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THE ESTIMATION OF THE SHAPE OF AN

ARRAY USING A HIDDEN MARKOV

MODEL

Thursday ��th February� ����

Barry G� Quinn�� Ross F� Barrett��

Peter J� Kootsookos� and Stephen J� Searle�

I INTRODUCTION

Degradation of performance occurs when beamforming is carried out on the sensor

outputs of an acoustic towed array which is not straight� However� much of this

performance loss can be recovered if the positions of the sensors can be estimated�

Two di�erent approaches can be applied to array shape estimation� In the �rst�

the array is �tted with heading and depth sensors along its length� and a physical

model for the propagation of shape perturbations along the array is applied� This

technique assumes that most of the array deformation is a result of tow�point induced

motion� The array motion is governed by a partial di�erential equation known as

the Paidoussis equation ���� Examples of the application of this method are given

by Kennedy ���� Dowling �	�� Gray et al �
� and Riley et al ����
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An alternative approach to array shape estimation requires the presence of an

acoustic source in the far �eld� Data from the hydrophones themselves are used

to estimate the sensor positions� Ferguson ��� and Ferguson et al �� describe two

techniques that use this approach� The �rst is an optimisation technique� where

the �sharpness� is calculated by integrating the product of the beam output power

squared and the sine of the beam steer angle over all beam steer angles from forward

end�re to aft end�re� The other method uses the eigenvector corresponding to the

largest eigenvalue of the cross�spectral matrix to extract the phase of the signal at

each of the hydrophones�

In this paper we present an alternative Hidden Markov model �HMM� method

for array shape estimation using an acoustic far��eld source� The distortion of the

array from linearity is modelled by a hidden Markov chain� A measurement sequence

is constructed from the Fourier coe�cients of the various hydrophone outputs at the

frequency of the far��eld source� The likelihood of possible array shapes conditioned

on the observed measurement sequence can be calculated using standard probability

theory� The Viterbi algorithm enables a maximum likelihood estimate of the array

shape to be obtained e�ciently� The technique is formally very similar to the HMM

estimation of frequencies from acoustic data described by Streit and Barrett ��� and

Barrett and Holdsworth ����

In Section II we discuss a model for the array and estimation techniques and in

Section III the results of some simulations�

II THEORETICAL CONSIDERATIONS

II�A Array model

We make the assumption in this paper that the array consists of J sensors separated

by straight segments of �xed length d� The incoming far�eld signal is assumed to be

sinusoidal� with additive spatially white noise not necessarily Gaussian or temporally

white� The signal received at sensor j � f�� �� � � � � J � �g at time t seconds is thus

Xj�t� � � cos f�� ��f �t� �xj sin � � yj cos ���c�g� �j�t�
�



where

�i� �xj� yj� is the position of the jth sensor� �x�� y�������� and �x�� y����d� ���

�ii� � is the angle between the �rst array segment and the wavefront of the signal�

�iii� � and � are the �constant� amplitude and initial phase of the sinusoid at

sensor ��

�iv� f is the frequency of the sinusoid and c is the speed of the signal�

�v� f�j�t�� t � �g are uncorrelated �in j� stationary stochastic processes with

common spectral density�
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Figure �� Wavefront arriving at array� and sensor positions

Conditions �i� and �ii� are imposed because the sensor positions as well as the

bearing are unknown� The coordinate system is speci�ed by having the �rst array

segment coincident with the interval ��� ������d�� and � may therefore be interpreted

as the bearing of the source producing the signal from that �rst line segment� These

de�nitions are essentially arbitrary� but are needed in order that both the shape

and the bearing may be estimated in the absence of other directional measurements

obtained� for example� by compasses� A more realistic de�nition of �bearing� would

be the angle between the wavefront and some line of best �t through the array� and

this is the approach we shall adopt in the post�processing stage� It should also be

noted that although the model above incorporates only one sinusoid� the approach
	



that we take uses only the Fourier coe�cients at one frequency� so that components

at other frequencies will have negligible impact on the results�

Because the array segments are all straight and of the same length d� the coor�

dinates of sensors � through J � � may be parametrised in terms of J � � angles�

the angles between the last J � � segments and the �rst� Thus� for j � �� � � � � J � ��

xj � iyj � d
j��X
k��

exp�i�k� ���

where �� is � by de�nition�

II�B Maximum likelihood array shape estimation

The HMM technique developed in Section II�C will utilise the Fourier coe�cients at

a frequency near f calculated from the signal received at times �� ��N� � � � � �T����N �

To this end� put

Yj��� �
T��X
n��

Xj�n�N� exp��i���n�N�

calculated� say� by the fast Fourier transform and let Yj � Yj� �f �� where �f is some fre�

quency of interest close to f � �f may correspond� for example� with a local maximum

of the sum of the periodograms�� Then

Yj � Uj �
T ��

�
exp

�
i

�
��

��f

c
�xj sin � � yj cos ��

��

� Uj �
T ��

�
exp

��
�i
�
��� ��fd

c

	

j��X
k��

sin�� � �k�

�
A
�

��
�

plus smaller order terms� where
P��

k�� is zero by de�nition�

Uj �
T��X
n��

�j�n�N� exp��i�� �fn�N�

is the Fourier coe�cient of the noise at �f and �� is close to � if �f is close to f � Since

under very general conditions on f�j�t�g� amongst which is the condition that it

have absolutely continuous spectral density which is nonzero at �f � the Uj are� for

T large� approximately complex Gaussian with zero means and independent real

and imaginary parts having the same variance� say 	�� An �approximate� maximum

likelihood technique for estimating � and ��� � � � � �J�� is obtained by forming the





likelihood of the Yj as though the Uj were exactly complex Gaussian� It is easily

seen that the maximum likelihood estimators are then obtained by minimising

J��X
j��

������Yj �
T ��

�
exp

��
�i
�
���

��fd

c

	

j��X

k��

sin�� � �k�

�
A
�

��
�
������
�

with respect to ��� �� � and ��� � � � � �J��� Thus � and ��� � � � � �J�� are found by solving

arg�Yj�Yj��� � �
��fd

c
sin�� � �j��� � j � �� �� � � � � J � �

II�C HMM array shape estimation

The approach of the estimation technique described in Section II�B assumes that

the �j are �xed angles to be estimated� Under ideal circumstances� and certainly if

the model were correct and the SNR high� the maximum likelihood estimator would

be very accurate� notwithstanding the ambiguous solutions to the above equations�

Under low SNR conditions� however� the variances of the real and imaginary compo�

nents of the Uj may be so high compared with the square of T ���� that the estimators

have large variances� In such conditions� prior information is needed to decrease

these variances� As the di�erences between the �j represent the angular deviations

between consecutive segments of the array� one approach would be to maximise the

likelihood function under the constraints that the j�j � �j��j were less than a certain

tolerance suggested by such physical limitations in the array as �exibility� A simpler

approach� and one that has gained much popularity recently� is to impose a statisti�

cal model on the �j� even though this model is not believed to be physically correct�

In other words� the model is imposed only to obtain an estimation procedure� Such

an approach has been used in Streit and Barrett ��� and Barrett and Holdsworth

���� where a technique for tracking frequency has been developed assuming that the

true frequency in each time block is Markovian� As with all such hidden Markov

models� the hidden states form a discrete set� so that the Viterbi algorithm may be

used to �nd the state sequence which maximises the joint likelihood of the Yj and

the �j�

Let 
j � �j��j��� We shall assume that 
�� � � � � 
J�� are independent and iden�

tically distributed with mean zero� For the purposes of the simulations of Section 	�
�



we shall also assume that they are discretised versions of normal random variables�

but the technique described here requires only that the 
j be discrete independent

random variables with known common probability function� There are several prob�

lems associated with a direct implementation of the hidden Markov method� One is

that ��� � and the variances of the real and imaginary parts of the Uj must be known

a priori � Another is that the argument of the complex exponential in �II�B� can

exceed �� in absolute value� resulting in considerable ambiguity� We shall thus work

with the ratios of Fourier coe�cients

Rj �
Yj��

Yj

� exp

�
�i

��fd

c
sin�� � �j�

�
� � Vj��

� � Vj

� j � �� �� � � � � J � �

where

Vj �
�

T ��
exp

��
��i

�
��� ��fd

c

	

j��X

k��

sin�� � �k�

�
A
�

��
�Uj

The advantages in transforming in this way are that the number of parameters

has been reduced by two� The distributions of the Rj depend only on the parameters

of interest �� ��� � � � � �J�� and the common variance of the real and imaginary parts

of the Vj � �
� � �	���T ����� The disadvantage is that the Rj are dependent random

variables� whereas the Yj were independent� The joint likelihood function of the

Rj is thus not formed by multiplying the individual likelihoods� As the Viterbi

algorithm only applies when the likelihood is multiplicative in this way� therefore� it

would seem that it could not be used in this instance� There is nothing to prevent

us� however� from forming the pseudo�likelihood which is constructed by multiplying

the marginal likelihoods� and acting as though this were the correct likelihood� All

that is expected is that there will be some loss of information owing to the nonuse

of the dependence between the terms f� � Vj��g � f� � Vjg whose joint distribution

does not depend at all on the parameters of interest�

Given the form of �II�C�� it might be expected that using only the arguments

�phases� of the Rj would result in further simpli�cation of the problem� Unfortu�

nately� this is not the case� The following result� the proof of which is contained in

the Appendix� shows that the probability density functions of the Rj have extremely

simple forms� Integrating out the moduli� however� can only be done numerically�

resulting in prohibitive computational cost and inaccuracy�
�



Lemma � Let Z � exp�i��R�A
R�B

� where A and B are independent

complex normal random variables whose real and imaginary parts are

independent with zero means and common variances � and � and R are

real constants� Then the pdf of Z is

fZ�z� � �������� � jzj���� exp��
�

�
R��

�
� �R� � �S

�
expS

where

S �
R�� �z exp��i���

� � jzj
�

The log of the pseudo�likelihood of R�� R�� � � � � RJ�� is thus� putting R � ����

��J � �� log������� �
J��X
j��

log
�
� � jRj j

�
�

�
J��X
j��

log

�
��� � � �

�� �Rj exp��i�j��

� � jRj j
�

�
�

J � �

���
�

�

��

J��X
j��

� �Rj exp��i�j��

� � jRjj
�

where

�j � �
��fd

c
sin�� � �j�

We shall use the notation of ��� in formulating the Viterbi algorithm� We shall

identify the states of the HMM with the values taken on by the �j�q� The states of

the HMM will thus be elements of f�K� ��K� � � � � �� �� � � � �Kg where K is some

integer� The log of the pdf of Rk at r� conditional on �k � jq is obtained from

log bj�r� � � log������� � log
�
� � jrj�

�
� �������

� log

	

��� � � �

��
h
r exp

n
i��fd

c
sin�� � jq�

oi
� � jrj�

�
A �

�
h
r exp

n
i��fd

c
sin�� � jq�

oi
���� � jrj��

The transition probabilities associated with the �j are simply calculated� as �j �

�j�� � 
j� where �� � � and the 
j are iid with zero mean� In this paper� we

assume that the 
j are quantised versions of normal random variables with variances

re�ecting the likely distortion the array may undergo� Thus

aij � Pr f�n � qjj�n�� � qig � Pr f
n � q�j � i�g � pj�i

where

pj � �

�
q�j � ���



�
� �

�
q�j � ���



�





� is the variance of the underlying �continuous� deviations and � is the cumulative

distribution function of the standard normal distribution� The initial state proba�

bilities are easy to calculate in this instance� as �� is � by de�nition� Thus �j � pj �

We may now formulate the Viterbi algorithm for maximising the likelihood of the �j

given the Rj �or� equivalently� the joint likelihood of the �j and the Rj�� constructed

as though the Rj were independent�

For �xed ��

�� Let ���k� � log pk � log bk�R�� � k � �K� � � � � ��K�

�� For j � �� � � � � J � �� let

�j�k� � log bk�Rj� � max
�K�n�K

f�j���n� � log pk�ng

and

�j�k� � arg max
�K�n�K

f�j���n� � log pk�ng

	� The Viterbi score for � is

V��� � log b��R�� � max
�K�n�K

�J���n�

and the Viterbi track is calculated from ��j � qIj� where

IJ�� � arg max
�K�n�K

�J���n�

and

Ij � �j���Ij��� � j � J � 	� � � � � �

The estimator of � is then �� � arg maxV��� and the estimators of the �j are those

associated with the Viterbi track for ��� For reasons of symmetry� one need only

consider � � ������ �����

II�D Bearing estimation

There is an obvious di�culty associated with our parametrisation� namely� that

the parameter � is only the bearing of the signal from the �rst segment of the

array� In the absence of any absolute directional information� the angle between the

wavefront and a straight line of best �t through the array could more meaningfully
�



be considered as �bearing�� Suppose that the above algorithm yields the positions

f�xj� yj�� j � �� �� � � � � J � �g for the sensors� using ���� Let ��x� �y� be the centroid of

the estimated array� We wish to �nd � such that� when the positions are rotated

through � and translated so that the centroid of the rotated array is the origin� to

form
n
�x�j� y

�
j�� j � �� �� � � � � J � �

o
�
PJ��

j��

�
y�j
��

is minimised� We thus minimise

J��X
j��

f�xj � �x� sin � � �yj � �y� cos �g� � A�B cos���� � C sin����

where A � �

�

P
f�xj � �x�� � �yj � �y��g � B � �

�

P
f�yj � �y�� � �xj � �x��g and

C �
P
�xj � �x��yj � �y�� We thus rotate the estimated array through �� � k� �

f� � arg�B � iC�g��� where k is an integer� and the estimate of bearing is �� � ���

II�E Data aggregation and the estimation of �� and �
�

The maximum likelihood and HMM techniques presented above may be also be used

when circumstances require that data be aggregated� If Fourier coe�cients are used

to form sample spectral covariance matrices� then the dominant eigenvector of this

matrix may be used in the same way as the vector of Yj�s was used above� If it can

be assumed that the shape of the array does not change much over the aggregation

time� the nett e�ect is to replace �� by ���K� where K is the number of time blocks

used to form the spectral covariance matrix�

The problem remains of estimating the system parameters �� and �� Unfortu�

nately� this is not as simple as maximising the �likelihood� given the Rj and the �j�

What must be maximised is the �likelihood� given only the Rj � which is obtained

by integrating the joint pdf of the Rj and the �j with respect to the values of the

�j� This may be done directly� or by using the EM �Expectation�Maximisation�

algorithm� Besides giving readily computable estimates of �� and �� the technique

also provides estimates of the states which are continuous even though the states are

discrete� These �conditional mean� estimates therefore often provide more realistic

estimates of the states� The EM algorithm� however� converges slowly� and needs

�good� initial estimates to guarantee convergence to the global maximiser of the

likelihood� The details are outside the scope of this paper�

�



III SIMULATIONS

In this section we showcase the HMM bearing and array shape estimation procedure

described in Section II�C by comparing it with the maximum likelihood method of

Section II�B�

III�A Array Shape Generation

Two array shape models were used to generate the true array shapes used in these

simulations� a deterministic sinusoidal model ��� and the stochastic model assumed

in Section II�C� In Figure �� plots of one realisation from the stochastic shape

generation model and the �unchanging� sinusoidal shape are shown�

All shapes plotted in this section are rotated so that the array centroid lies at

����� and the least squares �t straight line through the sensor positions is horizontal�

The sensor to sensor angular variation �the 
j� j � �� � � � � J � �� of the HMM

shape generation procedure is assumed to be the discretisation of a normally dis�

tributed random variable with standard deviation �
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Figure �� Examples of the shapes generated by the HMM and sinusoidal array

shape generation procedures�
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Figure �� Scatter plot of bearing �degrees� versus SNR �dB� scatter plot for � � 	

degrees and HMM shape� The dashed line indicates the true bearing�

III�B Bearing Estimation Results�HMMGenerated Shape

The following procedure was followed for  � 
 degrees and  � �� degrees� This

value was used both in the generation of the true shape and in the HMM shape

estimation procedure� Also� the true value of � �related to the SNR� was used� The

SNR was varied from ���dB to �	�dB with a decrement of �dB� The SNR in dB is

de�ned to be

�� log��

�
��

�	�

�

where � and 	 have been de�ned previously� For each SNR and  a shape was

generated using the hidden Markov model� For each of ��� replications� di�erent

initial phases were chosen �with � � U��� ���� and di�erent realisations of the

complex noise process �j�t� were generated� The shape� initial phases and noise

processes were then used to generate the Fourier coe�cients Yj� j � �� � � � � J � ��

Both the maximum likelihood and HMM bearing estimation procedures were applied

to the data�

Figure 	 shows two scatter plots of the bearing estimates obtained by each

method for the  � 
 case� The true bearing of 	� degrees ���� radian� is plotted

as the dashed line� The root mean square errors versus SNR are plotted in Figure 
�

Figures � and � show similar plots for the  � �� case�

��
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Figure 	� Root mean square error �in degrees� versus SNR �dB� for � � 	 degrees

and HMM shape� The solid line shows the HMM technique results and the dashed

line shows the maximum likelihood technique results�
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Figure 
� Scatter plot of bearing �degrees� versus SNR �dB� scatter plot for

� � �� degrees and HMM shape� The dashed line indicates the true bearing�
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Figure �� Root mean square error �in degrees� versus SNR �dB� for � � ��

degrees and HMM shape� The solid line shows the HMM technique results and

the dashed line shows the maximum likelihood technique results�

III�C Bearing Estimation Results � Sinusoidal Shape

The previous results were to show the performance of the HMM technique when

the data being processed is generated stochastically� with parameters precisely as

assumed by the model� In order to demonstrate the robustness of the technique�

we now use a sinusoidal true shape which is deterministically generated and so it is

unclear how to choose the  model parameter�

A similar procedure to the previous simulation was followed� except that the

true shape used was the same for all SNR and  combinations� The results of the

simulations are depicted in Figures  to ��� Note that� for the  � 
 degrees case�

there is a slight bias in the bearing estimation� This is re�ected in Figure � where� for

SNRs greater than ���dB� the maximum likelihood bearing estimator outperforms

the HMM technique� For the HMM technique to work well� it would appear that 

should be selected greater than its true value� As a result� for this  � 
 degrees

case� the array shapes estimated are smoother than the true shape� This extra

smoothness may produce the observed biased bearing estimates� Another possible

reason is that an HMM model with  � 
 may not be appropriate for a sinusoid

with incremental angular standard deviation 
�

�	
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Figure � Scatter plot of bearing �degrees� versus SNR �dB� scatter plot for � � 	

degrees and sinusoidal shape� The dashed line indicates the true bearing�
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Figure �� Root mean square error �in degrees� versus SNR for � � 	 degrees

and sinusoidal shape� The solid line shows the HMM technique results and the

dashed line shows the maximum likelihood technique results�

�




-30 -28 -26 -24 -22 -20
-10

0

10

20

30

40

50
HMM bearing estimates for Sinusoid shape. Process noise : 10

SNR (db)

-30 -28 -26 -24 -22 -20
-10

0

10

20

30

40

50
ML bearing estimates for Sinusoid shape. Process noise : 10

SNR (db)
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Figure ��� Root mean square error �in degrees� versus SNR �dB� for � � ��

degrees and sinusoidal shape� The solid line shows the HMM technique results

and the dashed line shows the maximum likelihood technique results�
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III�D Array Shape Estimation Examples

For this example� we generated ��� realisations of the Fourier coe�cients Yj at SNRs

of ���dB and �	�dB using a sinusoidal true shape�

Both the maximum likelihood and HMM array shape estimation procedures were

carried out on each realisation� and the resulting estimated sensor positions plotted

as the dots in Figures �� and ��� Again all the shapes are rotated in accordance

with Section II�D�

The true array shape is shown as the solid line�

The value of  needed by the HMM array shape estimation algorithm is estimated

as 
��� degrees by simply �nding the root mean square value of the 
j �s for the given

array shape�

The main points to note are�

� The value of  given above is too low� as the ���dB example shows that

the HMM�estimated shapes are smoother than the true shape� This may

induce �as noted previously� a bias in the bearing estimates obtained via this

technique�

� For low SNR ��	�dB�� the HMM shape estimates have a structure much more

like a sinusoid than do the maximum likelihood estimates�

IV CONCLUSIONS

We have presented in this paper a hidden Markov technique for the estimation of the

shape of an array� The technique uses the Fourier coe�cients at a given frequency

of a signal from a far��eld acoustic source of opportunity� It may be also be used on

the maximal eigenvector of a sample spectral covariance matrix� At low SNR the

technique outperforms maximum likelihood techniques� There remain the problems

of estimating the unknown system parameters� It is of course a simple matter

to estimate the background SNR near the line of opportunity but the problem of

estimating the shape deviation parameter  is yet to be solved satisfactorily�
��
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Figure ��� Sensor position scatter plots for the HMM �top� and maximum likeli�

hood methods �bottom� for SNR � ���dB� The true array shape is indicated by

the solid line�
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Figure ��� Sensor position scatter plots for the HMM �top� and maximum likeli�

hood methods �bottom� for SNR � ���dB� The true array shape is indicated by

the solid line�
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APPENDIX

PROOF OF LEMMA

Assume �rst that � � �� Let X � R� �A�Y � �A�U � R � �B�V � �B� Then

Z � C � iD �
XU � Y V � i�Y U �XV �

U� � V �
�

The transformation from X�Y�U� V to C�D�U� V is easily shown to have a Jacobian

with determinant �U� � V ����� Consequently� the joint pdf of C�D�U and V is

fC�D�U�V �c� d� u� v� � �������u��v�� exp
�
�
�

�

h
�u�R�� � v� � �uc� vd�R�� � �vc� ud��

i�

� ��u��v�����������c��d�� exp

	

�� � c� � d�

�

��
�
�
u�

R�c � ��

� � c� � d�

��
�

�
v �

Rd

� � c� � d�

��
��
�
�
A

where

� � exp

�
�R� �

R� ��c� ��� � d��

��� � c� � d��

�
�� � c� � d����

Thus

fC�D�c� d� �
Z �
��

Z �
��

fC�D�U�V �c� d� u� v� du dv

� ������� E
�
U� � V�

�

where U and V are independent normal random variables with the same vari�

ance �� � c� � d��
��

and means fR�c � ��g��� � c� � d�� and ��Rd���� � c� � d��

respectively� Thus

fC�D�c� d� � �������
n
varU � varV � �E�U��� � �E�V���

o

� �������

�
�

� � c� � d�
�
R� ��c� ��� � d��

�� � c� � d���

�

� ������
�
� � c� � d�

��� �
� �R� �

�cR�

� � c� � d�

�
exp

�
�
�

�
R� �

cR�

� � c� � d�

�

��



� ������
�
� � jzj�

��� �
� �R� �

�R��z

� � jzj�

�
exp

�
�
�

�
R� �

R��z

� � jzj�

�

If � �� �� the pdf of Z is the pdf of exp�i�� �Z� where �Z has the pdf above� The

Jacobian of the transformation obviously has determinant � �exp�i�� represents a

rotation in R� through ��� so that the pdf is obtained by replacing z in the above

formula by z exp��i��� As the term jzj� remains unchanged� the result of the lemma

follows�

References

��� M�P� Paidoussis� �Dynamics of Flexible Slender Cylinders in Axial Flow� Part

I� Theory� Part II� experiment�� J� of Fluid Mechanics� vol� ��� pp� � ���

�����

��� R�M� Kennedy� �Crosstrack Dynamics of a Long Cable Towed in the Ocean��

Oceans� pp� ��� ��� �����

�	� R�M� Dowling� �The Dynamics of Towed Flexible Cylinders� Part I and II�� J�

of Fluid Mechanics� vol� ��� pp� �� ��� �����

�
� D�A� Gray� B�D�O� Anderson and R�R� Bitmead� �Models for the Application

of Kalman Filtering to the Estimation of the Shape of a Towed Array�� Proc�

NATO Adv� Study Inst� on Underwater Acoustic Data Processing� Kingston�

Ontario� Canada� �� �� July� �����

��� J� L� Riley� D�A� Gray and D�A� Holdsworth� �Estimating the Positions of an

Array of Receivers Using Kalman Filtering Techniques�� Proc� Int� Symp� on

Sig� Proc� and Applications� Gold Coast� Australia� � 	� August� ����� pp�

	�
 	��

��� B�G� Ferguson� �Sharpness Applied to the Adaptive Beamforming of Acoustic

Data from a Towed Array of Unknown Shape�� J� Acoustic Soc� America� vol�

��� p� ���� ���� �����

��



�� B�G� Ferguson� D�A� Gray and J�L� Riley� �Comparison of Sharpness and Eigen�

vector Methods for Towed Array Shape Estimation�� J� Acoustic Soc� America�

vol���� pp� ���� ���� �����

��� R�L� Streit and R�F� Barrett� �Frequency Line Tracking Using Hidden Markov

Models�� IEEE Trans� ASSP� vol� 	�� pp� ��� ���� �����

��� R�F� Barrett and D�A� Holdsworth� �Frequency Tracking Using Hidden Markov

Models With Amplitude and Phase Information�� �IEEE Transactions on Signal

Processing � to be published��

��



List of Figures

� Wavefront arriving at array� and sensor positions � � � � � � � � � � � � 	

� Examples of the shapes generated by the HMM and sinusoidal array

shape generation procedures� � � � � � � � � � � � � � � � � � � � � � � � ��

	 Scatter plot of bearing �degrees� versus SNR �dB� scatter plot for

 � 
 degrees and HMM shape� The dashed line indicates the true

bearing� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 Root mean square error �in degrees� versus SNR �dB� for  � 


degrees and HMM shape� The solid line shows the HMM technqiue

results and the dashed line shows the maximum likelihood technique

results� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Scatter plot of bearing �degrees� versus SNR �dB� scatter plot for

 � �� degrees and HMM shape� The dashed line indicates the true

bearing� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Root mean square error �in degrees� versus SNR �dB� for  � ��

degrees and HMM shape� The solid line shows the HMM technqiue

results and the dashed line shows the maximum likelihood technique

results� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

 Scatter plot of bearing �degrees� versus SNR �dB� scatter plot for

 � 
 degrees and sinusoidal shape� The dashed line indicates the

true bearing� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


� Root mean square error �in degrees� versus SNR for  � 
 degrees

and sinusoidal shape� The solid line shows the HMM technqiue results

and the dashed line shows the maximum likelihood technique results� �


� Scatter plot of bearing �degrees� versus SNR �dB� scatter plot for

 � �� degrees and sinusoidal shape� The dashed line indicates the

true bearing� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��



�� Root mean square error �in degrees� versus SNR �dB� for  � �� de�

grees and sinusoidal shape� The solid line shows the HMM technqiue

results and the dashed line shows the maximum likelihood technique

results� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Sensor position scatter plots for the HMM �top� and maximum like�

lihood methods �bottom� for SNR � ���dB� The true array shape is

indicated by the solid line� � � � � � � � � � � � � � � � � � � � � � � � � �

�� Sensor position scatter plots for the HMM �top� and maximum like�

lihood methods �bottom� for SNR � �	�dB� The true array shape is

indicated by the solid line� � � � � � � � � � � � � � � � � � � � � � � � � �

��




