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The Euclidean Condition in Pure

Cubic and Complex Quartic Fields

By Vincent G. Cioffari

Abstract. In this paper we prove that a field Q( \Jd) is euclidean with respect to the

ordinary norm if and only if d = 2, 3 or 10. We also prove that certain fields of the

4 /-
form Q(\J — d),d > 0, are or are not euclidean.

The purpose of this research is to determine which pure cubic fields are euclidean

with respect to the ordinary norm, and partially to determine the same for fields QA$J—d),

d>0. More precisely, a field is said to be euclidean for the ordinary norm (just euclidean,

for short) if its ringof integers/? has the following property:

Va, b GR      3p, r E R s.t. a = pb + r,     \N(r)\ < W(b)\.

We prove the following:

Theorem A.   Q($Jd) is euclidean if and only if d = 2,3 or 10.

Theorem B.   If d = 2,3 or 1, then Q(\\fird) " euclidean.   If d i= 12, 44,

67 or the preceding values, and if neither d nor 2d is a perfect square, then Q(\V~ d)

is not euclidean, d > 0.

Pure Cubic  Fields

By a pure cubic field we mean a cubic field of the form Q(\ß), d £ Z.   Any

such field has one real embedding and a pair of conjugate complex embeddings and,

hence, has one fundamental unit and negative discriminant.   The three fields proven

to be euclidean are the pure cubics of smallest discriminant (in absolute value).

Cassels [1] proved that a cubic field of negative discriminant D cannot be

euclidean if - D > 4202 = 176,400.   This result reduces our problem to a finite

number of cases, a number which is reduced much further by the necessity of

unique factorization.

Notation.   We consider fields Q(\ß):   d will always be used in this context.

R:   the ring of integers of Q(\Vd),

e:   the fundamental unit of Q(\ß),

D:   the discriminant of Q(\fd),

8:   Iß,
(b):   the ideal bR, for b G Q(\ß),

N(b)   (resp. N(p)): the norm of the element b (resp. of the ideal £),

b(c):   the residue class of b mod c, for b, c G R.
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390 VINCENT G. CIOFFARI

Latin letters refer to field elements and German letters to ideals.   Note:

in a field Q(\ß),

N(a + b3\/d + c3s/d2) = a3 + b3d + c3d2 - 3abcd.

I.   Preliminary Results.

(a)   Class Number.   We determine criteria for a field to have class number

one, a necessary condition for the euclidean property.

The following lemma will be used again later to prove that certain fields are

not euclidean.

Lemma.    Let Kbe a field of odd prime degree q.   Let p be a prime totally

ramified in K, p p 1 iq), and let ip) =    pq denote the prime ideal factorization

of ip).   Let u £ R, the ring of integers of K.   Then u = b mod p, where b is the

unique integer in the set {0, 1, . . . , p - 1} such that bq = Niu) mod p.

Proof.

In this diagram, ax and a2 are the canonical maps; N is the norm map; ^ is

the map which associates to each class in R/p the unique integer mod p which

belongs to that class; \p is the map which sends each element to its »7th power.   All

the maps are multiplicative homomorphisms, and y? and <// are isomorphisms.

To see that the diagram commutes, let u = c mod p , where c £ {0, 1, ... ,

p - 1}.   Then u - c E   p , so by the Eisenstein criterion the characteristic poly-

nomial of u - c is of the form

xq + dq_xxq~ï + ■ ■ ■ +dxx +d0,   p\d,       Vi.

Hence, u satisfies the polynomial

(x - c)q + dq_xix - c)"'1 +---+dxix-c)+ d0,

so 7V(i7) = cq mod p.   Q.E.D.

Proposition 1.    Let K = Qi/i/r), with q an odd prime and r free of qth

powers.   If r is divisible by a prime congruent to 1 mod q, then q\h(K).

This well-known result follows from the lemma. We omit the details of the

proof.

Proposition 2.   Let K be a field of prime degree q with r fundamental units.

If at least r + 2 primes are totally ramified in K, then q\h(K).

Proof. Let ex, . . . , er be the fundamental units. Let px, . . . , pr+2 be

totally ramified primes, and let (p¡) = p? denote their prime ideal factorizations.

If q is totally ramified, let px = q.

Suppose h = 1.   Then    Vz  3/3 £ r s.t. (/>,-) = p¡, and

bq = Pie\n ■ ■ • ekrir,      i=l,...,r + 2,kif £Z.
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THE EUCLIDEAN CONDITION IN PURE CUBIC FIELDS 391

It can be deduced that some »7th power-free rational integer s, divisible by some p¡s

but not by pr+2, is a »7th power in K.   This implies that K = Q(^/s).   We have a

contradiction; hence, h ¥= 1.   It is easily deduced that q\h.   Q.E.D.

There are forty-two fields satisfying Cassels' bound which are not excluded

by these propositions.   Consulting class number lists [2], we find that the following

thirty-one  actually have class number one:   2, 3, 5, 6, 10, 12, 17, 23, 29, 33, 41,

44, 45, 46, 53, 55, 59, 69, 71, 82, 99, 107, 116, 145, 179, 188, 197, 226, 332,

404 and 575.

(b) Standard Form for d.   In view of Proposition 2, we will always assume

d to be of one of the following forms:

(i)   d = p, a prime,

(ii)   d = pxp2, the product of two primes,

(iii)   d = pxp\, px > p2.

Subject to these conditions, no two values of d generate the same field.

(c) Basis and Discriminant.   We state without proof the following well-known

results:

Z-basis of R D

d4±l(9)

d = poxpxp2 l,8,82 -21d2

d=pxp\ l,8,82lp2 -21p\p\

d = ± 1 (9)
1 ± 8 + 82

d=poxpxp2 1,8, --- -3d2

,_„,» i.f.!±if£fa.   -MpI
(d) Decomposition of Primes.    Any prime dividing d is totally ramified.   The

discriminant reveals that (3) = p 3 if d p  ±1 (9) and (3) =  p2 p2 if d = ±1 (9).

All other primes are unramified.   Using Hensel's lemma, if p = 2 (3), then

ip) =   pp\ where Nip) = p and Nip') = p2;if p = I (3), then ip) splits com-

pletely if <i is a cubic residue mod p, and ip) remains prime otherwise.

II.   Proving That Fields Are Not Euclidean.

(a)   Totally Ramified Primes.

Proposition 3.   Let p be a prime totally ramified in a field K of odd prime

degree q, p P 1 (»7).   // there exists a positive integer e < p such that neither e

nor p - e is a norm from R, then K is not euclidean.

Proof.   Since p p   1 iq), there exists a unique c £ {0, 1, . . . , p - 1} such

that cq = e mod p.   Suppose there exists u E R such that   u = c mod  p and

|tV(m)| < N(p) = p.   By the lemma in Section 1, Niu) = cq = e mod p, so either

yV(t7) = e or Niu) = - p + e, and in the latter case, Ni - u) = p - e.   Thus, we

have a contradiction.
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392 VINCENT G. CIOFFARI

Letting b £ R be a generator of   p , it follows that

Vr = c(b),    \N(r)\ > \N(b)\ = p.

Therefore, K is not euclidean.   Q.E.D.

To find a suitable value of e, we must determine which rational primes generate

prime ideals in R; this was done in Section 1(d).

Corollary.   Ifd= 59, 71, 82, 107, 179, 197, 226, 332 or 404, then Q(s/d)

is not euclidean.

Proof.   In the following list, we give values of e which satisfy the hypotheses

of Proposition 3.

d p e p - e

59 59 7 52

71 71 19 52

82 41 13 28

107 107 14 91

179 179 7 172

197 197 39 158

226 113 37 76

332 83 7 76

404 101 28 73

Q.E.D.

Proposition 4.   Let px and p2 be totally ramified in a cubic field K, p, p

1 (3), p2 p  1 (3).   If there exists a positive integer e < pxp2 such that neither

e nor pxp2-e are norms from R, then K is not euclidean.

Proof.   Let (px) =  p3x, (p2) = pf; then R/pxp2 ~ R/p ,   x R/p 2 ~ Z/px

x Z/p2.   The proof then follows from Proposition 3; we omit the details.   Q.E.D.

Corollary.   If d = 23, 29, 33, 41, 46, 69, 116, 145, 188 or 575, then

QA^fd) is not euclidean.

Proof.

d Pi P2 e pxp2 -

23 3 23 13 56

29 3 29 26 61

33 3 11 7 26

41 3 41 19 104

46 2 23 7 39

69 3 23 26 43

116 2 29 21 37

145 5 29 26 119

188 2 47 37 57

575 5 23 37 78

Q.E.D.
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THE EUCLIDEAN CONDITION IN PURE CUBIC FIELDS 393

Proposition 5.   Q($/53) is not euclidean.

Proof.   Let p be the unique ideal of norm 53, and let q be the unique ideal

of norm 2.   Let u £ R be such that u = 1 mod q  and u = — 25 mod  p ; then

Niu) = (- 25)3 = - 10 mod 53.

Suppose \N(u)\ < 106; then Niu) = - 10, 43, - 63 or 96.   But 43 and - 63

are not norms from R, and any element of norm - 10 or 96 is in q.   Hence,

l/V(i/)| > 106.

Let ib) =   qp.   We have proven that a = u mod b implies \N(a)\ > L/v"(»b)| =

106.   Hence, ß(\/53) is not euclidean.   Q.E.D.

(b)   Residue Classes mod 2.   If c? is odd, then {0, 1, 8, 82, 1 + 8, 1 + 02,

(9 + 82, 1 + 0 + 82} is a complete set of residue class representatives mod 2.

Elements congruent to 1,0 or 82 axe of odd norm and other elements are of even

norm.

Proposition 6.    Assume d is in standard form as described in Section lb.

If 2 A d, h = 1 and if there exists a totally ramified odd prime p not equal to d,

then e = 1 (2) (for any choice of e).

Proof.   As before, let (p) = P3.   Since h = I, there exists an element c £ R

such that (c) = p; clearly, c can be chosen so that c3 = pe", where 77 = 0, 1 or

- 1.   Since Q(\/p) =£ Q(\ß), we have 77 =£ 0, and by choice of e we can assume

that n = 1.

Then c3 = pe = e (2).   Since c is of odd norm, c = 1, 8 or 82 (2).   In any

of these cases it follows that e = 1 (2).   Then - e, e~1 and - e_1 are all con-

gruent to 1 mod 2 also.   Q.E.D.

Letting p equal 3 or some prime dividing d, Proposition 6 applies when d =

5, 45, 55 or 99.   Since e = 1 (2), elements generating the same ideal belong to the

same residue class mod 2.   In the proof of Proposition 7, we will express this

relation by saying that the ideal itself belongs to a particular residue class mod 2.

Proposition 7.   Q(y/J), Q(l/45), ß(\/55) and ß(\/99) are not euclidean.

Proof.   Q$/T) and Q&45).

We denote prime factorizations as follows:   (2) =    Pp', Nip) = 2, NiP')

= 4; (3) = q3, (5) = r 3.   In both fields (7) is prime.   Thus, there are six non-

zero proper ideals of norm less than 8:    p , q ,  p',  p2, v  and   qp .   In ß(\/?),

none of these ideals belongs to 8 (2); hence a = 8 (2) implies |yV(a)| > 8, so

ß(\/T) is not euclidean.   In Qi%f45) none of the six ideals belongs to 1 + 8 (2),

so Qi\/45) is not euclidean either.   Q.E.D.

The proofs for ß(\/5T) and ß(\/99) are similar.

Proposition 8.   ß(\/6) is not euclidean.

Proof. The fundamental unit e is 1 - 60 + 302, so e = 1 + 82 (2). Since

R = Z[8], the set {0, 1, 8, 02, 1 + 8, 1 + 02, 0 + 02, 1 + 0 + 82} is a com-

plete set of residue class representatives mod 2.

Every element of norm ±2 is of the form ±(2 - 9)e", n £ Z, and, therefore,

congruent to 8 mod 2.   Every element of norm ±6 is of the form ±0e", n E Z,

and, therefore, congruent to 8 mod 2, also.
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394 VINCENT G. CIOFFARI

Suppose a = 8 + 82 (2).   It is easily shown that yV(íz) = 2 (4), and since

|/V(fl)| ̂  2 or 6 it follows that |/V(a)| > 7V(2) = 8.   Therefore, ß(3/6) is not euclid-

ean.     Q.E.D.

(c)   Use of Absolute Values.   The methods of sections (a) and (b) fail to prove

that Q/ßß) is not euclidean when d = 12, 17 or 44.   For these cases, we use the

following equivalent definition of the euclidean property:

Vx£ß(Vrf)      IpERs.t. |yV(x+p)|<l.

If xx, x2 £ Qi^/d) and x, - x2 £ R, we say that x, = x2 mod R, or that

x, is an R-translate of x2.   Thus, to prove that Qi3\ß) is not euclidean, we must

find a suitable element x and prove that no Ä-translate of x has norm less than 1

in absolute value.   As stated in the following propositions, it is sufficient to test

a finite number of R -translates of x.

Table

d 8 y abc

12 ^Ï2 ^Ï8~ 40 6 7

17 W 1-Ö+Ö2 105 17 is

3,—             - 1 + 8 + 02/2
44 V44-— 230 31 15

Proposition 9.    Let d, 8, <p, a, b and c be as in the table.   Let x £ Q(\ß).

Suppose that

(i)   xe = ±x mod R,

(ii)   3 y = x mod R s. t. |/V(y)| < 1.   777e77 there exists z = r + sd + ttp,

r, s, t E Q, such that

(iii)   z = ±x mod R,

(iv)   \N(z)\ < 1,

(v)   |r| < a, \s\ < b, \t\ < c.

Proof.   We note that {1, 0, <¿>}  is a Z-basis for R.   We give the proof for d

= 12; d = 17 and 44 are similar.

The idea of the proof is to locate z such that .006 < \z\ < 1 and |tV(z)| < 1;

the bounds on the coefficients r, s and t then follow.   We identify any u E R with

its real embedding, and let u  and u" denote the conjugates that send \/ÍT to

VTTco  and \/12iú2,   respectively, where w = (- 1 + y/3i)¡2.

Since |e| > .006, where e is the fundamental unit 1 + 3\/Ï2 - 3^X8", there

exists 77 such that .006 < lye"| < 1.   Let z = ye"; then z = ±y = ±x mod R, by

(i), and |/V(z)| = \N(y)\ < 1.   Since \N(z)\ = \z\ \z'\ \z"\ = \z\ \z'\2 < 1 and \z\ >

.006, it follows that \z'\ < 14.   Therefore, \z ~ z'\ < 15; letting r, s and t be the

coefficients of z with respect to the basis {1, 0, ¡p), we have

re z - z   = \   sjl2s + Î   ^i8> <15,
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THE EUCLIDEAN CONDITION IN PURE CUBIC FIELDS 395

un z ~^\ ijñs+J\ m < 15.

Solving the inequalities shows that \s\ < 6 and \t\ < 7.   Since \z\ < 1, com-

putation shows that \r\ < 40.   Q.E.D.

Proposition 10.    Q(3Jl~2), ß(\/T7) and   ß(\/4T) are not euclidean.

Proof.   Let x be as follows:

d x

2      5        4
12 J + 60+9-*

94       233 19
17 "257  +5Ï40"ÎÔ28^

44 x = 12/c,    c = 5 + 20 + </>

In each case we show by computer that no /?-translate of x, within the

bounds of (v) in Proposition 9, has norm less than 1 in absolute value.   Therefore,

by Proposition 9, no ic-translate of x has norm less than 1 in absolute value.

III.   Proving That Fields Are Euclidean.   We note that a theorem of Godwin

[3] implies that Q(yj2) is euclidean, and E. M. Taylor [4] has recently shown that

Q(\/3) and Q(\/Ï0~) are euclidean.   This section verifies their results.

To prove that Qfy/2), Q(lf3) and Q(\/ÏÔ~) axe euclidean requires the aid of a

computer.   We represent each field R with the correspondence

a:   x + yd + zyj —»■ (x, y, z).

For d = 2 or 3, the ring of integers 7? is then represented by the lattice of points

with rational integer coordinates.   For d = 10, R is generated by the vectors

(1, 0, 0), (0, 1, 0) and (1/3, 1/3, 1/3), and the definitions which follow must be

modified accordingly.

For d = 2 or 3, we define the fundamental cube C to be the set of points

(x, y, z) such that 0 < x, y, z < 1.   By the norm of a point we mean the norm

of the element it represents.   To prove that a field is euclidean, we must show that

every point in C has an R-translate with |tV| < 1.   The obvious difficulty is the in-

finite number of points in C.    Our approach, therefore, is to divide C into suffi-

ciently small cubes, each of which has an R-translate in the region in R3, where

\N\< 1.
Given a set of points SCR3 and £ £ R, we call the set {(x, y, z) + a(£)|

(x, y, z) £ S}  the translate of S by £.   The program first subdivides C into eight

cubes through the planes x, y, z = 1/2.   We then test 1500 Ä-translates of a given

cube C'; if any one of these translates is found to lie entirely in the region |/V| < 1,

then C' is said to be covered.   If C' is not shown to be covered, then C' is in

turn divided into eight cubes.   Each of these eight cubes is tested in the same way;

if any one of 1500 R-translates lies in the region |tV| < 1, the cube is said to be

covered; if it is not covered it is subdivided, and so on.   If we reach a stage where
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396 VINCENT G. CIOFFARI

every cube is covered, we have proven that every point in C has an R-translate with

\N\ < 1; hence the field is euclidean.

The precise number 1500 is of course arbitrary, and based on practicality.   The

following propositions supply sufficient conditions for a cube to be contained in the

region |tV| < 1.

For convenience we perform the following change of variables:   let u = x,

v = \ßy and w = \Jd2z.

Proposition 11.   Let N(u, v, w) = u3 + v3 + w3 - 3uvw.   Let E be a

region in R3 bounded by the planes u = ax, u = a2, v = bx, v = b2, w = cx,

and w = c2; let E lie entirely in one octant in R3.   If \N \ < 1 everywhere on the

one-skeleton of E, then \N \ < 1 everywhere in E.

Proof.   Let S be the intersection of E with any plane parallel to the coordi-

nate planes; as an example suppose that S is parallel to the 77u-plane.   For N(u, v)

to have an extremum in the interior of 5, it is necessary that bN /bu = bN/bv = 0.

Since S lies entirely in one octant, this is only possible when u = v = w ¥= 0, in

which case N  = 0.   Since the same reasoning applies when S is parallel to any

coordinate plane, it follows that \N \ cannot have a maximum in the interior of S.

It follows that the maximum of \Ñ\ on E occurs on the one-skeleton of E.   The

theorem is immediate.   Q.E.D.

Proposition 12.   Let N and E be as in Proposition 11.   Assume that \N \ <

1 on all eight vertices of E, and that the following are all nonnegative:

(ax - b¡c¡) (a2 - bjCj),      i, j = 1,2,

(b, - a,- cj) (b2 - a,- Cj),      i,j= 1,2,

(c, - a,- b¡) (c2 - a,- bj),      i,j =1,2.

Then \N\ < I everywhere on E.

The last set of conditions ensures that, on each segment of the one-skeleton,

the appropriate partial derivative is nonzero so N has no local maxima or minima

on the one-skeleton other   than the vertices.

Thus, we have the following result.

Proposition 13.   Q{\i2), ß(\/3j and QilflO)   are euclidean.

With this result, the proof of Theorem A is complete.

Fields of the Form QiyJ— d),       d > 0

IV.   Proving Fields Qiy/^AI) Are Not Euclidean.   We use the following nota-

tion:    Let K = Q(\J~ d ), where d = sr2, and s and r axe square-free positive inte-

gers, s 9fc 1; let k = Qiyf-l), the unique quadratic subfield of K; let A and B be

the rings of integers of k and K, respectively; let e be the fundamental unit of B.

Chevalley [5] showed that hiK) = 1 only if hik) = 1.   Therefore, we can assume

that x = 2, 3, 7, 11, 19, 43, 67 or 163.   With the added assumption that s^rwe

ensure that different values of d generate different fields K.
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THE EUCLIDEAN CONDITION IN PURE CUBIC FIELDS 397

The list of possible fields of class number one is further narrowed by the fol-

lowing proposition.

Proposition 14.   If there exist three primes in K which ramify in K, then

h(K) ¥= 1.

Proof.   Let  p,, p2, and P3 be primes in k,  p¡ =   v f in K, i = 1, 2, 3;

we can assume that  pj = sf^sA.  Suppose hiK) = 1; let pf = a¡A and   r ,- =

b¡B, where a¡ £ A and b¡ E B, i = 2, 3.   We can choose the 6,'s such that either

b\ = a2 or b\ = a3 or (b2 b3)2 = a2a3; this would imply that K = k(\ß2~), K =

K(\ß^) or K = k(\/a2 a3), respectively-all impossibilities.   Hence h(K) =£ 1.   Q.E.D.

By the proposition, it is possible that h(K) = 1 only if either s = 2 or d =

3, 7, 11, 19, 43, 67, 163, 12, 44, 76, 172, 268 or 652.   While we will not attempt

to determine which of these actually have class number one, we will show that

many cannot be euclidean in any case.

Proposition 15.   If s = 3 (4), and if there exists a prime p < s such that

p = 1 (4) and - d is a quadratic, but not a quartic, residue mod p, then K is not

euclidean.

Proof.   We can assume that h(K) = 1, and, hence, that s is prime; let (s) =

q 4 in K.   Since (- d/p) = 1, we can deduce by quadratic reciprocity that (p/s) = 1.

Since s = 3 (4) it follows that p is a quartic residue mod s also; hence, there exists

b £ Z such that b4 = p (s).

Let u E B, u = b mod q and suppose N(u) < s.   Since N(u) = b4 = p(s)

(see the proof of Lemma 1), it follows that N(u) = p, so there would exist an

ideal p of norm p.   Then there would exist n £ Z such that \J- d  + n E p, so

p\N(V~ d  + n) = d + n4, so n4 = - d(p); but this is impossible, since - d is not

a quartic residue mod p.

Therefore, u = b mod q  implies that N(u) > N(p) = s, so K is not euclidean.

Q.E.D.

Proposition 16.    77ze field K is not euclidean when d = 11, 19, 43, 76,

172 or 268.

Proof.   The values of p that satisfy Proposition 15 are given below.

d p d s p

11 5 76 19 5

19 17 172 43 13

43 17 268 67 29

Q.E.D.
Remark.   Cassels [1] proved that K cannot be euclidean if DKjq > 53002;

hence Q(y/~ 163)  are ß(^/652) are not euclidean.

V.   Proving That Fields Q(y/- d) Are Euclidean.   In this section we prove

that QAV- 2) and QAV~ 7) are euclidean.   The method and notation are analogous

to Section III.

We represent these fields in R4 under the correspondence

o:   w + x8 + yd2 + z8 3 —> (w, x, y, z),
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where 0 = 4J-rd and w, x, y, z E Q.   Focusing on Q(V~ 2), the ring of integers

B is represented by the lattice of points with rational integer coefficients, and the

fundamental four-cube C consists of points such that 0 < w, x, y, z < 1.   The

four-cube C is divided into sixteen four-cubes by the hyperplanes w, x, y, z = 1/2;

if a given four-cube C' has a translate contained in the region Nk/q < 1, then C'

is said to be covered; if it is not shown to be covered, it is subdivided, and so on

as explained in Section III.   The criteria for a four-cube to be contained in the

region Nk/q < 1 are given by the following proposition.

Proposition 17.    Let S be a four-cube bounded by hyperplanes parallel to

the coordinate hyperplanes, and such that the interior   of S does not intersect the

coordinate hyperplanes.   Let Nl(w, x, y, z) = w2 - dy2 + 2dxz and let

N2(w, x, y, z) = —x2 + dz2 + 2wy. If there exists a positive constant X < 1 such

that \Nl | <\A and \N2\ < \/(l -\)/d on all sixteen vertices ofS, then NK/Q < 1

everywhere in S.

Proof.   Partial derivatives show that either Wl nor N2 has local extrema on

the one-skeleton of S, hence on the two-skeleton, the three-skeleton and the entire

four-cube.   Since Nk,q = Nl2 + dN22, the result is immediate.   Q.E.D.

Using Proposition 17, we prove, with the aid of a computer, that Q(fy— 2)

and Q(V~ 7) are euclidean.   We note that Lakein [6] has shown that K is euclidean

when d = 3.   Theorem B summarizes all these results.

Because of the large discriminants it seems highly unlikely that ß(\/- 44)  or

ß(V~ 67) is euclidean.
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