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1. Prehistory

The Euclidean Algorithm is a method used by Euclid to compute the greatest
common divisor of two numbers; from today’s perspective it is the founding stone
of the number theory in Euclid’s book. How close Euclid came to understand the
unique factorization property of the integers is open to debate: using his ‘geometric
language’, he only could formulate it for products of three different primes.

During the middle ages, Arabic and later European mathematicians studied
the prime factors of a given number in connection with the problem of amicable
numbers, and realized that the list of all factors of a number n can be produced from
its prime factorization; the first clear statement of unique factorization, however,
is due to Gauss in 1801. Gauss’s proof of the Unique Factorization Domain is not
built directly on the Euclidean algorithm, although he refers expressis verbis to
Euclid’s famous proposition that if a prime divides a product, it must divide one of
the factors. In a paper published in 1832, Gauss proved that the ring Z[i] admits a
Euclidean algorithm, and that it has unique factorization, but the proof of unique
factorization in Z[i] is accomplished by ‘pulling it back to Z’.

The first mathematician who emphasized that the existence of a Euclidean algo-
rithm implied unique factorization was Dirichlet, and he did that as late as 1847!

2. Definitions and General Properties

An integral domain R is called Euclidean with respect to a given function f :
R → N if f has the following properties:

f(α) = 0 ⇐⇒ α = 0 (1)
for all α, β ∈ R \ {0} there is a γ ∈ R such that f(α− βγ) < f(β). (2)

We call such an f a Euclidean function on R. There are equivalent definitions of
Euclidean rings and functions, most of which are studied in [120]. For example, a
function f : R → R≥0 satisfying (1) and (2) is called Euclidean if it also satisfies

For every κ > 0 the set {f(α) : α ∈ R, f(α) < κ} is finite. (3)

It is easily seen that an integral domain which is Euclidean with respect to a
real-valued function is also Euclidean with respect to a suitably chosen integer-
valued function. Variants of Euclidean functions have been studied by Picavet
[164], Lenstra [120], and Hiblot [97].

2.1. Euclidean minima. For any integral domain R we can define the Euclidean
minimum M(R, f) of R with respect to a given integer-valued function f satisfying
(1) by

M(R, f) = inf {κ > 0 : for all α, β ∈R \ {0} there exists γ ∈ R

such that f(α− βγ) < κ · f(β)}.

Obviously R is (resp. is not) Euclidean with respect to f if M(R, f) < 1 (resp.
M(R, f) > 1). If M(R, f) = 1, both possibilities actually occur. If β 6= 0 is a
non-unit in R, then we have M(R, f) ≥ f(β)−1.

Let S be an integral domain contained in R; then

M(R/S, f) = inf {κ > 0 : for all α, β ∈S \ {0} there exists γ ∈ R

such that f(α− βγ) < κ · f(β)}
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is called the relative Euclidean minimum of S in R. It would be interesting to
find non-trivial inequalities relating M(R, f), M(S, f) and M(R/S, f), especially
if S = OK and R = OL are the rings of integers in an extension L/K of number
fields and f is the absolute value of the norm (cf. Sect. 3).

2.2. S-Euclidean Rings. Stein [181] introduced the following idea for computing
gcd’s in the ring Z: using the following rules, gcd(a, b) can be computed by repeated
addition, substraction, and division by 2:

• gcd(2a, 2b) = 2 gcd(a, b),
• gcd(2n + 1, 2b) = gcd(2n + 1, b)
• gcd(a, b) = gcd(a, a−b

2 ) if a ≡ b ≡ 1 mod 2.
More generally, let R be a UFD, S = {p1, . . . , pr} a subset of elements of R, and

f : R −→ N some function with the property that f(a) = 0 for a ∈ R if and only if
a = 0. We say that R is S-Euclidean with respect to f if for every pair a, b ∈ R\{0}
there are q, c ∈ R such that a − qb = cpi for some pi ∈ S and f(c) < f(b). Then
gcd(a, b) = gcd(a, cpi) = δ gcd(b, c), where δ = 1 if pi - a and δ = pi otherwise.

A ring is S-Euclidean with respect to S = {1} if and only if it is Euclidean in
the usual sense.

It is also clear that if R is S-Euclidean for some f and if T ⊂ R is any finite set
containing S, then R is also T -Euclidean with respect to f .

An easy exercise shows

Proposition 2.1. Let p be a prime in Z, and put S = {p}. Then Z is S-Euclidean
with respect to the usual absolute value.

The algorithm corresponding to the set S = {2} is called the binary gcd-
algorithm. Generalizations to k-ary algorithms were studied by Sorenson [180].

The binary gcd-algorithm was generalized to Z[i] by Weilert [196, 197] (see also
Collins [48]), to Z[ζ3] by Damgard & Frandsen [52], and to the rings of integers in
the complex quadratic fields with discriminant −7,−8,−11 and −19 by Agarwal
& Frandsen [1]. The last example shows that S-Euclidean rings are not necessarily
Euclidean. I do not know whether Euclidean rings are S-Euclidean for suitably
chosen sets S.

2.3. Motzkin Sets. If R is Euclidean, the function fmin defined by

fmin(α) = min {f(α) : f is a Euclidean function on R}
is called the minimal Euclidean function on R. It is easily seen that fmin is in fact
a Euclidean function on R. For any integral domain R, define the Motzkin sets
Ek, k ≥ 0, by

E0 = {0},
E1 = {0} ∪R∗, the unit group of R and, generally,

Ek = {0} ∪ {α ∈ R : each residue class mod α contains a β ∈ Ek−1},

E∞ =
⋃
k≥0

Ek

The Motzkin sets of R = Z are easily computed:

E0 = {0}, E1 = {0,±1}, E2 = {0,±1,±2,±3}, . . . , Ek = {0,±1 . . . ,±(2k − 1)}.
The following observation is due to Motzkin [147]:
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Proposition 2.2. R is Euclidean if and only if E∞ = R. If E∞ = R, then the
function fM defined by fM (α) = min {k ∈ N : α ∈ Ek} coincides with the minimal
Euclidean function on R.

The minimal Euclidean algorithm for the rings Z[i] and Z[
√
−2 ] was imple-

mented by Fuchs [78]. Since the minimal Euclidean function is submultiplicative
(f(ab) ≥ f(a) for all a, b ∈ R \ {0}), every Euclidean ring admits a submulti-
plicative Euclidean function. Whether this is also true for multiplicative functions
(f(ab) = f(a)f(b) for a, b ∈ R) is not known.

Our next result provides us with examples of Euclidean functions f such that
M(R, f) = 1:

Proposition 2.3. Let R be an integral domain; then
(1) R = E1 if and only if R is a field;
(2) if R is not a field, then R 6= Ek for all k ∈ N; if, moreover, R is Euclidean,

then M(R, fmin) = 1.

2.4. k-stage Euclidean Rings. In 1976, Cooke [49] introduced the following more
general concept: let R be an integral domain. A sequence of equations (with
α, β, γi, ρi ∈ R)

α = βγ1 + ρ1,

β = ρ1γ2 + ρ2,

...
ρk−2 = ρk−1γk + ρk

is called a k-stage division chain starting from the pair (α, β); we say that R is
quasi-Euclidean, if we can find a function f : R → N with the properties

(Q1) f(α) = 0 ⇐⇒ α = 0,
(Q2) for every pair α, β ∈ R \ {0} there exists a k-stage division chain for some

k ∈ N such that f(ρk) < f(β).
If we can replace (2.4) by the stronger condition

(Q’2) there is a k ∈ N such that for every pair α, β ∈ R \ {0} there exists an
n-stage division chain for some n ≤ k with f(ρk) < f(β),

then R is called k-stage Euclidean with respect to f . We also can introduce
k-Euclidean minima in an obvious way. Several equivalent definitions of quasi-
Euclidean rings have been studied by Cooke [49], Bougaut [15, 16, 17], Décoste
[63, 64] and Leutbecher [131]. See also some papers on Nagata’s pairwise algorithm
by Chen & Leu [36] and Nagata [149, 150, 151, 152, 153].

2.5. Euclidean Ideal Classes. Lenstra [127], inspired by papers of Fontené [76]
and Cahen [20], introduced Euclidean ideal classes; they generalize Euclidean rings
because the trivial ideal class [R] is Euclidean if and only if R is Euclidean. Eu-
clidean ideal classes have been investigated by van der Linden [140, 141]. Non-trivial
Euclidean ideal classes seem to occur very rarely: if K is a real quadratic field which
contains a non-trivial Euclidean ideal class, then disc K = 40, 60, 85. The known
examples in degree ≥ 3 are:

• the cubic field with disc K = −283 and h(K) = 2 (van der Linden),
• the cubic field with disc K = −331 and h(K) = 2 (Lemmermeyer),



6 FRANZ LEMMERMEYER

• the quartic field Q(
√
−3,

√
13 ) with h(K) = 2 (Lenstra).

Schulze [176] defined Euclidean systems; they generalize Euclidean ideal classes,
and the simplest Euclidean systems correspond to the Dedekind-Hasse-test (cf.
[92]):

Proposition 2.4. R is a principal ideal ring if and only if there is a function
f : R → N satisfying (E1) with the following property: for every α, β ∈ R such that
β - α there exist λ, µ ∈ R such that 0 < f(λα− µβ) < f(β).

A different notion of a Euclidean system was introduced by Treatman in his
thesis [186].

3. The Norm as a Euclidean Function

Let K be an algebraic number field and OK its ring of integers. If the absolute
value of the norm is a Euclidean function, OK (or, by abuse of language, K) is
called norm-Euclidean. The Euclidean minimum of K with respect to the norm is
called norm-Euclidean minimum and will be denoted by M(K). More generally,
for a set S of primes in OK , let OS denote its ring of S-integers. We can define the
S-norm (or simply norm) SN by NSa = (OS : a) for any non-zero ideal a in OS as
usual and put NSα := NS(αOS). The first example of a norm-Euclidean ring OS

was apparently given by Wedderburn1 [195].
The following theorem of Weinberger [198] (whose proof builds on previous work

by Hooley) suggested strongly the existence of number fields that are Euclidean
with respect to functions different from the norm (GRH denotes a certain set of
generalized Riemann hypotheses):

Proposition 3.1. Assume that GRH holds; then every number field K with unit
rank ≥ 1 has class number 1 if and only if K is Euclidean with respect to a suitably
chosen function f .

On the other hand, the work of O’Meara [159] and Vaserstein [192] (cf. Cooke
[49, 50]) shows unconditionally

Proposition 3.2. Every number field K with unit rank ≥ 1 has class number 1 if
and only if it is k-stage norm-Euclidean for some k ∈ N.

3.1. Euclidean Minima. For every ξ ∈ K, define M(ξ) = inf {|NK/Q(ξ − η)| :
η ∈ OK}. M(ξ) is called the Euclidean minimum at ξ, and we have M(K) =
sup {M(ξ) : ξ ∈ K}. Obviously, M(ξ) = M(ξ − η) for every η ∈ OK , i.e. M(ξ)
only depends on the class of ξ in K/OK . Now let

C1 = {ξ ∈ K/OK : M(ξ) = M(K)}
and define the second Euclidean minimum of K by

M2(K) = sup {M(ξ) : ξ ∈ (K/OK) \ C1}.
Obviously M2(K) ≤ M(K) = M1(K), and if this inequality is strict, we say that
M1(K) is isolated. The Euclidean minima Mk(K), k ≥ 2, are defined in a simi-
lar way. There are number fields with an infinite sequence of strictly decreasing
Euclidean minima, and fields whose second minimum is not isolated. Barnes &
Swinnerton-Dyer [5, 6, 7] showed

1I thank Keith Dennis for bringing this to my attention.
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Proposition 3.3. If K is a number field with unit rank ≥ 1 and if C1 is finite,
then the minimum M1(K) is isolated.

In order to prove that a given number field K is norm-Euclidean, we choose
a Q-basis {α1, ..., αn} of K and let φ : α =

∑
aiαi → (a1, . . . , an) ∈ Rn; after

identifying K and φ(K), we find that OK is a lattice in K = Rn, and that K is
dense in K. We extend the norm NK/Qα =

∏
σ ασ on K (here σ runs through all

n = (K : Q) embeddings of K into C) to a continuous function

N : Rn → R : (ξ1, . . . , ξn) 7→ N(x) =
∏
σ

( n∑
j=1

ξjα
σ
j

)
.

Obviously K is norm-Euclidean if and only if for all ξ ∈ K we can find η ∈ OK

such that |N(φ(ξ) − φ(η))| < 1; we see that it suffices to show that for every real
ξ ∈ K we have |N(ξ − φ(η))| < 1 for a suitably chosen η ∈ OK .

Therefore we define the Euclidean minimum at x ∈ K by

M(x) = inf {|N(x− φ(η))| : η ∈ OK},
and call M(K) = sup {M(x)|x ∈ K} the inhomogeneous minimum of K; it is
clear by definition that M(K) ≤ M(K). Let x ∈ K and a real ε > 0 be given; it
follows from the definition of M(K) that we can find η ∈ OK with |N(x−φ(η))| <
M(K) + ε. If we can satisfy the stronger inequality |N(x − φ(η))| ≤ M(K) for
every x ∈ K we shall say that the minimum M(K) is attained.

Proposition 3.4. We have M(K) = M(K) for every number field K with unit
rank 1, and there exist x ∈ K with M(x) = M(K).

This equality has been observed by Barnes & Swinnerton-Dyer [5]; they proved
it for n = 2, and van der Linden [140, 141] gave a proof for fields with unit rank 1.
Computations seem to suggest the following conjectures for number fields K with
unit rank ≥ 1:

(1) M(K) is isolated even if C1 is not finite;
(2) M(K) is always rational;
(3) M(K) = M(K) for every number field with unit rank ≥ 1;
(4) in Prop. 3.4, some x =

∑
ajαj has coordinates ai ∈ K;

(5) in Prop. 3.4, x can be chosen from the dense subset K (i.e. x can be chosen
to have rational coordinates ai; such x are called rational points in K).

Call ESp(K) = {M(x)|x ∈ Rn} the Euclidean spectrum of K; ESp(K) is known
to be closed as a subset of the reals (Theorem L of Barnes & Swinnerton-Dyer).
Let ∂ ESp(K) be the boundary of ESp(K) (with respect to the usual topology on
R). Another question is

(6) Is ∂ ESp(K) ⊂ K if K is totally real?
For related questions, we refer the reader to Berend & Moran [12]. The back-

ground necessary for the computation of Euclidean minima has been provided by
Barnes & Swinnerton-Dyer; although the presentation of some of the proofs given
in their papers [5, 6] can be simplified, these articles still are worth reading, and
they are recommended to anyone interested in computing minima of number fields
of small degree.

The inequality M(K) ≤ 2−n
√

d for totally real number fields of degree n and
absolute value of discriminant d is called the “Minkowski conjecture” (cf. O. Keller,
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Geometrie der Zahlen, Enzyklop. d. math. Wiss. I 2, 2. Aufl.); it is known to hold
for n ≤ 5, and Chebotarev could prove that M(K) ≤ 2−n/2

√
d. Similar results

(not even a conjecture) for fields with mixed signature are not known except for a
theorem of Swinnerton-Dyer [182] concerning complex cubic fields (see Sect. 5).

3.2. Lower Bounds for M(K). There are several methods for getting bounds
on M(K), and in particular for showing that a given number field is not norm-
Euclidean. The simplest criterion uses totally ramified primes:

Proposition 3.5. Let K/k be a finite extension of number fields, and suppose that
the prime ideal p in OK is completely ramified in K/k, i.e. that pOK = P2. If
β ≡ αn mod p for some α, β ∈ OK \ p, and if there do not exist b ∈ OK such that

(1) b ≡ β mod p;
(2) b = NK/kδ for some δ ∈ OK ;
(3) |Nk/Q b| < Np;

then K is not Euclidean.

In the special case k = Q and p = pZ, there are only two b ∈ Z satisfying (1)
and (3), because |Nk/Q b| = |b| and |Np| = p. Moreover, if K is totally complex,
only positive b ∈ Z can be norms from K.

Our next result exploits the action of the unit group EK on the factor group
K/OK ; it is easy to see that Orb(ξ) = {εξ : ε ∈ EK} is finite for every class
ξ = ξ + OK ∈ K/OK . The following theorem is essentially due to Barnes &
Swinnerton-Dyer:

Theorem 3.6. Let K = Q(α) be a number field with unit group EK . If, given a
ξ ∈ K and a real number k > 0, there exists a γ ∈ OK such that N(ξ − γ) < k,
then there exists a ζ =

∑n−1
j=0 ajα

j ∈ K with the following properties:

(1) ζ +OK = ξj for some ξj ∈ Orb(ξ);
(2) |ai| < µi (0 ≤ i < n) for some constants µi > 0 depending only on K;
(3) N(ζ) < k.

Since the number of ζ ∈ K satisfying 1. and 2. is finite, this theorem allows us
to compute M(ξ, K).

3.3. Weighted Norms. In light of Weinberger’s result we are interested in func-
tions f that might serve as Euclidean functions on number fields K with unit
rank ≥ 1 and class number 1. Of course, if R is Euclidean we can always take
f = fmin; but this function is not very useful if we want to prove that R is Eu-
clidean because fmin is rather hard to compute. Lenstra [120] proposed to look at
“weighted norms” instead: first we define a multiplicative function φ : IK → R,
where IK denotes the group of fractional ideals of OK , by giving its values on the
prime ideals; to this end choose a prime ideal p, a real number c > 1, and define
φ(p) = c, φ(q) = N(q) := (R : q) for every prime ideal q 6= p. Then extend φ mul-
tiplicatively to all ideals of OK and put φ(0) = 0 and φ(α) = φ(αOK) for elements
α ∈ K×. Then φ = φp,c is a well defined multiplicative function with the property
(3), and

w(p) = {c > 0 : φp,c is a Euclidean function on OK}
is called the Euclidean window of the weighted norm φ; see [30].
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Proposition 3.7. The Euclidean window w(p) of a weighted norm f is a (possibly
empty) interval contained in (1,∞).

Using an incredibly simple idea, Clark [39] succeeded in proving that f = fp,c

is a Euclidean function in the quadratic number field Q(
√

69 ) for p = (23,
√

69) =
( 23+

√
69

2 ) and every c > 25. This was done as follows: first one observes that M1

is isolated and that M2 < 1. For every ξ ∈ K \ C1 we can find η ∈ OK such that
|N(ξ − η)| < 1, where N denotes the usual norm; if the numerator of ξ − η is not
divisible by p, we will also have f(ξ − η) < 1. In order to take care of the points
ξ − η with numerator divisible by p, we show that for every ξ ∈ K \ C1 we can
find η1, η2 ∈ OK such that |N(ξ − ηj)| < 1 for j = 1, 2 and η1 − η2 6≡ 0 mod p.
Unfortunately, this method does not seem to work for other quadratic number
fields; there are, however, numerous examples in degree 3 (cf. Sect. 5)

Building on work of Gupta, M. Murty & V. Murty [87] on the Euclidean algo-
rithm for S-integers, Clark & M. Murty [42] devised a method for proving number
fields to be Euclidean with respect to functions different from the norm; this method
applies to totally real Galois extensions of degree ≥ 3 with an additional property.
In his thesis, Clark [38] verified this condition for the 165 totally real quartic num-
ber fields with class number 1 and discriminant less than 106 as well as the cyclic
cubic number fields with discriminant less than 5 · 105 and class number 1. See
Mandavid [109] for a detailed exposition.

Harper & Murty [91] proved that if K is a finite Galois extension of Q with unit
rank > 3, then OK is Euclidean if and only if it is a principal ideal domain; if K is
abelian, unit rank ≥ 3 is sufficient.

3.4. Euclidean Minima for k-stage Algorithms. Cooke & Weinberger have
made some very interesting observations concerning the k-stage Euclidean algo-
rithm in number fields: define continued fractions [γ1, γ2, . . . , γk] of length k (with
coefficients γj ∈ OK) by

[γ1, γ2, . . . , γk] = γ1 +
1

γ2 +
1

γ3 + · · ·+
1
γk

Let CFk(K) be the set of all continued fractions of length ≤ k with coefficients
in OK . Then for all α, β ∈ OK there exists a k-stage division chain of length
k ≤ n starting from (α, β) such that |N(ρk)| < |N(β)| if and only if we can find
γ ∈ CFk(K) with |N(α/β − γ)| < 1.

The k-stage Euclidean minimum of K is the real number

Mk(K) = inf {κ : for all ξ ∈ K there is a γ ∈ CFk(K) : |N(ξ − γ)| < κ}

and the inhomogeneous minimum of K is defined by replacing K by K.
Let us define sets Bk = {ξ ∈ K : |N(ξ − γ)| ≥ 1 for all γ ∈ CFk(K)} for k ≥ 1;

obviously we have B1 ⊇ B2 ⊇ . . . ⊇ B∞ =
⋂

Bk; if B∞ = Bk for some k ∈ N we
say that K has Euclidean depth k and write Ed(K) = k.

Theorem 3.8. Assume that GRH holds. Then Ed(K) ≤ 4 for every number field
K with unit rank ≥ 1, and Ed(K) ≤ 2 if K has at least one real embedding.
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The inequalities Ed(K) ≤ 5 (resp. Ed(K) ≤ 3) are due to Cooke & Weinberger
[51]; it can be shown, however, that these inequalities are strict (cf. the remarks of
Lenstra in [51], as well as [116]).

Using results of Vaserstein, Cooke [50] was able to show that B∞ is discrete. By
defining a suitable equivalence relation on the points in B∞, Cooke could show that
the number of equivalence classes equals h− 1, where h is the class number of K.

In his paper [41], Clark could remove the assumption of the validity of GRH
from Thm. 3.8 for a certain class of real normal fields.

For methods of computing the greatest common divisor in algebraic number fields
which are not norm-Euclidean, see Kaltofen & Rolletschek [112] and F. George [81]
for quadratic fields, and H. Cohen [44] in general.

4. Quadratic Number Fields

4.1. Complex Quadratic Number Fields. If K is an imaginary quadratic num-
ber field, i.e. K = Q(

√
−m ), m a square free integer, the situation is completely

clear (we write D(−m) for the ring of integers in Q(
√
−m )):

Proposition 4.1. The rings D(−m) are Euclidean if and only if m = 1, 2, 3, 7, 11,
and in these cases the norm is a Euclidean function.

In order to prove Prop. 4.1 we have to show:
a) D(−m) is norm-Euclidean for m = 1, 2, 3, 7, 11;
b) if f is a Euclidean function on D(−m), then m = 1, 2, 3, 7, 11.

The first proofs of a) are due to Gauss (m = 1, 3 [79, 80]), Dirichlet [68], Cauchy
(m = 1, 3 [26]), Wantzel [193], Traub (m = 1, 2 [185]), and Dedekind [65], who also
noticed that these values of m are the only ones for which K is norm-Euclidean.
Proofs for this fact have later been given by Birkhoff [13] and Schatunowsky [174].
In 1948, Motzkin [147] gave the first proof of b); this result has been rediscovered
several times, for example by Dubois & Steger [69] or Chadid [25].

Wantzel [193] and Traub [185] were the first to show that M(f) = 1 for R =
Z[
√
−3 ], where f is the norm, although the following proposition can easily be

deduced from a result of Dirichlet [68]:

Proposition 4.2. The Euclidean minimum M(R,N) of R = D(−m) with respect
to the norm is given by

|m|+ 1
4

, if R = Z
[√
−m

]
, and

(|m|+ 1)2

16m
, if R = Z

[
1 +

√
−m

2

]
This implies the inequalities |d|

16 < M(K) ≤ |d|+4
16 for imaginary quadratic fields

K with discriminant d.
Concerning k-stage Euclidean rings, we have the result of P. Cohn [46]:

Proposition 4.3. D(−m) is k-stage Euclidean if and only if it is Euclidean.

The Dedekind-Hasse-test 2.4 with f = N has often been applied to show that
D(−19) is a principal ideal domain; cf. Wilson [199], Campoli [21], Feyzioglu [75].
The results of Prop. 4.2 can be used to improve the Minkowski bounds of quadratic
extensions of imaginary quadratic Euclidean fields ([118], as well as [142]).
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4.2. Real Quadratic Number Fields. As above, let D(m) denote the ring of
integers of Q(

√
m ), where m is assumed to be squarefree. The real quadratic

number fields that are norm-Euclidean are known:

Theorem 4.4. The rings D(m) are norm-Euclidean if and only if

m = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

The if-part of Thm. 4.4 can be proved easily; it is the “only if” that causes the
difficulties. The following table shows the evolution of the proof:

1848 Wantzel [194] shows that Q(
√

m ) is norm-Euclidean for m = 2, 3, 5, and
claims that this holds also for m = 6, 7, 13, 17.

1927 Dickson [66] shows that Q(
√

m ) is norm-Euclidean if m = 2, 3, 5, 13 and
asserts that these are the only such values.

1932 Perron [162] exhibits Dickson’s error by showing that Q(
√

m ) is norm-
Euclidean for m = 6, 7, 11, 17, 21, 29; moreover he asks if every real qua-
dratic number field with class number 1 is norm-Euclidean. In a letter to
Perron (see [162]), Schur shows that Q(

√
47 ) is not norm-Euclidean.

1934 Oppenheim [160] finds a clever method to prove that Q(
√

m ) is norm-
Euclidean for m = 2, 3, 5, 6, 7, 11, 17, 21, 29, 33, 37, 41, and shows that Q(

√
m )

is not norm-Euclidean for m = 23, 31, 53.
1935 Fox [77] and Berg [11] show that if Q(

√
m ) is norm-Euclidean and m ≡

2, 3 mod 4, then m = 2, 3, 6, 7, 11, 19, and Berg is able to prove that Q(
√

19 )
is indeed norm-Euclidean. Hofreiter [98, 99] shows that Q(

√
57 ) is norm-

Euclidean; moreover he proves that Q(
√

21 ) is the only norm-Euclidean
field among the Q(

√
m ) with m ≡ 21 mod 24.

1936 Behrbohm & Redei [10] find all norm-Euclidean Q(
√

m ) with m ≡ 5 mod
24.

1938 Schuster [177] treats the case m ≡ 9 mod 24. Erdös & Ko [74] show that
there are only finitely many norm-Euclidean D(m) with m ≡ 1 mod 8
prime, and Heilbronn [93] extends this to composite values of m.

1940 A. Brauer [19] shows m ≤ 109 for all norm-Euclidean Q(
√

m ) with m ≡
13 mod 24.

1942 Rédei [168] finds all norm-Euclidean Q(
√

m ), m ≡ 17 mod 24, and shows
that D(73) is norm-Euclidean. Moreover he shows that D(m) is not norm-
Euclidean for m = 61, 89, 109, 113, 137. This leaves only the m ≡ 1 mod 24
undecided. Rédei also claims that D(97) is norm-Euclidean.

1944 Hua [100, 101] shows m < e250, if Q(
√

m ) is norm-Euclidean and m ≡
1 mod 4 is prime.

1945 Hua & Shih [102] gives another proof that D(61) is not norm-Euclidean.
1947 Inkeri [106] shows that the only norm-Euclidean fields with disc K < 5000

are the known ones.
1948 Davenport ([61], published 1951) proves that disc K < 214 = 16384 for

every norm-Euclidean real quadratic number field.
1949 Chatland [33] shows that there are no norm-Euclidean fields whose discrim-

inants lie between 601 and 16 384.
1950 Chatland & Davenport [34], unaware of the results of Inkeri, show that

there are no norm-Euclidean fields with 193 ≤ disc K ≤ 601.
1952 Barnes & Swinnerton-Dyer [5] discover that D(97) is not norm-Euclidean.
We know the following bounds for Euclidean minima of quadratic fields:
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Theorem 4.5. For real quadratic fields K with d = disc K, we have
√

d

16 + 6
√

6
≤ M(K) ≤ 1

4

√
d

The upper bound, due to Minkowski (see Cassels [24]), is easily seen to be best
possible:

Proposition 4.6. Let n be an odd integer, put m = n2 + 1 and R = Z[
√

m]; then
the Euclidean minimum of R is M = n

2 , and this minimum is attained exactly at
the points ξ ≡ 1

2

√
m mod R.

Since m is squarefree for an infinite number of n, and R = D(m) in this case,
the upper bound in Thm. 4.5 is in fact best possible. Heinhold [96], Barnes &
Swinnerton-Dyer [5, 6, 7], and Varnavides [191] have given results of this kind for
a lot of other orders in real quadratic fields.

The lower bound D ≥ 1
128 for the “Davenport constant” D = sup M(K)/

√
d is

due to Davenport himself (cf. [57]). It was improved to D ≥ 1
51 by Cassels [23],

and to the result given in Thm. 4.5 by Ennola [73].
The minima Mi(K), i ≥ 1, have been investigated thoroughly for many quadratic

number fields; we cite a few examples that show some of the phenomena that can
occur (cf. Davenport [53, 54, 55] for more examples):

Proposition 4.7. Let K = Q(
√

5 ); then ω = 1
2 (1 +

√
5 ) is the fundamental unit

of K, and we have M(K) = 1
4 . There is an infinite sequence of isolated minima

Mi(K) given by

Mi+1(K) =
F6i−2 + F6i−4

4(F6i−1 + F6i−3 − 2)
for all i ≥ 1, where Fi is the i-th number in the Fibonacci sequence defined by
F0 = F1 = 1, Fn+1 = Fn + Fn−1. The sequence of minima begins with M1 =
1
4 ,M2 = 1

5 ,M3 = 19
121 , . . ., and we have M∞(K) = lim Mi(K) = 1

4ω .

The sets Ci(K) = {x ∈ K : M(x) = Mi(K)}, where the minima are attained,
are C1 = {(0, 1

2 ), ( 1
2 , 0)}, C2 = {(0,± 1

5 ), (0,± 2
5 )}, and, generally

Ck =
{

ξ ∈ K : ξ ≡ ω6i−3 + 1
2(ω6i−2 − 1)

ε mod OK , ε a unit
}

.

As Varnavides [188] has shown, Q(
√

2) has similar properties; in general, how-
ever, the results are much more complicated (Inkeri [108]):

Proposition 4.8. Let K = Q(
√

13 ); then M1(K) = 1
3 ,M2(K) = 4

13 , and

C1 =
{ (

±1
6
,
1
6

)
,

(
±1

6
− 1

6
ηk,±1

6
+

1
6
√

13
ηk

) }
,

where k ∈ N and η = 1
2

(
−3 +

√
13

)
, and

C2 =
{ (

0,± 2
13

)
,

(
0,± 3

13

) }
.

The minimum M1(K) is not attained.

Barnes & Swinnerton-Dyer [5] have generalized Prop. 4.8 to all fields Q(
√

m)
with m = (2n + 1)2 + 4, n ≥ 1. They also computed an infinite sequence of
minima for m = 13 and noticed that this sequence continues even beyond the limit
M∞ = limk→∞Mk. On the other hand we know (cf. Godwin [83]):
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Proposition 4.9. Let K = Q(
√

23 ); then the first minimum M1(K) = 77
46 is

attained and isolated, whereas M2(K) = 1
46

(
20
√

23− 31
)

is not isolated.

It is easy to see that the points

xk =
1
2

+
(

1
2
− 2

23
+

2
23

ε−k

)√
23, k ∈ N0,

have an attained minimum µ = 1
46

(
20
√

23− 31
)
. Moreover, it is obvious that the

xk converge to x = 1
2 +

(
1
2 −

2
23

)√
23, and that M(x) = M1(K) = 77

46 . Godwin has
shown that x is (up to conjugation and translation mod OK) the only point such
that M(x) > µ, and that each xk is the limit of a series xk,i of (rational) points in
K such that µ = lim M(xk,i); since the M(xk,i) are rational and M is not, M2(K)
is not isolated. It seems likely that the xk generate C2, which would imply that M2

is attained.
The same thing happens for Q(

√
69 ) (see [30]):

Proposition 4.10. In K = Q(
√

69 ), we have

M1 = 25
23 , C1 =

{
± 4

23

√
69

}
,

M2 = 1
1058

(
3795− 345

√
69

)
, C2 =

{
(±Pk,±P ′

k)
}
,

where

Pk =
1
2
ε−k +

(
4
23

+
1

2
√

69
ε−k

)√
69, P ′

k =
1
2
ε−k −

(
4
23

+
1

2
√

69
ε−k

)√
69.

Here ε = 1
2

(
25 + 3

√
69

)
is the fundamental unit in Q(

√
69 ), and the points

Pk, P
′

k have the limits ± 4
23

√
69 in C1. The minimum M1(K) = M1(K) is isolated,

but M2(K) = M2(K) is not.2 In fact, the series of points Pn = − 3
2 −

15
46

√
69+ 1

εn−1

have minima that converge to M2(K) from below.
The first example of a quadratic number field with an infinite set C2 such that

C1 is the set of accumulation points of C2 is also due to Godwin [82]: in Q(
√

73 ),
M2(K) is isolated, and C2 consists of irrational points converging to rational points
of C1; in particular, M2(K) < M2(K)!

The Euclidean and inhomogeneous minima Mi(K) of real quadratic fields K
may or may not have the following properties:

Ai : Mi(K) is attained;
Fi : Ci(K) is finite;
Ei : Mi(K) = Mi(K);
Ii : Mi(K) is isolated;

APi : Ii holds, and Ci(K) is the set of accumulation points of Ci+1(K);

we know that Fi ⇒ Ai, and that F2 ⇒ ¬APi. Moreover, E1 is true, and we
conjecture that I1 always holds.

The following combinations are known to occur:

2In the original version of this manuscript I falsely claimed that M2(K) < M2(K).
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m A1 F1 AP1 A2 F2 I2 AP2 E2

5 x x no x x x no x
7 x x no x x x x? x

13 no no no x x x no x
23 x x x x? no no − x
69 x x x x no x ? no

Here “x” means, that D(m) has the corresponding property, while “x?” denotes
a conjecture. This leaves, of course, a lot of questions unanswered:

• is there a D(m) such that F2 and AP1 are simultaneously false?
• is there a D(m) such that F2 holds, but I2 does not?
• etc.

It should be remarked that in K = Q(
√

69 ), the weighted norm fp,c (with
p = (23,

√
69 )) and large enough c (c ≥ 49 is sufficient) has an irrational Euclidean

minimum M1(OK , fp,c) = 1
23 (−600 + 75

√
69 ) = 0.9998604... (see [30]).

The known examples of 2-stage norm-Euclidean rings D(m) are

m = 14, 22, 23, 31, 38, 43, 46, 47, 53, 59, 61, 62,
67, 69, 71, 77, 89, 93, 97, 101, 109, 113, 129, 133,

137, 149, 157, 161, 173, 177, 181, 193, 197, 201, 213, 253.

The following observation concerning Euclidean windows can be proved easily
using ideals of small norm:

Proposition 4.11. Let K = Q(
√

14 ) and define a weighted norm f in K by
f(p) = c, where p = (2,

√
14) is the unique prime ideal above (2). If f is a Euclidean

function on D(14), then necessarily 5 < c2 < 7, i.e., w(p) ⊆ (
√

5,
√

7).

This shows again that D(14) is not norm-Euclidean, because the absolute value
of the norm coincides with fp,2, and c = 2 lies outside the Euclidean window of p.
It is tempting to try the value c =

√
6; Nagata [151, 153] conjectured that this value

makes fp,c into a Euclidean function on Z[
√

14] and did some computations which
support this conjecture. Bedocchi [8] has studied a function that – although not
even being multiplicative – does not differ much from fp,

√
6. So far it has not been

possible to prove that the Euclidean window of p is non-empty using the method of
Clark that succeeds for D(69); even a modification of this idea due to R. Schroeppel
and G. Niklasch does not seem to work (see also Hainke’s thesis [88]). Cardon [22]
shows that Z[

√
14, 1

2 ] is Euclidean with respect to the absolute value of the S-norm,
and Harper [89] showed that Z[

√
14, 1

p ] is Euclidean for each prime p ∈ N. In his
thesis [89], Harper succeeded in proving that Z[

√
14 ] is actually Euclidean.

Euclidean minima of real quadratic number fields have been computed by Hein-
hold [96], Davenport [53, 54, 55], Varnavides [187, 188, 189, 191], Bambah [3, 4],
Inkeri [108], Barnes & Swinnerton-Dyer [5, 6, 7], Godwin [83], Bedocchi [9], and
Lemmermeyer [116]; the table at the end of our survey gives the minima for all
m ≤ 102.

5. Cubic Number Fields

5.1. Complex Cubic Number Fields. It was Davenport [58] who first could
prove that there are only finitely many norm-Euclidean complex cubic number
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fields; the best lower bound for M(K) so far has been obtained by Cassels [23]
(also, cf. van der Linden [138, 139, 140, 141], who notes that this bound does not
seem to be best possible):

Proposition 5.1. If K is a complex cubic number field with d = |disc K|, then
√

d

420
≤ M(K) ≤ d2/3

16 3
√

2
.

In particular, d < 170 520 if K is norm-Euclidean.

The upper bound is due to Swinnerton-Dyer (for fields with |d| ≤ 1236, Prop.
5.1 has been proved by direct computation), who also showed that the exponent
2/3 and the constant 16 3

√
2 cannot be improved. Note that we cannot define a

Davenport constant since we do not know if the exponent 1/2 in the lower bound
is best possible or not; it seems that no one has yet dared to conjecture that this
exponent can be improved to 2/3.

Already in 1848 Wantzel [194] claimed that the cubic field with discriminant
−23 is norm-Euclidean. The next result concerning the Euclidean algorithm in
complex cubic fields was obtained more than a hundred years later by Prasad [165],
who showed M(K) = 1

5 for the cubic field with disc K = −23. In 1967, Godwin
[85] showed that the fields with −23 ≥ disc K ≥ −152 are norm-Euclidean, and
E. Taylor [183, 184] found all norm-Euclidean fields with 0 > disc K > −680. The
pure cubic number fields wich are norm-Euclidean were determined by Cioffari [37]:
there are only three, namely Q( 3

√
m) with m = 2, 3, 10. See the tables at the end

of this survey for known results on Euclidean minima of cubic fields.
In the tables below, let E denote the number of fields in a given interval which

are norm-Euclidean; the number of those which are not norm-Euclidean will be
denoted by N.

Table 1.

disc K E N Σ
0 < d ≤ 200 18 1 19

200 < d ≤ 400 15 9 24
400 < d ≤ 600 16 10 26
600 < d ≤ 800 7 20 27
800 < d ≤ 1000 2 29 31

1000 < d ≤ 1200 0 29 29
1200 < d ≤ 1400 0 35 35
1400 < d ≤ 1600 0 27 27

Σ 58 160 218

It is surprising that all cubic fields with 0 > disc K > −500 have an attained
Euclidean minimum M1(K) with finite C1(K); this has to be seen in contrast to
the situation for quadratic fields, where already Q(

√
13 ) and Q(

√
29 ) have infinite

C1(K) and minima M1(K) which are not attained.
As in the quadratic case it is possible to compute the Euclidean minima of an

infinite sequence of fields:
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Proposition 5.2. Let K be the number field defined by the real root α of f(x) =
x3+2ax−1 (where a ≥ 1) and let R = Z[α]. Then M(K) = M(K) = 1

2 (a2−a+1),
and this minimum is attained exactly at ξ ≡ 1

2 (1 + α + α2) mod R.

This result is due to Swinnerton-Dyer [182] for sufficiently large a ≥ 1; Lemmer-
meyer [116] observed that it is valid for all a ≥ 1. This sequence incidentally shows
that the upper bound in Prop. 5.1 is best possible. Similar results for sufficiently
large a are known for other families of cubic number fields (cf. Swinnerton-Dyer
[182]).

Computer calculations have led to the following
Conjecture. There are exactly 58 norm-Euclidean complex cubic fields, and their
discriminants are −23, −31, −44, −59, −76, −83, −87, −104, −107, −108, −116,
−135, −139, −140, −152, −172, −175, −200, −204, −211, −212, −216, −231,
−239, −243, −244, −247, −255, −268, −300, −324, −356, −379, −411, −419,
−424, −431, −440, −451, −460, −472, −484, −492, −499, −503, −515, −516,
−519, −543, −628, −652, −687, −696, −728, −744, −771, −815, −876.

The idea of Clark [39] has been used to show that the complex cubic fields with
discriminants −199,−327, −351 and −367 are Euclidean with respect to weighted
norms.

Let K be the field generated by a root α of the polynomial x3 + 3x2 + 6x + 1,
and let f = fp,c be the weighted norm for the prime ideal p = (11, α − 1). The
Euclidean minimum M1(K) of OK with respect to f is not known for all values
c ∈ w(p), but it can be shown that Mf (K) = 187

189 for all c ≥ 189
8 . This minimum is

attained mod OK at the points

P = ± 1
21

(10 + 6α + 6α2),± 1
21

(12 + 3α + 10α2),± 1
21

(15 + 16α + 9α2).

On the other hand, Mf (K) = 11
c for all real c in the interval [11, 189

17 ), and this
minimum is attained at the points P = ±(5 + 2α + 6α2)/11 mod OK .

5.2. Totally Real Cubic Number Fields. Remak [169] proved Minkowski’s con-
jecture for the cubic case, i.e.

Proposition 5.3. M(K) ≤ 1
8

√
disc K for totally real cubic fields.

This implies in particular that the cubic number field with disc K = 49 is norm-
Euclidean. Some minima M(K) have been computed by Davenport [56] (disc K =
49, 81), Clarke [43] (disc K = 148), Samet [171, 172] (for an infinite class of fields
whose discriminants are “big enough”), Smith [179], and Lemmermeyer [116]. Clark
[40] independently has shown some fields to be norm-Euclidean.

5.2.1. Cyclic Fields. Heilbronn [94] proved that the number of norm-Euclidean
cyclic cubic fields is finite, but could give no bound for the discriminants of such
fields. Smith [178] examined the cyclic cubic fields with discriminant < 108 and
found that

• the fields with conductors f = 7, 9, 13, 19, 31, 37, 43, 61, 67 are Euclidean
with respect to the norm;

• the fields with conductors f = 73, 79, 97, 139, 151, and 163 < f < 104 are
not norm-Euclidean.
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Since fields with class number 1 have conductors which are prime powers, this left
only the fields with conductors f = 103, 109, 127, 157 undecided; these were shown
to be Euclidean by Godwin & Smith [86]. In the meantime, Lemmermeyer [116]
had found that there are no norm-Euclidean fields with conductors 104 < f < 5·105.

5.2.2. Non-cyclic Totally Real Fields. Heilbronn [94] has conjectured that there are
infinitely many norm-Euclidean fields of this type. The numerical results obtained
so far are in favour of Heilbronn’s conjecture, and in fact most of the fields with
discriminants disc K < 104 are norm-Euclidean. The following table gives the
number E of totally real cubic fields (cyclic and non-cyclic) that are known to be
norm-Euclidean; since the proportion of non-Euclidean fields seems to be growing,
it is tempting to conjecture that the norm-Euclidean cubic fields have density 0.

Table 2.

disc K E N Σ
0 < d ≤ 1000 26 1 27

1000 < d ≤ 2000 29 5 34
2000 < d ≤ 3000 31 4 35
3000 < d ≤ 4000 36 6 42
4000 < d ≤ 5000 28 7 35
5000 < d ≤ 6000 35 7 42
6000 < d ≤ 7000 30 8 38
7000 < d ≤ 8000 37 10 47
8000 < d ≤ 9000 30 11 41
9000 < d ≤ 10000 29 10 39

10000 < d ≤ 11000 34 9 43
11000 < d ≤ 12000 37 16 53
12000 < d ≤ 13000 31 6 37

Σ 382 94 476

Explicit information on the real cubic fields with disc K < 13, 000 is given at the
end of this article. There you can also find a table with cubic fields that have been
shown to be Euclidean with respect to a weighted norm ([40],[28],[30]).

6. Quartic Number Fields

6.1. Totally Complex Quartic Fields. Davenport [59, 60] and Cassels [23] proved
that the number of norm-Euclidean totally complex quartic fields is finite and gave
a bound for the discriminants of such fields; his computation of the bound, however,
was shown to contain a mistake by van der Linden [140].

Proposition 6.1. If K is a totally complex quartic field and d = disc K, then
M(K) > C ·

√
d for some constant C > 0. The best known C gives disc K <

230 202 117 for Euclidean fields.

There exist slightly better bounds for quadratic extensions of imaginary qua-
dratic fields given by van der Linden ([140], 10.2), who used them to find all totally
complex cyclic quartic fields that are norm-Euclidean:
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Proposition 6.2. The only norm-Euclidean totally complex cyclic quartic fields
are Q(ζ5) and the quartic subfield of Q(ζ13), where ζm denotes a primitive m-th
root of unity.

Let D(m,n) denote the ring of integers in Q(
√

m,
√

n ); the norm-Euclidean rings
D(−m,n), m > 0, have been determined by Lemmermeyer [116]:

Theorem 6.3. The following list of norm-Euclidean rings D(−m,n) with m > 0
is complete:

m = 1, n = 2, 3, 5, 7; m = 3, n = 2, 5,−7,−11, 17,−19;
m = 2, n = −3, 5; m = 7, n = 5.

Eisenstein [72] established the Euclidean algorithm in D(−1, 2) and D(−1, 3)
(these are the rings of integers in Q(ζ8) and Q(ζ12), respectively); other proofs
were given later by Masley [143, 144], and Lakein [114] showed that D(−m,n) is
norm-Euclidean for all the values (m,n) above except (2, 5), (3, 17), (3,−19), and
(7, 5). Sauvageot [173] showed that certain rings D(m,n) are not norm-Euclidean,
for example D(−1, n) with n ≥ 15. The proof of Thm. 6.3 in [119] is an extension
(and correction) of her arguments; surprisingly, it is far less difficult than the proof
of the corresponding result for real quadratic fields.

Proposition 6.4. Suppose that m > 0 is no square and 4th-power free; then
Q( 4
√
−m) is norm-Euclidean if and only if m = 2, 3, 7, 12.

This is largely due to Cioffari [37], who showed that if K is Euclidean then
m = 2, 3, 7, 12, 44, 67, or 2p2 for prime p; moreover he showed that Q( 4

√
−m) is

norm-Euclidean for m = 2, 3, 7.
Apart from Prop. 6.1 – Prop. 6.4, there are only partial results on the Euclidean

nature of complex quartic fields (cf. [116, 119])

Proposition 6.5. Assume that K is a norm-Euclidean complex quartic field;
i) if K contains k = Q(

√
2), then K is one of the fields k(

√
−1), k(

√
−3),

k
(√

−5− 2
√

2
)
;

ii) if K contains a real quadratic number field and 2 is totally ramified in K,
then K = Q(ζ8) = Q(

√
2,
√
−1);

iii) if K contains a real quadratic number field and 2 is the square of a prime
ideal in K, then K is one of the fields Q(ζ12), Q(

√
−3,

√
2), Q(

√
−3,

√
−2),

Q(
√

5,
√
−2);

iv) if K = Q(i,
√

a + bi) with i2 = −1 and a + bi ≡ ±1 + 2i mod 4, then
a + bi = ±1 + 2i,±3 + 2i,±5 + 2i,±1 + 6i,±7 + 2i.

All the fields given above are norm-Euclidean.

Best upper bounds on M(K) seem to depend on the existence of a quadratic
subfield of K; Davenport & Swinnerton-Dyer [62] found

Theorem 6.6. Suppose that K is a totally complex quartic field which does not
contain a real quadratic subfield. Then M(K) < C · d3/4.

They also claimed that the exponent 3/4 is best possible. For fields K that
have real quadratic subfields, the best possible bound on M(K) is 1

32

√
d, as can be

deduced from
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Proposition 6.7. Let n ≥ 1 be odd, and put m = n2 + 1; then the order R =
Z[i,

√
m, 1

2 (
√

m +
√
−m)] has Euclidean minimum M = m

4 , and M is attained
exactly at the points congruent to 1

2 (1 + i +
√

m) mod OK . If m is squarefree, we
find R = OK , disc K = (8m)2, and M(K) = M(K) = 1

32

√
d.

I do not know a family of totally complex quartic fields such that M(K) is
asymptotically equal to C · d3/4.

6.2. Quartic Fields with Unit Rank 2. Thanks to computations of R. Quême
[166] we know quite a few examples of norm-Euclidean fields; on the other hand,
negative results are quite rare:

Proposition 6.8. There are only finitely many norm-Euclidean fields Q( 4
√

m ).

Egami [70] proved (5.8) for all m 6= 2p2 using estimates from analytic num-
ber theory; Lemmermeyer [116] gave an elementary proof using the technique of
Behrbohm & Redei [10] and showed that in fact

m = 2, 3, 5, 7, 12, 13, 20, 28, 52, 61, 116, 436,

if Q( 4
√

m ) is norm-Euclidean. It should not be too hard to complete the classifi-
cation of norm-Euclidean pure quartic fields. The fields with m = 2, 5, 12 and 20
are meanwhile known to be norm-Euclidean, and those with m = 7, 28, 52 and 436
are not. This leaves the open cases m = 3, 13, 61 and 116.

The following theorem is due to Davenport & Swinnerton-Dyer, who also claim
that the exponent 2/3 is best possible:

Theorem 6.9. M(K) < C · |d|2/3 for quartic fields with unit rank 2.

Many quartic fields with mixed signature that are known to be Euclidean have
been found by Lenstra [120, 124] using the method described in Sect. 9 below; in
his dissertation, G. Kacerovsky [111] contributed the five quadratic extensions of
Q(
√

2) with smallest discriminants. Finally Quême (1997) used a computer to find
lots of new Euclidean fields of this type.

6.3. Totally Real Quartic Fields. Almost no negative results are known; using
the method of Heilbronn [95], Egami [71] has shown that there are some classes of
cyclic fields which are not norm-Euclidean. A few more examples can be found in
Clark’s thesis [38], for example the bicyclic field Q(

√
14,

√
22 ).

The norm-Euclidean real quartic fields were found by Godwin [84], Kacerovsky
[111], Cohn & Deutsch [45], Lemmermeyer [116], Niklasch & Quême [157], and R.
Quême [166].

7. Quintic Number Fields

Most norm-Euclidean quintic fields before 1997 have been found with Lenstra’s
method (see Section 9); exceptions are the fields discovered by Godwin [84] and
Schroeppel [175].

R. Quême has shown that the following quintic fields are Euclidean: the 92
fields with one real prime and discriminants 0 > disc K ≥ −37532 except possibly
disc K = −18463,−24671; 146 fields with three real primes and discriminants 0 <
disc K ≤ 17232 except possible the field with disc K = 16129; and the 25 totally
real fields with 0 < disc K ≤ 161121.



20 FRANZ LEMMERMEYER

8. Cyclotomic Fields

It is known that the rings Z[ζm] (m 6≡ 2 mod 4) have class number 1 if and only
if
m = 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20,

21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84;

among these rings, the following are known to be norm-Euclidean:3

m = 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 20, 24,

and Lenstra [121] has shown that K = Q(ζ32) is not norm-Euclidean; his proof
actually shows that M(K) ≥ 97

64 . There are only a few Euclidean minima known so
far:

m 1 3 4 8 12
M(K) 1

2
1
3

1
2

1
2

1
4

If we define Λ(K) = min{Na : a is an integral ideal 6= (0), OK}, then we have
M(K) = Λ(K)−1 in all these cases (of course we always have M(K) ≥ Λ(K)−1).

A masterful exposition of the interesting history of the Euclidean algorithm in
cyclotomic fields can be found in Lenstra [128]; the names of the many mathemati-
cians involved are displayed in the following table:

(K : Q) m

1 1 Euclid (ca. 300 B.C.)
2 3 Gauss, Wantzel (1847, 1848)

4 Gauss (1832), Dirichlet (1844)
4 5 Kummer (1844), Cauchy [27], Ouspensky [161],

Branchini [18], Chella [35], Landau [115], Lenstra (1975)
8 Eisenstein (1850), Cauchy [27], Chella (1924),

Lakein (1972), Masley (1975), Lenstra (1975)
12 Eisenstein (1850), Cauchy [27], Chella (1924),

Lakein (1972), Masley (1975), Lenstra (1975)
6 7 Kummer (1844), Cauchy [27], Chella (1924), Lenstra (1975)

9 Cauchy [27], Chella (1924), Lenstra (1975)
8 15 Cauchy [27], Lenstra (1975)

16 Ojala (1977)
20 Lenstra (1975)
24 Lenstra (1978)

10 11 Lenstra (1975)
12 13 McKenzie [110]

Kummer conjectured (in a letter to Kronecker) that the fields Q(ζp), p = 17,
19 are also Euclidean, but this has not been verified so far. For more details on
Euclid’s algorithm in cyclotomic number fields, see Akhtar [2] and Philibert [163].

It was known for a long time that only a finite number of complex subfields of
cyclotomic fields have class number 1, and recently they have been determined (K.
Yamamura, The determination of the imaginary abelian number fields with class

3Thanks to Julien Houriet for notifying me of the fact that m = 21 somehow had crept into

this list.
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number one; Math. Comp. 62 (1994), 899–921); there are exactly 172 such fields.
The Euclidean fields among them are known for (K : Q) = 2, 4.

9. Exceptional Sequences

In 1974, Lenstra discovered that a modification of an idea originally due to
Hurwitz [103, 104, 105] yields a new method to find Euclidean number fields K of
high degree (5 ≤ (K : Q) ≤ 10): he called a sequence ω1, ω2, . . . , ωm an exceptional
sequence of length m in K if the differences ωi − ωj , i 6= j, are units in OK .

Let r (resp. 2s) denote the number of real (resp. non-real) embeddings of K in
C, and let d = |disc K|. Then Lenstra was able to prove

Theorem 9.1. There exist constants αr,s > 0 with the following property: if K

contains an exceptional sequence of length m > αr,s

√
d, then K is norm-Euclidean.

Lenstra showed that the “Minkowski bounds”

αr,s =
n!
nn

(
4
π

)s

, π = 3.14159 . . . , n = (k : Q) = r + 2s,

were good enough to find many new Euclidean fields, and that, for most of the
values r, s, the bounds of Rogers are even better. For totally real fields, the αr,s

given by Lenstra have been sharpened by Niklasch & Quême [157].
For a given number field K, the length of exceptional sequences is bounded: if

ω1, ω2, . . . , ωm is an exceptional sequence of maximal length in K, then λ(K) = m is
called Lenstra’s constant. If Λ(K) denotes the minimal norm of an integral ideal 6=
(0), (1) in OK , then it is easily seen that λ(K) ≤ Λ(K). Note the analogy M(K) ≥
Λ(K)−1; computations have confirmed that both inequalities tend to be equalities
for fields with very small discriminants. Moreover, we know the values of λ(K) and
Λ(K) for cyclotomic fields K = Q(ζp) of prime conductor: the decomposition law
for abelian extensions of Q shows that Λ(K) = p. Lenstra [120, 124] found that in
fact λ(K) = Λ(K):

Proposition 9.2. Let p be prime, ζ = ζp a primitive p-th root of unity, and
K = Q(ζ). Then the sequence

ωj =
ζj − 1
ζ − 1

, 1 ≤ j ≤ p,

shows that λ(K) = Λ(K) = p.

The analogous question for the maximal real subfields k = Q(ζ + ζ−1) of Q(ζ)
is not yet completely settled: here Λ(k) = p unless p ≥ 5 is a Fermat prime
(p = 22n

+ 1), where Λ(k) = p− 1. Lenstra [124] could show that λ(k) ≥ p+1
2 , and

Leutbecher & Niklasch [137] improved this to λ(k) ≥ p − 1. For all p ≤ 17 it is
known that λ(k) = Λ(k), but the general case is still open.

Similar questions can be asked for ray class fields of prime conductor over imag-
inary quadratic number fields; Mestre [146] used elliptic curves to construct excep-
tional sequences for such fields, but it is not known how far from best possible his
bounds are.

Exceptional sequences were studied by Lenstra [120, 124], Leutbecher & Martinet
[135, 136] (these two articles contain several open problems), Leutbecher [132, 133],
Niklasch [154], Leutbecher & Niklasch [137], and Niklasch & Quême [157].
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Even sequences where many (not all) differences are units can be used to show
that a given number field is norm-Euclidean; see e.g. Leutbecher & Niklasch [137]
or Leutbecher [134].

Lenstra’s theorem was generalized by Lemmermeyer [116]: call ω1, ω2, . . . , ωm a
k-exceptional sequence of length m if ωi − ωj is a nonzero element of the Motzkin
set Ek for all 1 ≤ i < j ≤ m. Then the following theorem gives a device to discover
k-stage norm-Euclidean number fields:

Proposition 9.3. If K contains a k-exceptional sequence of length m ≥ αr,s

√
d,

for the same constants αr,s as in Thm. 9.1, then K is k-stage norm-Euclidean.

As a corollary of Prop. 9.3, we conclude that every Euclidean number field is also
k-stage norm-Euclidean for a suitable k ≥ 1: choose any sequence ω1, ω2, . . . , ωm

in OK such that m ≥ αr,s

√
d; since R = OK is Euclidean, we have R = E∞(R) by

Motzkin. Therefore, the ωi − ωj , 1 ≤ i < j ≤ m, are non-zero elements of Ek for
some k ≥ 1, and R is k-stage Euclidean with respect to the norm.

It is not known whether k-exceptional sequences are always finite for k ≥ 3.
Another generalization of Thm. 9.1 is due to Blöhmer [14]; he considered se-

quences ω1, ω2, . . . , ωm in OK such that the N(ωi−ωj) are ±1 or prime and showed
that OK is principal if m ≥ αr,s

√
d.

10. Gauss’s Measure Function

Let K be a number field; in order to prove that |NK/Q| is a Euclidean function
on OK it is sufficient to find a function F : K −→ R such that

a) |NK/Q(α)| ≤ F (α) for all α ∈ K;
b) for all ξ ∈ K, there is a γ ∈ OK such that F (ξ − γ) < 1.

Define MK(α) = 1
n

∑
|σ(α)|2, where n = (K : Q) is the degree of K, and where

the sum is over all n embeddings σ : K −→ R. Except for the factor 1
n , this

function was introduced by Gauss. It was then used by Lenstra [121], Ojala [158]
and McKenzie [110] to find Euclidean cyclotomic fields. This function M has the
following properties:

Proposition 10.1. Let K ⊆ L be number fields, and put n = (K : Q). Then
(1) |NK/Q(α)| ≤ MK(α)n/2;
(2) ML(α)−ML(α− β) = MK

(
1

(L:K)TrL/K(α)
)
−MK

(
1

(L:K)TrL/K(α)− β
)

for all α ∈ L, β ∈ K.
(3) If L = K(ζm), then (L : K)ML(α) = 1

m

∑m
j=1MK

(
TrL/K(αζj

m)
)
.

These slight generalizations of results of Lenstra [121] can be found in [116]. If
we put

FK = {ξ ∈ K : M(ξ) ≤M(ξ − γ) for all γ ∈ OK}
and c(K) = sup{MK(ξ) : ξ ∈ FK}, then for every ξ ∈ K there is a γ ∈ OK such
that M(ξ − γ) ≤ c(K). Thus K is norm-Euclidean if c(K) < 1; sometimes even
c(K) = 1 is sufficient. Call c′ ∈ R a usable bound if c′ ≥ c(K), and if for all ξ ∈ FK

such that M(ξ) = c′ there exists a root of unity ζ ∈ OK and a γ ∈ OK such that
M(ξ − γ) = M(ξ − γ − ζ) = c′. In particular, every c′ > c(K) is a usable bound.

Proposition 10.2. If c′ is a usable bound for K, then K is norm-Euclidean.

The central result is
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Theorem 10.3. Let ζm be a primitive mth root of unity, and L = K(ζm). Then
c(L) ≤ (L : K)c(K), and if c′ is a usable bound, then so is (L : K)c′.

It is an easy exercise to show that c(Q) = 1
4 , and that c(Q) is a usable bound.

This implies at once that Q(ζm) is norm-Euclidean for m = 3, 4, 5, 8, 12. Lenstra
[121] determined the exact value of c(K) for cyclotomic fields of prime conductor:

Proposition 10.4. For K = Q(ζp), p an odd prime, c(K) = p+1
12 is a usable bound.

Thus Q(ζm) is norm-Euclidean for m = 7, 11 (directly) and for m = 9, 15, 20 (by
using the subfields Q(ζ3) and Q(ζ4)).

Since c(K) = M(K) for imaginary quadratic number fields, only Q(
√
−3 ) and

Q(
√
−4 ) have c(K) ≤ 1

2 ; by an elementary argument (related to Dirichlet’s result
4.2) one can compute c(K) for real quadratic fields:

Proposition 10.5. Let K = Q(
√

m ) be a real quadratic number field (m is assumed
to be squarefree). Then

c(K) =

{
1+m

4 , if m ≡ 2, 3 mod 4
(1+m)2

16m , if m ≡ 1 mod 4

Thus c(K) = 9
20 for K = Q(

√
5 ), hence the fields Q(

√
5,
√
−1 ), Q(

√
5,
√
−3 )

and Q(
√

5 ) are norm-Euclidean.
We also know c(K) for certain families of biquadratic number fields:

Proposition 10.6. Let m,n ∈ Z be squarefree and put K = Q(
√

m,
√

n ); then

c(K) =

{
1+|m|

4

(
1 + 1+|m|

4|m| |n|
)

if OK = Z[
√

m,
√

n, 1
2 (
√

n +
√

mn)],
(1+|m|)2

16|m| (1 + |n|) if OK = Z[ 12 (1 +
√

m),
√

n, 1
2 (
√

n +
√

mn)],

and these bounds are usable.

This leaves the case OK = Z[ 12 (1 +
√

m), 1
2 (1 +

√
n), 1

4 (1 +
√

m)(1 +
√

n)] open;

it is easy to see that c(K) ≤ (1+|m|)2
16|m|

(
1 + |n|

4

)
, and this implies that Q(

√
−3,

√
5 )

and Q(
√
−3,

√
−7 ) are norm-Euclidean.

Our last result on usable bounds is

Proposition 10.7. Let µ = a + b
√
−3 be a prime in Z[ζ3], where a is odd and

a + b ≡ 1 mod 4. Put p = a2 + 3b2 and K = Q(
√

a + b
√
−3 ); then c(K) ≤

1
12 (4 +

√
p ).

The best possible bound is not known here, but this result is good enough to
show that µ = −1 + 2

√
−3, 3 + 2

√
−3, 5, −5 + 2

√
−3, −7, −3 + 4

√
−3, 7− 2

√
−3

yield norm-Euclidean fields.
We conjecture that there are only finitely many number fields with bounded

c(K).
E. Bayer-Fluckiger recently introduced the concept of thin fields; thin fields are

necessarily norm-Euclidean, but much more rare.

11. Number Fields of Degree ≥ 6

Most of the norm-Euclidean number fields of degree ≥ 6 have been found with
Lenstra’s method; exceptions are some cyclotomic fields (cf. Sect. 8), those found
by R. Quême [166], and the field Q(ζ32+ζ−1

32 ) that was shown to be norm-Euclidean
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by J.-P. Cerri [31, 32] in 1997. The discriminants and generating polynomials for the
other fields can be found in the papers of Lenstra, Leutbecher, Martinet, Mestre,
Niklasch, and Quême cited in Sect. 9. Recently, Julien Houriet (not yet published)
found three norm-Euclidean fields of degree 10, 11 and 12 with r + s = 6 among a
list of fields computed by Denis Simon.

We conclude our survey with the now traditional

Table 3. Table of all known norm-Euclidean number fields (No-
vember 1997)

r+s
n 1 2 3 4 5 6 7 8 9 10 11 12 Σ
1 1 5 6
2 16 58 118 192
3 382 681 92 28 1183
4 257 146 37 39 45 524
5 25 12 26 65 92 50 270
6 7 4 5 2 1 1 2 22
7 0 0 0 0 0 0 0
8 1 0 0 0 0 1
Σ 1 21 440 1056 263 84 70 115 94 51 1 2 2198

Similar tables can be found in Lenstra [124], Leutbecher [132], Leutbecher &
Niklasch [137].

Moreover, the fields in Table 4 are known to be Euclidean with respect to a
weighted norm (Clark [40], Niklasch [155], Cavallar & Lemmermeyer [30]):

As we have mentioned in Sect. 3, Clark has found a lot of totally real cubic and
quartic number fields which are Euclidean with respect to functions different from
the norm, for example the quartic field Q(

√
14,

√
22 ) (see Clark & Murty [42]).
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Table 4.

disc K M1(K) M2(K) Np w(p)

−367 1 9/13 13 (13, 279/8)
−351 1 9/11 11 (11,∞)
−327 101/99 < 0.9 11 (101/9,∞)
−199 1 < 0.47 7 (7,∞)

985 1 5/11 5 (5,∞)
1345 7/5 < 0.4 5 (7,∞)
1825 7/5 < 0.5 5 (7,∞)
1929 1 3/7 7 (7,∞)
1937 1 5/9 3 (3,∞)
2777 5/3 17/19 3 ∅
2836 7/4 7/8 2 (7,∞)
2857 8/5 < 0.5 5 (8,∞)
3305 13/9 37/45 3 (

√
13, 5)

3889 13/7 1 7 (13,∞)
4193 7/5 < 0.65 5 (7,∞)
4345 7/5 11/13 5 (7,∞)
4360 41/35 7/10 7 (41/5,∞)
5089 17/11 7/11 11 (17,∞)
5281 1 < 0.6 5 (5,∞)
5297 21/11 23/33 11 (21,∞)
5329 9/8 63/73 23 (9, 73)
5369 21/19 17/19 19 (21,∞)
5521 23/7 8/7 7 (23,∞)
7273 973/601 729/601 601 (973,∞)
7465 1 < 0.8 5 (5,∞)
7481 1 < 0.7 5 (5,∞)
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12. Tables

The following table gives the minima M1(K) for all real quadratic number fields
Q(
√

m ), m ≤ 102:

m M1 m M1 m M1

5 1/4 2 1/2 47 253/94
13 1/3 3 1/2 51 287/102
17 1/2 6 3/4 55 9/4
21 5/7 7 9/14 58 3/2
29 4/5 10 3/2 59 125/59
33 29/44 11 19/22 62 13/4
37 3/4 14 5/4 66 15/4
41 23/32 15 3/2 67 341/162
53 9/7 19 170/171 70 891/500
57 14/19 22 27/22 71 7393/3479
61 1611/1525 23 77/46 74 5/2
65 1 26 5/2 78 7/2
69 25/23 30 3/2 79 585/158
73 1541/2136 31 45/31 82 9/2
77 19/11 34 9/4 83 631/166
85 16/9 35 5/2 86 10030/5203
89 1004287/1000004 38 11/4 87 169/58
93 44/31 39 5/2 91 5/2
97 33679354/31404817 42 7/4 94 4708623/2143294

101 5/4 43 11829/6962 95 7/2
46 79877/48668 102 19/4

To the best of my knowledge, there are no minima known for fields beyond this
limit, except for some sequences of fields like Q(

√
m ), m = n2±r, r|4 etc. (compare

3.3).
This is what we know about minima for the 2-stage algorithm:

m M2(K) B1 B2 = B∞ Eucl. depth
6 1/4 ∅ ∅ 1

10 1 {(0, 1
2 )} {(0, 1

2 )} 1
14 1/4 {( 1

2 , 1
2 )} ∅ 2

15 1 ? {( 1
2 , 1

2 )} 2
26 1 ? {(0, 1

2 )} 2
30 3/2 ? {(0, 1

2 )} 2
34 1 ? {(± 1

3 ,± 1
3 )} 2

35 7/5 ? {(0,± 2
5 ), ( 1

2 , 1
2 )} 2

39 5/2 ? {( 1
2 , 1

2 )} 2
65 1 {( 1

4 ,± 1
4 )} {( 1

4 ,± 1
4 )} 1

85 1 ? {(± 1
6 ,± 1

6 )} 2

Only the classes mod OK of the sets B1 and B2 = B∞ are given.
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The table below gives the known Euclidean minima for complex cubic number
fields with |disc K| ≤ 971:

dK M1(K) M2(K) dK M1(K) M2(K)
−23 E 1/5 ≥ 1/7 −116 E 1/2
−31 E 1/3 < 1/4 −135 E 3/5
−44 E 1/2 1/4 −139 E 1/2
−59 E 1/2 1/4 −140 E 1/2
−76 E 1/2 1/3 −152 E 1/2
−83 E 1/2 −172 E 3/4
−87 E 1/3 −175 E 3/5
−104 E 1/2 −199 N 1 < 0.47
−107 E 1/2 −200 E 1/2
−108 E 1/2 1/3 −204 E 61/116

−211 E 59/106 −283 H 3/2
−212 E 5/8 −300 E 23/30
−216 E 1/2 −307 N 9/8 3/4
−231 E 7/9 −324 E 23/36 7/11
−239 E 8/9 −327 N 101/99
−243 E 11/18 −331 H 3/2
−244 E 1/2 −335 N 1
−247 E 5/7 −339 N 9/8 1
−255 E 13/15 −351 N 1 9/11
−268 E 13/22 ≥ 6/11 −356 E 7/8

−364 N 9/8 −451 E 41/48
−367 N 1 9/13 −459 N 9/8
−379 E 397/648 ≥ 11/18 −460 E 43/50 23/30
−411 E 17/22 ≥ 8/11 −472 E 46/61
−419 E 4/5 −484 E 59/76
−424 E 19/27 ≥ 53/76 −491 H 2 ≥ 1
−431 E 43/64 −492 E 25/32
−436 N 79/78 −499 E 23/27
−439 N 17/15 ≥ 1 −503 E ≥ 307/544
−440 E 737/1090 −515 E 4/5 ≥ 11/14

−516 E 36/53 −628 E 625/664
−519 E 44712/45747 −643 H 25/16
−524 N 5/4 −648 H 5/4
−527 N 13/7 −652 E 21/23
−543 E ≥ 158664/170633 −655 N 40/23
−547 N 9/8 −671 N 25/19
−563 H 2 −675 N 9/8
−567 N 25/17 ≥ 19/17 −676 H 7/4
−588 H 5/2 −679 N 9/8
−620 N 13/8 5/4 −680 N (∗)
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dK M(K) dK M(K)
−687 E 937/945 −751 H 25/9
−695 N 25/13 −755 N 1
−696 E 186/199 −756 N 306/293
−707 N 271/270 −759 N 11/8
−716 N 121/109 −771 E 223/252
−728 E (§) −780 N 499/498
−731 H 2 −804 N ≥ 2771/2568
−743 N 1 −808 N ≥ 2031/1964
−744 E 992/999 −812 N 44/31
−748 N 62/51 −815 E 24543/25325

−823 N 37/25 −891 H 7/2
−835 N 110353/106265 −907 N ≥ 113/108
−839 N 25/17 −908 N 227/91
−843 N 134/131 −931 H 7/2
−856 N ≥ 454951/428544 −932 N 68425/56788
−863 N 29/11 −940 N 407/358
−867 N 1115/1028 −948 N ≥ 2120/1959
−876 E 353/372 −959 N 19/7
−883 N 49/47 −964 N ≥ 132/127
−888 N 2715/2602 −971 N 829/778

−972 N 5/4 −1036 N 133/101
−972 N 179/162 −1048 N 617/488
−980 H 7/4 −1055 N ≥ 1483/1370
−983 N 31/11 −1059 N 2381/1854
−984 N ≥ 22367/21296 −1067 N ≥ 160/121
−996 N ≥ 6713/5646 −1068 N ≥ 1499/1350
−999 N ≥ 294557/272112 −1075 N 777/680
−1004 N 3167/2298 −1080 N ≥ 10253/1000
−1007 N 41/23 −1083 H 3/2
−1011 N 271/207 −1087 N 15/8

−1096 N ≥ 207/199 −1176 H 4/3
−1099 H 47/26 −1187 N 11/8
−1107 H 2 −1188 N ≥ 22319/14072
−1108 N ≥ 4995/4384 −1191 N 11/9
−1135 N 5115/4033 −1192 H 265/168
−1144 N 4867/3222 −1196 N 197/94
−1147 N 136/99 −1203 N ≥ 4775/4608
−1164 N ≥ 1064/918 −1207 N 13/9
−1172 N 572/443 −1208 N 845/656
−1175 N 37/13 −1219 N ≥ 709/622
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dK M(K) dK M(K)
−1228 H 7/2 −1291 N 196/139
−1228 H 9/2 −1292 N 98/53
−1228 H 9/2 −1295 N 11/7
−1231 N 15/8 −1300 N 1381/978
−1235 N 283/169 −1315 N 249/157
−1236 N ≥ 5017/4246 −1316 N 931/601
−1255 H ≥ 8/5 −1319 N 49/17
−1259 N 13/8 −1323 H 5/2
−1267 N ≥ 1503/1048 −1327 N 56/31
−1272 N ≥ 16648/15987 −1336 N 967/844

−1347 N 47441858/35095129 −1399 H 37/9
−1351 N 81/43 −1407 N 15/8
−1355 N ≥ 95/79 −1419 N 1903/1406
−1356 H 7/4 −1420 N 1193/561
−1356 H 9/4 −1423 H 25/7
−1356 H 5/3 −1427 N 41236/26029
−1363 N 892/663 −1431 N 119/59
−1371 H 9/2 −1432 N ≥ 46751/33530
−1383 N 227/131 −1439 N ≥ 51777/550016
−1388 N 10711/5780 −1448 N 9395/6268

−1452 N 3425/1947 −1563 H 9/2
−1464 N ≥ 98048/93807 −1567 N 311/171
−1480 N ≥ 5801/3930 −1572 H 7/4
−1484 N ≥ 14503/10874 −1579 N 1197/824
−1491 N ≥ 17053/12018 −1580 N 223/109
−1512 N ≥ 49952/32217 −1583 N 1049/337
−1515 N ≥ 24182/17025 −1588 H 345/172
−1539 N 15906827/11384640 −1599 N 13/8
−1547 N 250/149 −1603 N 812/513
−1559 N ≥ 150079/137093 −1607 N

In this table as well as in those below, E means that the corresponding field is
Euclidean (more exactly: that M(K) < 0.999), N indicates that it is not norm-
Euclidean although it has class number 1, and H that the field has class number
> 1. Instead of upper bounds on M(K) we have sometimes given lower bounds,
especially in those cases where we conjecture them to be exact without being able
to prove this. The table is ordered in the same way as those at Bordeaux (i.e. for
fields with the same discriminants, such as −972 or −1228).
(*) The Euclidean minimum M(K) for the field with disc K = −680 is

M(K) =
81956632
81182612

.
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It is attained at the points

P1 =
1

828394
(152556− 267595α− 332013α2),

P2 =
1

828394
(−273732 + 188225α + 300357α2),

P3 =
1

828394
(−374312 + 21305α + 407143α2).

(§) The Euclidean minimum M(K) for the field with disc K = −728 is

M(K) =
7483645229
8158377554

.
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Euclidean minima of totally real cubic number fields

dK M(K) dK M(K) dK M(K)
49 E 1/7 469 E 1/2 788 E 1/2
81 E 1/3 473 E 1/3 837 E 1/2

148 E 1/2 564 E 1/2 892 E 1/2
169 E 5/13 568 E 1/2 940 E 1/2
229 E 1/2 621 E 1/2 961 E 16/31
257 E 1/3 697 E 13/31 985 N 1
316 E 1/2 733 E 1/2 993 E 31/63
321 E 1/3 756 E 1/2 1016 E 1/2
361 E 8/19 761 E 1/3 1076 E 1/2
404 E 1/2 785 E 3/5 1101 E 1/2

1129 E 1/3 1425 E 13/15 1708 E 1/2
1229 E 16/29 1436 E 1/2 1765 E 13/20
1257 E 9/25 1489 E 29/43 1772 E 1/2
1300 E 7/10 1492 E 1/2 1825 N 7/5
1304 E 1/2 1509 E 1/2 1849 E 22/43
1345 N 7/5 1524 E 1/2 1901 E 1/2
1369 E 31/37 1556 E 3/4 1929 N 1
1373 E 1/2 1573 E 19/22 1937 N 1
1384 E 11/16 1593 E < 0.36 1940 E 1/2
1396 E 1/2 1620 E 1/2 1944 E 1/2

1957 H 2 2241 E 3/5 2636 E 1/2
2021 E 1/2 2292 E 1/2 2673 E 64/81
2024 E 1/2 2296 E 1/2 2677 E 139/224
2057 E 9/11 2300 E 27/40 2700 E 83/120
2089 E 1/2 2349 E 11/18 2708 E 1/2
2101 E 1/2 2429 E 1/2 2713 E < 0.5
2177 E < 0.39 2505 E 5/9 2777 H 5/3
2213 E 1/2 2557 E 1/2 2804 E 1/2
2228 E 1/2 2589 E 9/16 2808 E 1/2
2233 E 56/121 2597 H 5/2 2836 N 7/4

2857 N 8/5 3137 E < 0.59 3325 E
2917 E 8/13 3144 E 1/2 3356 E
2920 E 13/20 3173 E < 0.59 3368 E
2941 E 1/2 3221 E 1/2 3496 E
2981 E 1/2 3229 E 1/2 3508 E
2993 E < 0.49 3252 E 3540 E
3021 E 1/2 3261 E 3569 E
3028 E 1/2 3281 E 3576 E
3124 E 1/2 3305 N 13/9 3580 E
3132 E 1/2 3316 E 3592 E
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dK M(K) dK M(K) dK M(K)
3596 E 3892 E 4104 E < 0.55
3604 E 3941 E 4193 N 7/5
3624 E 3957 E 4212 H 7/2
3721 E 121/183 3969 H 7/3 4281 E < 0.7
3732 E 3969 H 1 4312 N 11/4
3736 E 3973 E 1/2 4344 E < 0.7
3753 E 3981 H 3/2 4345 N 7/5
3873 E 3988 N 19/8 4360 N 41/35
3877 E 4001 E 7/9 4364 E
3889 N 13/7 4065 E 3/5 4409 E

4481 E 4729 N 149/73 4860 E
4489 E 53/67 4749 E 4892 E
4493 E 4764 E 17/24 4933 E
4596 E 4765 E 5073 E
4597 E 4825 E 5081 E
4628 E 4841 E 5089 N 17/11
4641 E 4844 E 5172 E
4649 E 4852 E 5204 E
4684 N 13/8 4853 E 5261 E
4692 E < 0.7 4857 E 5281 N 1

5297 N 21/11 5468 E 5629 E
5300 E 5477 E 5637 E
5325 E 5497 E 5684 N 9/2
5329 N 9/8 5521 N 23/7 5685 E
5333 E 5529 E 5697 E
5353 E 5556 E 5724 E
5356 E 5613 E 5741 E
5368 E 5620 E 5780 E
5369 N 21/19 5621 E 5821 E
5373 E 5624 E 5853 E

5901 E 6153 E 6420 E
5912 E 6184 E 6452 N 5/4
5925 E 6185 N 17/15 6453 E
5940 E 6209 E 6508 E
5980 E 6237 E 6549 E
6053 E 6241 N 223/79 6556 E
6088 E 6268 E 6557 E
6092 E 6289 N 1 6584 E
6108 E 6396 E 6588 E
6133 E 6401 N 35/27 6601 E
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dK M(K) dK M(K) dK M(K)
6616 E 6901 E 7220 H 9/4
6637 E 6940 E 7224 E
6669 E 6997 E 7244 E
6681 E 7028 E 7249 E
6685 E 7032 E 7273 N 973/601
6728 E 7053 H 2 7388 E
6809 H 7/3 7057 E 7404 E
6856 E 7084 E 7425 E
6868 N 5/4 7117 E 7441 E
6885 N 67/40 7148 E 7444 E

7453 E 7601 E 7745 N 7/5
7464 E 7628 E 7753 E
7465 N 1 7636 E 7796 E
7473 E < 0.89 7641 E 7816 E
7481 N 1 7665 E 21/25 7825 E
7528 N 17/14 7668 E 7873 N 29/13
7537 N 227/91 7673 E 7881 E
7540 E 7700 E 7892 E
7572 E 7709 E 7925 E
7573 N 41/32 7721 E 7948 E

8017 E 8281 H 9/7 8532 E
8057 E 8285 E 8545 E
8069 H 9/2 8289 E 8556 E
8092 E 8308 N 67/50 8572 N 17/16
8113 N 13/7 8372 E 8597 E 4/5
8173 E 8373 E 8628 E
8220 E 8396 E 8637 E
8276 E 8468 H 5/3 8680 E
8277 E 8472 E 8692 N 11/10
8281 H 23/16 8505 E 8713 E

8745 E 8920 E 9217 N 17/11
8761 E 9044 E 9281 E
8769 E 9045 E 9293 E
8789 N 23/12 9073 N 7/5 9300 E
8828 E 9076 E 9301 H 2
8829 N 3/2 9133 E 9325 N 13/8
8837 E 9149 E 9364 E
8884 E 9153 E 9409 N 337/97
8905 N 8/5 9192 E 9413 E
8909 E 9204 E 9428 E
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dK M(K) dK M(K) dK M(K)
9460 E 9812 E 10004 E
9517 E 9813 E 10040 E
9565 E ≥ 4/5 9833 E 10069 E
9612 E 9836 E 10077 E
9653 N 35/12 9869 E 10164 N 27/22
9676 E 9897 E 10172 E
9745 N 67/23 9905 N 9/5 10200 E
9749 E 9937 E 10216 N 7/4
9800 H 9/5 9980 E 10233 E
9805 E 9996 H 4/3 10260 E

10261 N 11/7 10540 E 10721 E
10273 H 27/7 10552 E 10733 E
10292 E 9/10 10561 N 11/7 10740 E
10301 E 10580 E 10812 E
10309 H 11/2 10609 E 10844 E
10324 E 10636 E 10865 E
10333 N 1 10641 E 10868 E
10353 E 10661 E 10889 H 13/5
10457 N 27/25 10664 E 10904 E
10484 E 10712 E 10929 E

10941 E 11085 E 11316 E
10949 E 11092 E 11321 E
10997 E 11097 N 11/9 11324 H 3/2
11013 E 11109 E 11348 H 9/4
11020 E 11124 N 5/4 11380 E
11028 E 11137 E 11401 N 167/151
11032 E 11188 N 5/4 11417 H 11/3
11045 E 11197 H 31/8 11421 N 49/36
11057 E 11289 E 11448 E
11060 E 11293 E 11476 E

11505 E 11697 E 11853 E
11545 E 11705 N 213/193 11880 E
11576 E 11757 E 11881 E
11608 E 11772 E 11884 E
11637 N 5/4 11777 N 27/17 11885 E
11641 E 11789 E 11965 N 23/8
11656 N 11/8 11821 N 23/16 12001 E
11665 E 11829 E 12065 N 1
11672 E 11848 E 12081 N 152/149
11688 E 11849 N 19/9 12092 E
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12140 E < 0.85 12325 E 12657 E < 0.9
12177 E 12333 E 12660 N 23/18
12188 E 12401 E < 0.75 12664 E
12197 N 3/2 12409 E < 0.9 12685 E
12216 E < 0.95 12436 E 12700 E 37/40
12248 E 12441 E 781/837 12724 E < 0.95
12269 E 12552 E < 0.9 12744 E < 0.8
12284 E 12577 N 49/19 12765 E 23/20
12309 E 12632 E 12788 E
12317 N 25/22 12652 E 12821 E < 0.97
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Euclidean minima of totally complex quartic number fields

dK M(K) dK M(K) dK M(K)
117 E ≥ 1/7 333 E 592 E
125 E ≥ 1/5 392 E 605 E
144 E 1/4 400 E 5/16 656 E 1/2
189 E ≥ 1/3 432 E 657 E
225 E 1/4 441 E 4/9 697 E
229 E 512 E 1/2 761 E
256 E 1/2 513 E 784 E 1/2
257 E 549 E 788 E
272 E 1/4 576 E 832 E
320 E 1/2 576 E 837 E

873 E 1076 E 1229 E
892 E 1088 E 1257 E
981 E 1088 E 1264 E
985 E 1089 E 1280 N 5/4

1008 E 1129 E 1372 E
1008 E 1161 E 1384 E
1016 E 1168 E 1396 E
1025 E 1197 E 1413 E
1040 E 1197 E 1421 E
1040 E 1225 E 9/16 1424 E

1436 N 1600 E 11/16 1825 E
1489 E 1616 E 1856 E
1492 E 1629 E 1872 H
1509 E 1728 E 1929 E
1521 H 1 1737 E 1936 N 5/4
1525 E 1765 E 1937 E
1552 E 1805 N 1940 E
1556 E 1808 E 1953 E
1568 E 1809 E 1953 E
1593 E 1813 E 2021 E

2048 E 2169 E 2312 E
2048 N 2192 E 2320 E
2057 E 2197 E 2320
2061 E 2213 2349
2089 2256 E 2368 E
2112 E 2272 E 2429 E
2112 2292 E 2448 H
2133 E 2296 E 2457 H
2156 2304 H 2457 H
2156 E 2304 H 5/2 2493
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dK M(K) dK M(K) dK M(K)
2560 N 5/4 2709 2889 H
2560 N 5/4 2725 E 2917
2597 2736 2920
2597 E 2736 E 2925 H
2601 E 13/16 2744 2960
2624 2781 E 2960
2673 E 2817 2981
2677 2836 E 3024 E
2704 N 2873 3024 H
2709 2880 H 3025 H

3028 3221 E 3429
3033 E 3229 3528 H
3072 3249 E ≥ 7/9 3573
3072 3261 3600 H
3088 N 3305 3600 H
3136 H 9/8 3316 E 3600 H
3136 3328 3624
3136 3357 3625 H
3141 E 3368 E 3636 H
3173 E 3392 E ≥ 50/53 3648

3648 3773 4001
3681 3789 4032
3700 H 3856 4032
3725 N 3877 4077
3728 N 3889 4112
3732 3897 H 4113
3753 3904 N 4212
3753 3973 4221
3757 E 3988 4221
3760 3993 4225 H
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Euclidean minima of quartic number fields of mixed signature

dK M(K) dK M(K) dK M(K)
−275 E −688 E −1192 E
−283 E −731 E −1255 E
−331 E −751 E −1323 E
−400 E −775 E −1328 E
−448 E −848 E −1371 E
−475 E −976 E −1375 E
−491 E −1024 E −1399 E
−507 E −1099 E −1423 E
−563 E −1107 E −1424 E
−643 E −1156 E −1456 E

−1472 E −1823 E −2000 E
−1472 E −1856 E −2048 E
−1475 E −1879 E −2051 E
−1588 E −1927 E −2068 E
−1600 E −1931 E −2092 E
−1728 E −1963 E −2096 E
−1732 E −1968 E −2116 E
−1775 E −1975 E −2151 E
−1791 E −1984 E −2183 E
−1792 E −1984 E −2191 E

−2219 E −2480 E −2764 E
−2243 E −2488 E −2767 E
−2284 E −2563 E −2787 E
−2312 E −2608 E −2816 E
−2319 E −2619 E −2824 E
−2327 E −2687 E −2843 E
−2375 E −2696 E −2859 E
−2412 E −2704 E −2911 E
−2443 E −2736 E −2943 E
−2475 E −2763 E −3008 E

−3052 E −3284 E −3475 E
−3119 E −3303 E −3504 E
−3163 E −3312 E −3544 E
−3175 E −3312 E −3559 E
−3188 E −3376 E −3571 E
−3216 E −3407 E −3600 E
−3223 E −3411 E −3632 E
−3267 E −3424 E −3723 E
−3271 E −3431 E −3747 E
−3275 E −3436 E −3751 E
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dK M(K) dK M(K) dK M(K)
−3775 E −3951 E −4152 E
−3776 E −3967 E −4192 E
−3776 E −3984 E −4204 E
−3816 E −4027 E −4275 E
−3875 E −4027 E −4287 E
−3887 E −4032 E −4319 E
−3888 E −4063 E −4384 E
−3891 E −4103 E −4400 E
−3899 E −4107 E −4423 E
−3919 E −4108 E −4432 E

−4475 E −4615 E −4775 E
−4491 E −4648 E −4780 E
−4492 E −4652 E −4799 E
−4503 E −4663 E −4832 E
−4544 E −4671 E −4864 E
−4564 N −4675 E −4907 E
−4568 E −4703 E −4944 E
−4595 E −4744 E −4975 E
−4608 E −4748 E −4979 E
−4608 E −4752 E −4999 E

−5036 E −5348 E −5552 E
−5056 E −5371 E −5568 E
−5184 E −5424 E −5591 E
−5224 E −5431 E −5595 E
−5231 E −5432 E −5616 E
−5243 E −5448 E −5616 E
−5260 E −5476 E −5636 E
−5275 E −5488 N ≥ 9/7 −5644 E
−5323 E −5491 E −5675 E
−5343 E −5548 E −5732 N

−5748 E −5987 E −6331 E
−5755 E −6043 −6336 E
−5792 E −6064 E −6336 E
−5816 E −6071 E −6343 E
−5867 E −6075 E −6371 E
−5887 E −6079 E −6387 E
−5888 E −6091 E −6399 E
−5932 E −6199 E −6411 E
−5963 E −6275 E −6444 E
−5975 E −6283 E −6480
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dK M(K) dK M(K) dK M(K)
−6484 E −6656 E −6775 E
−6507 E −6664 E −6791 E
−6571 E −6687 E −6800 E
−6571 E −6691 E −6848 E
−6571 E −6700 E −6848 H
−6591 E −6724 E −6863 E
−6592 E −6739 E −6880 E
−6603 E −6763 E −6883 E
−6604 E −6768 E −6883 E
−6611 E −6768 E −6883

−6896 E −6987 E −7344 E
−6912 −7087 −7351 E
−6912 E −7088 E −7375 E
−6924 E −7155 E −7407 E
−6928 E −7199 E −7412 E
−6928 E −7259 E −7463 E
−6939 E −7267 E −7472 E
−6967 E −7331 E −7492 E
−6975 E −7335 E −7528 E
−6976 E −7344 E −7532 E

−7571 E −7732 E −7948 E
−7600 E −7744 E −7952 E
−7616 E −7771 E −7971 E
−7616 E −7775 E −7975 H
−7652 E −7779 E −7975 H
−7668 E −7803 E −7988 E
−7692 E −7864 E −8000 E
−7699 E −7912 E −8048 E
−7703 E −7936 E −8108 E
−7715 E −7947 E −8112 E

−8123 −8207 E −8492
−8127 E −8208 E −8571 E
−8128 E −8236 E −8579 E
−8131 E −8248 E −8587 E
−8152 E −8256 E −8591 E
−8172 −8275 E −8619 E
−8180 E −8287 E −8619 E
−8183 −8303 E −8624 E
−8196 E −8375 H −8640 E
−8203 E −8392 E −8640 E
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dK M(K) dK M(K) dK M(K)
−8640 E −8752 E −8912 E
−8667 −8752 E −8960 E
−8672 E −8752 E −8972 E
−8676 E −8763 E −8975 E
−8684 E −8787 E −9004 E
−8707 E −8856 E −9008 E
−8712 E −8867 E −9008 E
−8712 E −8875 E −9012 E
−8724 E −8896 −9015 E
−8739 E −8896 E −9019 E

−9028 E −9187 E −9408 E
−9036 E −9216 −9408 E
−9059 E −9247 −9423 E
−9071 E −9248 −9452 E
−9099 E −9251 E −9463 E
−9127 −9260 E −9475 E
−9136 E −9356 E −9484 E
−9136 E −9364 −9488 E
−9155 E −9384 E −9491 E
−9163 −9395 E −9519 E

−9527 E −9728 E −9896 E
−9531 E −9747 E −9899 E
−9583 E −9748 E −9972
−9612 E −9751 E −10048 E
−9663 E −9783 E −10059 E
−9664 E −9823 E −10064 E
−9667 E −9843 E −10079
−9680 E −9875 E −10091
−9687 E −9887 E −10120 E
−9704 E −9888 E −10152 E

−10156 E −10288 E −10476 E
−10160 E −10288 E −10531
−10163 E −10296 E −10559 E
−10187 −10339 E −10611 E
−10192 E −10348 E −10640 E
−10224 E −10355 −10688
−10224 E −10367 E −10691 E
−10247 E −10404 E −10704 E
−10252 E −10475 H −10719 E
−10287 E −10475 E −10720 E
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dK M(K) dK M(K) dK M(K)
−10732 E −10832 E −11003 E
−10735 E −10859 −11043 E
−10751 E −10895 E −11052 E
−10771 E −10912 E −11112 E
−10775 E −10951 E −11127 E
−10796 E −10960 E −11155 E
−10800 H −10975 H −11163 E
−10800 E −10975 E −11200 E
−10816 E −11003 E −11200 H
−10816 E −11003 E −11252 E

−11275 E −11440 E −11627
−11275 E −11448 E −11675
−11279 E −11500 H −11731 E
−11280 −11552 E −11812 E
−11300 E −11568 −11823 E
−11403 −11588 E −11843 E
−11404 E −11596 E −11884 E
−11407 E −11600 H −11907
−11408 E −11600 H −11943 E
−11419 E −11607 E −11944 E

−11948 E
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Euclidean minima of real quartic number fields

dK M(K) dK M(K) dK M(K)
725 E 2777 E 5125 E

1125 E 3600 E 5225 E
1600 E 3981 E 5725 E
1957 E 4205 E 5744 E
2000 E 4225 E 6125 E
2048 E 4352 E 6224 E
2225 E 4400 E 6809 E
2304 E 4525 E 7053 E
2525 E 4752 E 7056 E
2624 E 4913 E 7168 E

7225 E 8525 E 10025 E
7232 E 8725 E 10273 E
7488 E 8768 E 10304 E
7537 E 8789 E 10309 E
7600 E 8957 E 10512 E
7625 E 9225 E 10816 E
8000 E 9248 E 10889 E
8069 E 9301 E 11025 E
8112 E 9792 E 11197 E
8468 E 9909 E 11324 E

11344 E 13068 E 14013 E
11348 E 13448 E 14197 E
11525 E 13525 E 14272 E
11661 E 13625 E 14336 E
12197 E 13676 E 14400 E
12357 E 13725 14656 E
12400 E 13768 E 14725 E
12544 E 13824 E 15125
12725 E 13888 E 15188 E
13025 E 13968 E 15317 E

15529 E 17069 E 18496 E
15952 E 17417 E 18625 E
16225 E 17424 E 18688 E
16317 E 17428 E 18736 E
16357 E 17600 E 19025 E
16400 17609 E 19225 E
16448 E 17725 19429 E
16448 E 17989 E 19525 E
16609 E 18097 E 19600 E
16997 E 18432 19664 E
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dK M(K) dK M(K) dK M(K)
19773 E 21208 E 22221 E
19796 E 21308 E 22545 E
19821 E 21312 E 22592 E
20032 E 21469 E 22676 E
20225 E 21568 E 22784 E
20308 E 21725 E 22896 E
20808 E 21737 E 23252 E
21025 H 21801 E 23297 E
21056 E 21964 E 23301 E
21200 E 22000 23377 E

23525 24525 E 25808 E
23552 E 24749 E 25857 E
23600 E 24832 E 25893 E
23665 E 24917 E 25961 E
23724 E 25088 E 26032 E
24197 E 25225 E 26125 E
24336 25488 E 26176 E
24400 E 25492 E 26224 E
24417 E 25525 E 26225
24437 E 25717 E 26525 E

26541 E 27792 E 29248 E
26569 E 28025 E 29268 E
26825 E 28224 E 29813 E
26873 E 28224 E 29952 E
27004 E 28400 30056 E
27225 E 28473 E 30056 E
27329 E 28669 E 30125
27472 E 28677 E 30273 E
27648 E 28749 E 30400 E
27725 29237 E 30512 E

30544 E 31808 E 33344 E
30725 E 32081 E 33424 E
30776 E 32225 33428 E
30972 E 32368 E 33452 E
30976 E 32448 E 33489 E
31225 E 32625 33525 E
31288 E 32737 E 33625
31532 E 32821 E 33709 E
31600 E 32832 E 33725
31744 E 33097 E 33813 E
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dK M(K) dK M(K) dK M(K)
33844 E 35152 36416 E
34025 E 35225 36517 E
34196 E 35312 E 36677 E
34225 E 35392 E 36761 E
34704 E 35401 E 36928 E
34816 35537 E 37108 E
34868 E 35537 E 37229 E
35013 E 35537 E 37349 E
35125 E 35856 E 37485 E
35136 E 36025 E 37485 E

37489 E 39528 E
37525
37773 E
37885 E
37952
38000
38225
38720 E
38725
38864
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