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Abatract

We specify a utility consistent static labor supply model with flexible pref-
erences, a non-linear and possibly non-convex budget set, and a wage equation.
Three stochastic error terms are introduced to represent respectively optimiza-
tion and reporting errors, stochastic preterences, and heterogeneity in wages. Co-
herency conditions on pararneters and supports of error distributions are imposed
for all observations. The complexity of the model makes it impossible to write
down the probability of participation. Hence simulation techniques have to be
used in estimation. The properties of the estimation method adopted are first in-
vestigated by means of Monte Carlo. After that the model is estimated for Dutch
data.

We compare our approach with various simpler alternatives proposed in the
literature. It turns out that both in the Monte Carlo and for the real data the
various estimation methods yield very different results. Since, moreover, our esti-
mation method yields good results for the Monte Carlo data, we suggest that the
simplifications adopted in the literature may have generated considerable biases.

~The authors thank the Organisatie voor Strategisch Arbeidsmarktonderzcek (OSA) for kindly pro-
viding the data. 'fhanks are due to Arthur van Soest for his help and comments.
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1 Introduction
By now there is an enormous literature on the estimation ofstatic models of individual

labor supply. Typically, a model will consist of two equations, a wage equation and a
labor supply equation. Especially since the work of Hausman (1979, 1980, 1985) the
labor supply equation is usually utility consistentz and often the underlying budget set
is piecewise linear and possibly non-convex. See e.g. Blomquist (1983), Moffit (1986)
and the papers in the special issue of the Journal oj Human Resources, Summer 1990.

Despite the vast quantity of papers written on the topic, there are still various unsat-
isfactory elements in the models estimated so far. These pertain to both the specification
and the estimation of the models. As to specification, one usually adheres to simple forms
of the labor supply function, whereas the stochastic specification is often more governed
by considerations of convenience than of plausibility. Estimation of simple models is not
much of a problem (e.g. of a type II Tobit model), but in somewhat more complicated
models ofte~n short cuts arc, being taken that. strictly speaking itnpair consistency of esti-
mators. In the next section these issues will be discussed in more detail. There are good
reasons for all of this. As we will illustrate in the next section, essentially the canonical
Hausman model with a flexible specification of preferences, a non-convex budget set and
a proper stochastic specification could not be estimated with methods available until
recently. Possibly the most glaring difficulty is that except in very simple models it is
impossible to write down the probability of participation. Since this probability plays a
role in any estimation method one would like to apply, ranging from ML to MM, all esti-
mation methods applied in practice can be seen as approximations with varying degrees
of accuracy. 3

Rather closely related to the previous issues is the issue of coherency. " It turns out
that in models with kinked budget constraints coherency requires quasiconcvity of the
direct utility function at all kink points. Since these kink points will be different for dif-
ferent individuals in a sample, coherency requires quasiconcavity at many combinations
of hours and wages. See MaCurdy, Green, Paarsch (1990) or Van Soest, Kooreman, and
Kapteyn (1993). This in turn means that parameters and error distributions have to
be restricted in order to make sure that the model is utility consistent (i.e., the direct
utility function is strictly quasi-concave) at relevant kink points for each observation. 5
Except for simple models, the imposition of utility consistency is non-trivial. Failure to
do so, however, may lead to inconsistent estimators.

zHy "utility consistent" we mcan throughout this paper that observed or predicted labor aupply can
hc rationalizcd as Lhc result of thc maximization of a wcll- behaved utility function; we call a utility
function well- behaved if it is strictly quasi-concave and increasing in consumption

31n this paper we do not pay attention to more extensive models where the hours deciaion and
participation decision are modelled separately, as in e.g. Blundell and Meghir (1987) or Blundell, Ham,

and Meghir (1987). Although at first sight this may seem to circumvent the problem mentioned, a fully
consistent treatment will still require the computation of the probability that desired hours are zero,
and that is precisely the problem we are dealing with.

4See e.g Courieroux, Laffont, and Montfort (1980). A model is coherent if endogenous variablea are
uniquely dcterrnined by the exogcnous variables and the crrors.

SIf one allows for measurement errot, the construction oC a likelihood requires that one integrates
over all possible values of the "true" number of hours, which includes all kink points.
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In this paper we specify a utility consistent static model of individual labor supply,
with a flexible specification of preferences. The model is of the conventional two-equation
form, a wage equation and a labor supply equation. Three random errors are specified,
one additive random error in the wage equation representing unobserved heterogeneity,
one additive error in the labor supply equation representing optimization and reporting
errors and a non-additive error in the labor supply equation representing random pref-
erences. We impose utility consistency at all data points. The estimation method is
a variant of a method of simulated scores (MSS), developed in an earlier paper (Bloe-
men and Kapteyn, 1993). Thereby we avoid the impossible task of writing down the
probability of participation; instead we draw írom the errors in the model and simply
determine whether utility is maximal while working or not working. Since the model and
estimation method are rather intricate, we first look at the properties of the estimation
method by means of Monte Carlo. Next the model is estimated for Dutch data on mar-
tied females. In recent years substantial advances have been made in the development
of computationallyefficient simulators. See e.g. the survey by Hajivassiliou (1991). All
these approaches exploit to some extent specific properties of the model at hand, like lin-
earity, normality, or smoothness. In the present context none of these properties applies.
Hence the estimation method will be rather brute force, using frequency simulators and
numerical approximations of derivatives whenever required.

The order of presentation is as follows: In the next section we set out the basic model
and discuss various approaches in the literature using the model as an illustration. In
section 3 the estimator is presented. In section 4 we give a detailed specification of
the model and the restrictions that have to be imposed to render the model coherent.
In section 5 we present details of the simulation methods needed to operationalize the
estimator. In section 6 we compare our estimator with a number of alternatives used in
the literature. We first do this for artificial data generated by means of Monte Carlo and
next for real data. Section 7 concludes.

2 The economic model

Consider the following utility function, which is a special case of the utility function
proposed by Hausman and Ruud (1984):

where

U(h, c) - m' exp (~ ( h - b- Qm") 1 (2.1)
t

i

m' -~2 I 1-( 1 f~~ I( h 7 b)~ - 2(c -b B)J ~~,
(2.2)

The variables h and c are hLours lworked land consumption respectively; Q, y, b, B are
parameters. Maximization of this utility function subject to a linear budget constraint
of the form c C wh ~ p yields the following labor supply function:

h(w, p) - b f p'Q ~- wry (2.3)
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with
1

{~'-Bfp-~ów-F2yw~ (2.4)

The cost function dual to the utility function is:

c(u,w,p) - u.exp(Qw) -{B ~ ów f 2yw2} (2.5)

We will assume throughout that ry~ 0. It is easy to see that concavity of the cost
function requires

!r~ c y~Q2, (2.6)

An equivalent condítion in ( c, h) space is that the indifference curves are convex. This
requires:

m~ C y~Q2 (2.7)

Notice that under this condition utility is increasing in consumption.
Using ( 2.`L), (2.7) can be written as follows:

{ 1 f~?2 I (h - ó)2 - 2(c f B)J ~1
1 0 (2.8)

l 7 L 7

Clearly this holds true whenever the utility function is defined. The condition for the
existence of the utility function can be written as:

(h y ó)~ - 2(c f B) ~- ~~ (2.9)

or,

c ~-e f 7 f(h - ó)2 :- f(h) (2.io)
2Q2 Zy

with f( h) implicitly defined. The function f(h) is a parabola with a minimum for h- ó.
The value of the minimum is -B ~ ry~2Q~. Figure 1 sketches the domain of U(h, c):

Lct us now turn to Lhc di~acripl.ion of bchavior undcr a nonlinear ( actually picccwisc
linear) and non-convex budget set. Figure 2 represents the familiar example of a utility
maximum attained at the point where an indifference curve is tangent to the budget
constraint.

As the budget set is not convex, but can be seen as the union of convex sets, an
algorithm for finding the utility maximum is to first find points of tangency or corner
solutions ( kink points) for each convex set and then picking the point which yields the
maximum maximorum.

To complete the model we need an equation explaining the before tax wage of an
individual and the specification of the stochastic structure. Furthermore, we introduce
a subscript n to index the observations, n- 1, ..., N. The wage equation is specified as
follows:

J

IOS wn - ~ ~i 2 n j ~- 2!n ( `l.1 ). )
j-1
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0 leisure

Figure 1: The domain of U(h,c)

~ leistu~e -~ ~- h T

Figure 2: Utility maximization over a nonconvex budget set



5

where un is an i.i.d. error term representing unobserved heterogeneity, xn~ are observable
characteristics and p~ are parameters. As to thc labor supply equation, we introduce
preference variation by allowing B to vary across agents as follows:

~n - Bo f x;,w -}- vn (2.12)

where xn is a vector of individual observable characteristics and vn an unobservable error
term; w is a parametr,r vector.s For later purposes it is useful to define also

1
{~n - en t {~n ~ wnb ~- 2w~ry (2.13)

For given values of wn and vn indivdual n's optimal number of hours, say hn is
determined as in Figure 2. In general this is a complicated function of the wage, nonlabor
income, individual characteristics and the random preference term. We write this as

hn - 1in(wn, {~ni a, xnW f vn), (2.14)

where a- (~3, ry, b, Bo)'. Notice for instance that the function hn(.) need not be contin-
uous. We allow for the possibility of optimization or measurement errors by adding an
error term cn:

h;,-hnfEn (2.15)
Let hn be observed labor supply, then we assume:

án - hn if h;, ) 0 and hn(wn, ~n; a, x;,a f vn) ~ 0 (2.16)

h,~ - 0 i( ia;, G 0 t1 lan(vin, hn; n, x;,w -{- vn) G 0 (2.17)

'fhis formulation brings out the distinction between the random preferences vn and the
optimization or measurement errors en. This type of stochastic specification is in line
with work of Hausman (1981).

With this model at hand, we can discuss various problems in estimation and charac-
terize different approaches in the literature.

~ It is di,~cult to derive the density of wages and hours Jor working individua(s ij the
budget constraint is non- convez The joint density of hours and (before tax) wages
can be written as the product of the conditional density of hours given wages and
the marginal density of wages. The latter is not difficult to write down, but the
former may be. As indicated above, if the budget constraint is non-convex it can
be written as the union of convex sets and the obvious thing to do is to first find the
utility maximum in each convex set and next compute the maximum maximorum.
With random preferences this means that we have to find the density of hours for
each convex subset and the probability that the maximum maximorum is in any
of the convex sets. Finding the density of hours for each convex set is tedious but
feasible (see section 5), but the probability that the utility maximurn occurs in any
given convex subset is almost impossible to write down as one can easily imagine
by inspecting the formula for the direct utility function. This difficulty will arise
in all but the simplest utility specifications.

sThere is no a priori reason to let preference variation enter through B only, any of the other parame-
ters of the utility function may be rnade dependent on observable and unobservable characteriatics. For
simplicity o( the exposition we atick to the present somewhat arbitrary choice
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~ It is very hard to write down the probabilíty of participation. To write down the
probability ofparticipation, one has to characterize the values of e,,, u,,, v„ for which
individual n will be observed working. For non-working individuals the wage they
could earn while working is typically not known. The random variables u„ and
v„ cause the budget constraints and the indifference curves to move around in a
complicated way. Even for a given budget constraint (i.e. for someone who does
participate) it is difficult to find the values of v„ for which the utility of working
will exceed that of not working for the same reason as given above. Since the
budget constraint is the tesult of the interplay oí the gross wage with possibly
quite complicated institutions, the resulting distribution of the budget constraint
will in general be intractable. Combined with the difficulty of writing down the
probability of working for a given budget constraint, this makes it impossib]e to
write down the probability of participation as an analytic function of exogenous
variables and parameters.

~ Incoherency. The problem of finding a utility maximum is generally well-defined if
indifference curves are convex. However, if a flexible specification is adopted for the
utility function, it will generally not be globally quasi-concave and hence there will
be combinations of the parameters and values of exogenous variables and errors for
which indifference curves are not convex or are not defined, cf. Fig. 1. As shown
by Van Soest, Kooreman, Kapteyn (1993), this means that the model is no longer
coherent. This in turn implies that estimation methods are not well-defined. To
have well-defined estimation, coherency has to be imposed. For instance, these
authors give an example where data are generated by a coherent model, but no
coherency is imposed in estimation. It is shown that in that case the "likelihood"
does not attain its maximum at the true parameter point, but rather at a point
which violates coherency.

~ Time consuming numerical integration. Even if we are able to write down in
principle the probability of certain events or the density of wages and hours, they
are bound to be complicated expressions involving multi-dimensional integrals.
Sincc~ t.h~~ rnodel involves varions non-linear t.ransforrnations it. is very nnlik~~ly th,~~
analytical solution of the integrals is possible. Nurnerical inte~gration tends Lo bi~
extremely time consuming.

To solve or evade these problems, various routes can be taken.

~ Choose simple functional forms. As said above, to write down the joint density
of (before tax) wages and hours for working individuals one needs the density of
hours conditional on the wage times the marginal density of the wage. The lat.ter
is straightforward. The former can be simplified considerably by choosing a simple~
specification, like e.g. the Hausman linear labor supply function. This function
arises from model (2.1)- (2.4) by letting ry approach zero. The utility function then
reduces to r l

U(h, c) - ó a h exp {-1 f Rhc }á )} (2.18)
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~ ~gnom random preferences. This can take two forms. One can ignore random
preferences altogether, so that the only source of random variation of hours given
wages is optimization or reporting errors (see e.g. Kooreman and Kapteyn (1986)).
Alternatively, sometimes a random error is appended to the (non-stochastic) utility
difference between working and not working, as in Kapteyn, Kooreman and Van

Soest(1990). This latter term may also have the interpretation of random prefer-

ences. IL is uf course a bit hard to see why preferences would only be random in
utility comparisons and not in the hours choice. '

~ Ignore unoóserved heterogeneity in wages for non- participants. In this approach
the wage equation is estimated for working individuals and next used to predict
before tax wages for non-participants. The implied budget constraint is assumed
to be the true budget constraint, with neglect of unobserved heterogeneity. No-

tice that for the estimation of the wage equation for working individuals some

correction for selectivity bias is required, which in turn requires the probability

of participation. Strictly speaking, one should use the full model to estimate this

probability. Since, as indicated, this is either very difficult or impossible, some
approximation of this probability is used at this stage.

~ Use working irzdividuals only, with correctionfor selectivity. By only using working

individuals one does not really avoid the necessity of computing the probability of

participation, but one can approximate this probability as in the previous approach.

Often, if only working individuals are used in the analysis, the budget constraint is

linearized in the observed point. Of course the marginal wage used to linearize the

budget constraint is endogenous, but this may be solved by the use of instrumental

variables. In this approach, typically no steps are taken to guarantee coherency

of the model in all data points. For this reason. it is not quite clear whether the

esti[nation method is consistent or not.

3 Estimation

This section largely follows Bloemen and Kapteyn (1993). For ease of notation we

introduce the dummy variable d„ with

d„-1ifh„-0 (3.1)
d„-0ifh„~0 (3.2)

Furthermore we write P„(19), where [9 contains the parameters of ~, rl and the param-
eters of the distribution functions of u,,, v,,, and e,,, for the probability that h„ equals
zero. The joint density of wages and hours for a participating agent n is denoted by
9'(hn,wn~yn,pn,19), where

-oo G Ítn G o0

OCw„Coo

7An alternative interpretation may be that the random term in the utility comparison represents

optimization errors, which may be more natural in certain contexts.
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From this we can derive the mixed discrete-continuous probability density funct.ion of
hn and wn, 9(hn,wn~~n,pn,d).

9(hn,wn~2n,l~n,d)
P(t9) if hn - 0

- 9'(hn, wn~2n, kn, ~) if hn ~ 0, 0 G wn G o0

For ease of notation we will often denote the probability P(t9) by P. We shall denote
the probability of working I- Pn(~9) by P(r9) or simply by Pn. We assume that our
sample is ordered in such a way that the observations 1 to .N1 refer to non-working
individuals and the observations Nr ~ 1 to N are working individuals.

Generally, the log-likelihood function of the model is

L(~ I~n, ~n, wn, hn, rL - 1, ..., N) -

N, N
~lnP(ti9)-~ ~ Ing~(hn,wnl~n,(~n,~) (3.3)
n-1 n-Ni}1

It. will be assumed that the likelihood is differentiable almost everywhere with respect to
the elements of t9s. Thus in principle we can differentiate the log-likelihood with respect
to z9 to derive the first order conditions for a maximum.

aL(,~)
a,~ - (3.n )N' a1nP( ~9) N aing'(hn,wn~~n,l~n,d)f

n-1 a~ n-~f I ati

aL(,~M~) - oa,9 (3.~)

where ~9ML is the maximum likelihood estimator of ti9.
Alternatively, we can rewrite the derivative of the log-likelihood function as

aa~,y) ~rdnalna~(t9)}(1-dn)aing'(hn,á~~~n,Wn,~)~ (3.6)

where dn is the dummy valriable introduced above. Let t9o be the true parameter value.
It is well known that if the support of hn and wn does not depend on 19, the score vector
has expectation zero:

E(aL(,9o)~
-0 (3.7)l a,v

It is this fact which implies consistency of the ML estimator. In the present context
the evaluation of the score vector is impossible for the reasons set out in the previous
section. We will replace the score by an unbiased simulator, which can then still be used
for consistent estimation of the parameters in t9.

We rewrite the first order derivative of the log-likelihood function in the following
way.

1 aing'(hn,wn ~n,pn,d) alnfnaa~~) - ~ l Zn(dn - Pn) ~ (1 - dn) [ a,91 - a,y , } (3.H)

aFor consistency slome additiona] regularity conditions are required: aáaé~exists in a neighbourhood
of So and is non-singular and negative definite in a neighbourhood of 50.
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where
~Zn .- Pn(las P ) (3.9)

The first colnponent of this expression equals the score of the log-likelihood of the binary
response nlodel. If we replace the vector Zn by an arbitary vector of instruments Zn,
independent of 19, the expectation of the resulting expression, conditional on Zn, equals
zero at the true parameter value 190.

In Section 5 we will describe how we simulate Pn(19) and its derivative unbiasedly. As
to the second term in (3.8) the simulation of the part involving the density g" will be
described in Section 5 as well. And finally, we use the fact that

B ~(1 - dn)a aT9 , - 819
(3.10)

so that we may replace (1 -dn)a~a~ by aa~ without affecting the unbiasedness property
of the score. As a result, the original score vector is replaced by

óL 8ing'(hn,wn~xn,~n,,9) - 8Pn
~319 - ~ [Zn(dn - P ) f (1 - dn)

819 819,
(3.11)

Illserting unbiased simulators knR and ircnR based on R replications fot the response
probabilities and their derivatives respectively in this expression gives the simulated
score:

hR(~) - [r IZn(dn - kn(~ ~vR)) f (1 -dn)alRg~(hn,~~~xn,l~n,d)
-;,ln(~,vR) J

n L (3.12)
The advantage of writing the score vector this way is that the simulators for the

response probabilities and their derivatives ente,r the expression linearly. As a result
simulation errors are averaged out over individuals. Moreover, if a frequency simulator is
used to simulate the response probabilities discontinuities are averaged over individuals,
thereby eliminating the reason for the poor performance of the frequency simulator in
the context of simulated maximum likelihood estimation. See, e.g., Lerman and Manski
(1981) and Bdrsch-Supan and Hajivasiliou (1993).

The estirnation proce.dure now becomes: Choose instrument vectors Zn and obtain
thc cstimator by solving the momcnt conditions:

KR(r9) - 0 (3.13)

To ascertain the efficiency of the estimator described here, we compare it to the ML
estimator. A convenient way of doing this is to look at the "simulation residual", i.e.
the difference between the score and the simulated score. First, (3.8) with Zn replaced
by Zn is compared with (3.12). Then the following residual is obtained:

R~~IZn(P -knr)-Smnr-(1-dn)aa19n~J (3.14)
n-1 r-1 L l
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The dummy variable can be rewritten as

dn - P } Un

with E(vn) - 0

and Var(vn) - Pn(1 - Pn)

(3.15)

Inserting this in the residual gives:

N Rj( alnP
R~~IZn(P - knr)-Smnr- at9n} -~vn aryN

(3.16)

The variance of the first term of (3.16) lcan be reduced by increasing the number of

drawings R. Suppose that Var[Zn(Pn - knr) -{inn, - aay }~ - ~n, conditional on the

instrurnents Zn. This variance does not depend on R because the drawings are identical

and independent. Then the varianceof the first term is R~n 1~n. With fixed N, increas-

ing R to infinity results in reducing this variance to zero. The second term is the error

which is caused by the fact that ( 1 - dn)ara~ is simulated by a simulator for aao . The.

expectation of this term equals zero, whereas the variance equals ~n1 PP aá~v a~

This term of the simulation residual cannot be influenced by the number of drawings.

Therefore, this term leads to inefFiciency, also for large R.
To compare the efficiency of the method of simulated scores estimator to the maxinlum

likelihood estimator, also the term involving the difference between Zn and Zn has to be

taken into account. The simulation residual then becomes:

ll a 1 n Pn
RES - R~~[zn(Pn - knr) -{~nr - a~n J

J~~(zn-zn)(dn-kn)-~ ~n a,v
n-1r-1 n-1 n-1

(3.17)

Compared to (3.16) we now have an additional term involving the difference Zn - Zn.

If wc~ hasc 7,n on (3.9), with sornc consist.cnt estimatc of 19 and simulat.ors of a~á and I'„

based on RZ replications, then for RZ going to infinity the difference disappears. Note

that during the optimization process the matrix of instruments Z is fixed. This implies

that this matrix needs to be initialized only once at the beginning of the estimation

procedure. Therefore it is computationally feasible to calculate the instrument matrix

using a large number of drawings RZ, which need not be equal to the number of drawings

R that is used in the calculation of the remaining part of the simulated score.

3.1 Asymptotic distribution of the estimator

"I'he simulated score vector satisfies the property that its expectation, evaluated at

the true parameter vector t9o, equals zero. It is intuitively clear that if we solve the

moment equations, defined by the simulated score, with respect to the parameter vector,

the resulting parameter vector 19R, at which the simulated score is zero, will converge

to the true parameter value i9o, or, equivalently, 19R will be a consistent estimator of

190. If smooth simulators were used, standard asymptotic theory could be applied to

derive the consistency and asymptotic normality of the estimator. Pakes and Pollard

(1989) derive conditions for consistency and asymptotic normality that do not rely on
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smoothness assumptions. The first set of conditions concerns the moment vector (3.11).
Let C(r9) denote the unconditional expectation of the term in square brackets in (3.11).
C,(t9) is a set of population moments. Note that G(~9o) - 0. The identifiability condition
requires that infll~-~oll~b II G(d) II~ Otlb 1 0. Furthermore, G(19) is required to have a
non-singular derivative matrix at 190.

NKR(r9) is the empirical counterpart of G(t9). In their proof of consistency and
asymptotic normality, Pakes and Pollard use the fact that NKR(t9) can be written as
the expectation with respect to an empirical distribution function, the shape of which
depends on the particular simulator that is employed, which should converge to its
population counterpart G(19), making use of the independence-across-observations as-
sumption. Consequently, no smoothness assumptions are required. A condition which
has to be satisfied in case of using a frequency simulator is that the probability of being
at a tie (i.e. d- 1 and d- 0) has to be zero at t9o. This condition is clearly satisfied
here. Finally, Pakes and Pollard, as opposed to McFadden, allow the region which de-
termines whether d- 1 or d- 0 to be a non-smooth function of the parameters as well.
For our application non-smoothness of this region is not required. Smoothness of this
region, together with the above conditions, is sufficient for consistency and asymptotic
normality:

~f{R(~o) ~Y N(Or VRO),

with VRO some positive definiteVSylYmmetric matrix, and

(3.18)

~(t9R - r9o) ~Y N(0, F-1 Vrw(r~)-') (3.19)

where I" -
1 8( aL ,~p )

plim
N at9

(3.20)

Using the expression of the asymptotic covariance matrix and the results of the anal-
ysis of the simulation residuals, it is possible to analyse the efticiency of the estimators
by comparing the asymptotic covariance matrices of the simulation estimators with the
asymptotic covariancc matrix uf t.hc~ maxirnum likclihood estitnator. It is a well known
result that

~(~ML - t9o) asY N(0, ~ML) (3.21)
where f2MC - B-r (3.22)

1 82L(~o)B - -plimN
at9at9'

(3.23)

'1'o tnake clcar t,he relation with Lhe asymptotic covariance matrix of the simulation
estimators we rewrite S21yL as

~ML - rMLVML(rML)-1 (3.24)

where
a ( aL So

I
PiyL - plimN l a~ - -B (3.25)
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which is the equivalent of (3.22), and

1 N 8Gn(do) aLn(~o)
Vatc - PlimN

~ 819 819'
(3.26)

n-r

'1'o examine the efFiciency of the estimator we first need to establish the rclation
between r;yL and I". It is readily established that

r'-rM~-
-plim 1~N L(Z - Z)~ f a~(dn - P) 1- v a 8~--~~ t r~~, (3.27)

N n-1 n n 2B 8B n n 88 ~ 8B 8B~

from which only the first three terms equal zero if the instruments are constructed
according to (3.9) with the number of drawings per individual tending to infinity. From

the analysis of the simulation residuals it becomes clear that if the matrix of instruments

is constructed according to (3.9) with drawings tending to infinity, and if the response
probabilities and their derivatives are simulated with R tending to infinity as well, the
asymptotic variance of the score of the likelihood function, evaluated in a consistent

estimator is exceeded by X, where

X- lim 1 N p p a1nPn81nPn
P (N~ n 8,9 8,9' )

To estimate the covariance matrix we calculate

SZR - r-' VR(r')-'
with

i" 1 8(a~~)
- N 8,9

1 N

(3.28)

(3.29)

(3.30)

VR - ~ knR(~R)KnR(~R) ~ (3.31)
N n-,

where the index n indicates the n-th component of the simulated score. Expression (3.31)
can be calculated by simulation.

4 Stochastic specification

Recall (2.12):
Bn-eofxn~-Fvn (4.1)

We have seen above that for the specification of the utility function adopted here, in-

difference curves will be convex whenever the utility function is defined. The utility
function is defined whenever (2.10) holds true. We want (2.10) to hold true for all data
points. To indicate this, we add subscripts and write:

cn ~ -Bn f 7 f (hn - ó)2 :- .f (hn) (`1 ~2)2Q2 27
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0 leisure h
Figure 3: An encompassing budget set

T

Vl

To ensure that the direct utility function is properly defined for every individual in
1,he sample, a praclical procadure is 1,he following one. Let tb and j~ be the wage rate and
nonlabor income which imply a linear budget constraint such that all observed budget
sets are contained in it. We call this an encompassing budget set. See Fig. 3 for an
illustration.

If we restrict the range of B„ such that inequality (4.2) holds for all values of c„ and

h„ in this encompassing budget set, then we know that indifference curves are convex
at all data points. To achieve this we have to restrict the range of 6„ such that the
function J„(.) is either tangent to the encompassing budget constraint or is outside the
encompassing budget set. A tangency point is found for h„ - b t wry and

B„ --ja - bt"u - 2rywZ t 2a2 (4.3)

Thus, in view of (4.2) the ine.quality constraint on B„ has to be

0„ ~-p - bw - Zryw2 f Zaz (4.4)

To guarantee that this inequality on B„ holds for all observations we proceed as follows.
Let the error term v„ be defined on (-00,0) then we impose the restriction:

1
Bo c-xnw - jr - ów - 2rywZ ~- 2~~ (4.5)
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for all n. For the random preference term v„ we will actually assume that it follows a
negative I' distribution, defined on (-oo, 0). A similar procedure, in a somewhat different
context, was followed by Kapteyn, Kooreman, and Van Soest (1990).

For non-participating individuals wages are not known and have to be integrated out.
To ensure coherency of the model, the support of the wage distribution has to be re-
stricted so that for all wages the implied budget set is contained within the encompassing
budget set. This is achieved by restricting the support of the wage distribution to [0, w].
A convenient choice of distribution for u,,, which restricts the range of wn to [0, w], is to
define a random variable an following a lognormal distribution with log-r~ean m„ and
log-variance r~, and to define

un :- log{~inan~[1 -~ ~n]} (4.6)

whcre

~n :- w~[eXP(w(~n, rl))] (4.7)

It seems reasonable to require that the median of exp(un) equals one. This holds true if
we specify

mn - - log(~~n - 1) (4.R)

Thus the number of free parameters is equal to the case where the un were assumed
normal with mean zero.9

5 Outline of simulation

In this sectíon a description is given of the construction of the simulators. The
technical details are presented in the appendix. Most of the simulation can be understood
by reconsidering Fig. 2. For convenience, we repeat the basic features in Fig. 4 and add
some notation. Figure 4 presents an example of a non-linear budget constraint and a
non-convexity where the non-linearities arise from a tax system with two brackets and
from the welfare and social security system. The budget constrainL has three segments.
On the first segment, on the right hand side of the figure, the individual works a positive
number of hours, whereas at the same time he receives an unemployment benefit, say.
Of each additional guilder of labour income the individual looses, say, aolo of the social
security benefit, until, eventually, at hours Ho, nothing is left of the bene,fit. This resull.,
in a net wage rate on the first segment of wo. On the second segment, betwecn Hu and
H~, no more benefits are received and therefore the net wage rate rises to w~. At. hours
H~ the next tax bracket is reached, which causes the net wage rate to fall Lo w2 on thc
tlrird segment. Now let hn denote the optimal labour supply of individual n at a linear
budget constraint with slope wn~ and intercept ~in„ j - 0,1, ..., m, and denote optimal
labour aupply by hn.

hn - h(wn, {dni ~, ~nW f vn) (5.1)

9Notice that under normality the inequality ( 4.4) is violated with non-zero probability and hence the
model would be incoherent.



15

0 leisure H z H~ H 0

Figure 4: The determination of optimal hours

in which wn is the before tax wage rate which implies that the function h(.) includes the
tax and the welfare system. Tt~en the optimal labour supply hn, conditional on vn and
wn, can be determined according to the following scheme:

hn.NC - Q L f ÍL~ G Q

- hU L f Q G Í20 G Hn0

- Hno if ho ~ Hno
hn - HnU Lf hn G Hn0

- h;, if Hn,i-~ G h;, C Hni j- 1, ... , m- 1
- Hn; i f hn , Hn; ~ hnti j - 1, ..., m- 1
- ÍEn L f Hn,,n-~ G hn G T
- T if h,m, ~ T

hn - hn if utility in hn exceeds utility in hn,NC

- hn,NC otherwise

1
hn -~i f azlrni f a3wni f 2aawn~ t~n~ t~2vn

The parameters a and ( are obtained by reparametrization of Q, ry, ó and w in section 2.
The precise form of this reparametrization is given in the appendix. The utility level has

to be calculated using the direct utility function. Note that if the coherency restrictions
are satisfied, the event hn - Hno will occur with probability zero.
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Looking at variation in the gross wage rate wn and in the unobservable taste com-
ponent v,,, we can say that wn determines the segments of the budget constraint by
determining the slopes and the kink points, whereas vn determines in which segment
labour supply will be optimal given everything else. The distribution of ineasurement
or optimization errors en can be used to determine the distribution of h;,, defined in
(2.15), conditional on the unobserved taste component vn and on the gross wage rate
w,,. The distribution of vn can be used to integrate out the unobserved taste compo-
nent, taking into account the decision rule on h,,. Note that this involves comparing and
integrating over utility functions. Finally, we multiply by the marginal density of the
wage rate to obtain the joint density of hn and wn. This joint distribution can be used
to determine the censored distribution of observed labour supply h„ and it will be clear
that the expression for the probability that observed labour supply equals zero (h„ - 0)
will be complicated. It will be difficult even to write down an analytic expression for
the probability and the likelihood function as a whole. Therefore it will be impossible
to use smooth sitnulators (see, e.g. McFaddc~n,1989), because an analytic cxpression ia
needed in order to construct a smooth simulator. We will simulate the probability witli
a frequency simulator FnR. The frequency simulator works as follows: Draw R times
a wage rate wnr, an unobserved taste variable vn, and a measurement error e;,, from
their assumed distributions, calculate hn and hn and use the rules in (2.16) and (2.17)
to determine h,,. The simulator becomes:

Ínr - 1 if hn ~ 0 (5.3)
Ínr - O otherwise (5.4)

1 R
FnR - R ~r-r f r (5.5)

Since we also need the vector of derivatives of P(19) we approximate this vector by a
difference approximation of frequency simulators which is an unbiased simulator for the
difference approximation of the probabilities. The evaluation of the contribution to the
score vector of the working individuals involves the integration over random preferences.
Two different methods to implement the integration are discussed in the appendix.

Finally, a suitable algorithm has to be chosen to minimize the objective function
which can handle the discontinuities caused by the use of frequencies. Methods which
make use of first derivatives turned out not to work and therefore we switched to thc
downhi]] simplex method of Nelder and Mead (1965) of which an overview is given in
Press et al. (1986).

6 Results

In this section, the model is estimated using Monte Carlo data as well as real data.
In the Monte Carlo experiment, the performance of the MSS method, outlined in section
3, is compared with some of the more conventional methods that have been mentioned
in section 2. The conventional methods that we consider are the estimation of the
model without random preferences and the estimation by instrumental variable methods.
Furthermore, two variants of the MSS method are applied. The first variant estimates
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the parameters of the wage distribution separately by means of a reduced form wage-
participation model. Then the labor supply parameters are estimated using predicted
wages for non-participants. The second variant consists of estimating the wage and labor
supply parameters simultaneously, thereby taking into account the stochastic nature of
the budget constraint.

Subsequently the model is estimated for a sample of 849 married females, drawn from
the Dutch population in 1985. In the Monte Carlo experiment the real data series of
exogenous variables has been used in conjunction with a priori chosen parameter values to
generate endogenous variables for each observation. The vector of taste shifters consists
of the log family size variable (parameter ~1) and a dummy indicator taking the valne one
if the woman has children with age below 6, and zero if not (parameter ~2). In the Monte
Carlo experiment, the variables in the wage equation are a constant term (parameter
r~t), log-age (parameter pz) and log-age squared (parameter r~3). To restrict the number
of parameters in the Monte Carlo experiment we have omitted dummy indicators for the
level of education. These dummies are included in the estimation on the real data. The
parameters of the negative gamma distribution are ry~ and yz. Using the distributional
assumptions, random numbers have been generated which have been transformed to
hours and wages using the true parameter values in the first column of table 6.1 and the
decision rules in (2.16) and (2.17). The true parameter values are chosen such that the
coherency restrictions are satisfied. Moreover we have tried to choose parameter values
that generate distributions of observables similar to what we see in the sample. The
values of some parameters are the result of experimentation with preliminary versions
of the mode. Benefits are measured in guilders per week.

Both for the real data and the Monte Carlo data the budget constraint of each indi-
vidual has been constructed on the basis of the Dutch tax code, also taking into account
the welfare and social security system. In 1985 the tax system and the social security
system were not well-integrated. They each have their own marginal tax rates and the
social security system has ceilings for different sorts of payroll taxes. As a result of this
the budget constraint may be quite complex with various kinks and with non-convexities.

Table 6.1 presents the a priori chosen parameter values which are used to generate
the Monte Carlo data. Twenty Monte Carlo datasets have been generated using the
completely specífied model, which includes random preferences. lo

~oThis small number oC replications is due to the fairly heavy computational burden associated with
estimation of the completely apetified model
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Table 8.1: True parameter vector
Labor supply equation
ol (Const.) 14.14
a2 (non-labor income) -0.04692
a3 (wage) 10.690
a4 (0.5x square of wage) -0.260
~1 (log(family size)) -24.002
~~ (d. children with age G 6) - 13.903
Measurement error in hours
a, 19.31
Wage equation
rl~ (const) 1.4
pz (log(age~17)) 2.75
r13 (square of log(age~17)) -2.2
Heterogeneity in wages
r 0.981
Random preferences
7i
7z

3.0
4 .0

6.1 Monte Carlo, no random preferences, predicted budget
constraints

The first estimation method is the estimation of a simplified model which neglects
random preferences and ignores random variation of budget constraints for non- partic-
ipants. In the absence of random preferences the labor supply function (2.14) becomes

hn - h(wn, Irn; ~, ~n~) (6.1)

Optimal labor supply is determined according to scheme (5.2) with vn - 0. The only
source of randomness now is measurement error e and the patticipation rule in this model
is:

hn - hn ~ En
h - 0 if h;, G 0

- h;, it h;, ~ 0

The coherency constraint ( 4.5) remains the same.
For the non-participants one single budget-constraint is used, i.e. variation in the

budget constraint due to variation in wages is ignored. This means that the wages
for non-participants are predicted from the systematic part of the wage equation. For
participants, the distributional assumptions (4.6), (4.7) and (4.8) are maintained. To
avoid selection bias, the wage equation will be estimated for participants jointly with a
selectivity equation of the form

- ~izn t eny~
which can be interpreted as an approximate reduced form of

hn - h(eXP(rl~~n t un), Íini o, ynw f vn) ~- e
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It is clear that the. vector of variables zn should contain all the variables included in the
wage equation, as well as the variables appearing in the labor supply function h(.). The
joint wage-participation model is

]n wn - r!'an f un

yn - K'Zn -F Cn
y;, ~ 0 if working (wn observed)

G 0 if not (wn unobserved)

with

` 1 e~n ~ ~ N " On I ' ~I
(6.6)

z
E - ~ c ol` 1 (6.7)

where an and mn have been defined in (4.6) and i(4.8). The variance of en has been
normalized to one.

Once the model (6.5)-(6.7) has been estimated, (6.1) is estimated with predicted
wages for non-participants. The predicted wages come from the systematic part of the
wage equation.

Table 6.2 shows the Monte Carlo results for the estimation of this reduced form wage-
participation model. The means in column 2 refer to the averages of estimates over
20 replications. Column three shows the standard deviations of the estimates over the
replications and column four presents the average of the estimated asymptotic standard
errors. Relative errors are given in the final column. They are defined by ~B - Bo~~~Bo~,
where B is the mean in column 2 and Bo is the true parameter value. The mean of
the parameter estimates ï~2 and n3i which correspond to the age variables in the wage
equation are somewhat higher in absolute value than the true parameter values. The
same holds for the variance r. The parameters ~c~ of the participation equation all are
significant.

The Monte Carlo results for the labor supply parameters are given in table 6.3. The
mean estimates of the constant term, aZ, ~t and ~2 are all larger in absolute value than
their true values, but their sign is estimated correctly. The estimate of o3, the parameter
of the linear wage term in the labor supply fimction, is close to its true value. However,
the mean estimate of a.~, which corresponds to the quadratic wage term in the labor
supply function is close to zero as compared with the true value. In fact the mean
estimate of a4 is about five standard deviations below the true value. The standard
deviations and the mean SE are fairly similar. The variance o~ is higher than the true
value, which is due to the neglect of random preferences.

and

6.2 Monte Carlo, IV, participants only

'Phe next method we consider is the instrumental variables method. Now the non-
convex piecewise linear budget constraint is linearized. Only participants are taken into
consideration. We look at the observed value of labor supply, h. We check between
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which kinkpoints of the budget constraints this value is. Suppose that Hi-r c h c Hi:

Then we are on the j-th segment and the budget constraint is linearized by the linear

budget constraint with slope wi and intercept pi that correspond to segment j. The

equation we might want to estimate is:

h -~r t ~sFci f oswi t 2~awi } x~~ f E (6.8)

in which wi -(1 - ri)w, with w the gross wage rate and ri the marginal tax rate of

segment j.
As is well known, there are two reasons why this equation cannot be simply estimated

by OLS. The first is the presence of correlation between ({ri, wi) and the error term, and

the second is the selectivity problem.

There are two causes for correlation between (pi, wi) and the error term e. The first is

that the value of h determines which segment of the budget constraint is the appropriate

segrnent, and consequently it deterrnines which pair (pi, w~) is chosen. Secondly, optimal

labor supply need not coincide with observed labor supply due to measurement error.

As the choice of the segment is determined by observed labor supply, instead of optimal

labor supply, the wrong segment may be chosen. As a consequence, (pi,wi) will be

subject to measurement error as well, and their measurement errors are correlated with

the measurement error of labor supply. The fact that we do not observe individuals at

kink points can also be explained by measurement error. Instrumental variables for the

intercept pi, the slope wi and its square w~ will have to be used. Obvious candidates are

non-labor income p, the gross wage rate w and its square, and individual characteristics

that appear in the wage equation. It has to be assumed that the gross wage rate and c

are uncorrelated.
As we restrict ourselves to participants, a selectivity problem arises. We solve this

problem by applying the standard Heckman correction: In (6.5) a reduced form wage-

participation model has been presented. Suppose that the error term of the gross wage

rate, u, is uncorrelated with the error e of the labor supply equation. Next, make the

standard assumption (false in this case) that the error term of the participation equation,

e, and e are jointly normally distributed. Then the expectation of e, conditional on

participation, y' 1 0, can be derived:

~ - ~(-x~z) (6.9)1- ~(-~'z)
in which ~(.) is the standard normal density function and ~(.) the standard normal

distribution function." The estimate ic, obtained from estimating the reduced form

participation model can be used as a value for k. To correct for selectivity, a is added

to the labor supply equation, where a is equal to a with rc replaced by ic. The final

estimation equation becomes:

h- al f asfri t a3wi t Zo4w~ f x'~ f o~~~ -f e (6.10)

~~ Strictly apeaking we only aasume (6.9), which ia weaker than notmality oC e and c
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The model has been estimated on the Monte Carlo data, using two sets of instrumental
variables. The extended set of instrumental variables contains, apart from the constant
terrn, the correction term and the vector of characteristics x that already appears in the
labor supply function, non-labor income p, the gross wage rate w and its square and the
age variables that also appear in the wage equation. These age variables are excluded
from the restricted set of instrumental variables. Tables 6.4 and 6.5 present the Monte
Carlo results obtained with the full set and the restricted set of instrumental variables
respectively. There is not much difference between the Monte Carlo results with the
different sets of instrumental variables. The signs of the estimates are correct, and there
is significant evidence for the backward bending labor supply curve. The parameter cr3
of the linear wage term is a bit underestimated, whereas parameter a4 of the quadratic
wage term is over-estimated. The standard deviations of a2i ~r and ~2 are sizeable and
thc cstirnatcs arc lowcr than the correspondiug truc values.

[n the estimation with the instrumental variable methods, no coherency constraints
are imposed acrd therefore these constraints may not be satisfied for all individuals.
For the estimates obtained with the restricted set of instrumental variables, 6.3070 of
the individuals does not satisfy the coherency constraint. For the extended set this
percentage is 8.3.

Comparing tables 6.4 and 6.5 with table 6.3, it appears that the instrumental variables
method performs somewhat worse on average than the estimation of labor supply with
neglect of random preferences, as carried out in the previous subsection, except for the
fact that the instrumental variables method does manage to reproduce the backward
bending labor supply curve.

6.3 Monte Carlo, MSS
We now consider the estimation by means of the method of simulated scores. Random

preferences, as well as the tax and social security system are properly accounted for. Two
variants can be distinguished. In the first variant we use predicted wages for non-working
individuals. The predictors are obtained from the reduced form wage-participation model
(6.5). Stochastic variation in the budget constraint due to stochastic variation in the
wages is ignored here. T'he second method consists of estimating parameters of the labor
supply model and the wage equation jointly.

In table 6.6 the Monte Carlo results of the variant with predicted wages are given. For
the optimization of the objective function the downhill simplex method has been used.
The results of the Monte Carlo study of the model without random preferences have
been used in the construction of an initial starting simplex. The number of drawings to
construct the simulator is equal to 10. The matrix of instruments has been constructed
on basis of the true parameter values, using RZ - 800 drawings. (Recall that the
matrix of instruments has to be calculated only once at the beginning of the optimization
procedure.) 'I'he consequences of constructing the matrix of instruments with estimated
values in the context of a two step estimation procedure have been studied in Bloemen
and Kapteyn (1993). [t was found that the means of the estimated values do not change
much by employing the two step procedure, but the standard deviations of the estimates
are higher than in the case in which the matrix of instruments is calculated based on the
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true parameter vector.
The present method oí estimation clearly outperforms the previous two estimation

methods. Although the parameter of the quadratic wage term in the labor supply func-
tion is still underestimated, it is closer to its true value as well, and it is significantly
different from zero at the l0010 level.

Table 6.7 presents the Monte Carlo results of jointly estimating the labor supply
model and the wage equation. Again, RZ - 800 drawings were used to contruct the
matrix of instruments and R- 10 drawings were used to construct the simulators. 'The
estimates of the labor supply parameters are not very different from those obtained with
the nonstochastic budget constraint in table 6.6. There is, however, a slight improvement
in the estimation of the parameter of the quadratic wage term, which is closer to its true
value than for any of the previous methods of estimation. Comparing the parameters
of the wage distribution with the parameters obtained with the reduced form wage
participation model in table 6.2, we see that there is an improvement in all but one of
the parameters estimates.

In conclusion we may say that the Monte Carlo results show that the method of
simulated scores with a nonstochastic budget constraint already yields fairly reasonable
results, as compared to approximate methods like the instrumental variables method or
leaving out random preferences. All of the methods of estimation seem to have problems
in properly estimating the parameter of the quadratic wage term in the labor supply
function. Leaving out random preferences severely underestimates thc pararneter of
the quadratic wage term, whereas the instrumental variables method overestimates this
parameter. In the Monte Carlo study the joint estimation of the labor supply function
and the wage equation gives the best results with respect to the quadratic wage effect.

6.4 Estimation, no random preferences, predicted budget
constraints

'fhc model without random preferences is estimated using thc 1985 OSA data, which
includes 849 married female individuals of which 331 have a paid job. First the wagc-
participation model is estimated and the estimates are presented in table 6.8. Apart
from the age variables, four education dummies have been included in the wage equation
and consequently also in the participation equation. Educl is a dummy variable for
the lowest level of education. The highest level of education is taken as the reference
category. The four education dummies in the wage equation are negative and significant
and they are increasing with the level of education, as they should. The age-earnings
profile reaches its maximum at the age of 36. The dummy for the number of children
with age below 6 and log family size have a significant negative effect on participation.
A higher level of education tends to reduce the probability of non-participation. The
probability of participation rises with age until the age of 29 after which it decreases.
The covariance v„~ between wages and participation is insignificant.

The wage estimates are used to predict wages for the non-participants, after which
thc, labor supply model without random preferences is estimated.

'I'he parameter estimates are given in table 6.9. Non-labor income has a small but
significant (at the lOQlo level) negative effect on labor supply. The parameter estimate of
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a3i which corresponds to the linear wage term in the labor supply equation is positive
and significant at the 10~0 level. The quadratic wage term does not seem to play a
significant role in the labor supply function, so the present estimates do not provide
evidence for a backward bending labor supply curve. Both the presence of children with
age below 6 and an increase in log family size have a significant negative effect on labor
supply. The age variables turn out to be insignificant.

6.5 Estimation, IV, participants only

Tables 6.10 and 6.11 present the empirical results, obtained with the instrumental
variables method. Again two sets of instrumental variables are used. The restricted set
contains the corrstant term, the dummy for the presence of children with age below 6, log
family size, the correction term and the age variables. The full set contains, in addition
to the variables that have been included in the restricted set, the education dummies
which also appear in the wage equation.

There is not much difference between the IV estimates obtained with the restricted set
and the IV estimates obtained with the full set of instrumental variables. The difference
with the estimates in table 6.9, obtained by the model without random preferences, are
considerable. Non-labor income has a larger impact on labor supply according to the
IV estimates. Remarkably the IV estimates provide evidence in favour of a backward
bending labor supply curve, as opposed to the estimates in table 6.9 in which the pa-
rameter estimate of a4 was insignificant. This is in line with the Monte Carlo results
presented above. Also there IV generated by far the ]argest estimate ( in absolute value)
of the quadratic wage effect. According to the IV estimates, the dummy for presence
of children with age below 6 has a positive, though insignificant, effect. Log family size
still has a significantly negative effect, but its estimated impact on labor supply is much
srnaller than according to table 6.9. The age variables are insignificant for both types of
estimators.

The percentage of individuals that does not satisfy the coherency constraint is 45 for
the restricted set and 43 for the extended set of instrumental variables.

6.6 Estimation, MSS
Table 6.12 shows the estimation results with MSS and a non-stochastic budget

constraint.12 The standard errors of the individual characteristics in the labor supply
function are high relative to the estimates.

Table 6.13 preserrts the estirnates obtained with the method of simulated scores and
a stochastic budget constraint. The estimate of a3i the parameter of the linear wage
term in the labor supply function, is larger than the estimates for this parameter that
we obtairred with the IV and no random preferences methods. Non-labor income has a
larger impact as well. The standard errors of the parameters of the wage distribution
are rather high. The same holds, to a lesser extent, for the the standard errors of the

12To be sure, throughout we assume that the budget constraint is non-atochastic from the viewpoint
of the agent; however from the viewpoint of the econometrician the budget conetraint is stochastic since
we do not observe all sources of heterogeneity across individuals
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parameters ~;. Comparing the estimates of the wage parameters obtained with MSS
with the estimates obtained with the reduced form wage-participation model in table
6.8, it is clear that there are differences. In view of the large standard errors in table
6.13, this does not necessarily mean much. Again, the quadratic wage term in the labor
supply function is not significant. The parameter estimate of ryZ is of large magnitude
and estimated imprecisely.

6.7 Wage and participation elasticities for different methods

Table 6.14 shows the wage and participation elasticities that are implied by the
various methods of estimation. These have been calculated as "aggregate" elasticities
in the sense that all wages in the sample have been raised by 5Plo and then hours and
participation have been predicted for every individual in the sample. For the method of
simulated scores with a stochastic budget constraint the wages for non-working individ-
uals have been simulated using the estimates of the wage distribution in table 6.13. For
the remaining estimation methods the predicted wages based on the estimates in table
6.8 have been used. For the simulation of hours and participation the scheme (5.2) with
v„ - 0 has been used for the IV method and the method without random preferences,
whereas simulated values for v„ have been inserted for the MSS met,hods. 'I'hc wagc clas-
ticities range from 0.11 for MSS with a non-stochastic budget constraint up to 1.29 for
the model without random preferences. The participation elasticities range from 0.064
to 0.99. The elasticities with the IV method have been calculated both including and
excluding the individuals that do not satify their coherency constraint. The standard
errors of the estimated elasticities are sizeable. Consequently, the differences between
the elasticities are not significant.

Table 6.15 presents the wage and participation elasticities of the Monte Carlo dala.
Also for the Monte Carlo data the different estimation results produce different elastic-
ities, although the variation is a bit less than for the rea] data. Note that the ranking
of the elasticities by method of estimation coincides with the ranking of the empirical
elasticities in table 6.14, except for MSS with a non-stochastic budget constraint, which
exhibits much larger elasticities for the Monte Carlo data than for the real data. The
standard errors of the elasticities of the Monte Carlo data are smaller than for the r~~al
data. For the Monte Carlo data, most of the differences in the elasticities are significant.

Altogether, it is clear that there are considerable differences in the empirical estimates
obtained by the various methods of estimation. These differences in the estimates have
implications for the wage and participation elasticities, which vary widely across different
methods of estimation. The standard errors of the elasticities are sizeable. Apart from
the IV method, none of the methods provide evidence in favour of a backward bending
labor supply curve. In the Monte Carlo experiment we saw that IV tends to overestimate
the quadratic wage term in the labor supply function, whereas the otber methods had a
tendency to underestimate.
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Table 6.2 Monte Carlo: Wage-participation model
B true value mean SD mean SE rel. err.
Participation equation (6.3)
k~ (const)
~c2 (log(fam. size))
~c3 (d. child. G 6)
~c9 (non-labor income)
ks (log(age~17))
ks (square of log(age~l7))
Wage equation (6.5)
rl~ (const)
r~z (log(age~17))
rl3 (square of log(age~17))
r

Due

- 0.825 0.203 0.251
- -0.536 0.0552 0.0864
- -0.264 0.0604 0.0639
- -0.000819 0.0000940 0.0000742
- 3.083 0.699 0.798
- -2.425 0.516 0.544

1.4 1.097 0.169 0.235 0.22
2.75 3.408 0.564 0.698 0.24
-2.2 -2.646 0.440 0.483 0.20

0.981 1.145 0.0591 0.0388 0.17
- 1.136 0.0632 0.0406 -

Table 6.3 Monte Carlo: Labour supply model
No random preferences
B
o~ (const)
a2 (non-labor income)
a3 (wage)
04 (0.5 x square of wage)
(1 (log(family size))
(z (d. children with age G 6)

true value mean SD mean SE rel. err.
14.1 15.768 5.734 9.456 0.12

-0.047 -0.0631 0.00980 0.00648 0.34
10.69 10.704 1.286 2.270 0.0014
-0.26 -0.0126 0.0477 0.115 0.95

-24 -34.044 5.218 3.788 0.42
-13.9 -17.594 5.607 3.328 0.27
19.3 24.234 0.729 0.856 0.26

Table 6.4 Monte Carlo: Labour supply model
The Instrumental Variables method
Extended set of Instrumental Variables
B
a~ (const)
crZ (non-labor income)
a3 (wage)
cr4 (0.5 x square of wage)
~~ (log(family siae))
~2 (d. children with age G 6)

true value mean SD mean SE rel. err.
14.1 28.657 6.808 7.618 1.03

-0.047 -0.0284 0.0207 0.0209 0.40
10.69 7.391 1.991 2.210 0.31
-0.26 -0.355 0.160 0.158 0.36

-24 -11.236 7.151 5.354 0.53
-13.9 -5.868 3.481 3.905 0.59

19.3 27.352 2.907 - 0.42
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Table 6.5 Monte Carlo: Labour supply model
The Instrumental Variables method
Restricted set of Instrumental Variables
B true value mean SD mean SE rel. err.
a~ (const) 14.1 26.591 6.934 8.234 0.88
az (non-labor income) -0.047 -0.0351 0.0244 0.0232 0.25
a3 (wage) 10.69 8.071 1.965 2.401 0.24
aq (0.5 x square of wage) -0.26 -0.377 0.165 0.170 0.45
~~ (log(family size)) -24 -12.069 7.826 5.677 0.50
~~ (d. children with age G 6) -13.9 -6.567 3.940 4.176 0.53
o~ 19.3 28.623 3.707 - 0.48

Table 6.6 Monte Carlo: Labour supply model
Method of Simulated Scores, R- 10
Non-stochastic budget constraint
B true value mean SD SE rel. err.
a, (const) 19.1 13.639 9.573 7.683 0.035
02 (non-labor income) -0.047 -0.0504 0.0116 0.00335 0.075
a3 (wage) 10.69 11.041 1.182 1.004 0.033
a4 (0.5 x square of wage) -0.26 -0.169 0.101 0.360 0.35
~~ (log(family size)) -24 -25.693 9.071 7.351 0.070
~Z (d. children with age G 6) -13.9 -14.604 6.032 7.409 0.050
o~ 19.31 20.851 2.625 6.019 0.080
y~ 3.0 3.025 1.319 2.239 0.0082
ry2 4.0 4.111 0.883 2.561 0.11

Table 6.7 Monte Carlo:
Labour supply model and wage distribution
Method of Simulated Scores, R- 10
Stochastic budget constraint
B true value mean SD SE rel. err.
a~ (const) 14.1 14.467 8.829 4.585 0.023
c~2 (non-labor income) -0.047 -0.0517 0.0129 0.0138 0.10
03 (wage) 10.69 11.075 1.452 0.903 0.036
a4 (0.5 x square of wage) -0.26 -0.176 0.0967 0.210 0.32
~1 (log(family size)) -24 -25.409 8.048 5.831 0.059
~~ (d. children with age G 6) -13.9 -14.750 4.112 4.107 0.061
o~ 19.31 23.966 5.475 2.481 0.24
ryt 3.0 3.222 1.076 0.403 0.074
ryz 4.0 4.711 2.176 1.061 0.18
Thc wage distribution
p~ (const) 1.4 1.444 0.365 0.197 0.044
rl~ (log(age~17)) 2.75 3.395 0.547 0.439 0.23
r13 (square of log(age~17)) -2.2 -3.149 0.812 0.334 0.43
r 0.981 1.082 0.103 0.0195 0.10
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Table 6.8 Estimates of the wage-participation model

9 B SE
K~ (const) 2.922 0.531
KZ (log(fam. size)) -1.335 0.179
K3 (d. child. G 6) -1.085 0.150
Kq (non-labor income) -0.000340 0.000163
Ks (log(age~17)) 3.136 1.108
K6 (square oflog(age~17)) -2.970 0.739

K~ (educl) -1.819 0.435
K8 (educ2) -1.983 0.435
Ky (educ3) -1.521 0.426
K~o (educ4) -0.915 0.456
pl (const) 2.493 0.164
r~2 (log(age~17)) 1.896 0.470
r~a (square of log(age~17)) -1.277 0.335
r~q (educl) -0.668 0.0941
r~s (educ2) -0.562 0.0847
r~s (educ3) -0.477 0.0564
r~~ (educ4) -0.213 0.0609
r 0.470 0.0134
o„e 0.0396 0.0743

Table 6.9 Estimates of the labor supply model
No random preferences
B B SE
al (const) 15.049 11.819
a~ (non-labor income) -0.00720 0.00369
a3 (wage) 3.200 1.745
aq (0.5 x square of wage) -0.0315 0.127
~~ (log(family size)) -30.995 4.563
~2 (d. children with age G 6) -22.787 3.645
(3 (log(age~17)) 2.726 26.15
(q (square of log(age~17)) -24.578 17.503
v~ 24.240 1.540
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Table 6.10 Estimates of the labor supply model
Instrumental Variables: restricted set
B B 5E
ai (const) 35.842 4.218
a~ (non-labor income) -0.0389 0.0237
a3 (wage) 1.719 0.422
a4 (0.5 x square of wage) -0.0950 0.0252
~~ (log(family size)) -6.422 2.948
(~ (d. children with age c 6) 0.748 2.487
~;i (log(age~l7)) -18.154 11.957
~4 (square oflog(age~17)) 4.684 8.963
a~ 9.722 -
Correction term -3.380 2.543

Table 8.11 Estimates of the labor supply model
Instrumental Variables: F~ll set
B B SE

a~ (const) 35.780 4.175
aZ (non-labor income) -0.0372 0.0235
a3 (wage) 1.719 0.417
a4 (0.5 x square oí wage) -0.0965 0.0247
(1 (log(family size)) -6.307 2.938
~Z (d. children with age G 6) 0.870 2.478
t;3 (log(age~17)) -18.280 11.928
~4 (square of log(age~17)) 4.770 8.941
o~ 9.699 -
Correction term -3.498 2.535

Table 8.12 Estimates of the labor supply model
Method of Simulated Scores, R- 10
Non-stochastic budget constraint
B B SE
al (const) 37.867 29.733
a2 (non-labor income) -0.0194 0.0140
a3 (wage) 11.522 6.790
a4 (0.5 x square of wage) -0.00462 0.468
~, (log(family size)) 5.902 4.800
~z (d. children with age c 6) 14.900 16.738
~3 (log(age~17)) 85.328 70.310
~4 (square oflog(age~17)) -21.219 12.290
o~ 16.547 4.966
ry~ 4.370 2.187
ryZ 30.871 22.872
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Table 6.13 Estimates of the
labor supply model and wage distribution
Method of Simulated Scores, R- 10
Stochastic budget constraint
B B SE
ar (const) 31.145 23.677
a~ (non-labor income) -0.0480 0.0216
a3 (wage) 10.285 3.729
a4 (0.5 x square of wage) -0.00243 0.318
(r (log(family size)) -26.251 19.765
~z (d. children with age G 6) -17.912 21.983
~3 (log(age~17)) 56.486 40.756
~4 (square of log(age~17)) -36.518 29.024
oE 12.429 2.877
y, 4.138 2.022
ryz 23.877 24.309
The wage distribution
p, (const) 0.630 1.101
p2 (log(age~17)) 2.666 1.832
r~3 (square of log(age~17)) -1.325 1.477
r,4 (educl ) -0.935 0.998
rls (educ2) -0.859 0.980
r~s (educ3) -0.719 0.825
rlr (educ4) -0.581 0.942
r 0.653 0.0192
Table 6.14 Wage and participation elasticities
Method of wage SE participation SE
estimat,ion elasticity elasticity
No random prcferences 1.29 1.17 0.99 1.24
IV, restricted set 0.23 0.70 0.15 0.74
IV, restricted set (excluding non-coherents) 0.21 0.69 0.16 0.73
IV, full set 0.19 0.70 0.12 0.67
IV, full set (excluding rron-coherents) 0.19 0.70 0.13 0.68
MSS, non-stochastic budget constraint 0.11 0.05 0.064 0.04
MSS, stochastic budget constraint 0.39 0.43 0.29 0.21
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Table 6.15 Monte Carlo: wage and participation elasticities
Method of wage SE participation SE

estimation elasticity elasticity

No random preferences 1.05 0.11 0.73 0.08

IV, restricted set 0.33 0.21 0.12 0.19

IV, restricted set (excluding non-coherents) 0.36 0.19 0.16 0.19

IV, full set 0.26 0.18 0.09 0.15

IV,full set (excluding non-coherents) 0.30 0.16 0.08 0.15

MSS, non-stochastic budget constraint 0.95 0.20 0.61 0.26

MSS, stochastic budget constraint 0.69 0.11 0.40 0.11

7 Conclusions

Both the Monte Carlo results and the estimation results for real data show large

variation of outcomes across estimation methods. For the Monte Carlo we know the true

model and the results suggest that an incorrect treatment of the stochastic nature of the

data may lead to large biases. Estimated wage and participation elasticities may easily

be double or half the true elasticity if the wrong estimation method is applied.

For the real data, we do not know the true model, of course, but the huge variation

in parameters and implied elasticities is disconcerting. The fact that the ordering of

elasticities is by and large the same as for the Monte Carlo data is suggestive of the

fact that also here an oversimplification of stochastic structure may be a cause of biased

outcomes.
In itself the model considered in this paper is not claimed to be realistic. After all,

it does not have any dynamic elements, no fixed costs of working, etc. The purpose of

the paper has not been to build a fully realistic model of labor market behavior. Rather

we have limited ourselves to a somewhat simplified environment in which agents are

supposed to behave and then concentrated on a utility consistent specification behavior

in that environment. Where our results seem to show the extreme importance of a

correct (utility consistent) treatment of the stochastic structure of the model in such a

case, we would anticipate even more relevance of such treatment in more complicated

environments.

A Appendix. Simulation of the score

In this appendix the technical details of the simulation of the score will be worked

out. The simulation of the score can be split up in two parts, i.e. the simulation of the

participation probabilities and the simulation of the score of the continuous part of the

likelihood function.
First, some notation is introduced. Let p„~ denote the intercept of the j-th segment

of the budget constraint, as indicated in figure 4, where j- 1, ..., nz. The index j- 0

indicates the segment which introduces the non-convexity in the budget constraint. The

slope of the j-th segment is denoted by w„„ w„p C w„zi w„~ 7 w,,,~tr, j - 1, ..., m- 1,

and H„~ is the kink point between the j-th and (j f 1)-th segment, j - 0,...,m - 1. If
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~~„o - ~ w~' Just. have the model without social security systern. !f we allow for variation
in the gross wage w,,, the slopes wn~ and the kink points Hn~ will depend on w,,, so
formally:

wn~ - w~(wn) (A.1)

Hnj - Hj(wn) 1A.2)

w~(w„) ~ 0 (A.3)

H~(wn) G 0 (A.4)

As in section 5, we let hn denote the optimal amount of labour supply if the budget
constraint is linear with slope w„~ and intercept p„„j - 1,...,m. In our model:

hn - h~(~,wn;,lrn;,~,xn) -ho~v~ (A.5)

where
1

h~(a, w, Fr, ~, ~) - ~i ~- a21r -F cr3w f 2o4w2 -f x'~ (A.6)

)Jxpressing a and { in terms of the original parameters gives:

a~

áZ

~3

~q

c

ófQeo
Q
ry f Qó

Qry
Wa

(A.7)
(A.8)
(A.9)

(A.10)
(A.11)

Because Q G 0 and ry~ 0 we find that aZ G 0 and a4 G 0. Notation will be abbreviated
by defining

hn; - h~(~, w,,;, Irn;, ~, ~n) (A.12)

The unobserved taste parameter vn is assumed to be distributed according to a negative
gamma-distribution with parameters yi and ryZ, i.i.d. over individuals, by which we mean
that -v„ has a gamma distribution. The probability density function of vn is

9(~'.,,ry~,7s) -
I'(ryi)ryz

(-v„)„-lexP
`ryx)

,7i ~ D,ryz 1 0,-0o G v„ G 0 (A.13)

As pointed out in section 5, the distribution of the measurement errors is assumed to be
normal with mean zero and variance v?:

2 1 - 1 s
fa(En, 0E ) - exp -En ,-00 G En G 00 (A.lil)

- `~7r0~ ~LO?

The wage distribution can be derived from assumptions ( 4.6), (4.7) and (4.8).

( 1 z
~(wn, n, T2) -

I w 1
exp (- 1 Z[log ~ wn ~- mnJ (A.15)

- 2rrT w - wn w„ ` 2T `w - wn

mn -- log I eXp(n yn) - 1 I, 0 G wn G w (A.16)
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It is a straightforward extension to incorporate correlation between wages and mea-
surement errors. However, to restrict the introduction of notation, we abstain from it

here.
The likelihood contribution of an individual will be formulated now. We make use

of the scheme (5.2) for determining optimal labour supply and the participation rules
described in (2.16) and (2.17). First note that the hn in (5.2) all depend on the random

preference parameter vn, so given everything else, vn determines in which segment of the

budget constraint labour supply is optimal. Therefore, we have to determine which set

of values of v„ coincides with which segment of the budget constraint. The following sets

are defined:

Ai - {vn~Hn,i-1 G h;, G Hn;} 7-0,...,m

BO - {vnlÍln c fi}

~Íj - {VnI~Ln i ~Ínj i ~ln}Il ~- 1,...,tib- 1

Bm - {v„~hn 1 T} I

Hn,-1 - ~, Hn,n - T

Q(hn~NC,hn1) - {vnlU(hn,NC,yo(hn,NC))GU(hn;,yi(hnj))}

Q`(hn,NC,hni) - {vnlU(hn,NC,yo(hn,NC)) ~ U(hni,yi(hni))}

with hn,NC defined in (5.2) and y;(h) - w;h f~j

R;(hn,NC, hn) - Ai n Q'(hn,NC, hn) j- 1, ...,m

S7(hn,NC) - Bi n Q'(hn~NC, Hni) j- 1, -~-, m

ZOl

Zos
(A.17)

BO n {(Uj~ 1R7(D,hn)) U (Uj-1`S7((])~1

Ao n~~Vi-1Rí(ho, hn)~ U~Umrsi(h~)~~

B; n Q(hn~NC, HnJ) j- 1, ..., m

A; nQ(hn,NC,hn) 7 - 1,...,m

~Um 1Zj1~ U ~U~ OZj2~

7.01 is the set of vn for which optimal labour supply is zero, Zoz is the set for which it is
optimal to be on the first segment of the budget constraint, before the nonconvexity kink
Hno, Zjl is the set for which optimal labour supply is equal to the j-th kink, j- 1, ..., m,
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Zjz is the set for which it is optimal to be on the j-th segment after the nonconvexity
kink, j- 1, ..., m and Z' is the set for which optimal labour supply is positive.

We now determine the probability that observed labour supply is zero, conditional on
the value of vn. According to (2.17) there are two possibilities for observed labour supply
to be zero. The first happens when optimal labour supply is zero. Then observed labour
supply is equal to zero, irrespective of the value of ineasurement error. So if vn is from
the set for which optimal labour supply is zero, the probability that observed labour
supply is zero, conditional on vn, is equal to one. The second possibility for observed
labour supply to be zero occurs when optimal labour supply is positive but optimal
labour supply plus measurement error is negative. Summarizing, the probability that
observed labour supply is zero, conditional on vn becomes:

P(hn - O~vn, wn) - 1 if vn E Zo1

if vn E Zjl,j - 1,. .,m (A.18)

- ~ ~-~) if vn E Zjzi j - 0, ..., m

in which ~(.) is the standard normal distribution function.
'Ihe contribution of positive values of labour supply, conditional on vn, is restricted

to vn E Z' for which optimal labour supply is positive.

X(hn~vn,wn) -~(hn - Hnj,o?) if vn E Zji,J - 1,. .,m

X(hn~vn,wn) - ~(hn - hn,o?) if TJn E Zj2,7 - 0,. .,m

Having determined the density of observed labour supply, conditional on vn, the uncon-
ditional contribution can be obtained by integrating over vn.

P(hn - O~wn) - fz~uzo, P(hn - O~v, wn)9(v,7i,7z)dv if hn - 0
(A.20)

~(hn~wn) - Iz. X(hn~v,wn)9(v,7~,7z)dv if hn ~ 0

or, making use of (A.18) and (A.19)

P(hn - OIll1n) -

7

f 9(v,7~,7z)dv-l-~~ ~~-Hn~)9(v,7~,7z)dvf~ f ~ -hn 9(v,7t,7z)dv
7u, j-1 ZP ` ~~ j-0 Z~~ 0~

if hn - 0

(A.19)

(A.21)

1(hnlwn) - ~1 ~(hn - Hnj,Q2)9(T~,71,7z)dv f ~ J ~(hn - hn,Q?)9(v,71,7z)dv
i-~ z" j-o z"

ifhn~0
(A.22)
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For an individual whose labour supply is zero, wages are not observed and they are
integrated out. The final response probability becomes

Iw P(hn - D~w)K(w, 0, rZ)dw (A.23)
0

The problem with the above defined sets is that the bounds of these sets are not known
explicitly. The advantage of the frequency simulator in the context of an integral with
bounds that are known implicitly only, is that it is possible to draw random numbers
and then check in which region the simulated value of labour supply is.13

We now describe the construction of the frequency simulator. The first thing we need
is drawings from the distributions of ineasurement errors, wages and random preferences.
As measurement errors are normally distributed, a series of R random numbers can be
drawn from the standard normal distribution which will be kept constant during the
minimization process. These basic drawings can be transformed to drawings from the
distribution of E„ through multiplying by vr. Any change in the drawings of e„ is caused
by a change in Q~.

To draw a series of gross wages we also start by drawing a series of R standard normal
random variables ln, , r- 1, ..., R, which are the constant basic drawings. These basic
drawings can be transformed to drawings of the wage rate:

wexp(m„ f rln ~w' - ' r - 1,. ., R (A.`l~)nr 1 f exp(Tnn ~ Tlnr)'

The transformation is continuous in the parameters and therefore, keeping the basic
drawings constant, a change in the drawings w;,, can only be caused by a change in the
parameters.

The generation of random numbers from the negative gamma distribution is not that
straightforward as the generation of random numbers frorn a normal distributiou. 'I'h~,
method commonly used for the generation of gamma random numbers is the acceptance-
rejection method. Although this method is very useful for generating gamma random
numbers if the parameters remain constant, the use of this method in the context of a
minimization problem with changing parameters is not appropriate. A change in the
parameters can cause discrete jumps in the drawings. The alternative would be to gen-
erate random numbers by means of the inversion method, see e.g. Devroye (1986). A
major drawback of this method is that for every draw the negative gamma distribution
function has to be inverted using numerical methods. Experiments with the inversion
method have shown that the application of this method in the context of an estimation
problem leads to an infeasibly high computational burden, even in rather simple prob-
lems. Therefore, the inversion method applied in estimation by simulation procedures

'3Note that it is possible to simulate (A.23) by drawing wages and random preferenccs from their
respective distributions, without drawing measurement error, then checking tbe region (Zj1 or Z~z) and
setting the contribution to the simulator equal to the conditional probability corresponding to this region,
evaluated in the drawings. This results in a piecewise continuous simulator, which is a combination of
a frequency simulator and a smooth simulator. The possibility to construct this type ot simulator
however, depends strongly on the model structure imposed in (2.15)-(2.17), which would change if
dynamic elementa, fixed cost of working, separation of the labour supply decision and participation
decision, etc. were introduced. Therefore, the general applicable frequency simulator is employed here.
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is only useful cithcr if thc funcl-ional form of thc iuverse oí t.he distribution fimction is
known, or if a good approxirnation for the inverse of the distribution function is avail-
able. A third possibility is to use importance sampling. In that procedure the random
rmrnbers are drawn from a different distribution with favourable characteristics and it is
corrected for drawing from a different distribution by the use of a weight function. This
is the procedure which we use here. We draw random numbers from the exponential
distribution with parameter p:

A(p,v„) - pexp{pv„},-oo G v„ G 0,p ~ 0 (A.25)

l3ccausc this is not thc "true" (assurned) distribution, the frequency simulator has to be
weighted like in importance sampling. The weight function k(v,,, y~, yz, p) is the ratio of
the negative gamma density function and the negative exponential density function.

k(vn, 7r, 1z, P) - g(vn, 7r, 7z) - 1 7, (-v~)7,-r exp I p v„ (A.26)
A(P,vn) r(7r)7z P 7z - ~ ~

The fact that we draw from the exponential distribution instead of the gamma distri-
bution increases the variance of the estimator. In the first place we have to choose the
parameter p in such a way that the variance will be finite and second, the choice of p
has to make the addition to the variance as small as possible. In the implementation a
random number v from the negative exponential density in (A.25) is inserted in (A.26),
so in calculating the mean and the variance of the weight function we do this with respect
to the negative exponential density. By construction, the mean of the weight function is
always eyual to one. Note that if it is drawn from the true density the weight function is
identically equal to one and as a consequence the variance of the weight funetion is equal
to zero. 'I'herefore, the larger is the deviation of the shape of the approximate density
function from the true density function, the larger will be the variance, see e.g. Kloek
and Van I)ijk (1978). The expression for the variance is given by:

EIk(v,?'r,?z,P)~z - I -

fo „7, ~~ri z A(P, v)dv - I-~ ~ n(a,v) ~

Jo~ k(v,?r,7z,P)9(v,7r,1'z)dv - I -

~„ -~
r'(27,-r) rn -

[r'(ti, )I'7z" v

in which

7r

(A.27)

2 tn.za~

2
P C - ~r~.ay~

7z
'I'his is the difference of the mean of the weight function with respect to the true density
function g(v, yr, 7z) and the mean of the weight. function with respect to A(v, p) which is
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equal to one. (A.29) is the necessary condition for the variance to be finite. The smallest
variance can be obtained by choosing p in such a way that the variance of the weight
function is minimized. Solving the first order conditions and checking the second order
conditions, it can be found that the variance is minimal for

1

P - 7r72
(A.30)

Note that condition ( A.29) is satisfied if condition ( A.28) is satisfied.
Summarizing, the drawing procedure for vn is as follows. Draw a series of R random

numbers v"n, from the exponential distribution with parameter p. These are our basii
drawings. '1'ransform the basic drawings to drawings v;,r from an exponeutial distribution
with parameter y~„~ by multiplying the basic drawings by rylryz:

vnr - 7tryzvnr (A.31)

Note that this is a continuous transformation in yl and ry2. These are the final drawings
which will be used in the simulation of the labour supply.

Having described the way of genetating the required random numbers, we now turn to
the simulation of the probability. Using the drawings (Enr, wnr, vnr) the optimal labour
supply hn, and the observed labour supply hn, can be simulated according to scheme
(5.2) and the participation rules (2.16) and (2.17). Then the participation probability can
be simulated by a frequency simulator like in (5.3)-(5.5) where (5.3) has to be weighted.
The frequency simulator becomes:

!nr - k(v;,r,ryr,7z,P) if hnr ~ 0 (A.32)

fnr - 0 otherwise (A.33)

FnR - Éj ~R 1 fnr (A.3~)

By construction, this is an unbiased simulator for the participation probability.
The estimation method also requires a simulator of the derivatives of the probability

with respect to the parameters. Let FnR(B) denote the frequency simulator in parameter
vector B. Then the derivative with respect to the k-th component of B is simulated by a
difference interval of frequency simulators:

FR(8 f óek) - FR(B)
mnk(B~ ER~ v R' wR) - tS

(A.35)

where ek is the k-th unit vector. Because FR(B f áek) is an unbiased simulator of
the participation probability in B f óe~ and FnR(B) is an unbiased simulator of the
participation probability in B, (A.35) is an unbiased simulator of the difference interval
of the participation probability. Because FnR(B) is discontinuous in the parametervector
B we have to choose ó large enough to ensure that the sum of the difference interval over
all individuals and all drawings in (3.12) is not equal to zero. The larger is the number
of drawings R, the smaller can be the value of ó. To construct the optimal matrix of
instruments, which only has to be calculated once at the beginning of the optimization
procedure, a large number of drawings can be used. In our empirical applications we
used 800 drawings.
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We now turn to the simulation of the continuous part of the score vector. First,
we abstract frorn the problems that arise because the bounds are unknown, and from
the problem t.hat. we cannot draw directly from t.he gamma distribution. Note that it
is possible to simulate the integral appearing in the log-likelihood function unbiasedly.
Draw randorn numbers vn, from the density g(v, ryr, ry2) restricted to the region Z' for
which optimal labour supply is positive, defined in (A.17).

v"' P(v E Z')' "' E (~A.36)

An unbiased simulator for l(h„~w„) is

R

I(h„~w„) - P(v E Z')R ~ X(h„~v;,,,v,,,) (A.37)
.-r

or, writing this out:

9(v, ryr, ry~) v. Z.

l(h„~w„) -

1 r; lP(v E 7,') R~ ~ I(vn. E Ziz)~(hn - h;,, o') f~ l(vn. E Zir ) ~(hn - Hn o~) 1~ i,.-r ~-o ~-r
(A.3~)

in which h; is cornputed on Lhc~ basis of v;,, and I(.) the indicator function. A sim-
ulator for the score contribution theu could be obtained by simulating numerator and
denominator in

óln l(h„~w„)
(A.39)a,9

separately. This introduces a bias in the simulation of the score in the sense that the
expectation evaluated in the true parameter vector will not be equal to zero. However,
this simulator for the continuous part of the score contribution is piecewise continuous
and therefore it does not have the unfavourable characteristics of a probability frequency
simulator in the context of simulated maximum likelihood, see e.g. Lerman and Manski
(1981).

An additional complication arises from the fact that the bounds of the region Z' are
unknown. Hence we have to draw from a different region Z' which contains the origina]
region, i.e. Z' C Z', and which approximates the original region as close as possible.
Consider the region

Z' -{vl -oo G v G 9(a,~,2u,,,p„)}

9(a, ~, wn, Frn) - -hnrr'aZ if - hnr~a2 G 0 (A.40)
- 0 if - hnt~a~ ~ 0

-hnr ~a2 is the value of v for which h;, is equal to zero. The region Z' of positive optimal
labour supply is contained in this region. The simulation procedure now becomes as
follows: Draw a randorn nurnbcr vn, from the negative exponential distribution with
parameter p:

v;,, ~ pexp{pvn,},-oo G v;,, G 0 (A.41)
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Define v,;, as

Unr - vnr } 9(~i ~i wni l~n) (A.42)

As a consquence, vnr is a truncated negative exponential variable:

vnr ,v PexP{PynrÍ vnr E Z' (A.43)
P(v E Z')

Now we construct a simulator that is a combination between a smooth simulator and a
frequency simulator. The simulator 1(hn~wn) becomes

P(v E Z`) rR-.I(~,;r E Z~)X(hnl~nr,wn)k(~nr,?"t,rys,P) (A.44)
R r~-,

Until now, we have considered the integration of the integrals appearing in the nu-
merator and denominator of the score contribution separately. However, it is possible
to construct a simulator on the basis of the vector of scores which has expectation zero
in the true parameter vector. The drawback of this simulator is that we have to draw
the random preference variables from their conditional density, i.e. conditional on the
observed value of labour supply. The density function conditional on labour supply con-
tains the same integral which we want to avoid to evaluate. Hence, we will consider an
approximation. First consider the score of the log-likelihood contribution with respect
to parameters that appear in the integrand only. Note that the derivatives of g(v, yl, ry2)
with respect to its parameters can always be written as a multiple of g(v, ryt, y2) and
therefore they can be treated in the same way as the following case.

The derivative of 1(hn~wn) with respect to a? is

al(hn~wn) aX(hn~v~wn)9(v,1't,rys)dv (A.45)ao~ - fZ. aoE
and

alnl(hnlwn) - al(IEnITUn),l(Ílnlwn)
(A.4s)a~~ aQ?

For expository purposes, for the moment we ignore again the problem of the unknown
bounds of Z". Now suppose that v;,r can be drawn from

9(y~7t~1's)X(hnwiwn) v E Z' (A.47)
l(hn~wn)

Then the score contribution can be simulated by

alnl(hn~wn) - P(v E Z')1~ aX(hn~vnr,wn)~X(hn~vnr,wn) (A.48)
ao? R r-, aoÉ

Taking expectations with respect to the draws v;,r, this yields the original score compo-
nent.
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For parameters which appear in the bounds of the integral we also have to differentiate
the bounds. Suppose that the bound of the region Z' is given by b. Optimal labour
supply, evaluated in the bound is zero. Taking the derivatives of the bound yields

t á~m(hn,~~)9(6,7r,7r)~i(hn~wn) (A.49)

where the sign is positive or negative, depending on whether it is an upperbound or
a lowerbound. "Caking expectations with respect to positive values of observed labour
supply, i.e. with respect to the density !(hn~w„)~P(hn 1 0) yields:

~ 1
a69(6,7r,1'i)~P(hn i o) - 1 aI2~ 9(v,7r,7z)dv,P(hn ~ 0) (A.50)2 a,9 2 a,~

which is one half times the derivative of the probability that optimal labour supply
exceeds zero, divided by the probability that observed labour supply exceeds zero. Now
the same trick can be applied as in B(oemen and Kapteyn (1993), which means that the
original derivative of the bound is replaced by one half times the probability that optimal
labour supply is greater than zero for every individual in the sample, both working and
non-working. The derivative of the probability that optimal labour supply is zero can be
simulated in the same way as in (A.35). Summarizing, for parameters which appear in
the bound as well as in the integrand we can use the same kind of simulator as in (A.48)
and in addition to that, we have to adjust the score contribution with a simulator of the
derivative of the probability that optimal labour supply is positive for both working and
non-working individuals. The resulting score simulator has expectation zero in the true
parameter vector. For the problem of the unobserved bounds of Z', the same method
can be used as in (A.44).

The practical appliability of this score method is restricted by the fact that random
draws from the conditional density are required. The method, however, still has the
advantage that the discontinuities are averaged out as the simulated score consists of
linear contributions. Therefore it is useful to draw random number from an approximate
density. The most straightforward way to draw random numbers in this context is to
draw t.hem from their marginal dist,ribution. In that case the score contribution will not
be unbiased anymore, i.e. the appropriate moment conditions are used in combination
wit,h the wrong draws. This point can be made more clear if for the moment we ignore
the tax system. Suppose that optimal labour supply is given by the function hn(vn) for
individual n. "I'hc~ participat.iun schc,mc~ ('l.lfi) and ('1.17) for observed labour supply is

hn - hn(vn) -~ c if hn(vn) ~ 0 and hn(vn) f e~ 0
- 0 if hn(v„) - 0 or hn(vn) -F- e C 0

and

(A.51)

En ~ ~(Eni Q~ ) ( A.52)

as before. 1'hen for positive hn we have

hn ~ ~z 4(hn - hn(v),o~)9(v)dv~P(hn ~ 0) (A.53)
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in which Z' is, as before, the region for which optimal labour supply is positive. Now

draw v;,r from its marginal density g(.), whereas h„ can be considered as a draw from

(A.53). Then the implied density for cn, :- h„ - h„(vn,) is

1. r~(enr -} h„(v`) - h„(v),o?)g(v)g(v)dvdv"~(P(v E Z")P(h„ ~ 0)j (A.54)

which is not equal to ~(e;,,, o~ )~P(h„ ~ 0). Rather, it is a weighted average of

~(c,,, o?)~P(h„ ~ 0). Note that the impliciL draws cnr are always in the right region,

i.e. h„(v;,,) -f e;,, ~ 0. It can be shown that the parameter estimate for the variance of

measurement error is biased upwards.
The Monte Carlo results in chapter 6 are obtained with method (A.48) using draws

form the marginal density of v. From the results it can be seen that the estimate of the

variance of ineasurement error is indeed biased upwards. However, the estimates of thc

utility parameters do rather well.
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