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The ETFL formulation allows multi-omics
integration in thermodynamics-compliant
metabolism and expression models
Pierre Salvy 1 & Vassily Hatzimanikatis 1*

Systems biology has long been interested in models capturing both metabolism and

expression in a cell. We propose here an implementation of the metabolism and expression

model formalism (ME-models), which we call ETFL, for Expression and Thermodynamics Flux

models. ETFL is a hierarchical model formulation, from metabolism to RNA synthesis, that

allows simulating thermodynamics-compliant intracellular fluxes as well as enzyme and

mRNA concentration levels. ETFL formulates a mixed-integer linear problem (MILP) that

enables both relative and absolute metabolite, protein, and mRNA concentration integration.

ETFL is compatible with standard MILP solvers and does not require a non-linear solver,

unlike the previous state of the art. It also accounts for growth-dependent parameters, such

as relative protein or mRNA content. We present ETFL along with its validation using results

obtained from a well-characterized E. coli model. We show that ETFL is able to reproduce

proteome-limited growth. We also subject it to several analyses, including the prediction of

feasible mRNA and enzyme concentrations and gene essentiality.
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M
etabolic modeling, which helps making sense of the
metabolism in a biological network, is an important
tool for engineering biocatalysts, with applications in

biofuels, drug design, microbial community analysis, and perso-
nalized medicine. Model accuracy is instrumental to the success
of these applications through an efficient engineering of the host
organisms. However, incorporating expression information into
metabolic networks poses a significant challenge, and most cur-
rent models do not even attempt it—effectively excluding an
important network in biological systems that can drastically affect
results. In metabolic engineering, strains are modified and con-
trolled at the genome level through the transcriptome, and the
effects are observed at the fluxome level, which accounts for the
range of metabolic reactions in an organism. In between these
two levels is the proteome that performs the biochemical trans-
formations according to the genetic template, though it is
this middle step in the process that cannot yet be robustly and
efficiently incorporated into models of metabolic systems.
Because of the complex interplay between these different layers of
control, understanding expression and incorporating this into
future models is key for improving metabolic engineering.

Classically, model-based strain design has relied on tools that
use the DNA sequence of an organism and homology with well-
studied organisms to infer a network of metabolic reactions that
happen inside a cell of that organism, which is called a genome-
scale model (GEM). With current technologies and tools like
metagenome sequencing1, it is possible to generate GEMs for
hundreds of different species at a time. GEMs are particularly
amenable to flux balance analysis (FBA), which models metabo-
lism at the fluxome level using linear optimization techniques.
However, plain FBA has been known to predict biochemically
unrealistic solutions like free high-flux cycles or thermo-
dynamically infeasible pathways. It also scales growth linearly
with carbon uptake, which is not observed at high-uptake fluxes.
FBA also fails to capture growth-dependent and protein-level
effects, such as enzyme saturation or proteome-related limita-
tions. Hence, several efforts have been made to supplement FBA
with additional constraints to improve its predictive power. For
example, thermodynamics-based flux analysis (TFA)2,3 uses
thermodynamic constraints to enforce thermodynamically con-
sistent reaction directionalities and to allow the integration of
metabolomics. Resource balance models add a total proteome
capacity constraint, as formulated in Beg et al.4, to model the
proteome-related limitations of the cell, as enzymes have to
compete for the constrained total amount of cellular proteins.
Frameworks like GECKO5 further build on this resource
balance idea and include flux constraints based on proteomics,
such as v � Vmax ¼ kcat E½ � as well as a constraint on the total
proteome mass. Finally, metabolomics and expression models
(ME-models)6,7 were the first to integrate the entirety of the
expression mechanisms of the cell from the bottom-up, including
mRNA and protein synthesis.

However, simultaneously accounting for all of these constraints
is challenging because of the formulation of each method, as TFA
models involve integer variables that yield a mixed-integer linear
program (MILP), whereas ME-models involve bilinear con-
straints that require special optimization procedures and a high-
precision (quad-precision) solver8–10. Mixing these methods
would require the inclusion of integers in ME-models, which is
not straightforward and would lead to more complex mixed-
integer nonlinear programs (MINLP) that are computationally
intensive to solve. In addition, the amount of RNA and protein,
the RNA and protein expression rates, and their stabilities are all
growth dependent11, and including accurate representations of
these variables leads to even more complex, nonlinear models.
Meanwhile, although resource balance models such as GECKO

could theoretically be integrated into TFA or ME-models in the
current formulations, to the best of our knowledge, no link with
TFA or ME-models has been proposed. Therefore, the metabolic
engineering community needs a common formulation for these
methodologies to build the most accurate models.

We investigated the development of such a framework and
propose herein a unified formulation for Expression and
Thermodynamics-enabled FLux models (ETFL) that can account
for the above integration issues. To our knowledge, ETFL is the
first formulation that can account at the same time for expression,
thermodynamics, and growth-dependant variables. It is also the
first to do so using common double-precision MILP solvers. In
ETFL, we address the compatibility of the formulations by
expressing the growth rate variable in bilinear products as a
piecewise constant function. We also address the issue of solver
precision by performing a scaling that reduces the range of orders
of magnitude of the variables. This reformulation allows us to
transform the problem into a MILP, which we can solve effi-
ciently using common open source or commercial solvers. The
resulting model is then effectively able to directly integrate
thermodynamic constraints as well as expression constraints and
growth-dependent parameters. In this model, metabolite, enzyme,
and mRNA concentration levels are explicitly defined to enable
fast and easy omics integration: metabolites through their log-
concentration variables in thermodynamics constraints, and
enzymes and mRNA through their total concentration variables
in the expression constraint. Finally, we show an application of
this framework to a well-characterized E. coli model, iJO136612.

Important assumptions are made to derive this formulation.
The two most notables ones are (i) we can neglect the dilution
rate of metabolites, and (ii) the steady-state approximation holds.
While these assumptions are commonly made in FBA, we discuss
them in details in the Supplementary Note 3, where we also assess
their validity in a context where macromolecules are taken into
account. Briefly, these assumptions hold because (i) the dilution
rate of the metabolites is negligible in front of their synthesis and
consumption rates, and (ii) the dynamics of metabolism
(including expression) are faster than that of the environment of
the cell.

Results
Formulation of the expression problem. ETFL is an ME-model
implementation because it proposes a formulation that both
accounts for metabolism and expression constraints. ME-models
do not aim to replace kinetic models, but to account for the
expression cost of making the enzymes that are necessary to carry
a biochemical flux. In ETFL, this includes the cost of peptide and
mRNA synthesis, as well as the competition for ribosomes and
RNA polymerase in a limited proteome.

To transparently account for expression mechanisms and
increase the predictive power of our models, we needed to derive
the equations that could bridge the biochemistry with the
optimization problem that is ETFL. Here, we present a summary
of these equations, and detail their derivation in the Methods
section. We derived these equations using assumptions similar to
those used in the formulation of the GECKO5 and ME-model6–8.

This formulation relies on derivations rooted in the biological
mechanism of expression and depends on a number of
biochemical parameters related to the cell. In particular, the
mass balances of the macromolecules are expressed using
concentration variables. Each mass balance will yield an equation
where the concentrations of the macromolecules will be variables,
thus effectively formulating a new constraint of the model and
allowing us to calculate concentration values by solving
the model.
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We can write the quasi-steady-state mass balance for
macromolecules as follows:

vsyn? � vdeg? � μ � G? ¼ 0; ð1Þ

where ? represents the indexing of the macromolecule, v
syn
? is the

synthesis term, v
deg
? is the degradation term, and μ � G? is the

dilution term. The asterisk “�” signifies the product of two variables.
The detail of the derivation is available in the Methods section.

Using this formalism, for each macromolecule we can define
and link together a synthesis flux, a degradation flux, and the
macromolecule’s concentration. Knowing enzyme concentrations
allows us to bound the variables representing metabolic reaction fluxes
with their maximum catalytic rate according to the classical equation:

v � kcat � E; ð2Þ

where kcat is the catalytic rate constant of the enzyme E with
respect to flux v. The dot product “�” signifies here a product
between a parameter value and a variable. In this same fashion,
we can also constrain the synthesis flux for the peptides, which
are then assembled into enzymes. Peptide synthesis is simply a
metabolic reaction that consumes energy (under the form of
GTP) and charged tRNAs and produces a peptide and uncharged
tRNAs. The catalytic rate of the reaction is proportional to the
maximum ribosomal catalytic rate divided by the length of the
peptide to be synthesized. The same can be said about mRNA
synthesis, which uses nucleoside triphosphates and is catalyzed by
the RNA polymerase. The constraints are explained in the
Methods section, in which we detail a de novo derivation of the
constraint set that describe the expression problem.

The part of the matrix that has been added to the FBA problem
to account for expression has been termed the expression
problem (EP). Although this initial formulation is bilinear, we
detail in the Methods section how we cast it to a MILP.

Biomass reaction synthesis and mass balance. In FBA, the bio-
mass reaction is an artificial, lumped reaction that represents the
consumption of metabolites in proportion to the cell growth rate.
This consumption reflects nucleoside triphosphate (NTP) require-
ments for mRNAs, amino acid requirements for proteins, lipid
requirements for the cell wall, or metal ion needs. Biomass reaction
inclusiveness depends on the modeling assumptions made during
the model curation process and can vary significantly among models
of the same species. The consumed amount of each metabolite is
usually estimated experimentally by measuring the the amounts of
these metabolites in dried cell mass. Because the stoichiometric
ratios of metabolites in the biomass reaction are fixed, the abun-
dance of metabolites is the same for all growth rates. This simpli-
fying assumption, necessary in FBA, goes against experimental
evidence. Neidhardt and Curtis11 report for instance that mRNA
and protein mass ratios in the cell change with growth rate.

Because ETFL has explicit expression requirements through
transcription, translation, and tRNA-charging reactions, it is
possible to account for varying ratios of NTPs and amino acids as
the growth rate changes, an effect that is captured in
experiments11. In this context, the approximation made in FBA
can be written using ETFL terms:

8aai; ηvbiomass
aai

� μ � vchargingaai
; ð3Þ

8NTPi; η
vbiomass

NTPi
� μ �

X

j2J

v
tcrj
NTPi

; ð4Þ

where vbiomass represents the flux through the biomass equation,
and η

vbiomass
mi

is the stoichiometric coefficient of metabolite mi in
the biomass reaction. For each metabolite participating in the

biomass reaction, the expressions above are obtained by equating
the corresponding mass balance constraints in ETFL and in FBA.
Hence, to avoid accounting for the expression requirements twice
(once through the biomass equation, once through the EP), it is
necessary to remove the participation of these metabolites linked
to expression from the biomass reaction.

Summary of the formulation. Here we show the formulation of
the constraints of ETFL. For clarity, we use different indexing
sets, each referring to a specific object in the model. The defini-
tion of these, as well as that of the variables and the parameters,
are detailed in Table 1. The formulation of the following equa-
tions and an explanation of the specific cases for RNA polymerase
and ribosomes are discussed in details in the Methods section.

Metabolite mass balance

S � v ¼ 0 ðFBAÞ

Catalytic constraints

vþj � k
j;þ
catEj � 0 ðFCjÞ

v�j � k
j;�
catEj � 0 ðBCjÞ

Expression mass balance

vtsll �
X

j2J

η
j
l � v

asm
j ¼ 0 ðPBlÞ

vtcrrRNAl
� vasmrib ¼ 0 ðRBrRNAl

Þ

vasmj � v
deg
j � μ � Ej ¼ 0 ðEBjÞ

vtcrl � v
deg
l � μ � Fl ¼ 0 ðMBlÞ

�vchargingaai
þ
X

l2L

ηlaai � v
tsl
l � μ � Tu

aai
¼ 0 ðTBu

aai
Þ

vchargingaai
�
X

l2L

ηlaai � v
tsl
l � μ � Tc

aai
¼ 0 ðTBc

aai
Þ

Degradation fluxes

v
deg
j � k

j
deg � Ej ¼ 0 ðEDjÞ

v
deg
l � kldeg � Fl ¼ 0 ðMDlÞ

Expression constraints

vtcrl �
kRNAPcat

Lntl
Pl � 0 ðTR1lÞ

vtsll �
kribcat
Laal

Rl � 0 ðTR2lÞ

Rl �
Lntl
Lntrib

Fl � 0 ðEXlÞ

Total capacity
X

l2L

Rl þ RF � Erib ¼ 0 ðTC2Þ

X

l2L

Pl þ PF � ERNAP ¼ 0 ðTC1Þ

RF � 1� ρð ÞErib ¼ 0 ðRRÞ

PF � 1� πð ÞERNAP ¼ 0 ðPRÞ
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Recovering the FBA problem. In the ETFL formulation, enzyme
synthesis is driven by the coupling between FBA and EP through
the catalytic constraints. To carry flux, the cell needs to produce
enzymes which will also use the metabolic resources of the cell. If
allocation constraints are enforced, the amount of protein and
mRNA synthesized must meet predefined mass ratios for the
problem to be feasible. Hence, the metabolic requirement terms
for the expression machinery (amino acids and NTP) have been
removed from the biomass reaction and are accounted for in the
tRNA charging and transcription reactions. Thus, the FBA
solutions can be recovered from the ETFL formulation by the
following routine:

Setting 8j; k
j;±
cat ¼ þ1,

Constraining 8aai; v
charging
aai ¼ η

vbiomass
aai � μ,

Constraining 8NTPi;
P

l2Lv
tcrl
NTPi

¼ η
vbiomass

NTPi
� μ,

If applicable, relaxing the allocation constraints,
If applicable, relaxing the thermodynamic coupling constraints.

Application: E. coli genome-scale model iJO1366. iJO36612 is a
well-curated and well-studied GEM of E. coli that is closely
related to the GEM used in developing both ME-models
iOL1650-ME7 and iJL1678b-ME8. In addition, this model has
been extensively applied in the literature, and is aligned with a
variety of data sets that can be used for data integration. We
wanted to subject the model to classical studies that would
highlight the power of ETFL, particularly as pertains to
proteome-limited growth, macromolecule concentration varia-
bility analysis, and gene knockout studies. We also wanted to
assess the sensitivity of the model with respect to the presence of

thermodynamic constraints, as well as growth-dependent
parameters.

Thus, we first experimented with four different models using
ETFL with or without thermodynamic constraints and growth-
dependent protein/RNA/DNA allocation following Table 2 as
reported by Neidhardt et al.11. The following Table 2 details the
nomenclature used to refer to these different models. The features
of the most constrained model containing both thermodynamic
and growth-dependent parameters, vETFL, are detailed in Table 3.
These four models were optimized for maximal growth at
increasing glucose uptake rates to assess their behavior with
respect to excess substrate, which will show the non-linearity of
the relationship between growth and glucose uptake at high-
uptake rates. A plateau in the growth rate was expected, which
indicates a proteome-limited phenotype that cannot be observed
with FBA. We also subsequently subject vETFL to a variability
analysis and gene essentiality analysis, which will, respectively,
show us the flexibility of the model and its accuracy in predicting
gene knockout behavior.

Table 1 Indices, variables, and parameters used in the formulation.

Index letter Type Refers to Set or unit

i Index Metabolite I
aai Index Amino acid A
j Index Reaction/flux/enzyme J
l Index Gene/peptide/mRNA L
s Index Binary coefficient for growth discretization S ¼ 0::dlog2Ne

� �

u Index Binary coefficient for interpolation discretization U ¼ 0::Nf g

μ Variable Growth rate h�1

v±j Variable jth net positive/negative biochemical flux mmol:gDW�1:h�1

Ej Variable Concentration of the jth enzyme mmol:gDW�1

F l Variable Concentration of the lth mRNA mmol:gDW�1

Pl Variable Concentration of the RNA polymerase assigned to the lth mRNA mmol:gDW�1

Rl Variable Concentration of the ribosome assigned to the lth peptide mmol:gDW�1

Tu
aai

Variable Concentration of the ith uncharged tRNA mmol:gDW�1

Tc
aai

Variable Concentration of the ith charged tRNA mmol:gDW�1

vtsll Variable Translation rate of the lth gene mmol:gDW�1:h�1

vtcrl Variable Transcription rate of the lth gene mmol:gDW�1:h�1

vasmj Variable Assembly rate of the jth enzyme mmol:gDW�1:h�1

v
deg
j Variable Degradation rate of the jth enzyme mmol:gDW�1:h�1

v
deg
l Variable Degradation rate of the lth mRNA mmol:gDW�1:h�1

vchargingaai
Variable Charging rate of the tRNA associated to amino acid aai mmol:gDW�1:h�1

k
j;±
cat Parameter Forward/backward catalytic rate constant of the jth net biochemical flux h�1

k
j
deg Parameter Degradation rate constant of the jth enzyme h�1

kldeg Parameter Degradation rate constant of the lth mRNA h�1

ηjl Parameter Stoichiometry of the lth peptide in the jth enzyme ½+�

ηlaai Parameter Stoichiometry of the amino acid aai in the lth peptide ½+�

Laal Parameter Length in amino acids (aa) of the lth peptide aa

Lntl Parameter Length in nucleotides (nt) of the lth mRNA b

Lntrib Parameter Ribosome footprint size on mRNA, in nucleotides b

ρ Parameter Ribosome occupancy ½+�

π Parameter RNA polymerase occupancy ½+�

Table 2 Nomenclature of the models used in the study of E.

coli iJO1366.

Growth-independent

parameters

Growth-dependent

parameters

(−) thermodynamics EFL vEFL

(+) thermodynamics ETFL vETFL

EFL stands for Expression and FLuxes, ETFL for Expression, Thermodynamics, and FLuxes, and

the v- prefix indicates the inclusion of growth-dependent parameters (see the section

Discretization of mRNA and enzyme content in Methods.)
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Growth rate prediction. To study the behavior of the model at
different carbon uptake rates, we simulated growth on a minimal
medium with only glucose as a carbon source, unlimited oxygen,
and some essential inorganic compounds. This would allow us to
show that at a higher carbon uptake, the model would predict a
limited growth—unlike FBA that would predict an unlimited
linear increase.

Figure 1 shows the predicted growth rate of the different (v)E
(T)FL models described in Table 2 with respect to the glucose
uptake of the cell. As expected and in contrast to current FBA
models, all four models plateau after a certain uptake rate, which
indicates a proteome-limited phenotype due to the limited
capacity of the cells to make more enzymes to metabolize the

glucose. As discussed for the ME-models7 and GECKO5

formulations, within the context of models accounting for protein
usage, this is caused by (i) the protein burden necessary to
metabolize higher fluxes; (ii) the increased demand in protein
synthesis at higher growth rates; and (iii) for the models with
allocation constraints, the allowed protein and RNA mass ratio.
We can see that models featuring protein, RNA, and DNA
allocation constraints (vE[T]FL) consistently predict a lower
growth rate than models without allocation constraints. This is
expected, as the data we input requires additional proteins and
mRNA to account for non-metabolism-related macromolecules.
Models featuring thermodynamic constraints ([v]ETFL) also
predict a lower growth rate, consistent with the fact that
thermodynamics constrain the model to valid solutions whose
flux is in the subspace of the FBA feasible space. The most
constrained model (vETFL) consequently has the lowest growth
rate at any glucose uptake. This is in accordance with published
TFA results that eliminated biologically infeasible flux profiles
yielding non-realistic higher growth rates2.

We summarize the constraint matrix of the EP of vETFL in
Supplementary Table 1, where each line represents a type of
constraint and each column represents a type of variable. The
blocks of the matrix that are nonzero are colored, and these
blocks directly reflect the involvement of the constrained
variables.

Modeling missing enzymes. Although we initially focused on
including only enzymes for which we had all the necessary
information (catalytic rate and peptide constitution), we wanted
to assess the robustness of our model when the missing enzymes
were modeled as well as check our model’s sensitivity to changes
in the catalytic rate constants. Thus, we additionally built three
more models, based on vETFL, with the following properties: (i)
all the missing enzymes were estimated by averaging the prop-
erties of the known enzymes based on the curation for the vETFL
iJO1366 (333 amino acids long, average k±

cat ¼ 172 s�1); (ii) all
the enzymes (including the missing enzymes) but the ribosome,
RNA polymerase, and ATP synthase were assumed to have an

average catalytic rate constant k±
cat ¼ 172 s�1; and, for

Table 3 Properties of the vETFL model generated from

iJO1366.

Growth upper bound μ 3.5 h−1

Number of bins, N 128

Resolution,
μ
N

0.0273 h−1

Number of constraints 68,304

Number of variables 49,207

Number of species 3240

– Metabolites 1806

– Peptides 1431

– rRNA 3

Number of enzymes 562

Number of reactions 8023

– Metabolic 1543

– Transport 733

– Exchange flux 330

– Transcription 1431

– Translation 1431

– Complexation 562

– Degradation 1993

Number of metabolites, ΔfG
0o 1737

Number of reactions, ΔrG
0o 1787

Percent of metabolites, ΔfG
0o 93.9%

Percent of reactions, ΔrG
0o 68.6%

vETFL, partial-average

vETFL, all-average

vETFL

vETFL, with estimated enzymes

5 10 15

0

0.5

1

1.5

EFL

ETFL

vEFL

vETFL
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Fig. 1 Growth rate with respect to glucose uptake for differently constrained models in the ETFL framework. Legend in the same order as the height of

the right-most point of each curve in each figure. a Growth rate predictions using the EFL, ETFL, vEFL, vETFL models (dark blue, light blue, purple, orange);

b growth rate predictions accounting for missing enzymes using vETFL (orange) and models (i)–(iii) (purple, dark blue, light blue) representing different

initial enzyme assumptions, with kcat values obtained from vETFL or kcat ¼ 172 h�1, and with/without inferred enzymes.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13818-7 ARTICLE

NATURE COMMUNICATIONS |           (2020) 11:30 | https://doi.org/10.1038/s41467-019-13818-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


comparison purposes, (iii) all the known enzymes of vETFL
except for the ribosome, RNA polymerase, and ATP synthase
were assumed to have an average catalytic rate constant of
k±
cat ¼ 172 s�1. For clarity, we will refer to these models as (i) the
model with estimated enzymes; (ii) the all-average model; and
(iii) the partial-average model. The ribosome, RNA polymerase,
and ATP synthase were not modified, as their catalytic rates
directly and strongly affect the growth of the organism. Any
drastic change in these would make changes related to other
enzymes negligible in comparison.

Figure 1b shows a comparison of the growth prediction for the
model with estimated enzymes (purple), all-average model (dark
blue), and partial-average (light blue) models designed to account
for the missing enzymes. For a better comparison, we also
reproduce the vETFL results in orange on the same graph. The
partial-average model (light blue) shows a higher predicted
growth than the original vETFL model (orange). This implies that
limiting enzymes in the original vETFL model have a kcat
parameter lower than the average value of k±

cat ¼ 172 s�1. Both
models featuring inferred enzymes, the all-average model (dark
blue) and the model with estimated enzymes (purple) show, at a
given uptake, a lower growth rate than their counterpart,
respectively, the partial-average model (light blue) and the
original vETFL (orange). This is expected as fluxes which
previously had no enzymes assigned in vETFL are now subject
to catalytic constraints, and thus the models are more
constrained. In addition, we observe that the model with
estimated enzymes (purple) is also below the all-average model
(dark blue). Similarly to vETFL and the partial-average model,
this shows that the limiting enzymes in the model with estimated
enzymes have a kcat parameter lower than the average value.
Finally, we observe that the differences between these four
models only appear at glucose uptake rates higher than

�6 mmolglc:DW
�1:h�1, when the problem switches from being

stoichiometry-limited to proteome-limited. Thus, this experiment
illustrates the robustness of the formulation in predicting growth-
limited phenotypes, but also the importance of well-curated
catalytic rate constants for modeling organisms grown in
proteome-limited regimens.

These results demonstrate the capability of ETFL to predict
different phenotypes depending on growth rate. ETFL is also
amenable to hypothesis testing, as evidenced using the models
that estimate the missing enzymes. In particular, we showed with
ETFL that an uptake increase does not yield a proportional
growth rate increase as with FBA and that ETFL provides a
maximal uptake rate that is unmodeled in FBA, thus more
effectively modeling growth-dependent biomass yield in E. coli.
This allows for more realistic predictions for phenotypes that are
limited by the expression capabilities of the cell as well as captures
the variability of the biomass composition in different growth
regimens.

Variability analysis. It is also possible to subject the model to a
range of variability analyses. These are routinely used in FBA to
assess the flexibility of the system and in TFA to find the ranges of
allowed metabolite concentrations. In particular, we studied the
number of bidirectional reactions in the system. Bidirectional
reactions are reactions whose net flux can be either positive or
negative. They are an indicator of the flexibility of the system.
One of the main results of TFA was to replace ad hoc assump-
tions on the directionality of the reactions by thermodynamically-
based directionality. We show that adding enzymatic constraints
with ETFL also reduces the number of bidirectional reactions.
The initial iJO1366 formulation with ad hoc directionality
assumptions shows 112 bidirectional reactions in FBA, under the

constraint of a specific growth rate of 0:79 h�1 (TFA prediction).
Once TVA is performed on the themodynamics-enabled model of
iJO1366, the number of bidirectional reactions drops to 88.
Finally, after the addition of catalytic constraints, this number is
reduced to 49 in the vETFL model.

We can extend the use of variability analyses in ETFL to
explore the allowed proteome and transcriptome. For example,
we measured the admissible extreme concentrations of each
peptide in aerobic growth conditions as described by McCloskey
et al.13 by performing a variability analysis on the enzyme
concentration variables. Figure 2 depicts the admissible peptide
concentration upper and lower bounds, sorted by average, for

vETFL with a glucose uptake set to 12:5 mmol:gDW�1:h�1,
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which yields a proteome-limited phenotype, according to our
results in Fig. 1a. It is important to note that all peptides with a
nonzero minimal concentration (most of the left of the figure)
are, by definition, essential peptides. These are always present at
this uptake rate and are hence necessary for the cell to grow at
an optimum growth rate. The same study can be performed
for mRNA concentrations or even metabolite log-concentrations
for models with thermodynamics. This type of study is useful for
comparing how the model performs in relation to actual
proteomics, transcriptomics, or metabolomics data. The method
for running these other types of variability analyses is exactly the
same—only the variables subject to the variability analysis are
changed.

A specific usage of a variability analysis is the study of the
allowed proteome (resp. transcriptome) that is done by perform-
ing a variability analysis on the enzyme (mRNA) concentration
variables. This type of study can, for instance, be compared with
transcriptomics to check if the expression profile of an engineered
strain corresponds to what is expected in its corresponding
model. A way to visualize the average allowed proteome
(transcriptome) is to use the average value of the variability of
each enzyme (mRNA) concentration as a feasible observation.
Due to the convexity of the solution space, it is a solution to the
problem. This observation is then plotted on a finite area, which
can be done using the online software Proteomaps14,15. This
method and software are often used by biologists to represent
protein abundances in the cell, and using the data from ETFL, we
can generate similar comparative graphs that can help biologists
analyze the variability in the different concentration variables
using a visualization they are familiar with.

Figure 3 is an example of such a representation, graphed using
the mRNA concentrations corresponding to the solution
represented by the darker dots in Fig. 2 as an input. In this
figure, mRNAs are clustered using KEGG Gene Ontology (GO)
annotations. GO annotations form a tree describing the
physiological role of genes, ranging from the least specific (e.g.
general metabolism) to most specific (e.g. araH gene). The area of
each (sub)cluster is proportional to the relative abundance of each
(sub)group of mRNAs.

We used the mean of the variability analysis as the observation
rather than a single optimal solution because the optimality
principle in LP only guarantees a unique global optimum value
and not a unique optimal solution. Moreover, solver heuristics
give sparse and extreme results (corners of the explored simplex),
which do not accurately represent the full extent of the considered
solution space.

Essentiality analysis. The ETFL framework can also analyze the
essentiality of specific genes by performing single gene knockouts.
The growth of models with knocked-out genes can then be
compared with the experimental data to assess the quality of the
model as a validation.

We performed a gene essentiality analysis using in ETFL and
compared it with the results reported in the publication of
iJO1366 by Orth et al.12. We use the Matthew’s correlation
coefficient (MCC) as a metric for the quality of the prediction,
which is preferred over accuracy as it is not sensitive to the
imbalance between the number of essential genes and non-
essential genes. The MCC reads like a usual correlation
coefficient, with 1 being a perfect correlation, −1 perfect
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anti-correlation, and 0 no correlation. We used the essentiality
data and conventions given in the Supplementary Material of
Orth et al.12, as explained in Fig. 4a, b. The results are presented
in Fig. 4c, d, e, respectively, for vETFL, the model with estimated
enzymes, and vETFL supplemented by iJO1366's Gene-Protein
association Rules (GPRs).

Compared with iJO1366, we observe that ETFL predicts fewer
false negatives (experimentally non-essential genes predicted as
essential), However, ETFL also presents more false positives
(experimentally essential genes predicted as non-essential). This
indicates that ETFL is less constrained than iJO1366—the cell has
more genetic alternatives for growth. This is an artificial effect
that stems from the missing enzyme data.

As we add more enzyme information to the model, the false
positive rate decreases. This is verified by Fig. 4d, where the
addition of enzymes with average characteristics decreased the
false positive rate. For comparison purposes, in Fig. 4e, we also
computed the gene essentiality using iJO1366 gene to protein to
reaction (GPR) associations for the genes which did not have an
associated enzyme because of missing data. We show that the
false positive rate decreases as well.

A detailed interpretation of the differences between gene
knockout in ETFL and FBA is discussed in the Methods section.
The Supplementary Data provide more insights on the mis-
matched between ETFL essentiality results and iJO1366 essenti-
ality results, and indeed shows that 87% of the mismatches are
attributed to reactions without enzymatic data. A significant
fraction of mismatches (54%) come from the subsystems for the
biosynthesis of lipids and cell envelope elements.

Sampling. Sampling the feasible solution space of FBA is a com-
mon way to study solution robustness and variability. Since there

are often multiple FBA solutions at the optimal objective value,
representative solutions are often sought, and sampling is one way
to obtain them. However, because ETFL contains integer variables,
it is not compatible with traditional sampling methods in its cur-
rent formulation. It is possible, though, to make the model convex,
and hence amenable to sampling, by fixing the integers to their
values at a given growth rate and, if applicable, TFA directionality.
This will block the flux directions (if TFA is performed) as well as
the growth-dependent parameters. The resulting model is then
solely linear, and sampling can be performed with traditional
techniques, such as artificially centered hit and run (ACHR)16,
gpSampler17, or optGpSampler18. Once it has converged, a sam-
pling should provide a better representation of the center of the
solution space than the mean of the variability analysis.

Performance. For robustly reporting solution times of ETFL, we
logged solving times each time a model was optimized during the
redaction of this article. In that respect, some observations are the
result of iterated optimizations, others from different optimiza-
tion problems. In particular, variability and gene essentiality
analyses require thousands of optimizations. We aggregated the
solution times report the corresponding histograms, by model
type, in Fig. 5. We measured the following metrics of the per-
formance data: (i) arithmetic mean, (ii) geometric mean, and (iii)
median. Although the distributions are not log-normal, it is
common to report the geometric mean as a measure of the center
of the distribution for comparison with other software19,20, as it is
more robust to outliers than the arithmetic mean and more
sensitive to unevenness than the median.

Using well-established MILP solvers (CPLEX21, Gurobi22), we
report a geometric mean solution time of 7.47 s for vETFL, with
95% of the problems solved in <100 s on the test hardware. This is
three orders of magnitude better than the reported solution time
for O’Brien et al.7 (6 h – 2 ´ 104 s) and between one and two
orders of magnitude better than the reported solution time for
Lloyd et al. using cobraME8 (10 min – 6 ´ 102 s). It is worth noting
that these vETFL optimizations also include thermodynamics
constraints, which are absent of the other two formulations.

It is also important to state that although cobraME has an
improved solution time over the original ME-model formulation,
the formulation trades inequalities in the expression problem for
equalities, and hence disregards a whole (non-growth optimal)
part of the solution space that might contain physiological
phenotypes. In particular, catalytic constraints become equalities,
and the flux carried by reactions is set to be proportional to the
amount of available enzyme instead of being upper-bounded by
it. This gives less flexibility to the cell and prevents the
representation of transient phenotypes. As an example, a cell
that has been growing on a carbon source (e.g. glucose) will have
a proteome suited to utilize this carbon source. However, once
exhausted, it will need to reallocate its proteome to a new carbon
source (e.g. lactose). In this transient state, some enzymes related
to the first carbon source metabolism (e.g. glucose transporters)
will carry no flux. In this case, cobraME would predict no flux,
and also no enzyme concentration. In constrast, ETFL would
allow for non-utilized enzymes and avoids such trade-offs, which
is also crucial for accurately integrating proteomics data.

Such performance enhancements allow studies that would have
been excessively time consuming using prior ME-model for-
mulations. We show in Table 4 a list of typical completion times
for common studies thats require multiple optimizations to be
carried out.

Finally, ETFL relies on solver-specific MILP algorithms and
heuristics, which also means that great variability in performances
can be observed depending on the solver parameters. We provide

a
Prediction Essential Non-essential

Essential TN FN
% true prediction

Non-essential FP TP

100
b

iJO1366 Essential Non-essential 90

Essential 168 39 80

Non-essential 80 1079 70

60
c

vETFL Essential Non-essential 50

Essential 134 33 40

Non-essential 114 1085 30

20
d

vETFL, kcat = 172 h
–1

Essential Non-essential 10

Essential 164 78 0

Non-essential 84 1040

e
vETFL + GPR Essential Non-essential

Essential 167 88

Non-essential 81 1030

Experiment

Fig. 4 Confusion matrices for gene essentiality studies. a Conventions

from Orth et al.12 for gene essentiality. TN is true negative. FN is false

negative. FP is false positive. TP is true positive. The color shading

represents how good the classification is. Perfect classification should have

a strict red first diagonal, as shown on this example. b Gene essentiality

prediction for the FBA model iJO1366, yielding a Matthew's correlation

coefficient (MCC) of 0.69. c Gene essentiality prediction for the vETFL

model, yielding a MCC of 0.60. d Gene essentiality prediction for the vETFL

model with estimated enzymes with all kcat ¼ 172 h�1, yielding a MCC of

0.59. e Gene essentiality prediction for the vETFL model, where genes

without enzyme assignment were tested using gene to protein to reaction

(GPR) associations from the iJO1366 model, yielding a MCC of 0.59.
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tuned presets for different tasks (gene knockout, variability
analysis, growth maximization) with the package, and recom-
mend that users run their own solver tuning if long run times are
observed. We witnessed an up to 10´ increase in performance
using such tuning.

Adaptation of FBA-based methods to ETFL. The ETFL for-
mulation is amenable to further kinds of analyses. Leveraging
both the explicit expression constraints and the MILP nature of
the problem, we present several possibilities for future studies
using ETFL:

Growth-dependent parameters. It has been reported that several
other parameters, such as the ribosome transcription rate con-
stant krib, are growth dependent11. Although such dependency is
not taken into account in the presented results, it is possible to
account for this by (i) discretizing krib following the method used
to discretize the mRNA and protein content of the cell, and (ii)
using Petersen’s linearization scheme (see the Methods section)
on the product krib � Erib. Other parameters that can be trans-
formed in this way include, but are not limited to, the RNAP
transcription rate constant ktrans, free ribosomes, and the RNAP
ratios ρ and π.

Omics integration. Explicit mRNA and enzyme concentrations
allow the direct integration of absolute or relative proteomics and
transcriptomics by changing the bounds of the corresponding
variables in the EP. An additional gauge constraint will be needed
for the relative data. Previous transcriptomic integration meth-
ods, such as REMI23, iMAT24, GIMME25, or MINEA26, can also
be adequately reformulated for ETFL. Metabolomics can still be
integrated using TFA2,3.

Minimization of adjustment. In the original paper, the hypoth-
esis behind the Minimization of Metabolic Adjustment (MOMA)
method is that the metabolic fluxes of an organism subject to a
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Fig. 5 Histograms displaying the distribution of solving times of each type of model during the data generation for this study. The darker area

represents data between the 5th and 95th percentiles.

Table 4 Characteristic completion run times for several

types of studies in the vETFL study of iJO1366.

Study type (vETFL) vETFL characteristic run time (h)

Growth curve (Fig. 1) 1

Enzyme VA 1.5

mRNA VA 2–3

Gene essentiality 10

50-points dETFL (see

Dynamic ETFL Method)

1
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gene knockout show a minimal change compared with the meta-
bolic fluxes of the wild-type organism27. The underlying hypoth-
esis is that the enzyme distribution and assignments remain the
same, except for the knocked-out gene. With ETFL, it is possible to
directly compute a Minimization of Protein Adjustment (MOPA)
by reformulating the objective function as such:

min
X

j2J

Ej � E0
j

���
���

���
���
p
; p 2 0; 1f g ðMOPAÞ

where jj � jjp is either the Manhattan norm (p ¼ 1, ‘1-norm) or the

Euclidean norm (p ¼ 2, ‘2-norm), which will require a MIQP
solver. In the same fashion, it is also possible to formulate a
(weighted) Minimization of mRNA Adjustment (MORA) or even
a Minimization of eXpression Adjustment (MOXA) using the
following formulations:

min
X

l2L

Fl � F0
l

�� ���� ��
p
; p 2 0; 1f g ðMORAÞ

min θ �
X

j2J

Ej � E0
j

���
���

���
���
p
þð1� θÞ �

X

l2L

F l � F0
l

�� ���� ��
p
;

p 2 0; 1f g; θ 2 1; 2½ �: ðMOXAÞ

Parsimonious analysis. Parsimonious FBA (pFBA)17 was devel-
oped to address the high fluxes of some of the solutions given by
FBA. Although this concern is addressed in ETFL by the com-
bined actions of the EP and thermodynamics, pFBA can be
adapted to ETFL to study an organism under parsimonious
constraints. For example, it is possible to reformulate it into a
parsimonious expression problem to find the minimal expression
level required to meet a growth target using objective functions
similar to (MOPA), (MORA), and (MOXA). It is also possible to
turn the problem around to consider the allowed enzyme
amounts under minimal flux constraint obtained by pFBA to
assess the metabolic flexibility of an organism.

Dynamic ETFL (dETFL). Dynamic FBA (dFBA)28 is a method
that uses FBA to predict the dynamics of a biological system
represented with a stoichiometric model. In its original static
optimization approach (SOA) formulation, a FBA problem is solved
at each time step. The value of boundary fluxes of the FBA problem
are updated at each iteration with values produced with a kinetic
law, such as Michaelis–Menten glucose uptake and oxygen diffu-
sion. Because ETFL allows direct access to enzyme concentrations,
it is possible to use the latter to reformulate dFBA in its SOA. The
original SOA approach uses ad hoc constraints on the absolute flux
change at each time step. However, in ETFL, it is possible to bound
flux changes indirectly by bounding enzyme and mRNA con-
centration changes in the EP. Effectively, this approach allows the
movement from ad hoc constraints to physiological constraints.

Use in kinetic frameworks. Often, kinetic frameworks require a
reference flux distribution as an input. ETFL can provide such a
distribution, with an increased accuracy as compared with FBA.

Building an ETFL ME-model for other organisms. Building an
ETFL model from a genome-scale model follows a detailed pro-
cedure, for which a SOP is provided in the Supplementary Note 2.
In this procedure, it is the quality of the input data that will
determine the accuracy of the model. A well-curated, elementally
balanced model is a critical prerequisite. Since ETFL is essentially
adding constraints to the FBA problem, it is important as well to
ensure the feasibility of the initial model.

In ETFL, and ME-models in general, catalytic constraints are
what links the metabolism to the expression problem. Because of
this, the accuracy of the ETFL reconstruction is also heavily

dependent on the quality of the catalytic rate constants k
j
cat. Such

information is not always easily accessible. Hence, we recommend
to at least manually curate the catalytic rate constants of the key
parts of metabolism, namely (i) ATP synthase, (ii) RNA
polymerase, and (iii) ribosome. We also advise to pay attention
to the pathways of the main carbon source metabolism, as small
catalytic rate constants can heavily throttle the rest of the
metabolism. For missing catalytic rate constants, a placeholder

value can be used. O’Brien et al.7 used k
j
cat ¼ 65 s�1, which is

close to the median of the values used in this study. In our

comparison with inferred enzymes, we used k
j
cat ¼ 172 s�1, which

is the arithmetic mean of the data we gathered.
Another key component for catalytically constraining the model is

to have quality enzyme composition information. Indeed, marking
an enzyme as a monomer instead of a dimer halves its synthesis cost.
A good source for this information is MetaCyc29, and literature. As
explained in the previous paragraph, special attention should be
given to the ATP synthase, the RNA polymerase, the ribosome, and
the enzymes of the main carbon pathway. Macromolecule degrada-
tion rates are less critical and can be averaged. Growth-dependent
protein, RNA, and DNA ratios drastically improve the quality of the
model, as they allow to account for the expression activity that is
related to non-metabolic processes.

In the construction of a model for another organism,
approximating parameters based on values from an E. coli model
should be done with care. Similarly to gap filling and the use of
template reactions, conserving parameters across close species is
helpful; however, conserving parameters across a large phyloge-
netic distance is erroneous. An example is the ribosome
translation rate, which can vary by one order of magnitude
between S. cerevisiae and E. coli.

Finally, great care should be taken with respect to the units.
Different conventions are used across sources. Parameters for
which this has been observed include catalytic rate constants,
molecular weights, and concentrations.

Conclusions
ETFL is a framework which implements expression and thermo-
dynamic formalism using mainstream double-precision MILP
solvers. This could not be previously accomplished using state-of-
the-art ME-models, which use specialized quad-precision solvers
and do not support integer variables. The formalism itself is based
on the explicit and direct relationship with the underlying bio-
chemistry and provides a way to incorporate growth-dependent
variables using MILP linearization techniques. These new growth-
dependent variables provide a finer modeling of expression
because they consider phenotypic differences in different growth
regimens, which are key for accurate modeling. ETFL can also
compute explicit mRNA and enzyme concentrations as well as
perform direct -omics data integration. In this, ETFL comple-
ments and extends FBA capabilities by using explicit relationships
in lieu of the typical assumptions on the relationships between the
transcriptome, proteome, and fluxome. This explicit accounting of
expression mechanisms provides a finer level of control and a
more relevant prediction of gene-editing outcomes. ETFL is robust
to missing data, as missing enzymes and their composition can be
approximated using average enzyme characteristics. Because of
this and its operational similarity with classic FBA-related ana-
lyses, ETFL can be efficiently integrated in standard model-based
pipelines. For this intent, we provide in the Supplementary Note 2
a standardized procedure to produce ETFL models from genome-
scale models. For example, metagenome-based genome-scale
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reconstructions such as published by Magnúsdóttir et al.1 can be
directly fed to the framework to generate models for each of the
773 bacteria they identified. Integration with platforms like
KBase30 can also be envisioned to automatically draft ETFL
reconstructions parametrized by curated organism-specific data.
In a more general way, ETFL can assess the allowed expression
profiles of any biological system amenable to genome-scale
modeling, such as in the metabolic engineering of biocatalysts,
microbial communities, drug design, or personalized medicine.

Methods
Preliminaries, conventions, and notations. The mass balances of the macro-
molecules in ME-models are written with respect to their concentration variables.
If we assume the cell is growing at a specific growth rate μ, we must assume that the
volume of cell within which the mass balance is considered varies.

The mass balance of a macromolecule G will be written:

dmG

dt
¼ CG

dVc

dt
þ V c

dCG

dt
; ð5Þ

¼ v
syn
G � V c � v

deg
G � Vc; ð6Þ

where CG is the concentration of the macromolecule CG in the cellular volume Vc ,

for a total mass mG in the cell, produced at a rate v
syn
G and degraded at a rate v

deg
G .

We next combine Eqs. (5) and (6) and divide by Vc (necessarily nonzero) to
write the time derivative of the concentration CG:

dCG

dt
¼ v

syn
G � v

deg
G �

1

Vc

dVc

dt
� CG: ð7Þ

By definition, 1
V c

dV c

dt
¼ μ is the specific growth rate of the cell (under the

assumption of constant cell density ρc), and the term μ � CG is called the dilution

term, or vdilG , as per Fredrickson’s work on formulating growth models31. It is a
common assumption that the concentrations inside the cell remain time invariant
(quasi-steady-state assumption), effectively yielding the constraint:

v
syn
G � v

deg
G �

1

V c

dV c

dt
� CG ¼ 0: ð8Þ

It is also understood from the formulation of the FBA that adding a new
reaction to the system, such as:

vj : η
j
AA ! η

j
BB; ð9Þ

results in adding terms to the mass balances of A and B:

d A½ �

dt
¼ ¼ � η

j
A � vj; ð10Þ

d B½ �

dt
¼ ¼ þ η

j
B � vj: ð11Þ

The further extension of this to reactions of n reactants to m products is trivial.
Several parameter values are taken from the BioNumbers database32. When

used, we specify their identification number as well as the original source from
which the value was reported. Finally, we will represent products between a
parameter value and a variable by the symbol “�” and products between two
variables by the symbol “�”.

Hereafter, we propose a detailed top–down approach to formulate the
constraints being built for ETFL, starting from the metabolite network and moving
down to RNA synthesis. The general organization for each macromolecule is to
write down its mass balance, apply assumptions, and then detail its synthesis and
consumption mechanisms.

Metabolites. From FBA, the mass–balance relationship for metabolites can be
written as:

S � v ¼ 0: ðFBAÞ

For the rest of the formulation, it is necessary to split the net flux v from each
reaction into its forward net component and backward net component:

vj ¼ vþj � v�j ; vþj ; v
�
j � 0: ð12Þ

Biochemical reactions are catalyzed by enzymes. Each enzyme ðEnzjÞ of

concentration Ej can catalyze a flux vj subject to the enzyme capacity constraint,

which is a function of its forward and backward catalytic rate constants k
j;þ
cat and

k
j;�
cat :

0 � vþj � k
j;þ
cat Ej; ð13Þ

0 � v�j � k
j;�
cat Ej; ð14Þ

vþj � k
j;þ
cat Ej � 0; ðFCjÞ

v�j � k
j;�
cat Ej � 0: ðBCjÞ

The distinction between the bounds of the forward and backward net fluxes is
important, as some enzymes have different catalytic activities, depending on the
direction of the flux.

General constraints for enzymes. Each enzyme Enzj is represented by its total
concentration, the variable Ej . It is subject to mass balance, which can be written:

d

dt
Ej ¼ vasmj � v

deg
j � vdilj ; ð15Þ

which reads under quasi-steady-state assumption (QSSA):

vasmj � v
deg
j � μ � Ej ¼ 0; ðEBjÞ

where vasmj is the formation rate of the enzyme by the assembly of its constituent

peptides, v
deg
j is the degradation rate, vdilj is the dilution rate, and μ is the growth

rate of the cell. The formation rate of the enzyme describes the assembly of free
peptides, hence it is necessary to add the peptide assembly reaction to the stoi-
chiometric matrix:

vasmj :
X

l2L

η
j
l � Pepl ! Enzj; ð16Þ

where η
j
l is the stoichiometric coefficient of peptide Pepl for the formation of the

complex of enzyme Enzj . This reaction is assumed to happen spontaneously by

default.
We model the degradation reaction of the enzyme in the following manner:

v
deg
j : Enzj þ Laaj �H2O !

X

aai2A

ηjaai � aai; ð17Þ

where ηjaai is the number of amino acids aai in the enzyme. It is obtained from the

composition of the constituent peptides. For this degradation reaction, the rate is
known:

v
deg
j � k

j
deg � Ej ¼ 0; ðEDjÞ

where k
j
deg is the degradation rate constant of the enzyme. The reaction is added to

the model, and the Eq. EDj is added as a constraint.

Constraints specific to ribosomes. Like any other enzyme, ribosomes verify the
mass balance:

vasmrib � v
deg
rib � μ � Erib ¼ 0 ðEBribÞ:

Erib denotes the total concentration of ribosomes in a cell. It accounts for Rl , the
ribosomes assigned to the translation of Pepl , as well as the free ribosomes in the
cell, RF .

The ribosome differs from other enzymes in that it takes ribosomal peptides
rPepl , as well as ribosomal RNA rRNAl for its assembly. Hence, its assembly
reaction is:

vasmrib :
X

l2L

ηribrPepl � rPepl þ
X

l2L

ηribrRNAl
� rRNAl ! Rib: ð18Þ

As explained earlier, the stoichiometric coefficients ηrib? will appear in the mass
balances of each of the compounds of the reaction. This reaction is also assumed to
happen spontaneously by default.

When ribosomes are degraded, their constituting amino acids and
ribonucleotides are recovered:

v
deg
rib : Ribþ Laarib �H2O !

X

aai2A

ηribaai � aai þ
X

N2A;U;G;C

ηribN � NMP ð19Þ

The degradation rate is constrained in a manner similar to the constraint ðEDjÞ.

Finally, we can then write the total ribosome capacity constraint:
X

l2L

Rl þ RF � Erib ¼ 0: ðTC2Þ

If we know the ratio ρ of occupied vs free ribosomes, we can enforce it:

RF � 1� ρð ÞErib ¼ 0: ðRRÞ

Constraints specific to RNA polymerase. RNAP is an enzyme, and hence it also
satisfies mass balance:

vasmRNAP � v
deg
RNAP � μ � ERNAP ¼ 0; ðEBRNAPÞ

where ERNAP is the total amount of RNAP, which also accounts for free RNAP PF .
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Its synthesis and degradation follow equations similar to other enzymes:

vasmRNAP � v
deg
RNAP � μ � ERNAP ¼ 0; ðEBRNAPÞ

with the same conventions as in Eq. (EBj). As for a generic enzyme, RNAP is

assembled from free peptides, which adds the peptide assembly reaction to the
stoichiometric matrix:

vasmRNAP :
X

l2L

ηRNAPl � Pepl ! RNAP; ð20Þ

again with the same conventions as in the section General constraints for enzymes.
This reaction is also assumed to happen spontaneously by default. The degradation
reaction is also modeled similarly, with the same conventions:

v
deg
RNAP : Enzj þ Laaj �H2O !

X

aai2A

ηjaai � aai: ð21Þ

The degradation rate is constrained in a manner similar to the constraint ðEDjÞ.

In addition, the total capacity of RNAP follows a capacity constraint similar to
that of ribosomes:

X

l2L

Pl þ PF � ERNAP ¼ 0: ðTC1Þ

As we did with the ribosomes, if we know the ratio of occupied RNAP, π, we can
enforce it:

PF � 1� πð ÞERNAP ¼ 0: ðPRÞ

Constraints for peptides. The peptide concentrations obey the mass–balance
equation:

d

dt
Pepl ¼ vtsll �

X

j2J

η
j
l � v

asm
j � v

deg
l � vdill : ð22Þ

We assume in the current model that the protein assembly rates are much faster
than dilution and degradation, and thus simplify this mass balance to:

d

dt
Pepl ¼ vtsll �

X

j2J

η
j
l � v

asm
j ; ð23Þ

which, under QSSA, can be written:

vtsll �
X

j2J

η
j
l � v

asm
j ¼ 0: ðPBlÞ

In this context, the peptides are treated just like regular metabolites in the system.
This assumption in ðPBlÞ can be relaxed without a loss of generality by introducing
a dilution and a degradation term, thus introducing a bilinearity.

The synthesis of peptides consumes charged tRNAs, which are subsequently
uncharged during the current peptide synthesis by a ribosome. The process
consumes two GTPs and releases two GDPs and two Pi per amino acid:

vtsll :
P

aai2A
ηlaai � tRNA

charged
aai

þ 2Laal � GTPþH2Oð Þ

! Pepl þ
P

aai2A
ηlaai � tRNA

uncharged
aai

þ 2Laal � GDPþ PiþHþð Þ;
ð24Þ

where aai denotes the ith amino acid, ηlaai its stoichiometric coefficient (count) in

the sequence of Pepl , tRNA
�
aai

the (un)charged tRNAs for each amino acid, and

Laal ¼
P

aai2A
ηlaai is the length of the amino acid sequence of Pepl .

As explained in the section Preliminaries, conventions, and notations, this
reaction adds a supplementary term in the mass balances of the metabolites (GTP,
GDP, Pi, H2O, H

þ), the peptide, and the tRNAs (see Constraints specific to tRNAs
for the latter). This term is what connects the expression requirements to the
metabolic network defined in the FBA.

The peptides are the product of a translation reaction that is catalyzed by a
ribosome. As we did with the catalytic constraints for general biochemistry
reactions, we can apply the ribosome maximum catalytic rate as an upper bound to

its translation rate vtsll :

vtsll �
kribcat
Laal

Rl � 0; ðTR2lÞ

where kribcat is the maximum ribosomal translation rate constant (10� 12aa:s�1 for
E. coli, BioNumbers ID [BNID] 10005933), Laal is the amino acid length of the

peptide l, and Rl is the concentration (in mmol:gDW�1) of ribosomes assigned to
the translation of this peptide. This way, the ratio Rl=Pepl is effectively the number
of ribosomes, or average polysome size, translating the peptide l.

Constraints for mRNAs. During the translation, an mRNA is read to produce a
peptide. mRNAs are subject the same mass–balance constraints:

vtcrl � v
deg
l � μ � Fl ¼ 0; ðMBlÞ

where F l is the total concentration of the lth mRNA mRNAlð Þ, v
deg
l is its degra-

dation rate, and vtcrl is its transcription (synthesis) rate. Fl is variable that represents

the concentration of RNAlð Þ. The transcription reaction is modeled as follows:

vtcrl : ηlA � ATPþ ηlU � UTPþ ηlC � CTPþ ηlG � GTP

! ηlA þ ηlU þ ηlC þ ηlG
� �

PPiþmRNAl :
ð25Þ

Again, the stoichiometric coefficients will appear in the mass balances of each of
the metabolites and macromolecules involved. The transcription process is
catalyzed by RNA polymerase (RNAP). For each transcription of mRNA, we can
put an upper bound on the transcription rate vtcrl in the same way as for translation:

vtcrl �
kRNAPcat

Lntl
Pl � 0; ðTR1lÞ

where Lntl is the length in nucleotides of the mRNA sequence, kRNAPcat is the catalytic

rate constant of RNAP (85 nt:s�1 for E. coli, BNID 10006033), and Pl the
concentration of RNAP assigned to the transcription of this mRNA.

We must also take into account the relationship between ribosome assignment
and mRNA concentration. On each strand of mRNAl , there can be only a finite
number ρl of ribosomes translating at the same time. This number is given by the
ratio of the footprint size of the ribosome Lntrib and the length of the mRNA strand
Lntl . This effectively yields the number of ribosomes that can be present at the same
time on a given mRNA strand:

ρl ¼
Lntl
Lntrib

: ð26Þ

For E. coli, Lntrib is ~20 nm (BNID 10232034, 10012135), which amounts to ~60
base pairs (the length of a nucleotide is ~0.3 nm; BNID 10377736). From there we
can get the additional constraint:

Rl � ρl � Fl ; ð27Þ

Rl �
Lntl
Lntrib

Fl � 0: ðEXlÞ

We consider the following degradation reaction for mRNAs:

v
deg
l : mRNAl ! ηlA � AMPþ ηlU � UMPþ ηlC � CMPþ ηlG � GMP: ð28Þ

And, again, we know the degradation rates:

v
deg
l � kldeg � F l ¼ 0: ðMDlÞ

Constraints specific to rRNAs. rRNAs are used in the ribosome assembly reac-
tion. According to the definition of vasmrib in the section Constraints specific to
ribosomes, their mass balance can be written:

d

dt
rRNAl½ � ¼ 0 ¼ vtcrrRNAl

� vasmrib � v
deg
rRNAl

� vdilrRNAl
: ð29Þ

We neglect their dilution and degradation under the hypothesis that free rRNAs
are scarce and stable37. Thus, their mass balance in the model reads:

vtcrrRNAl
� vasmrib ¼ 0: ðRBrRNAl

Þ

The degradation reaction is the same as for mRNA, and is part of the total
degradation of the ribosome.

Constraints specific to tRNAs. Since tRNAs are relatively stable molecules37, we

neglect their degradation. Let Tu
aai

(resp. Tc
aai
) represent tRNAuncharged

aai

h i
(resp.

tRNAcharged
aai

h i
). Then, we can write the following constraints:

d

dt
Tu
aai

¼ 0 ¼ �vchargingaai
þ
X

l2L

ηlaai � v
tsl
l � μ � Tu

aai
; ð30Þ

d

dt
Tc
aai

¼ 0 ¼ vchargingaai
�
X

l2L

ηlaai � v
tsl
l � μ � Tc

aai
; ð31Þ

�vchargingaai
þ
X

l2L

ηlaai � v
tsl
l � μ � Tu

aai
¼ 0; ðTBu

aai
Þ

vchargingaai
�
X

l2L

ηlaai � v
tsl
l � μ � Tc

aai
¼ 0: ðTBc

aai
Þ

tRNAs are produced with a charging reaction and consumed by peptide
synthesis. We use the following charging reaction:

v
charging
aai : aai þ tRNAuncharged

aai
þ ATP þ 2H2O

! tRNAcharged
aai

þ AMPþ 2Hþ:
ð32Þ

By default, this reaction is assumed to happen spontaneously, but catalytic
constraints can be applied if the adequate catalytic rate constants and enzyme
compositions are known. Once again, the stoichiometric coefficients of each
reactant will appear in the stoichiometric matrix in the column corresponding to
this reaction.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13818-7

12 NATURE COMMUNICATIONS |           (2020) 11:30 | https://doi.org/10.1038/s41467-019-13818-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Reformulation of the bilinearity of the problem. The main issue with the EP
formulation presented previously lies in the continuous bilinear terms that describe

the dilution of the macromolecules, G? 2 fEjg∪ F lf g∪ ftRNAðunÞcharged
aai

g. We use ?

as a placeholder for the indexing of G. Using previous notations for the synthesis,
degradation, and growth rate:

vsyn? � vdeg? � μ � G? ¼ 0: ð33Þ

In this state, the dilution term is bilinear, and the formulation requires a bilinear
solver or potentially a mixed-integer bilinear solver if thermodynamics are to be
added. The original ME-model formulation has similar terms as we are presenting
here6,7. As such, its recent adaptation in Lloyd et al.8 uses the two-level iterative
algorithm SolveME9 that requires a dedicated nonlinear solver. In this fashion,
iterative approaches which try to sequentially improve a value of the growth are a
way to deal with the bilinearity. We present instead a MILP approximation of the
problem that makes it compatible and solvable with mainstream MILP solvers in a
single optimization formulation. We achieve this through the discretization and
linearization of the bilinear products. This operation can be understood as locally
approximating the bilinear problem by several linear subproblems and choosing
the best approximation.

Using a MILP approximation rather than an iterative scheme has two clear
advantages. First, it allows to simulate growth-dependent parameters (such as
RNA/protein mass ratios) with guarantees on convergence and global optimality
directly inherited from the MILP nature of the problem. In the case of parameters
that are monotonically increasing or decreasing with respect to growth rate,
guarantees exist in quadratically-constrained programming (QCP), such as showed
in SteadyCom38. However, in the case of non-monotonically increasing or
decreasing parameters with respect to the growth rate, such guarantees are harder
to prove in general QCP cases, and thus MILP provides a strong framework, with
global optimality guarantees and enumeration of alternative solutions. Second, by
displacing the solving complexity to the solver, it also allows us to rely on the latest
advances in MILP solving, which is a very dynamic field, with new solver releases
every 6–12 months.

Approximation of the growth rate. In ETFL, we approximate the growth rate μ in

bilinear products with a piecewise-constant function bμ (0th order approximation). A
zeroth-order approximation is an approximation by a piecewise-constant function. If
bμ is piecewise-constant, then the product bμ � G? is piecewise-linear. This can be
represented in a MILP form, and allows us to transform the continuous bilinear
terms into mixed (integer ´ continuous) bilinear terms. This simplifies the problem,
as these mixed bilinear terms can be linearized in a MILP setting using the Petersen
linearization scheme39, a particular case of the Glover linearization scheme40 that
was previously used in metabolic engineering by Hatzimanikatis et al.41,42.

Let μ be an upper bound to μ, p;Nð Þ 2 N2; p � N . We can approximate μ with

the following 0th order approximation:

8μ 2 0; μ½ �; μ � bμ ¼ p �
μ

N
: ð34Þ

With this notation,
μ
N
is, in fact, the resolution of the approximation. N is the

number of bins in which μ has been discretized, and p allows to choose which bin is
selected in the solution. For the linearization of the problem, we will need to express
p using only binary variables. To this effect, we can perform its binary expansion:

p ¼
Xdlog2Ne

s¼0

2s � δs; ð35Þ

where dlog2Ne denotes the smallest majoring integer to log2N , and δs 2 f0; 1g is rth

digits from the right of the binary notation of p.

The model needs two more constraint to ensure that μ 2 bμ� p
N
; μþ p

N

� �
and

that p does not exceed N , which would result in bμ> μ:

0 �
Xdlog2Ne

s¼0

2s � δs � N ð36Þ

�
p

N
� μ� bμ �

p

N
: ð37Þ

As an example, let us consider modeling an organism whose growth rate does

not exceed μmax ¼ 2:3 h�1 . To do this, we can set μ ¼ 2:5 � μmax . Let us choose a

resolution of 0:25 h�1 , which gives N ¼ 10. Then, log2N � 3:32, and dlog2Ne ¼ 4.
A growth rate μ ¼ 1:4 will be approximated by:

bμ ¼ 1:5 ¼ 6 �
μ

10
;

bμ ¼ δ0 ´ 2
0 þ δ1 ´ 2

1 þ δ2 ´ 2
2 þ δ3 ´ 2

3 þ δ4 ´ 2
4

� �
�
μ

10
;

bμ ¼ 0 ´ 1þ 1 ´ 2þ 1 ´ 4þ 0 ´ 8þ 0 ´ 16ð Þ �
μ

10
:

The values of δs are obtained by the solver upon optimization. This example is
illustrated in Fig. 6a. To maximize the resolution of the model, and minimize the

associated computational cost (under the form of three additional constraints for
each lineariation to be performed, see Petersen linearization in the Methods
section), the user should ideally choose N as a power of two.

MILP solvers use a variety of algorithms and heuristics to solve MILP problems.
In this case, the difficulty lies in the fact that the EP and the FBA are almost
independent and linked through a limited number of equations and variables. Even
though the automated solving methods of the solver might seem obscure to a
human, we thought useful to provide a human-understandable heuristic for solving
a formulation such as ETFL. It might prove useful in the case where one needs to
find an initial non-optimal solution, which sometimes greatly improve solver
performances. Thus, conceptually, a heuristic for solving an ETFL problem would
be:

1. Solve the FBA for μ
2. Select the corresponding, closest value of bμ
3. Apply it to compute dilution values
4. Solve the EP with fixed dilution
5. Apply the catalytic constraints to the FBA
6. Recalculate the FBA under catalytic constraints
7. If μ =2

�
bμ± μ

N

�
, go back to 3, else, end.

Linearizing the bilinearity. In the previous derivation, we replaced the growth rate
variable by a discrete number of acceptable values. We can approximate the
continuous product μ � G? , which represents the dilution, as follows:

μ � G? � bμ � G?; ð38Þ

bμ � G? ¼
Xdlog2Ne

s¼0

2s

N
μ � δs � G?; ð39Þ

The product δl � G? is then still bilinear, but one of its variables is binary.
Assuming a constant M>G? , We can use Petersen’s linearization theorem39,40 to
replace the product δs � G? with a single nonnegative variable zs? , as described in
the section Petersen linearization.

Because of the binary expansion, the complexity of the model grows only as

O log2N
� �

¼ O log2
1
ϵ

� �
, where ϵ ¼ 1=N is proportional to the resolution of the

approximation (which is
μ
N
). This means that the linearization part of a model with

a resolution of 0:01 h�1 is only around twofold bigger than that of a model with a

resolution 0:04 h�1 , while resolution has been improved fourfold.

Petersen linearization. After discretization of the growth rate, the dilution term
for the macromolecule G? will consist of a sum of products of the binary variables
δs and the continuous variable G? . We can use the Petersen linearization scheme39

to transform this product into an equivalent system of one new variable and three
new constraints:

zs? ¼ δs � G?;

()
G? þM � δs �M � zs? � M � δs;

zs? � G?;

	

()

G? þM � δs � zs? � M;

zs? �M � δs � 0;

zs? � G? � 0:

8
><

>:

ð40Þ

With this method, we can directly reformulate generalized mass balances as
described in Eq. (33) for mRNAs, enzymes, uncharged tRNAs, and charged tRNAs:

vasmj � v
deg
j �

Xdlog2Ne

s¼0

2s

N
μ � zsj ¼ 0; ðEB0

jÞ

vtcrl � v
deg
l �

Xdlog2Ne

s¼0

2s

N
μ � zsl ¼ 0; ðMB0

lÞ

�vchargingaai
þ

X

aai2A

ηlaai � v
tsl
l �

Xdlog2Ne

s¼0

2s

N
μ � zu;saai

¼ 0; ðTB0u
aai
Þ

vchargingaai
�

X

aai2A

ηlaai � v
tsl
l �

Xdlog2Ne

s¼0

2s

N
μ � zc;saai ¼ 0: ðTB0c

aai
Þ
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And we get the additional linearization constraints:

Xdlog2Ne

s¼0

2s

N
μ � μ; ðGRÞ

�
μ

2N
� μ�

Xdlog2Ne

s¼0

2s

N
μ �

μ

2N
: ðGCÞ

Discretization of mRNA and enzyme content. Since the growth has been dis-
cretized, it is now possible to also directly discretize other growth-dependent
parameters of the problem, regardless of whether they are in a linear or nonlinear
relationship with growth. This is a direct consequence of the formulation of ETFL,
which allows some flexibility in the modeling assumptions of the user. As an
example, we described the relationship between growth and protein and mRNA
mass ratios, Pm and Rm , in the cell as reported in Neidhardt et al.11. We thus aim to
approximate the nonlinear function PmðμÞ (resp. RmðμÞ) over the interval 0; μ½ �

with a piecewise-constant function cPm (resp. cRm). We perform this approximation
by interpolating and discretizing the protein ratio and mRNA ratio as functions of
the growth rate so that:

cPm ¼
X

u2U

λu � P
m
u ; ð41Þ

cRm ¼
X

u2U

λu � R
m
u ; ð42Þ

where Pm
u ¼ Pmðu � p μ

N
Þ (resp. Rm

u ¼ Rmðu � p μ
N
Þ). λu are binary variables, and only

one can be active at a time, since we are choosing exactly one value per function.
To enforce this behavior, we used a special ordered set constraint of type 1 (SOS1):

X

j2J

MWj � Ej �
X

u2U

λu � P
m
u ¼ 0; ðIC1Þ

X

l2L

MWl � Fl �
X

u2U

λu � R
m
u ¼ 0; ðIC2Þ

X

u2U

λu ¼ 1: ðSOS1Þ

Pm
u and Rm

u are growth-dependent, interpolated protein and RNA mass ratios (in

g:g�1). Given a growth rate, they define the relative mass of the cell that is protein or
RNA. MW? represents the molar weight of the corresponding enzyme or RNA, and
this their product with macromolecules concentrations (in mmol:ggDW�1) will
result in mass ratios as well, in grams per gram of dry cell weight. The first two
constraints enforce equality between the interpolated data and the model production.
The last line is the SOS1 constraint that forces only one of the λu to be active.

In addition, it is necessary to have the integer index of λu equal to the index of
the growth rate. This is obtained through the constraint:

X

u2U

u � λu �
X

l2L

2l � δl ¼ 0: ðEQIÞ

The first term represents the growth integer index (which discrete value of bμ to
use for choosing Pm

u ), and the second represents its binary expansion (which
discrete value of bμ to use for μ). The constraint makes sure they are equal.

Imposing such mass ratios requires the addition of a dummy mRNA as well as a
dummy protein to represent the part of the transcriptome/proteome that is either missing
from the expression model or altogether unrelated to metabolic function. We use average
amino acid frequencies and GC content to model this. Explicit interpolation functions can
also be used, such as the growth-dependent functions given by Pramanik et al.43.

The simultaneous use of catalytic constraints on metabolic reactions (Eq.
FCj;BCj) and maximal enzyme load (Eq. IC3) effectively implements allocation

constraints like in GECKO5, although in ETFL, the enzyme concentrations are also
directly linked to the metabolism. In GECKO, the metabolic cost of building the
enzymes is not taken into account.

Figure 6b shows an example piecewise linear interpolation of the growth-
dependent protein mass ratio in E. coli according to Neidhardt et al.11. The reported
values (red circles) are interpolated using a piecewise linear function (dashed line),
which is then discretized (full line). Using the integer constraints described above,
the model can be forced to display a protein content that corresponds to its growth.
We apply the same techniques to mRNA and DNA content.

Discretization of DNA content. To further increase the scope of macromolecules
covered by the model, it is also possible to add growth-dependent DNA content.
DNA mass ratios at specific growth rates are reported in Neidhardt et al.11. We
model the DNA reaction synthesis as follows:

v
synthesis
DNA : 1� γð ÞL

bp
DNAdATP;

þ 1� γð ÞL
bp
DNAdTTP;

þγL
bp
DNAdGTP;

þγL
bp
DNAdCTP;

! DNAþ 2L
bp
DNAPPi;

where γ is the GC content of the cell, and L
bp
DNA is the total length in base pairs of

the DNA. As with mRNAl and Enzj , DNA has a mass–balance equation of the

following shape:

d

dt
DNA½ � ¼ 0 ¼ v

synthesis
DNA � v

degradation
DNA � vdilutionDNA ; ð43Þ

v
synthesis
DNA � v

deg
DNA � μ � DNA ¼ 0: ðDBDNAÞ

Interpolation
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Fig. 6 Discretization example for specific growth rate and growth-dependent parameters. a Discretization of μ into bμ. The step approximation

transforms the continuous interval 0; 2:5½ � into the discrete set 0;0:25; ¼ ; 2:5f g. b Example of piecewise linear interpolation and discretization of the

protein mass ratio from Neidhardt et al.11. Red circles represent the values reported. The dashed line is the piecewise linear interpolation. The solid line is its

discretization.
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We consider that the DNA does not degrade, meaning the only source of DNA

consumption is dilution caused by the growth of the cell and kDNAdeg ¼ 0. We then

define the molar weight of DNA MWDNA and enforce the DNA mass ratio Dm as
we did with both proteins and mRNA:

MWDNA ¼ 1� γð ÞL
bp
DNA MWdATP þMWdTTPð Þ;

þ γL
bp
DNA MWdGTP þMWdCTPð Þ;

ð44Þ

MWDNA � DNA�
X

u2U

λu � D
m
u ¼ 0: ðIC3Þ

Scaling. A critical issue in the formulation of this problem is that the variables are different

orders of magnitude. Fluxes are typically between 10�3�101 mmol:gDW�1:h�1 , whereas
protein concentrations are around 10�6 � 10�3 mmol:gDW�1 and mRNA concentra-
tions are 10�10�10�6 mmol:gDW�1 . The relationship between these scales is given by
the catalytic rate constant of enzymes and expression machinery, which spans from

103�106 h�1 . In particular, the ribosome rate constant for translation

(	12aa:s�1 ¼ 43 200 aa:h�1) as well as the RNA polymerase rate constant of tran-

scription (	85 nt:s�1 ¼ 306 000 nt:h�1) are responsible for strong differences in the
concentrations and fluxes between transcription- and translation-related parts of the pro-
blem. Consequently, the constraint matrix becomes ill-conditioned, and the solver has to
operate close to, or sometimes beyond, its maximal solving accuracy (usually around 10�9

for commercial solvers such as ILOG CPLEX or Gurobi).
To circumvent these limitations, we scale the EP, which will reduce the

numerical difficulty of the problem, using nondimensionalization. We create
nondimensionalized variables by dividing the variables of the initial problem by an
estimated upper bound. For example, by definition, macromolecule concentrations
cannot exceed 1g:gDW�1 , and the following constrains the transformed
macromolecule variables between 0 and 1:

bX ¼
X

σX
; σX � supðXÞ ) 0 � bX � 1: ð45Þ

In this scheme, σX is an upper bound to X. In particular, if we consider σX to be
the concentration of 1 g:gDW�1 :

σX ¼ 1 g:gDW�1;

¼ 1 g:gDW�1
´

1

MWðXÞ
mmol:g�1;

¼
1

MWðXÞ
mmol:gDW�1;

ð46Þ

where MWðXÞ denotes the molecular weight of the macromolecule in SI units

(kg:mol�1 
 g:mmol�1), and bX represents the mass fraction of the molecule in the
cell. We scale the fluxes using a method derived from this, detailed in the
supporting file Supplementary Note 1. It is also possible to further refine this upper
bound by performing a variation analysis on X and re-generating a model using the
newly estimated upper bound.

For the sake of clarity, all problem formulations will be kept in their
dimensionalized form in the subsequent equations although the implementation is
in fact nondimensionalized. The nondimensionalized problem is described further
in Supplementary Note 1.

Advanced modeling. ETFL is amenable to modeling more intricate expression
processes. A short selection of these is detailed below.

Enzyme-mediated complex assembly: By default, all the peptides are assumed to
assemble spontaneously, without an enzyme. However, in the case of an enzyme-
mediated assembly, it is possible to limit the assembly rate by a catalytic constraint
if needed, in a fashion similar to Eq. (13). If we denote A the total concentration of

assembling enzyme, and kAasm the catalytic rate constant of assembly, we can

constraint vasmj the assembly rate of the jth enzyme:

vasmj � kAasm � A: ð47Þ

Enzyme activation and posttranslational modifications: Some enzymes require
to be modified in order to be active, and sometimes by metabolites of the cell. This
can be captured by adding a new species representing the active enzyme, and an
activation reaction transforming the inactive enzyme to the active form. If the
metabolite M is required to activate enzyme Enzj into Enz?j , then the following

activation reaction is added to the model:

vactj : Enzj þM ! Enz?j ; ð48Þ

The mass balances of Enzj and M will be supplemented by a term �vactj , and the

mass balance of Enz?j by þvactj . Finally, the catalytic constraint of the reaction vj
catalyzed by Enz?j at concentration E?

j shall be:

vj � k
j
cat � E

?
j ð49Þ

This activation reaction can itself be catalytically limited if needed (see previous
paragraph), and require the participation of metabolites. Thus, ETFL allows to
capture protein-metabolite interactions.

Enzyme association: It is also possible to model the partition between free
enzymes and associated enzymes. In that case, we simply need to operate the
following adaptations: (i) replace the Ej term in any catalytic constraint by a new

variable Er
j , which represents the enzymes participating in the catalysis of the jth

reaction; (ii) add a variable EF
j which represents the free enzymes of the system; and

(iii) add the enzyme usage constraint:

Er
j þ EF

j � Ej ¼ 0 ðEUjÞ

Dilution and degradation assumptions: In the current formulation, some
species have their dilution or degradation neglected because of high reactivity or
slow degradation rate constants. This can be relaxed by simply editing the mass
balance reaction according to the assumption to be relaxed. In particular, enzyme-
mediated degradation can be modeled by adding suitable catalytic constraints on
the degradation reactions. In addition, the dilution term for metabolites can be
taken into account if needed, in a manner similar to what Benyamini et al. describe
in their method for FBA accounting for dilution44.

MILP-based gene knockout strategies for strain design: The ETFL formulation
of gene knockout using an upper bound on the translation rate allows to directly
formulate MILP-based gene knockout strategies for strain design. Indeed, for each

lth gene, we can enforce the constraint:

vtsll � M � bl ; ð50Þ

with vtsll the gene’s transcription rate, bl a binary variable and M a big-M constant.
With that kind of constraint, if b ¼ 1, the gene is active, while if b ¼ 0, the gene is
knocked-out. It is hence possible to formulate an objective function to optimize the
number of KO while fulfilling a metabolic objective, for instance.

Thermodynamics-based constraints. Thermodynamics flux analysis (TFA)2,3

imposes constraints on a FBA problem to couple reaction directionality to the
standard free energy of reactions and metabolite concentrations. We also introduce
constraints that couple the sign of the Gibbs energy of a reaction to its direc-
tionality through the use of integer variables and a mixed-integer linear coupling
formulation. This framework reduces the feasible flux space and improves the
predictive power of FBA by removing thermodynamically invalid flux profiles.

Considering ci is the concentration of ith metabolite, we define Ci as its scaled
logarithm with respect to c0 so that in standard conditions c0 ¼ 1 M:

8i; Ci ¼ ln
ci
c0


 �
: ð51Þ

We use the group contribution method45 to directly calculate ΔrG
0�
j , the Gibbs

energy in solution of the jth reaction. The calculated energy is the net change in the
energies of formation of the compounds, which is simply the algebraic sum of the
energies of bonds that are broken and formed. This allows to minimize the
estimation error of ΔrG

0�
j , as there is no error coming from the groups that do not

react. Hence, we obtain the additional variables:

Cmin
i � Ci � Cmax

i ; ð52Þ

ΔrG
0�
j;min � ΔrG

0�
i � ΔrG

0�
j;max; ð53Þ

ΔrG
0
j;min � ΔrG

0
i � ΔrG

0
j;max: ð54Þ

Some metabolites are not fully characterized, e.g. metabolites with -R groups such
as fatty acids, or metabolites attached to a Coenzyme A or acyl-carrier protein. In these
cases, the group contribution method allows to directly calculate the net change in the
standard Gibbs energy. Since these -R groups are often conserved in the reaction, their
contribution terms cancel out when calculating the Gibbs energy of the reaction.

The concentration variables are bounded by experimental measurements or
physiological assumptions, and the standard Gibbs energies are bounded by the
measurement or estimation error. Since the net flux of each reaction has already
been split between forward flux (vþj ) and backward flux (v�j ), (see Eq. (12)), we can

directly add the constraints described in ref. 2:

ΔrG
0
j � RT

Xm

i¼1

η
j
iCi � ΔrG

0�
i ¼ 0; ð55Þ

ΔrG
0
j � K þ K � bþj � 0; ð56Þ

�ΔrG
0
j � K þ K � b�j � 0; ð57Þ

vþj � K � bþj � 0; ð58Þ

v�j � K � b�j � 0; ð59Þ

bþj þ b�j � 1: ð60Þ

R denotes the ideal gas constant, T is the temperature in Kelvin, and η
j
i

represents the stoichiometry of the metabolite i in the reaction j. K is a big-M
constant (bigger than all upper bounds), and b ±

j are binary variables. Equation (55)
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defines the actual Gibbs energy of the reaction as a function of its standard Gibbs
energy and the scaled logarithms of metabolite concentrations. Equations (56) and

(57) ensure that ΔrG
0
j � 0 () bþi ¼ 1 and ΔrG

0
j � 0 () b�i ¼ 1. These binary

variables are used to block flux in Eqs (58) (59) if the thermodynamics do not favor
it. Finally, Eq. (60) is added to enforce that only one direction is chosen.

Data. mRNA degradation rates constants kdeg were taken from Bernstein et al.46. We
converted the reported half lives into rate constants using the classical relationship

k ¼ lnð2Þ
t1=2

. Proteins were approximated to have a half life of 20 h (BNID 111930,47).

Catalytic rate constants k
j
cat were obtained from Davidi et al.48 for homomeric

enzymes. Complex formation reactions for non-homomer enzymes were taken from
the supplementary information of O’Brien et al.7 and Lloyd et al.8. EC numbers
were obtained from BiGG49 and the iJO1366 publication12. Their corresponding kcat
values were assigned using conservative (max) values from SabioRK50.

Homomer compositions were obtained from Davidi et al.48. Other peptide
compositions of enzymes were taken from the Supplementary Information of
O’Brien et al.7 and Lloyd et al.8. Additional information was obtained from the
Metacyc/Biocyc database29,51 using specialized SmartTables queries52.

Model modification. The initial model was subjected to minor changes to
accommodate for ETFL modeling. In particular, we added:

Selenocysteine as a metabolite.
Cysteine to selenocysteine conversion as a pseudo reaction.
Replacements for the tRNA metabolites and their charging reaction, as dilution
has to be considered.

We also modified the biomass reaction by removing its nucleotide and amino
acid components, since they are already taken into account by the expression
problem as explained in the section Biomass reaction synthesis and mass balance.

Enzyme estimation. Given a reaction in the model, if no enzyme is supplied but
the reaction possesses a gene reaction rule, it is possible to infer an enzyme from it.
The rule expression is expanded, and each term separated by an OR boolean
operator is interpreted as an isozyme, while terms separated by an AND boolean
operator are interpreted as unit peptide stoichiometric requirements. The enzyme
is then assigned an average catalytic rate constant and degradation rate constant.

Essentiality analysis. The method for testing gene essentiality in FBA is to evaluate
for each reaction the gene-protein-reaction association rules (GPRs) containing the
gene of interest. The GPR is a boolean expression where the symbols represent
whether a gene is expressed. OR operators represent isozymes, and AND operators
the assembly of several peptides in a complex. To knock a gene out, its symbol in
each GPR is simply assigned the value False. The GPR of all reactions is subse-
quently evaluated, and the reactions whose GPR evaluates to False are set to have
a net flux of 0. Knocking a gene out in ETFL works differently: we replaces GPRs
with mass balances, and the direct interaction between gene transcription, peptide
translation, enzyme assembly, and metabolism. In this context, knocking-out a gene
is done by forcing its transcription rate to 0. Indeed, gene-reactions relationships are
conveyed directly through the direct contribution of the relevant peptides either as
components of the enzyme complex (AND operator in GPRs) or as isozymes (OR
operator). An advantage of this formulation is that it can be used in strain design
strategies to optimize directly for knockouts in a single optimization problem.

If a knocked-out gene does not have enzyme associated with it (because of the
lack of composition or kcat information), there will be no catalytic constraint
associated with the corresponding enzyme. The absence of catalytic constraint will
prevent the reaction to be knocked-out. Hence, because of the missing information,
gene essentiality information will be lost. An example is the essential reaction
Sulfite reductase NADPH2 (SULR). iJO1366 provides a GPR describing a complex
needing b2763 and b2764. The ETFL source (the cobraME model and BioCyc)
could not provide the stoichiometry of the peptides to form the complex, and thus
no enzyme is associated to this reaction in the vETFL model. iJO1366 correctly
predicts the genes b2763 and 2764 as essential, but ETFL fails because these genes
are not associated to any enzyme. As more enzyme data are added to the model, the
false positive rate decreases, as we show in the section Essentiality analysis.

For increased performance, the essentiality analysis was cast into a feasibility
problem. We put a lower bound on growth equal to 10% of the predicted ETFL
growth and set the objective to 0. With this method, essential genes will cause the
problem to be infeasible, while non-essential genes will return a feasible solution
satisfying at least 10% of the growth. This method achieved up to a fivefold
reduction in solving time on the most complex models.

Hardware. Computations were done on a 64-bit Ubuntu 18.04.1 LTS (Bionic
Beaver); 2 ´ Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20 GHz (8 cores, 16 threads
per socket); 4 ´ 16 Go @ 2400 MHz RAM. Code was run on Python 3.6 on Docker
(18.09.0) containers based on the official python 3.6-stretch container, available on
ETFL GitHub and ETFL GitLab.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data used to conduct this study are available in the organism_data subfolder

of the repositories. Some of the data has been obtained from publications, for which all

the references are provided in the main text, and a copy has been included in our

repositories that mentioned above. The code also contains comments crediting the

publications from which data sets and values have been obtained.

Code availability
The code has been implemented as a plug-in to pyTFA53, a Python implementation of

the TFA method. It uses COBRApy54 and Optlang55 as a backend to ensure

compatibility with several open source (GLPK, scipy, …) as well as commercial (CPLEX,

Gurobi, …) solvers. We rely on the Python package Biopython56 for transcribing and

translating sequences of nucleotides and amino acids. The code used to generate the

models is freely available under the APACHE 2.0 license at https://github.com/EPFL-

LCSB/etfl and https://gitlab.com/EPFL-LCSB/etfl.
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