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We propose a new method to estimate the number of different populations when a large sample of a

mixture of these populations is observed. It is possible to de®ne the number of different populations

as the number of points in the support of the mixing distribution. For discrete distributions having a

®nite support, the number of support points can be characterized by Hankel matrices of the ®rst

algebraic moments, or Toeplitz matrices of the trigonometric moments. Namely, for one-dimensional

distributions, the cardinality of the support may be proved to be the least integer such that the Hankel

matrix (or the Toeplitz matrix) degenerates. Our estimator is based on this property. We ®rst prove the

convergence of the estimator, and then its exponential convergence under wide assumptions. The

number of populations is not a priori bounded. Our method applies to a large number of models such

as translation mixtures with known or unknown variance, scale mixtures, exponential families and

various multivariate models. The method has an obvious computational advantage since it avoids any

computation of estimates of the mixing parameters. Finally we give some numerical examples to

illustrate the effectiveness of the method in the most popular cases.
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1. Introduction

The estimation of the number of populations that compose a mixture is a classical statistical

problem.

Let fGè, è 2 Èg be a parametric family of distributions. We consider the mixture model

Q �
Xr

i�1

ðiGèi
�
�

Gè dì(è), èi 6� è j for i 6� j,

where r is the order of the mixture and ì �Pr
i�1ðiäèi

is a probability distribution on È.

Assume that we observe an n sample X 1, . . . , X n of the distribution Q, where the

parameters (ð1, . . . , ðr; è1, . . . , èr) are unknown, and we want to estimate the order r.

Indeed, this may be either the ®rst step for a complete estimation of the mixture, or the

question of interest in itself. This problem is known to be in general quite hard partly

because estimating the parameters of the mixture, given the order r, is dif®cult.
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The aim of this paper is to propose a new method of estimation for the order r having

the following advantages:

(1) It leads to consistent estimators, even for non-dominated families where likelihood

methods do not exist. The method applies to a wide class of mixture models.

(2) There is no need to have a priori upper bounds for the order of the mixture.

(3) It has numerical interest since it avoids the computation of estimates of the mixing

parameters.

Let us ®rst brie¯y survey the history of order estimation to see why it is dif®cult and

how previous workers proposed to deal with the problem. There exists a very large literature

on this subject and in particular that dedicated to clustering.

The ®rst natural idea, when all Gè are dominated by a common measure, is to use

likelihood methods. Since the pioneering work of Akaike (1974) it is known that a

penalization term has to be added to the maximum-likelihood statistic to obtain a good

contrast function for the order. In the context of mixture models, this method implies

various dif®culties, at the theoretical as well as at the practical level. First of all, the

asymptotic distribution of the maximum-likelihood statistic was not known in general.

Ghosh and Sen (1985) and later Self and Lieng (1987) gave the asymptotic behaviour of

likelihood ratios under a very restrictive assumption: some separability condition for the

parameter values, in order to avoid dif®culties due to non-identi®ability. This, in particular,

excluded the possibility of knowing the asymptotic of the maximum-likelihood statistic for

an overestimated order. However, very recently, we gave a general likelihood theory which

applies to ®nite mixture models. So, from a theoretical point of view, penalized likelihood

techniques can be used to estimate r without any condition except that the model is

dominated (Dacunha-Castelle and Gassiat 1995), and the parameters are bounded. Indeed, if

they are not bounded, the likelihood statistic may not converge (see Hartigan (1985) for

counterexamples). The use of these techniques requires the computation of maximum-

likelihood estimators of the parameters, which appears to be very dif®cult. Bootstrapping

may be a useful technique to study the maximum distribution (McLachlan 1987). However,

for overestimated orders, it is not possible to have consistent estimators of the mixture's

natural parameters. This is due to the non-identi®ability of the model.

Various workers have proposed to replace the likelihood by other contrast functions. For

instance, Ranneby (1984) has given a method which allows one to estimate the Kullback

distance when the likelihood is not relevant. Many papers on clustering include a

comparison of penalized likelihood techniques with other techniques using another kind of

divergence function or distance function. This was done by Bozdogan (1994), where a long

bibliography on clustering and ideas of information theory can be found.

The problem of the choice of the penalty term is of course not limited to mixture

models. It is well known from mixture theory but also from other popular theories such as

autoregressive moving-average models that it is dif®cult to choose the value of the penalty

term. Different workers give experimental or heuristic justi®cations for this choice; for

example Bock (1994) and Rissanen and Ristad (1994) used stochastic complexity as a

criterion.

Another approach is that of nonparametric techniques. Izenman and Sommer (1988)

280 D. Dacunha-Castelle and E. Gassiat



linked the order of the mixture with the number of modes of the distribution. An estimator

of the order is then based on a nonparametric estimator of the number of modes. Roeder

(1994) proposed a graphical technique based on sign changes of the differences of the

densities. All of this applies of course only to particular mixtures. Lindsay (1989) has given

a consistent moment method to estimate the order, but he did not use all the properties of

this simple idea: if ì is the mixing distribution on È, it is possible to know the number of

points of its support using Hankel moment matrices.

The organization of the paper is as follows. In Section 2, we present our general

estimation method: Hankel matrices, characterization of order, and the penalty criterion. We

then prove consistency and exponential convergence of the estimator. The method requires

the possibility of consistently estimating algebraic moments of the mixing distribution. In

Section 3 we given several examples: translation or scale mixtures, translation and scale

mixtures, and exponential mixtures. Section 4 contains some further considerations; other

criteria are presented, generalizing the idea of Hankel matrices. They could be used when

prior information is available (for instance, bounds on the support of the mixing distribution

ì). In particular, we propose an alternative method using the Toeplitz matrices of

trigonometric moments of the mixture. We also discuss other models where this method

could be exploited, as well as a discussion of likelihood methods. In Section 5, we give

some numerical examples to illustrate the effectiveness of our method, especially using

Toeplitz matrices. Proofs are given in the ®nal section.

2. General method of estimation

Let us ®rst describe the method for a one-dimensional parameter space, È � R. The idea is

to characterize the discrete measures ì with at most r points of support using functions of

their algebraic moments. De®ne then

Ö p � (è j)1< j<2 p:

For any measure ì on È, ì(Ö p) � � ÈÖ p(è) dì(è). For any vector c in R1, de®ne cp as the

vector in R2 p of the ®rst 2 p components of c: cp � (c1, . . . , c2 p). De®ne H(cp, p), the

Hankel matrix of order p, as the ( p� 1) 3 ( p� 1) matrix given by

H(cp, p)i, j � c
p
i� jÿ2, 1 < i, j < p� 1,

where c
p
0 � 1. If ì is a measure with ®nite Ö p moments, H(ì(Ö p), p) is said to be the

Hankel matrix of ì. The use of Hankel matrices in the truncated moment problem can be

found in the books of Karlin and Studden (1966) and of Krein and Nudel'man (1977). We

just recall the fundamental properties that we shall use in the sequel.

Let Kp be the subset of R2 p of those vectors cp such that there exists a positive measure

ì such that cp � ì(Ö p). De®ne on R2 p a function L(:, p) by

L(cp, p) � det H(cp, p):

The following result characterizes the probability measures with r points of support.
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Proposition 1. H(cp, p) is a non-negative if and only if cp 2 Kp. Moreover, a non-negative

H(cp, p) degenerates in at least one direction if and only if every probability measure ì
satisfying ì(Ö p) � cp is discrete and supported by at most p points.

The proof of this proposition is very easy and relies on the following identity:

8u 2 R p�1, uT:H(cp, p):u �
�

R

Xp

i�0

ui�1
:xi

 !2

dí(x)

for any (positive or non-positive) measure í such that í(Ö p) � cp.

If ì is a discrete probability measure having r points of support and if, for every integer

p, c p � ì(Ö p), it is then obvious that the order r is characterized by

r � inf f p, L(cp, p) � 0g: (1)

Assume now that we have a consistent estimator ĉ p
n of cp � ì(Ö p), based on the

observations X1, . . . , Xn, supposed to be independent with common distribution Q. This is

the case in many useful situations and will be developed in the forthcoming sections. Then

(1) could lead us to choose the estimator of the order r as the minimizer in p of jL(ĉ p
n , p)j.

This in turn would lead us to choose r larger than the true value, since jL(ĉ p
n , p)j is close to

0 for suf®ciently large n as soon as r is larger than the true value. To overcome this problem,

we introduce a penalty term, based on Akaike's idea. Let l(n) be a positive function of n,

such that limn!�1 l(n) � 0, and A( p) a positive, strictly increasing function. De®ne the

empirical penalized objective function by

Jn( p) � jL(ĉ p
n , p)j � A( p)l(n): (2)

The estimator r̂n is now de®ned as the minimizer of Jn over all N.

The following theorem states suf®cient conditions for the consistency of r̂n.

Theorem 1. Assume that

(C) 8p 2 N, ĉ p
n ! cp and

1

l(n)
[L(ĉ p

n , p)ÿ L(cp, p)]! 0 a.s.

Then r̂n ! r a.s.

The same result holds replacing everywhere the almost sure convergence by convergence

in probability.

Remarks.

(a) We do not need an upper bound for the order because of the positivity of the contrast

function jL(:, p)j, as becomes clear in the proof. Also, the estimator exists since obviously

for any integer m

r̂n < Aÿ1 jL(ĉm
n , m)j

l(n)
� A(m)

� �
,

where Aÿ1 is the inverse function of A (A is extended here as a strictly increasing function on
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the positive real numbers). In particular, this gives a recursive way to reduce the set where Jn

has to be minimized. This is an important consequence of taking the absolute value of L.

Indeed, with a given upper bound on the order, the analogous estimator obtained by

minimizing L(ĉ p
n , p)� A( p)l(n) (with no absolute value) over a bounded set of integers is

also consistent.

(b) The method requires the choice of the penalty term A( p)l(n). As we already said in

the introduction it is well known that such a choice is dif®cult. If one chooses a suitable

Bayesian criterion (see, for example, Schwarz (1978)) or a stochastic complexity criterion,

then ( p log n)=n1=2 can be considered as optimal. However, the problem cannot be

considered to be well solved from a theoretical point of view. Numerical investigations are

also necessary, but they are not included in this paper.

Assumption (C) concerns the asymptotic convergence of ĉ p
n as an estimator of cp, it

relates l(n) and the almost sure (respectively in probability) speed of convergence of ĉ p
n to

cp. Indeed, using a Taylor expansion of order 1, (C) holds as soon as f1=l(n)g(ĉ p
nÿ

cp)! 0 almost surely (respectively in probability)

Section 3 will be devoted to the choice of the estimator ĉ p
n of cp. For different situations

it is possible to construct ĉ p
n easily. An important situation is the case where ĉ p

n is a

function of the empirical moments of the observations; if

cp � f p(Eø p(Xt)), (3)

then

ĉ p
n � f p

1

n

Xn

t�1

ø p(Xt)

 !
,

where ø p and f p are multidimensional real functions, say that ø p takes values in Rq p for an

integer qp. In general, ø p will be exactly Ö p. In this case, we may determine exactly the

speed of convergence, which will be exponentially fast.

Theorem 2. Denote by Fp the function L( f p(:), p). Assume that for every integer p < r the

function Fp is Lipschitz with respect to some norm in Rq p , and that the generating functions�
exp ht, ø p(x)i dQ(x) are de®ned in a neighbourhood of 0. Assume also that

n1=2 l(n)! �1:
Then there exists a positive constant d such that, for every integer n larger than n0 (which

may be explicitly computed and depends on A(:) and l(:), and on the underlying distribution

Q):

P( r̂n 6� r) < 2qr exp fÿdnl2(n)g:

Remarks. If the ø p are the algebraic functions, the assumption requires the distribution Q to

have a bounded support. However, in Section 4 we extend the method using trigonometric

moments instead of algebraic moments, and the Lipschitz assumption together with the

generating functions assumption hold when the ø p are the trigonometric functions.

Estimation of the order of a mixture model 283



The constants involved in the theorem may be approximated using (14) given in Section

6. Of course, d is larger for well-separated populations.

The next proposition may be used to reduce the multidimensional case È � Rs to the

real one È � R.

Proposition 2. Let ì be a discrete probability on Rs with r support points. For every unitary

vector v 2 Rs, let vì be the distribution of hv, èi (h:, :i is the usual scalar product in Rs).

Then vì is discrete with r points of support except for at most r(r ÿ 1)=2 values of v.

Proposition 2 may be used in the following way. Choose q � (r(r ÿ 1)=2)� 1 different

unitary vectors vi, i � 1, . . . , q. Assume that estimators of the algebraic moments of all

hvi, èi are available. Call them ĉ p
n (vi). De®ne then r̂n as the minimizer over N ofXq

i�1

jL(ĉ p
n (vi), p)j � A( p)l(n):

Then, if the estimators of the involved algebraic moments satisfy the assumptions, Theorems

1 and 2 hold.

Note also that being able to estimate the algebraic moments of all possible hv, èi, v 2 Rs

up to order p is the same as being able to estimate the moments of all monomials of

coordinates of è of degree less or equal to p, since

E([hv, èi]k) �
X

k1�:::�ks�k

k!

k1! . . . ks!

Ys

i�1

vk i

i E
Ys

i�1

èk i

i

 !
:

3. Examples

We ®rst propose examples where the estimation of cp � ì(Ö p) is obvious, owing to the

structure of the family (Gè)è2È, such as translation mixtures and scale mixtures.

Let us again emphasize the fact that, at least for our three ®rst examples, the family (Gè)

does not have to be dominated, so that our method applies in cases where it is not possible

to apply likelihood methods.

3.1. Translation mixtures

We assume here that È � R. The family (Gè) is given by

dGè(x) � dG(xÿ è),

where G is a known probability distribution on R. Note that the random variables Xt may be

described as

Xt � Yt � Mt, (4)
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where Yt and Mt are mutually independent, Yt has distribution G and Mt has distribution ì.

We then have

Q(xk) �
Xk

l�0

k!

l!(k ÿ l)!
G(xl)ì(x kÿ l):

Since G(xl) is known, this relation leads to a triangular linear system for the computation of

ì(xk), k � 1, . . . , 2 p. If Q(xk) is estimated by

Q̂n(xk) � 1

n

Xn

t�1

X k
t ,

the triangular linear system may be solved with Q̂n(xk) in place of Q(xk), leading to a

consistent estimate ĉ p
n of (ì(xk))k�1,:::,2 p, with the same asymptotic properties as Q̂n(xk):

central limit theorem and law of the iterated logarithm. Then we have the following.

Proposition 3. As soon as, for all integer p,
�

xp dG(x) ,�1,

(i) (C) holds with n1=2(log log n)ÿ1=2 l(n)! �1 for the a.s. convergence,

(ii) (C) holds with n1=2 l(n)! �1 for the convergence in probability and Theorem 1

applies and

(iii) Theorem 2 applies as soon as for all integer p, E(exp ã p X 2 p) ,1 for some ã p . 0,

where X has distribution G.

When G is an s-dimensional distribution as well as È � Rs, Proposition 2 may be used

by taking a scalar product in (4) with any s-dimensional vector v.

3.2. Scale mixtures

Here, È � R� and the family (Gè) is given by

dGè(x) � dG
x

è

� �
,

where G is a known probability distribution over R. Note that the random variables Xt may

now be described by

X t � ó tYt

where ó t and Yt are mutually independent, Yt has distribution G and ó t has distribution ì.

Then we have

8k 2 N, E(X k
t ) � E(ó k

t ):E(Y k
t ),

Q(xk) � G(xk):ì(xk):

If, for all integer k, G(xk) 6� 0, ì(xk) is estimated by Q̂n(xk)=G(jk) and Proposition 3 holds.

If, for some integer k, G(xk) � 0, we take squares everywhere, so that all G(xk) are replaced

by G(x2k) which are now always positive. The method is the same, replacing G and ì by

their images using the application x! x2, and Proposition 3 holds again.
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3.3. Covariance mixtures

Here we assume that Q is a distribution on Rs, and È �M s, where M s is the space of

s 3 s symmetric matrices. Q is given by

Q �
Xr

i�1

ði
:G(Óÿ1

i
:)

where Óÿ1
i , i � 1, . . . , r are r different covariance matrices and G a given distribution in Rs.

With no loss of generality we may assume that the covariance matrix of G is the identity. The

model may be described by

Xt � St
:Yt,

where Yt and St are mutually independent, Yt is a random vector with distribution G, St is a

random matrix with distribution ì on a space of dimension s(s� 1)=2. It is easy to see that

E(X1
:X T

1 ) � E(S2
1)

and for every integer k

E((X1
:X T

1 )k) � E(S2k
1 )E((Y1

:Y T
1 )k)

so that all moments of S2
1 can be estimated. Now, the distribution of S2

1 has the same number

of points of support as that of S1. Our method thus applies using Proposition 2.

3.4. Translation mixtures with unknown scale

Let now Q be a mixture of a translation family (G(:ÿ è)) with an unknown scaling ó0:

Q(dx) �
Xr

i�1

ði dG
xÿ èi

ó0

� �
(5)

Here again, G is known. We cannot directly use Hankel's criterion for this model. So we have

to generalize the method for unknown scale parameters. This generalization holds when the

distribution G is in a certain class that we de®ne now.

De®nition. L is the set of distributions G with the following property. If U is a random

variable with distribution G, for any real c in ]0, 1[, there exist two independent random

variables ~U and Vc, where ~U has distribution G and U � c ~U � Vc.

The class L is characterized at the end of this section in Proposition 5. Just note here

that Gaussian distributions are in class L .

Let (5) hold with G in class L . We have the following triangular system relating the

algebraic moments of ì to those of Q:

8k � 1, . . . , 2 p, Q(xk) �
Xk

l�0

k!ó l
0

l!(k ÿ l)!
G(xl)ì(èkÿ l):

286 D. Dacunha-Castelle and E. Gassiat



If ó is assumed to be a value of the scaling parameter, de®ne ì(è j, ó ), j � 1, . . . , 2 p as the

solution of the following triangular system:

8k � 1, . . . , 2 p, Q(xk) �
Xk

l�0

k!ó l

l!(k ÿ l)!
G(xl)ì(èkÿ l, ó ): (6)

Now let H(ó , p) be the Hankel matrix built with the pseudo-moments ì(è j, ó ), j � 1, . . . ,

2 p. (We call them pseudo-moments since it may happen that they are not moments of a

positive measure.) We have the following characterization of the scaling factor ó0 and of the

order r.

Theorem 3.

(i) 8ó , ó0, 8 p: det fH(ó , p)g. 0.

(ii) For ó � ó0, det fH(ó , p)g � 0 if and only if p > r.

Theorem 3 is proved in Section 6. Its interpretation is the following: (ó0, r) is the

smallest root of the equation jdet fH(ó , p)gj � 0, where `smallest' means smallest in all

directions. It results in the idea of estimating ó0 by compensating the criterion, leading to

the contrast function Kn:

Kn( p, ó ) � jdet f Ĥ n(ó , p)gj � A( p)l1(n)� óMl1(n):

Here, l1(n) is a positive functions decreasing to 0 when n goes to in®nity and M a positive

real number. Ĥ n(ó , p) is the Hankel matrix built with the solution of the triangular system

(6) where Q(xk) is replaced by Q̂n(xk). Then r̂n and ó̂ n are de®ned by

Kn( r̂n, ó̂ n) � min fKn( p, ó ); p 2 N, ó 2 R�g:
We have the following.

Proposition 4. For suf®ciently large M, Theorem 1 holds for r̂n. Moreover, ó n is a consistent

estimator of ó0 under the same conditions as for r̂n.

The proof of the consistency of ó̂ n follows the same lines as that of r̂n and will be

omitted.

Remark. The characterization given in Theorem 3 may be used for mixture models with

additive noise and with unknown signal-to-noise ratio. That is, when the observations are

given by

Zt � X t � ó0Ut � Mt � Yt � ó0Ut,

Xt has a translation mixture distribution, and Ut is independent of X and has a distribution in

class L ; ó0 is unknown. This model is of course useful in signal theory.

We recall now a different characterization of class L (Petrov 1975, p. 83, Lemma 12).
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Proposition 5. L is the set of in®nitely divisible real distributions with arbitrary Gaussian

part and with absolutely continuous Levy measure, with density f, such that xf (x) decreases

on R� and Rÿ.

3.5. Mixtures of exponential families

Let us ®rst give some general considerations for È � Rs. To estimate the multidimensional

moments of ì, we can try to ®nd these moments using the structure of the statistical model

Gè(dx). This means that, for every k 2 Ns, k � (k1 . . . , ks), we need a function øk such that

èk �
�
øk(x) dGè(x):

Here èk means èk1

1 . . . èks

s . This relation implies that�
èk dì(è) �

�
øk(x) dQ(x),

so that ì(èk) can be obtained as a linear functional of the distribution Q.

Consider the situation where we can write

Gè(dx) �
X
k2Ns

èkøk(x)í(dx), (7)

where the series converges in L1(í) \ L2(í). Suppose moreover that (øk) is a free and total

system in L2(í). Then the classical theory of biorthogonal systems (Brezinski 1992) allows us

to obtain (øk) using the relations
�
øk(x)ø l(x) dí(x) � ä l

k , k, l 2 Ns. Here ä l
k is the

Kronecker symbol.

In general, the øk need not be distinct for distinct k. We give an example below. If

k 6� k9 implies that øk 6� øk9, then all moments ì(èk) can be estimated and our method

applies.

Now let us discuss the case where (Gè) is an exponential family, in order to have a

description of what can happen:

Gè(dx) � exp (ÿö(è)) exp (hè, xi)S(dx),

where S is a positive measure on Rs. We suppose that the support of S has a non-empty

interior. Then È � Rs is de®ned by

È � è,

�
Rs

exp (hè, xi) dS(x) � exp fö(è)g,1
� �

:

We assume that the interior of È is not empty. Then we have

exp fö(è)gGè(dx) �
X1
n�0

hè, xin
n!

S(dx)

�
X1
n�0

X
h1�:::�hs�n

C(h1, . . . , hs)è
h1

1 . . . èhs

s
:xh1

1 . . . xhs

s S(dx),
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for suitable constants C(h1, . . . , hs). Now let ~ì be de®ned by (d~ì=dì)(è) � exp fÿö(è)g.
Then ì is discrete with r points of support if and only if the same holds for ~ì. We estimate

~ì(èk) by Q̂n(xk)=S(xkøk(x)). The set of functions xk is a free and total system but, to recover

all the moments of è, we require that they be different, which is not necessarily true. We can

illustrate the dif®culty by the case of the general mixture of Gaussian distributions N (m, ó ).

Let è � (è1, è2), è1 � ÿm=2ó 2, è2 � 1=2ó 2, x � (x1, x2), x1 � u, x2 � u2. To compute for

example all the moments of è of order two, we have to compute ®ve moments (è1, è2
1, è2, è2

2

and è1è2) based on four moments of u (u, u2, u3 and u4), which is impossible. Here, our

method does not apply.

For full exponential families, the linear dimension of the support of S equals the

dimension of È, and our method applies. The same remains true for curved families if

there is a unique representation of xk . This is true for instance for the beta family:

Bÿ1(á, â)xá(1ÿ x)â10,1(x) dx:

4. Further considerations

It appears that the proposed method applies in many other situations. Indeed, if one wishes to

estimate a discrete number, which may be modelled as the number of points of support of

some variables, if the observations allow one to estimate Ö moments of this variable, then

one may use methods similar to those proposed here. Deconvolution of discrete signals may

be solved using Hankel methods (Gamboa and Gassiat 1994), even with additive noise

(Gassiat and Gautherat 1994). Source separation of discrete signals or circular complex

signals may also be performed via Hankel methods (Gamboa and Gassiat 1995).

4.1. Generalization of the method to other sets of moments

Here È is assumed to be a bounded interval. By translation and scaling, it is suf®cient to

consider the case È � [0, 2ð]. We then replace the algebraic functions by the set of

functions:

Ö p � (jk(x))1<k< p � (exp ikx)1<k< p:

For any complex vector cp in C p, let T (cp, p) be the ( p� 1) 3 ( p� 1) Toeplitz matrix of

order p, i.e.,

8i, j 2 f1, . . . , p� 1gT (cp, p)i, j �
c

p
iÿ j,

c
p
jÿi,

if iÿ j > 0,

if iÿ j , 0:

(
Let ~K p be the subspace of C p de®ned by c 2 ~K p if and only if there exists a positive

measure ì on [0, 2ð] such that c � ì(Ö p). Now let ~L(cp, p) � det T (cp, p). We then have

the following proposition, similar to Proposition 1.
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Proposition 6. T (cp, p) is non-negative if and only if c 2 ~K p. Moreover, T (cp, p) is non-

negative and degenerates in at least one direction if and only if every probability measure ì
satisfying ì(Ö p) � c is discrete and supported by at most p points.

Proof (see Krein and Nudel'man (1977)). A similar criterion may then be used, replacing L

by ~L everywhere, with the same properties. u

Let us just show how it applies for the translation mixture model

Xt � Yt � Mt,

where Mt is a discrete random variable known to lie in [0, 2ð], and Yt has distribution G. We

obviously have Q(jk) � G(jk):ì(jk). Assume that 8k 2 N, G(jk) 6� 0. Then Q(jk) is

estimated by

Q̂n(jk) � 1

n

Xn

t�1

jk(Xt),

so that the estimation ĉ p
n of cp � ì(Ö p) will be de®ned as

ĉ p � Q̂n(jk)

G(jk)

 !
1<k< p

and ĉ p
n is obviously consistent. We then have the following.

Proposition 7. If G(jk) 6� 0, then

(i) (C) holds as soon as n1=2(log log n)ÿ1=2 l(n)! �1 for the a.s. convergence and

(ii) (C) holds as soon as n1=2 l(n)! �1 for the convergence in probability and

Theorem 1 applies.

Moreover, Theorem 2 applies without any restriction.

Proof. For all p, ~L(:, p) is in®nitely differentiable. Assumption (C) results from a Taylor

expansion of order 1, and from the law of the iterated logarithm for independent sequences

for the a.s. convergence, or from the central limit theorem for the convergence in

probability. u

A closer look at Toeplitz and Hankel methods shows that it involves two different kinds

of argument. The ®rst argument concerns the moments that are used, the fact that

polynomials have a particular behaviour with respect to the number of zeros. This property

generalizes to Chebyshev systems of functions. The second argument is the possibility of

exhibiting a computational functional to discriminate particular points of the closed convex

hull of the moment functions (determinant of the Hankel or Toeplitz forms). In the case of

a bounded interval, various examples of other criteria may be given. A large family of such

criteria may be found in the work of Gamboa and Gassiat (1993).
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4.2. Extension of the method to other models

As another example, let us consider the case of centred stationary Gaussian processes X with

a ®nite discrete spectral measure ì, where the number of frequencies has to be estimated (in

this example the observations are correlated). So we can write

ì(dë) �
Xr

l�1

pläèl
(dë), 0 < pl, èl 2 [0, 2ð], èl 6� èl9 for l 6� l9:

Then X j, j 2 N, has the representation

X j �
Xr

l�1

Al eijèl ,

where Al, l � 1, . . . , r, are independent centred Gaussian random variables with variance pl.

The parameter of interest r, the number of different frequencies, has to be estimated on the

basis of the observations X 1, . . . , Xn. Let í be the random measure:

í(dë) �
Xr

l�1

A2
läèl

:

Let ên(k) be the empirical covariance of X:

ên(k) � 1

nÿ k

Xnÿk

j�1

X j�k
�X j,

ên(k) �
Xr

l�1

A2
l eikèl � O

1

n

� �
:

ên gives an estimator of the Fourier coef®cients of the random measure í. Now, A2
l is a.s.

positive, so that í is a.s. a discrete random measure with r points of support, and the Toeplitz

criterion may be used to estimate r.

4.3. Penalized likelihood methods

Assume that there exists a positive measure í that dominates the family (Gè)è2È, so that, if

ì �Pr
i�1ðiGèi,

Qè r ,ð r (:) �
Xr

i�1

ðiGèi
� í,

where èr � (èi)1<i<r, ðr � (ði)1<i<r, and

dQè r , p r

dí
(:) �

Xr

i�1

ði

dGèi

dí
(:) � q(èr, ðr, :):
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De®ne the log-likelihood Ln as

Ln(r, èr, ðr) �
Xn

t�1

log q(èr, ðr, Xt):

The penalized maximum likelihood can be de®ned as usual:

Jn( p) � ÿk(n) max
è p,ð p

ln( p, è p, ð p)� A( p),

where k(n) is a positive function tending to 0 when n goes to in®nity, and A( p) is a strictly

increasing function of the order p.

As we already mentioned in the introduction, penalized likelihood methods have been

extensively studied (although not with general theoretical results). Of course, the problem is

that the estimators of è p and ð p are not consistent when we are near the boundary, i.e., for

p . r. We suggest that a good procedure could be the following.

(1) Estimate the order using the Hankel criterion.

(2) Then test the order r against r � 1 for instance using likelihood tests as they are

developed in our paper (Dacunha-Castelle and Gassiat 1995). The likelihood statistic has a

distribution which is asymptotically a function of the supremum of a Gaussian process. This

distribution has to be tabulated using simulations.

5. Numerical experiments

The experiments were conducted for Gaussian translation mixtures with known variance. For

a small true number of populations, i.e., up to six populations, the method seems to be very

ef®cient, and not very sensitive to the choice of the penalty term. For three different

populations, where the density is

dQ(x)

dx
�
X3

i�1

ði

0:5(2ð)1=2
exp ÿ (xÿ èi)

2

0:5

� �
,

where the probability mixture is

0:3äÿ0:5 � 0:5ä0 � 0:2ä1:3:

The density of Q has the representation given in Figure 1. With 100 independent realizations

and with 500 observations we obtained the following estimators: r̂ � 2 13 times, r̂ � 3 72

times and r̂ � 4 15 times.

Let us discuss experiments with a large number of different populations. First of all, we

chose to apply the method using Toeplitz matrices as described in Section 4. Indeed, for

Hankel methods, we have to compute algebraic moments at least up to order 2r � 2. The

empirical moments then have a variance which is governed by the moment of order 4r � 4,

and the moments of a Gaussian variable grow exponentially rapidly. The number of

observations that are required to have a good accuracy on the estimators of the moment is
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then very large if empirical moments are used as estimators. This is not the case for

trigonometric moments. Another possibility could be to re®ne the estimation using bootstrap

techniques; we leave this for further work. Here we just want to show that, for simple

examples, our method gives good results with very fast computations.

We simulated a mixture with eight different Gaussian populations, with the following

density:

dQ(x)

dx
�
X8

i�1

ði

0:5(2ð)1=2
exp ÿ (xÿ èi)

2

0:5

� �
,

where the probability mixture is

0:1äÿ4 � 0:15äÿ2 � 0:30äÿ0:5 � 0:1ä1 � 0:1ä2:5 � 0:07ä3 � 0:08ä3 � 0:08ä3:7 � 0:1ä4:5:

The density of Q has the representation given in Figure 2.

The number of populations is not related to the number of modes. First of all, the choice

of the penalty term appears to be quite important. We noticed that the distance between the

points of the mixture distribution had an in¯uence on the estimation; in some sense, there is

a need to compromise between good separation of the points in the mixing distribution

(which can be increased by rescaling) and good accuracy in the empirical estimation of the

trigonometric moments. We then considered a change in the scale of the observations.

Indeed, whereas scaling with a large parameter leads to better separation of the populations,

4

3

2

1

0
23 21 1 3

Figure 1. Density of the mixture.
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scaling with a small parameter leads to better accuracy of the estimators. The choice of the

rescaling factor is a result of a preliminary numerical investigation that will be fully

developed elsewhere. However, it leads us here to multiply the observations by a factor of

0.39.

This scaling factor is a ®rst attempt to good setting of the penalty term. Indeed we

observed that good rescaling made the estimation process less sensitive to the choice of the

penalty term. This is a qualitative decision rule for the scaling factor (here 0.39). We then

considered 20 independent realizations for n � 500, 1000, 1500 and 2000 observations. The

penalty function is given in Figure 3.

The estimation of the number of populations is as follows:

for n � 500, [8; 8; 8; 8; 8; 8; 8; 8; 10; 8; 8; 8; 8; 8; 8; 8; 8; 7; 7; 8],

for n � 1000, [8; 8; 9; 8; 8; 8; 8; 8; 8; 8; 8; 8; 8; 8; 8; 9; 8; 8; 8; 8],

for n � 1500, [8; 8; 8; 8; 8; 8; 8; 8; 9; 8; 8; 8; 8; 8; 8; 8; 8; 8; 7; 8],

for n � 2000, [8; 8; 8; 8; 8; 8; 7; 8; 8; 8; 8; 8; 9; 8; 9; 7; 8; 8; 8; 8].

The choice of the penalty term requires obviously strong computational investigations,

which will be the object of a complete numerical further work. Our preliminary

experiments just make it obvious that it has to be carefully chosen when the number of

populations increases, and that a choice of some rescaling number may help.

1.6

1.2

0.8

0.4

0
26 22 2 6

Figure 2. Density of the mixture.
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6. Proofs

Proof of Theorem 1. We give the proof of the almost sure convergence, the convergence in

probability being the same replacing everywhere `a.s.' by `in probability':

Jn( p)ÿ Jn(r) � jL(ĉ p
n , p)j ÿ jL(ĉ r

n, r)j � l(n)fA( p)ÿ A(r)g:
Now, if p 2 f1, . . . , r ÿ 1g,

Jn( p)ÿ Jn(r) � jL(ĉ p
n , p)j ÿ jL(ĉ r

n, r)ÿ L(c, r)j � l(n)fA( p)ÿ A(r)g,
L(:, p) being continuous, ĉ p

n ! cp a.s., limn!�1 L(ĉn, p) � L(c, p) a.s., and L(c, p) . 0;

see Proposition 1. Thus

8p 2 f1, . . . , r ÿ 1, g, lim
n!�1

Jn( p)ÿ Jn(r)

l(n)
� lim

n!�1
jL(ĉ p

n , p)j
l(n)

� �1 a.s.,

which clearly implies that

lim inf
n!1 r̂n > r a.s. (8)

Now, r̂n > r implies that Jn( r̂n) < Jn(r), which in turns implies that

A( r̂n) <
jL(ĉ r

n, r)j
l(n)

� A(r)

3.5

3

2.5

2

1.5

1
500 1000 1500 2000

3 1027

Figure 3. Penalty function of n.
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and using Assumption (C) and the fact that A is strictly increasing

lim sup
n!1

r̂n < r a.s. (9)

Now (8) and (9) imply obviously the a.s. convergence of r̂n. u

Proof of Theorem 2. Let us now prove the exponential convergence:

P( r̂n 6� r) <
Xrÿ1

p�1

P(Jn( p) , Jn(r))� P( r̂n . r):

For any p , r we have

P(Jn( p) , Jn(r)) � P(jL(ĉ p
n , p)j ÿ L(cp, p) , l(n)fA(r)ÿ A( p)g � jL(ĉr

n, r)j ÿ L(cp, p)):

Take n > np such that

l(np)fA(r)ÿ A( p)g <
L(cp, p)

3
;

we have

P(Jn( p) , Jn(r)) < P L(ĉ p
n , p)ÿ L(cp, p) <

L(cp, p)

3

� �
� P jL(ĉ r

n, r)j > L(cp, p)

3

� �
:

Now, for any integer n,

P( r̂n . r) < P(jL(ĉ r
n, r)j > l(n)fA(r � 1)ÿ A(r)g):

De®ne n� � max1< p<rÿ1 np. We have for n > n�

P( r̂n 6� r) <
Xrÿ1

p�1

P L(ĉ p
n , p)ÿ L(cp, p) < ÿ L(cp, p)

3

� �
� P jL( ĉ r

n, r)j > L(cp, p)

3

� �� �
� P(jL(ĉ r

n, r)j > l(n)fA(r � 1)ÿ A(r)g): (10)

Since all norms in Rq p are equivalent, now let Mp denote the Lipschitz factor of Fp with

respect to the l1 norm:����Fp

1

n

Xn

t�1

ø p(Xt)

 !
ÿ Fp(Q(ø p))

���� < Mp

 1

n

Xn

t�1

ø p(Xt)ÿ Q(ø p)

,

where i:i is the l1 norm in Rq p . We have for any positive real number u

P

 1

n

Xn

t�1

ø p(X t)ÿ Q(ø p)

 > u

 !
<
Xq p

k�1

P

���� 1

n

Xn

t�1

ø p,k(Xt)ÿ Q(ø p,k)

���� >
u

qp

 !
, (11)

where ø p,k is the kth component of ø p. Then usual Markov inequality gives for any positive

real number u, and any integers p and k,
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P
1

n

Xn

t�1

ø p,k(X t)ÿ Q(ø p,k) > u

 !
< exp fÿnh p,k(u)g, (12)

P ÿ 1

n

Xn

t�1

ø p,k(Xt)ÿ Q(ø p,k) < ÿu

 !
< exp fÿnh p,k(ÿu)g, (13)

where h p,k is the Cramer transform of the logarithm of the generating function of

ø p,k(X )ÿ Eø p,k(X ) given by

h p,k(u) � inf
ä2R

[log E exp fä(ø p,k(X )ÿ Eø p,k(X ))g ÿ ä:u]:

Moreover, since the generating functions
�

exp , t, ø p(x) . dQ(s) are de®ned on a

neighbourhood of 0, we have for all p and k: h p,k(0) � 0, h9p,k(0) � 0, h 0p,k(0) . 0.

Now, using (10)±(13) we have, for n > n�,

P( r̂n 6� r) <
Xrÿ1

p�1

Xq p

k�1

exp ÿnh p,k

L(cp, p)

2Mpqp

� �� �
�
Xqr

k�1

exp ÿnhr,k

L(c p, p)

Mrqr

� �� �"

�
Xqr

k�1

exp ÿnhr,k

L(cp, p)

Mrqr

� �� �#
�
Xq r

k�1

exp ÿnhr,k l(n)
A(r � 1)ÿ A(r)

2Mrqr

� �� �

�
Xqr

k�1

exp ÿnhr,k l(n)
A(r � 1)ÿ A(r)

2Mrqr

� �� �
:

De®ne

m � min h p,k

L(cp, p)

3Mpqp

� �
, h p,k

L(cp, p)

3Mrqr

� �
, h p,k ÿ L(cp, p)

3Mrqr

� �( )
,

and

d0 � fA(r � 1)ÿ A(r)g2

Mrqr

: inf
k<q r

h 0r,k(0); (14)

we then have

P( r̂n 6� r) <
Xrÿ1

p�1

qp � 2(r ÿ 1)qr

0@ 1A exp (ÿnm)

� 2qr exp fÿnl(n)2d0gf1� o(1)g:
The dominant term in the inequality is the last term, which has order

exp fÿnl(n)2d0g:
This gives the theorem, by taking an appropriate d , d0 to take all the ®rst terms into
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account, and n > n0 where n0 > n� is such that all terms are not larger than

exp fÿnl(n)2dg. u

Proof of Theorem 3. We have

X t � Mt � ó0
:Yt,

where Mt has distribution ì, Yt has distribution G and X t has distribution Q.

For any real c 2]0, 1[ using the de®nition of class L , the following equality holds in

distribution:

Xt � Mt � có0Yt � ó0Vc

so that det H(có0, p) is the determinant of the Hankel matrix of the moments of the variable

èt � ó0Vc, which has strictly more than r points of support, and the theorem follows. u
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