that it involves two different kinds
of argument. The first argument concerns the moments that are used, the fact that
polynomials have a particular behaviour with respect to the number of zeros. This property
generalizes to Chebyshev systems of functions. The second argument is the possibility of
exhibiting a computational functional to discriminate particular points of the closed convex
hull of the moment functions (determinant of the Hankel or Toeplitz forms). In the case of
a bounded interval, various examples of other criteria may be given. A large family of such
criteria may be found in the work of Gamboa and Gassiat (1993).
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4.2. Extension of the method to other models

As another example, let us consider the case of centred stationary Gaussian processes X with
a finite discrete spectral measure u, where the number of frequencies has to be estimated (in
this example the observations are correlated). So we can write

”

u(da) = szée,(d/l), 0= p, 0,€[0,2x], 0,# 6y for [ #1I'.

=1

Then X;, j € N, has the representation

,
E ijo

Xj = A[e'l [,
=1

where 4;, [ =1, ..., r, are independent centred Gaussian random variables with variance p;.
The parameter of interest », the number of different frequencies, has to be estimated on the
basis of the observations X, ..., X,. Let v be the random measure:

v(dd) =) 4700,
=1

Let e,(k) be the empirical covariance of X:

. 1 n—k B
enlk) =—— D XX,
=

e,,(k) ZAZ lk191+0< )

=1

e, gives an estimator of the Fourier coefficients of the random measure v. Now, A% is a.s.
positive, so that v is a.s. a discrete random measure with 7 points of support, and the Toeplitz
criterion may be used to estimate r.

4.3. Penalized likelihood methods

Assume that there exists a positive measure v that dominates the family (Gg)geco, so that, if
u=73_7iGoi,

.
Qo ar() =Y 7iGo, < v,
i=1
where 0" = (0)1<i<,, & = (7T;)1=i=<,, and

dQy- L dGy;
Q‘”()fz D) = g,

=1




292 D. Dacunha-Castelle and E. Gassiat

Define the log-likelihood L, as

Ly(r, 0", 2") = " logq(6", x", X)).

=1
The penalized maximum likelihood can be defined as usual:

Jn(p) = —k(n) max l,(p, 07, ") + A(p),

where k(n) is a positive function tending to 0 when n goes to infinity, and A(p) is a strictly
increasing function of the order p.

As we already mentioned in the introduction, penalized likelihood methods have been
extensively studied (although not with general theoretical results). Of course, the problem is
that the estimators of 67 and z? are not consistent when we are near the boundary, i.e., for
p>r. We suggest that a good procedure could be the following.

(1) Estimate the order using the Hankel criterion.

(2) Then test the order r against »+ 1 for instance using likelihood tests as they are
developed in our paper (Dacunha-Castelle and Gassiat 1995). The likelihood statistic has a
distribution which is asymptotically a function of the supremum of a Gaussian process. This
distribution has to be tabulated using simulations.

5. Numerical experiments

The experiments were conducted for Gaussian translation mixtures with known variance. For
a small true number of populations, i.e., up to six populations, the method seems to be very
efficient, and not very sensitive to the choice of the penalty term. For three different
populations, where the density is

o) G~ ( (x—e,-)2>
dx _Zo.s(zn)l/z P\ 05 )

i=1

where the probability mixture is
0.30_05 +0.50¢9 + 0.20; 3.

The density of O has the representation given in Figure 1. With 100 independent realizations
and with 500 observations we obtained the following estimators: # =2 13 times, # =3 72
times and 7 =4 15 times.

Let us discuss experiments with a large number of different populations. First of all, we
chose to apply the method using Toeplitz matrices as described in Section 4. Indeed, for
Hankel methods, we have to compute algebraic moments at least up to order 2r + 2. The
empirical moments then have a variance which is governed by the moment of order 4r + 4,
and the moments of a Gaussian variable grow exponentially rapidly. The number of
observations that are required to have a good accuracy on the estimators of the moment is
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Figure 1. Density of the mixture.

then very large if empirical moments are used as estimators. This is not the case for
trigonometric moments. Another possibility could be to refine the estimation using bootstrap
techniques; we leave this for further work. Here we just want to show that, for simple
examples, our method gives good results with very fast computations.

We simulated a mixture with eight different Gaussian populations, with the following
density:

o) K m ( (x—e,)z)
dx 720.5(2@1/2 P\ o5 )

i=1
where the probability mixture is

0.10_4 +0.150_, +0.300_¢ 5 + 0.16; + 0.1625 +0.0765 + 00863 + 008(337 +0.1045.

The density of Q has the representation given in Figure 2.

The number of populations is not related to the number of modes. First of all, the choice
of the penalty term appears to be quite important. We noticed that the distance between the
points of the mixture distribution had an influence on the estimation; in some sense, there is
a need to compromise between good separation of the points in the mixing distribution
(which can be increased by rescaling) and good accuracy in the empirical estimation of the
trigonometric moments. We then considered a change in the scale of the observations.
Indeed, whereas scaling with a large parameter leads to better separation of the populations,
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1.6 T T T T T T

12F k

04f 1

0
—6 -2 2 6

Figure 2. Density of the mixture.

scaling with a small parameter leads to better accuracy of the estimators. The choice of the
rescaling factor is a result of a preliminary numerical investigation that will be fully
developed elsewhere. However, it leads us here to multiply the observations by a factor of
0.39.

This scaling factor is a first attempt to good setting of the penalty term. Indeed we
observed that good rescaling made the estimation process less sensitive to the choice of the
penalty term. This is a qualitative decision rule for the scaling factor (here 0.39). We then
considered 20 independent realizations for » = 500, 1000, 1500 and 2000 observations. The
penalty function is given in Figure 3.

The estimation of the number of populations is as follows:

for n =500, [8; 8; 8; 8; 8; 8;8; 8 10; 8; 8; 8,8, 8; 8; 8 8, 7, 7; 8],
for n =1000, [8; 8; 9; 8, 8; 8; 8; 8, 8; 8; 8;8;8;8;,8,9;8; 8; 8; 8],
for n = 1500, [8; 8; 8; 8; 8; 8; 8;8;,9;8; 8; 8;8;8; 8,8 8,8, 7; 8],
for n =2000, [8; 8; 8; 8;8;8;,7;,8;8;8;8;,8;,9;,8 9, 7; 8 8 8§ 8].

The choice of the penalty term requires obviously strong computational investigations,
which will be the object of a complete numerical further work. Our preliminary
experiments just make it obvious that it has to be carefully chosen when the number of
populations increases, and that a choice of some rescaling number may help.
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Figure 3. Penalty function of n.

6. Proofs

Proof of Theorem 1. We give the proof of the almost sure convergence, the convergence in
probability being the same replacing everywhere ‘a.s.” by ‘in probability’:

In(p) — Ju(r) = [L(c}, p)| — |L(c), N+ (n){A(p) — A(r)}.
Now, if pe{1,...,r—1},
Ju(p) = Ju(r) = |L(e], p)| — |L(C,, 1) = Lic, )| + [(m){A(p) — A(")},
L(., p) being continuous, ¢? — c? as., lim,_,  L(¢,, p) = L(c, p) as., and L(c, p)>0;
see Proposition 1. Thus

Vpe {1, e, r—1, }, nETooT_ nE{PooW__FOO a.s.,
which clearly implies that

liminf 7, = r a.s. (8)

n—0o0
Now, 7, = r implies that J,(7,) < J,(r), which in turns implies that

L(e"
A(ry) <= (IC(+)V)| + A(r)
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and using Assumption (C) and the fact that A4 is strictly increasing

limsup 7, < r a.s. )
Now (8) and (9) imply obviously the a.s. convergence of 7. Il

Proof of Theorem 2. Let us now prove the exponential convergence:

r—1

Py # 1) <> P(Ju(p) < (1) + Pi > 7).
p=1

For any p <r we have
P(Ju(p) < Jn(r) = P(IL(c}, p)| = L(c?, p) <I(m){A(r) — A(p)} + |L(c}, N — L(c”, p)).

Take n = n, such that

L(cP
K%Hﬂﬂ—A@ﬂsAE?Q;
we have
P(Ju(p) < Ju(r)) = P(L(éﬁ, p)— L, p) = %p)) " P(IL(é;, o) = 1D P>),

Now, for any integer n,

P(#,>r) < P(|L(c}, r)| = [(n){A(r + 1) — A(r)}).

Define n* = max;<,<,_1n,. We have for n = n*

r—1

P(iy # 1) < Z{P<L(E’£, p)— L(cP, p) < —w> +P<L(&;, )| = L(c?, P))}

3
p=1
+ P(|L(¢], r)| = I(n){A(r + 1) — A(")}). (10)

Since all norms in RY» are equivalent, now let A, denote the Lipschitz factor of F, with
respect to the /; norm:

E

1 1<
F, <; E wp(Xt)> - Fp(Q(Wp))‘ =M, ;pr()(,) - Q(@/Jp)
t=1 t=1

>l> (11)
dp

where ), 1 is the kth component of 1 ,. Then usual Markov inequality gives for any positive
real number u, and any integers p and k,

where ||| is the /; norm in RY». We have for any positive real number u

n

qp 1
= u> < ;P(’;pr,k()(t) —O0W k)

t=1

1 n
P(H ~>_Vp(X) = 0W))
t=1
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1 n
P <;pr,k(xf) — O ) = u) < exp {—nh, ()}, (12)
t=1
1 n
F (‘;pr,m) — 0 1) < —u) < exp {—nhp4(~1)}, (13)
t=1

where h,; is the Cramer transform of the logarithm of the generating function of
Y p.i(X) — By x(X) given by

() = inf [log E exp {01 p.e(X) — Ep (X))} — d-ul.
Moreover, since the generating functions [exp <?, ¥ ,(x)>dQ(s) are defined on a

neighbourhood of 0, we have for all p and k: &, x(0) =0, 4% (0) =0, A, (0)>0.
Now, using (10)—(13) we have, for n = n*,

) _ —1 T 4» L(Cp, p) qr L(CP’ p)
o7 = ; Lz_; o {_nh”’k< 2M,q, )} ! ; o {_nhr’k(%%)}

4

+ ; exp {—nhr,k (L(Aili’q, )} + Z exp {—nh,k (l( )W) }
A(r+1) — A(r)

Jrz exp {nh, k(l( )qur> }

I (R T NN O \ A 1Y)
p.k SMPC]p s pk 3qur s tpk 3qur P

{40+ 1) — A}
M, q,

Define

and

dy =

- inf Ay k(0); (14)
k=q,

we then have

r—1

PG, #r)< Z qp +2(r — 1)q, | exp(—nm)
p=1

+2q, exp {—nl(n)*do}{1 + o(1)}.
The dominant term in the inequality is the last term, which has order

exp {—nl(n)*d,}.
This gives the theorem, by taking an appropriate d <d, to take all the first terms into
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account, and n = n, where ny=n* is such that all terms are not larger than
exp {—nl(n)*d}. O

Proof of Theorem 3. We have
Xi=M;+ 001,

where M, has distribution u, Y; has distribution G and X, has distribution Q.
For any real ¢ €]0, 1] using the definition of class %, the following equality holds in
distribution:

Xf = MI+CGOYI+OOVC

so that det H(coy, p) is the determinant of the Hankel matrix of the moments of the variable
0, + oo V., which has strictly more than r points of support, and the theorem follows. [J
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