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INTRODUCTION A
—_— o
-
L]
' Many problems in structura] dynamics involve stabilizing the elastic e
1 energy of partlal diffcrential equations such as the Euler-Bernoulli !

beam equation by boundary conditions. Exponential stability is a very
desirable property for such elastic systems. The energy multiplier :
method t1+7~{ei7—{7j‘has been successfully applied by several people to s
establish exponential stability for various PDEs and boundary conditions. ;b

However, it has also been found [2] that for certain boundary conditions &
the energy multiplier method ts not effective in proving the exponential )
stability property. ~ :i‘
A recent theorem of F.L. Huang [4] introduces a frequency domain :\:
method to study such exponential decay problems. In this paper., we P
v
derive estimates of the resolvent operator on the imaginary axis and :g:
apply Huang's theorem to establish an exponential decay result for an 5:,
Euler-Bernoulli beam with rate control of the bending moment only. We ‘
also derive asymptotic limits of eigenfrequencies, which was also done 7.:
earlier by P. Rideau.{8]. Finally, we indicate the realizability of :ﬁ\
these boundary feedback stabilization schemes by fllustrating some :':
mechanical designs of passive damping devices. . - N
i ‘J'
/ N
)
Ny
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68 Chen, et al.

§1. BACKGROUND AND MOTIVATION
‘;~.- 1 2

in this paper, we consider the following uniform Euler-Bernoulli beam
equation with dissipative boundary conditions

. ny, K E) BTy, i (X)) = O, 0 <x <y,
y(0.t) = 0,
v (0.8) =0,
“Ely g (1.0) = -k3y (1.t) | k, € R. (-1
“Ely , (1.t) = K3y, (1.t) . k, € R.

(y(x,0),y,(x,0)) = (yg(x},y,(x}), O0< x<1.

where m denotes the mass density per unit length, EI {s the flexural
rigidity coefficient, and the following variables have engineering ;
meanings: :

y = vertical displacement, y, = velocity

Yy * rotation, vy = angular velocity

xt
-Elyxx = bending moment

-Enyxx = shear

at a point x, at time t.
From now on, when we write equation (1.1.j), for example, we mean
the jth equation in (1.1).
" The above equation and conditions are intended to serve as a simple
mathematical model for the mast control system in NASA's COFS (Control

of Flexible Structures) Program. See Figure 1. A long flexible mast 60
meters in length is clamped at its base on a space shuttle. The mast {s
formed with 54 bays but can be idealized as a continuous uniform beam.

At the very end of the mast, a CMG (control moment gyro) is placed which

can apply bending and torsion rate control to the mast according to

sensor feedback.

Boundary conditions (1.1.2) and (1.1.3) signify that the beam is
clamped, at the left end, x = 0, while boundary conditions (1.1.4) aad -
{1.1.5) at the right end, x = 1, respectively, signify

AL

shear (-Ely ) is proport{onal to velocity (ytl

XXX

bending moment (—EIyxx) is negatively proportional tou angular

velocity (yxt)

Thus the rate feedback laws (1.1.4) and (1.1.5) reflect some basic
features of the CMG mast control system i(n COFS.
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. Euler-Bernoulli Beam Equation 69

CMG

flexible mast

space shuttle

Figure 1 Spacecraft mast control experiment

The elastic energy of vibration, E(t), at time t, for system
(1.1) is given by

-

E(t) = 3 ritmyd(x.t) + EIv2 (x.t))dx.

Note that in (1.1) we have already normalized the beaﬁ leﬁgth to 1.
The qualitative behavior of (1.1) has been studied in an earlier

2
1

A e

>0, k220 in (1.1.4) and

paper [2]. There it is shown that if k 2

N

(1.1.5), respectively, then the energy of vibration of the beam decays
uniformly exponentially:

¢ E(t) < ke ™ 'E(0) (1.2)

t for some K,z > 0 uniformly for all initial conditions (yo(x).y](x)).

Therefore the flexible mast system can be controlled and stabilized.

The proof of the above in (2] was accomplished by the use of energy
multipliers and the construction of a Liapounov functional.
Nevertheless, a major mathematical question remained unresolved in [2]:<.

[Q) 'Does the uniform exponential decay property (1.2) hold under the Accession For

assumption of kf = 0, kg > 02" NTIS GRA&I

DTIC TAB
Unannounced 0
Justification |

This question is of considerable mathematical Interest because the

By

- e e e e -

|
{
feedback scheme using bending moment only is simple and attractive. |
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70 Chen, et al.

For a long time, we have conjectured that the answer to [Q] 1is
affirmative, as asymptotic efgenfrequency estimates obtained in (8] (and
§3) have so suggested: Let A denote the Infinitesimal generator of

the co-senlgroup corresponding to (1.1) with k1 = 0 and kg > 0, and

let ¢ (A) denote the spectrum of A. Then there exists g > 0 such that
Re A€ -8 <O for all X € o(A). (1.3)

Nevertheless, it Is well known ({4] that the following "theorem” is
false.
"Let A generate a Co—semlgroup and

sup{Re AJA € 0(A)} € -8 <0 (1.4)

for some g > 0. Then the Co-semigroup is exponentially stable:

llexp(tA)|} < Me ™® for some M 21, u > 0". (1.5)

Therefore, knowing (1.4) alone is not sufficient to confirm (1.5). This
statement remains false even if we assume additionally that A has a
compact resolvent. '

We have repeatedly tried to refine the energy multiplier technique
used in (2]} to establish (1.5) without much success, no matter how many
different and elaborate multipliers were constructed. There always are
boundary terms which cannot be absorbed by terms in the dissipative
boundary condition.

A recent theorem by F.L. Huang offers an important direct method
for proving exponential stability:

THEOREM 1 (F.L. Huang [4])

Let exp(tA) be a Co*semlgroup in a Hilbert space satisfying
Hexp(tA)]l € By, t 20, for some By > 0. (1.6)

Then exp(tA) 1is exponentially stable i{f and only if

(lwjw € R} C p(A), the resolvent set of A; and (1.7)

B, * sup{j| (10-2)"}jjw € R) < = (1.8)
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are satisfied. a a4
Huang's theorem cffects a frequency domain method to proving
exponential decay properties. As mentioned earlier, the energy .“‘
multiplier method, which corresponds to a time domain method, has not h
I J
been successful for the case kf =0, kg > 0. b
W
Therefore the work is to obtain bounds on the resolvent operator
(lo-A)'l. Here we accomplish this by carrying out a careful analysis :\'
on the eigenfunctions and eigenfrequencies of the operator A. This is -‘
done in §2. iy
Associated with [Q] is the question of the asymptotic distribution r:
pattern of eigenfrequencies, as numerical study in (2] suggests that a 0
“structural damping” phenomenon is present at low frequencies. Does it ’
also appear at high frequencies? This is answered in §3. (We must state :
that the work and numerical verification was done ahead of us by P. .
Rideau in his recent thesis {8]). o4
In §4, we present mechanical designs of devices satisfying damping ‘<
t

boundary conditions (1.1.3) and (1.1.4) to indicate the realizability
of the feedback stabilization scheme using passive dampers,

-Qﬁ-

Notations: We use || || to denote the 22(0.1) norm. We define the

%5

Sobolev space

Ora

k

k
ok s #%(0,1) = (£:[0,1)+R))}i2 s St 1%k <o), ke n

wk(0,1) I*0

Also, we let

x4 }‘r‘n T bt

W3 e W3(0.1) = (f]€ € H2(0,1), £(0) = £'(0) = O}.

The underlying Hilbert space ¥ for the PDE (1.1) is -

P 4
% %%

.

¥ = H300.1) x 22(0.1) = (L. = sLIEN € ()1 % em) g 2 )dxem)

PR

M

‘,l

whose norm square is the elastic energy.
The unbounded linear operator A associated with (1.1) is given by Y
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;
with domain ; Pt

D(A) = ((£.g) € Hhen?|-E1e"(1)=-Kg(1).~EL£" (1) =iGg' (1).£(0)=¢" (0) = C). j !

§2. ESTIMATION OF THE RESOLVENT OPERATOR ON THE IMAGINARY AXIS. . \
EXPONENTIAL _DECAY OF SOLUTIONS. ' o

. Consider the resolvent equation: Given (f.g) € ¥ and X € €, find : o\
{w,.v,}) € D{(A) such that . =

0

aAn) [ - ' anl ] - [f] (2.1) ;
vy '[“giJ4 0 2{1vy "4 , )

This amounts to solving the following boundary value problem for LN

atwlP (x) « 22w, (x) = -(AMf(x)+g(x)]. x € (0.1) )
, (0) = 0 e
w(0) = 0 i (2.2) N
wi(1) - M.(";nx(l) - kif(l) -
wi(1) + akdwy (1) = -k3f (1)

where

ke keEn?, e deEn (2.3)

WA T B

Once w, is found we obtain

A
d ™

valx) = Aw, (x) + f(x) (2.4)

ry &f $J‘ _"n’

-

. To simplify notation, from now on, unless otherwise specifically

mentioned, we set at - 1 in (2.2.1) and write kl’ k2 for ;1' ;2.

g

respectively.
The matn work in this section {s to prove estimate (1.8)., l.e., to
show the existence of some B1 > 0 such that

'45; 4
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stwg i B, 01210 < Birlte 1 B ea flax (e

% b

for all X = jw, « € R and all (f.,g) € H.

LEMMA 2 A'1 exists and is a compact operator on ¥. Furthermore,

o(A) consists entirely of isolated eigenvalues.

2
i Proof: Let X =0 {n (2.2), We see that wo in (2.2) is obtained by -bq'
integrating four times: '.l’
wox) = 7 [F3 04 (2 i yar ar pat e ; .
0 0v0 Yo Yo 177123 .*v
2ral ,¢ at.
< 5[ [ 2eteyraede, - k3er ()] s
z 'ro .fo 17981502 2 > :
B
3 1 )
(-9 w0 s k2 v
[6‘ 2 Uo 1 7y
.AJ
NS
and LN
Al
N
Volx) = f(x). ank
.
-1 4 2 -1 KLY
Thus A exists and maps ¥ inte H (0,1) x H,(0,1). Therefore A '.'__
s
is compact. The rest of the lemma follows from Theorem 6.29 in (6, :r:"
Chapter 3]. 0 RN
» %
Wr
L
LEMMA 3 The resolvent estimate (2.5) holds for X = jw, o € R, -
provided that |A] {s sufficiently large. C
Proof: For simplicity, let us write (w,v) for (w,.v,) when no ]
ambiguities will occur. \::-
Let :'4-
)
A-io-lnz,nxo. \:
. > M
i
-
oy
Y
b
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14 Chen, et al.

We need only consider o = nz > 0. The estimates for « < 0 are

similar. First, we find a particular solution wp(x) of (2.2.1).

1 0% -3 2
wy(x) 8 - 3 [ n73(sinh mix-£) - sin n(x-6)1[4n?0(E) « g(6))dE  (2.6)
[}
Then wp(x) satisfies

w‘(,‘”(x) - v‘wp(x) ~ -[19%1(x) + g(x)]. x € (0,1)
wp(O) =0 (2.7)
wL(O) = 0.

Consider the solution ;(x) of

w ¥ (x) - ntwix) = 0
w(0) = 0
w(0) =0 (2.8)

Wi(1) - toPidw(1) =y By w o)+ inPiGug (1)« KGPO)
w'(1) + 1n%k3w' (1) = hy, h, » -w(1) - ivpzkgwi’(l) - k21 (1)
If we can find ;(x). then the solution w(x) of (2.2) is obtainable:

w(x) = wy(x) + wix). (2.9)

2

But we can solve for w(x) as follows. Since A° = —n4 # 0, we have

w(x) = A% o pelX 4 aeTIX o peITE (2.10)

The coefficients LY € 1< 4, satisfy

A 0

A2 0
M = (2.11)

Ay h

- A, h,

where
—=E - - Bana - S——— ———
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~
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1 1 1 1 : "
n in -1 -in )
1 |(P-1n2kd)e?  -(ande1n2k)el? - (n3e1nPkE)eTT  (1n3-imKd)ed" &3
2r1n’kdre”  (-nP-nPkdrel”  (nPoindidie  (-nPenPiE)en i '_’2;
' (2.12) Ly
.U X! exists for n sufficiently large, then j
- + Al [+] .
. A 0 o
< 2|yt (2.13) <
e o Az h, RS
oo
i Aq h2 oy
E X ¢
E 1
s 2 We now begin the estimation of folw"(x)|2dx. The work below may ':,
£ Y
A NP
" ses tedious, but the idea is rather simple. The main observation is N
4 } ~ Ly
S - tat the dominant terms in wp(x) and w(x) do not satisfy the bounds e,
- e
fl |we(x) ] 2dx < CII U2« e i?)ax »
- - 0 P 0 F:
) Y
- 1 - 2 1 2 2 N
. J' |w*(x)]2%dx s cJ" e (x) 12 + [g(x)]2]dx N
0 0 oo
o
I~ =%
: fer |A| large. However, in (2.9), those dominant terms cancel, '
v-‘. -‘ 3
F- loaving w(x) with smaller terms which are bounded by O(Ji "l + ligl)- RS
g Y
3 -
Y
st Step Estimation of u‘l')(x). -,
N
A
Troa (2.8), oy
— {.
|(‘

e

v’(x)'-é_fx “sinh n(x-¢)+sin n(x-¢)](in?f(¢)+g(¢)]d 2.14)
') on nh n(x-¢)+sin n{x-¢) nf(E)+glé ¢ (2.

LT il

7,

.

X .
.- Ho n'l[sinh n(x-¢)+sin n(x-¢))g(¢)de¢ (integration by parts)

2

4

) ‘\
[} f

3 .

4

X
-4 7! (stnh n(x-e)-sin mix-6) 107 (6)de

.‘.'
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. -
| (%
! --3n fo sinh n(x-¢) (10" (£)+g(€)]1d¢ « O(n [N N+llel) o
i V)
BTSN ) .
- - L e g gy gier 1de 0t LNE NN D) .
W 0 0¥
g )
i ¢ \
: 1 -1 _mxpl -me - A
‘ = - 3 ™ e i (6)+g(6)1de + Ol LI I+ llel )
§ 0 A2
-
. 2nd Step Estimation of h; and h,. | N
' ] _‘.'
," N ;‘ \:;
X ' From (2.8), (2.8) and (2.14), ! :‘:
h, = jl K, (8)[in2f(e)+ge))de + K3e(1) z ¥
. 17 Jg Mn K € 1t »
|} \':,
; v
: where ~$
4o
; "
1 } oy . L2 -1 ey eetn 1 o
Ky (&) = 3[cosh n(1-¢)rcos 7(1-¢)]) - 3kin "[sinh n(1-¢)-sin 7(1-¢)]
4] < )
N
< Integration by -arts twice for f yields + 79
; N
[F Ky, (o1necerde - [} &y oienterde - ke 7
0 1n n 0 1y 1 ' ;‘:.-
t

where

e
c

-~y

o alala

Ryn(€) = 3lcosh n(1-¢)-cos n(1-¢)] - 4 ki !(stnh n(1-¢)+sin n(1-¢)].

. A
.

' We get

I O

[}
A

4

Ryp(6) = jn leTm-1kd)e ™™+ 001,

b

7

Kyp(&) = 7 lemn-1kd)e ™« o).

Y ':x..'l.,'l/

Therefore
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Similarly, from (2.6) and (2.8).

h=1K( in?f(e)egle)]de - K3 (1
2 j‘o 2 O Lin? e (6)v(e) 1de - K31 (1)

Kpy(€) = 307 [sinh 9 (1-¢)esin n(1-¢)] + 3K(cosh n(1-¢)-cos n(1-¢)).

X

>

Iepeating this same integration by parts procedure twice more for f,
< e get

g

Y

3 X ! 2 1y - 2¢,
X J, ¥aqte)in’e(6)ee - [ Kaqte)it 6206 + wire (1).

Kop(€) = fnle7(1e1idm)e™ + 0(1)

Ko (€)= JnleM(1ekdne ™ + 0(1),

» get

_ 1
by = g e (eakEn)f e (1en () egle) lde » OUET ). (2.16)
0

3d Step Estimation of AI'AZ'As and A4.

We first write

where
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¥
K
L\t 1 1 1 1
.; 1 1 -1 -1
¥, - -
U aeude i (endle™  (im-1kd)et
. (1emif)e”  (-1mi)e!”  (1-tnkZ)e™?  (-14mkd)e”iT
"
3
‘.
N So
vy
P A z
s A
X 2 -
Ayl = M1 2
D A -Zh
4 4 m N
1
)
i Further, write
™ ' -
n R S S U ST s a
! -1 -1}= L) e
Y M]T = (det M,) K21 22
" »
:: R o W 7 *
Y My By ' i
) | ¥
” From the evaluation of cofactors, ! .
- ; *,
; p1 = D L-mkd)e ™+ t(emkd)el™ « 101y (1-1miB)e ™), |
" 1z = (=0 LK™ - (mekd)el™ o (1-1) (neikd)e™). l
3 Let l
D 2 i
M T (-1, ¢ (Lemidia, :
i
v = (1+1)n([-2kZne (1+1) (1+k2KkZ) -21k%n T Je 17 ‘
) +(21in+ (1+1) (14k3E) v2k%n "1 1e!T) :
. R
.y + O(n?e™M) ;
: - The term in braces above satisfies '
" I{ } 2 |Bracket 2| - |Bracket 1| '
= 2(1+k33), as n 4w ;
14
,I
o
“
4
K/
¢ ) - W i o TTe—
. M - V—?‘v’" T e
> X
) F"
|: '~

-y - - T R
v .-,‘_4-,‘.-".'.:.- EATATARCREA

Y - )
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for 1 sufficiently large,

e

: 2 2 20, 2(n) = 0(n?). (2.17)
' T Al
Dy = det M, = (n~1k§)e’7pn + (1+ink§)e"u12 + 0(n?)
i ; = Z(n)e” + 9(5?), therefore

": D1 = [2(m)) e 4 g(e2m, (2.18)
| S (2.17)

; bl - o(n7le™). (2.19)

Mrom (2.15), (2.16) and (2.19),

2, -1
Ap D, (“uhl"“lzhz)

; - 1 ]
-ofh - Ly ‘e"szo e L () gle) 1o+ 0007 [y e gl )

9 #1081y are O(y). Continuing from the above:

. - - 1
etme o) L L, [ e (1 () vgie ) o

+ (e L+ lgi]) (by (2.17), (2.18))

-1p! !
-4 IJ‘O e L1 (¢ ) vge) o ome"’lj'o e LI (¢ ) vgte) 1ot )

*ole It +Ngh]).

o, 4

X l'}' o

L XA

S

o ¢
-
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.-,
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1
l -
If, e e etenael - ot Zineenenenn).

Thus
1 1 i ’\
Mn2=%"”foeﬂ‘UPWengu)1« come U )) . (2.20) : g

As for Az. we have

LY

2 _ -1
An” = Dy (Byihytmgahy) (2.21)

]
) ),l A g

where

“Hpy = (1-1) (1+ink3)e? + 2(z~nk§)e'“’ « (1+D)(1-1mkd)e™  (2.22)

a3

R
AN,

[

ﬁé:-

Bap ™ (1-1)(n-tk)e" - 2i(n-k3)e” 17 - (1+i) (n-ik¥)e™  (2.23) :

[ 2

By (2.15), (2.16), (2.22) and (2.23), the dominant terms fin “z1h1 and '

are O(nem). But their coefficients in Hayhy + maoh, are such |

Haghy
that they cancel out. We get ! A

»

Agn? = 7t - olne (it l+ligN]) = oule l+Hel) (2.24)

|

Similarly, we can show that

YTy
by ;
Ll " si..‘ %

i ThY

agn? = ol i+ Mgl (2.25)

L E;'

<

&
[4

agn? = odie i +lel (2.26) ;

INT I
. 5
f‘ﬁ;ﬂﬁr}

Final Step Estimation of [w'[ +llvl.

“*

By (2.14) and (2.20), we have
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~-
A
- 's
whix) - whix) » w"(x) :?j
) 1 - :
< G- gl e e ) vgte) 1t - o N en ) )
&
‘ Alqzn"x + Az(v-’)z)eh’x . As(»-u)ze"’x v Ag {~yZ)e U¥ . “
3 )
= (O(U-llﬂf"u*ﬂgﬂl) + e o(n%e UL N llel ) \ﬁ
+ (-agmPeln® . Agne X - A mPe inX) ¥
)
; In the first parenthesized term, the zz-norm of "% is of order of R
: magnitude -
. .
([ ™)2ax1/2 x (L(e21-1)12 3 0(y71 %),
] n '
b hence ::
) hY,
1 1
: [I |first parenthesized termlzdxll/2 = g(t"“N+lel) .
' o

W

(W)

The second parenthesized term also satisfies the above bound, because of
(2.24), (2.25), and (2.26).
Hence

Wil < capeii+lel) = odit fi+ligll). for n large. (2.21m)

R 3

Al

For v, by (2.4) we have

whEY

1 Vil < [AHIwl o+ Hel. (2.28)

hY

f\t' Py

We want to show that

i

N2l s cawrnBen e e nen?). (2.29)

SRV ol ¢
vayy

for some constant € > 0 independent of X.

-

§ Consider (2.2.1), with a4 =1 and X\ = inz. and use kf, kg for

B

kf and kg. Multiply (2.2.1) by w(x) and integrate by parts twice.
; We get

Pl
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T atale 8 &
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W)W (DR (1) + w2 - il = cafeg,w>

-<f  AWD - <y, WD

From (2.2.3) and (2.2.4), we get
in?cdl w1 2ade ) il (0120 (DR (1) w2 Y2

= —<f Aw>-<g,w>.

W - Re(l]w"|l2+<t’,)\w)«(g,w>fkff(1)5(1)*kgf' (1)w' (1))}

4
s pwn? o+ L3lopwpZezpen®e Lien « Jiwn? « coneenenwen?y,

where we have applied the Poincare Inequality and the trace theorem:

LECOI2 e )2 < opemy?

(w2 » [wi1)12 < cpwy?.

Therefore (2.29) follows for 7 sufficiently large.
By (2.27) and (2.29), we have

-
~
S
~
.
~
Y

il < care i+nelfiw i +liglh)

PPN R

s curerheel)

e s cney

o

and (2.27) holds.
Combining (2.27) and (2.30), we have proved (2.5) for Ry
sufficiently large, X = fo, « € R. So Lemma 3 has been proved.

7

s

THEOREM 4. Let ki 2 0 and k% >0 dn (1.1). Then the uniform
exponential decay of energy (1.2) holds.
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83 Euler-Bernoulli Beam Equation :
'’
| Proof: In order to apply Theorem 1, we need to verify that assumptions :.r‘
(1.8), (1.7) and (1.8) arc satisficd.
We note that (1.6) is satisfied, because A s dissipative and
) v
K llexp(ta)|] € 1. .
.’.‘ -
K The verification of (1.7) and (1.8) is accomplished if we can y
verify merely (1.7): ’ .l:‘
F (A1-a)"1 exists for all A = fv, o € R, (2.31) o
¢
: because by (2.31) and Lemma 3, »
0 2
l. L]
fwill + v\l € C (lif"l+leglh), VYA = fo. « €R, v
[} 58
where 4
oy
h]
Cc' = max(C,C"), C as in (2.27) and (2.30) &N
1 : &
h
'O c" s max | ()\I—A)'lll. for some B, sufficiently large, ey
Ixl<8,
] -3
A= ju, o €R. :’.
v <
) 2
1 To show (2.31), we assume the contrary that o(A) [} {iw|jw € R} # #. ‘i
By Lemma 2, o(A) consists solely of isolated nonzero ejgenvalues.
g Without loss of generality, let s
v
- 2 ...
: Xo € o(A). XO hyo, 7y € R, KB #0. _::
:-’
> Then g-
! Ny
A ) i
. oo [1] - : :
1Y ..
| -
L S
vy
“
has a nontrivial solution (wo.vo) € D{(A). Explicitly, (wo.vo)
;i satisfies "
¥ -
l‘ i-~
K)
1, L
" ”,
* ’
A 'I
] ”
. "(
' Ly
s ’
3 S
N
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Letting

we easily check that

Also,

the energy

is constant, thus

Because

d
dat

2

k2 > 0 and kf

Chen, et al.

rlngwo -vy =0 on [0,1]
w64, + 1n§vo =0 on [0,1]
wo(O) =0

4wb(0) a0

wo(1) - kivy(1) = 0

Lwa(l) + kZvy(1) = 0

ingt
w(x,t) = e wo(x).
satisfies
Wee * Yaxxx T O

L

' 1% . )1%)d
fo Juex (X, )18+ Jw (x.t)]%)ax

Uwg (X )12+ Jwy(x,t) 12 ]dx

Y

x=1
x=0

2Re[wxx(x.t)§xt(x.t)»wxxx(x.t)ﬁﬁ(x.t)]

203w (1 012k w (1,0 2)

0. we deduce

g (1. U] = n2lwg (1)) = o,
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2 N
I Wy (1801 = IWg(1)] = 0, 1f Ky = O: NIy
o,
Wy (1. 1)1 = |WE(1)] = 0. Jw, (1, 0] = ndlwg(1)) =0, 1f k%> o0 v
[
Thus wo(x) is a solution to the boundary value proublem :.‘;f‘
Y
Y
(4) _ 4, . ) 4
wo oWy = 0 on (0,1] N
wo(O) =0
w,(0) = 0 o
0 (2.32) Ny
wb(l) =0 “
' - Py
wy(1) = 0 hoh
wg(1) = 0 R
b
i & g
Write \i"‘
ot
wo(x) - A01cos no(xo—l)n\ozsin "o"‘ ~1)¢A03coah no(x-1~) >A°4sjnh no(x"l) N
[ ]
Then the five boundary conditions in (2.32) require that wiJ
\.'
o
cos 7,  -sin n, cosh 7, -sinh 7] [Ag, o !
sin M9 cos 7, ~sinh o cosh n, Aoz \‘S
0 1 0 1 AOS =0 (2.33) c )
-1 0 1 0 A04
0 -1 0 1 o
&*
has a nontrivial solution (Ag;.Ag;.8045.404). lowever, it is easy to :"::
check that the matrix in (2.33) has rank 4 for any =, € R, n, # 0, a N
Ny
contradiction. ;“: ]
Therefore the proof of Theorem 4 is complete. 0 ; ‘
Lt
-‘:\
.'.,\
3. ASYMPTOTIC ESTIMATION OF EIGENFREQUENCIES :--_.:
(SIS
From the graphs in (2], one notices that at_ low frequencirs !
S
eigenvalues of the damped operator A secem to exhibit a '.»\‘
"structural damping” (3] pattern. Does the structural damping pattern SN
[N
g
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continue into high frequencies, or is it only a low frequency phenomenon,
for beams with boundary dissipation? To answer this one must examine the
asymptotics of elpgenfrequencies.

The work of asymptotic analysis was first done by P. Rideau in his
thesis [8]) (cf. the acknowledgement at the end of the paper). Unaware
of his results, we had carried out the analysis independently. We feel
that it iy of significant interest to include the work here as it will
make the study f{n this paper more complete, and only a minor effort is

required.
Let (#(x).¥(x)) be an eigenfuncticn of A belonging to the ;
eigenvalue A(#0). Then by (2.2), setting f(x) = g(x) # 0 and w, = #,
h we see that ¢ satisfies

ot (x) + 2%g(x) = 0
$(0) = #°(0) =0

(1) - k(1) = 0 (3.1)
' # (1) « k2 (1) = 0 |

To simplify notatiuns, we consider the following etgenvalue problem

s (x) +2%(x) = 0

#(0) =0 |
#(0) =0, (3.2) :

#(1) - AkjP(1) = 0

$7(1) + AK3S (1) = 0
] '
!
Noting that the following correspondernce :
' i

A

. Y i
i :2_ ;
a®2 tn(3.1) } — kZ in (3 2) (3.3) T
: .- ! |
a k2 k2 !

is in effect.

The boundary value problem (3.1) hasx a nontrivial solution if and
only {f i
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Euler-Bernoulli Beam Equation 87
(3.4)
l' 1 1 1 1 ]
wx w3 wo/x n/x
T R 2 ................ G § .......
P [
(,;3A2-kan (192 2-2k2) (111922-k2x) (,‘2’x2-kfx)
- . 3z : 5 5 . 75
det . VA : .ep./)\ : .ep/)\ : _Pp,/k
......... 3393
N : " :
Wheadn?) 1 LSBT WGl
N . S RN
=0,
where u is the eighth root of unity, exp(in/4). The derivation of the
above 1is identical to (2.10)--(2.12).
Evaluating this determinant yields the transcendental equation
Z/‘Zkgx{le'l’/a-e’/zx-ievz)‘ ‘e'/a}‘}
./X{eu k2k2)v2 (132 ) e VP2 1ok BkZ )0 IR (3.5
02(hkfkg)e/z’wz(ukfkg)e"/z"}
210 VB VB WBL/B) L
Now, write
x = |2)el® (3.6)
As the closed right half plane does nnt contain any eigenvalues, and
because in (3.5), A s symmntric with respect to the real axis, we nred
only consider % <9 <n in (3.6). We will actually first consider
g<05ﬂ'—6. for any & > 0 sufficiently small. (3.7)
The case of 6 » n will be considered in (3.11)-(3.12).
Since
X o= a1 2expii0/2) = (A1 2[cosi8/2)+1 sin(6:2)).
‘.'u't‘d"-"‘\'l'ﬂ"u‘?‘n\"';'. A |» \8. n.;.-t‘\l.t' 0 .L ul,n N .|0. ...!.O,ﬂ. 1, ‘- A "'f"‘ " A N o A, o L

s
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we see that

-/ = en/zlx cos(9/2)e-L/2|x[sin(9/2)

- ev2[X[sin(6/2) i/2[X[cos(6/2)

are O(c—7/TxT) for some vy > 0. Thus, from (3.5)
ax(1-k%E) + e WP 23D 2 (10632 )X - 12/2K2)

o e/ 12/2k2rv2/R (1422 ) s2/2K2) = O] exp(-wTXT)),
which implies
é/ETfT[-sin(e/2)~cos(e/2)] - _e~iJ2|x|[cos(9/2)~sin(9/2)] n

5, 2 202, 50502
21/3k2n +2(1+k2k2 )X -12/3k ,

x 2 1.2 L s otnexp-2/TxT )
z/'zkgx*zuokfkg)./i’a/ékf

But (assuming kg > 0) the term in braces equals

2,2
(1+kTk5) -
i+ li%ll _;571.2_ e 1972 L g(a7ly,
T
2

Thus we seek X's satisfying
e./2|7\|[-sln(e/2)+cos(6/2)] (3.8)

gy (ekBd) /ZTXT e
. [_1 _(1+1) — 12, 19/2]9—1Jd| [cos(6/2)+sin(e,/2)}
Y

1’.

¢ O
We observe immediately that € — n/2 as |A|] — o, since the LHS of
this equation would decrease to zero otherwise. Furthermore, the
equality can be satisfied (up to higher order terms) only when the first
term on the KHS is a positive real number. Thus
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Euler-Bernoulli Beam Equation

e-t/ETrT[cos(exz)»stn(e/zl) ~ o WA V2 x|
2/[XT % (2n - =,
or

1
(2n - =)
Al = [.__2 2

2
n] ., n is a large positive integer. {3.9)

The above gap of O(nz) for eigenvalues is common for Euler-Bernoulli
beams with energy conserving boundary conditions. Now we see that
Euler -Bernoulli beams with boundary encrgy disslpation also have this
property.

One checks that when the RHS of (3.8) is real, its modulus is

(1+k2k2)[cos(0/2)+sin(6/2)]
V2GR

co(rTh.
This {n turn Implies that the exponent on the LHS of (3.8) must satisfly

(1+k3k2) cos<g)¢sin(§)]

VEE/TAT

VI T [-sin(®)+cos($)]= -
3 3

If we now write 6 = % + ¢, £ >0, and expand to lowest order in ¢,

89

we have
(1+k3k3)
£y —g -
ka1 Al
Now suppose X = ¢ + in. Then 6 = tan_l(n/t) and |a| = (62,"2,1/2.
Expanding tan ! about n/¢€ = o, we have -
Z~'£
~ m
or
" . o
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(1+i3K2)
7= kg(ef‘”'lz',lﬁ i

Hence

¢~ - ii(l,kfkg). as  |A] — w. (3.10)
2

By (3.7), the only remaining case to be considered is when 6 + =,
i.e. when X\ approaches the negative real axis. We write

/X = IA{1/2(cos(e/2)+1sin(6/2))

as before, but this time was assume |n-0] < &, with & small -- say
0 €46 < n/8. Then one easily checks that

Ie-/le <ec,
(3.11)
leiszl < c,
for some c > 0 so that (3.5) can be rewritten as:
(2/3 ik§x+2/§(1+k§k§)—2/§1kf}e/2‘x'(SI"(O/Z)-‘COS(O/Z))
- (2/2kEAv2/R (1+k2KE) +2/2K3 ) o/ 23T (€O (0/2) +i51n(6/2))
+ O(A). (3.12)

However, for 9 in the range of interest, sin(6/2) > 2cos(6/2) and in
particular, sin(6/2) > 0.5. Thus, the modulus of the L.H.S. of (3.12)
will be much larger than that of the R.H.S. (for |X\| large) so this
equation has no solutions if |A| is large.

THEOREM 5 Let X = ¢ + in  be an elgenfrequency of vibration of the
beam equation (1.1). Then for |A] large,

[(Zn-%)ﬂ

2 El 1/2
JAf ~ -—i——-i [ﬁ—] , n's are large positive integers,
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Euler-Bernoulli Beam Equation 91

) [m(£1)11/2{1+kfk§[m(51)]"}

3
k3

as |A| & = (3.13)

Proof: Just use (2.3), (3.3), (3.9) and (3.10).

By (3.13), the eigenvalues will be distributed nearly parallel to
the imaginary axis at high frequencies. Therefore there is no"structural
damping” when the frequencies are high. This has also been confirmed
numerically in Rideau's thesis [8].

We note that when kg =0 and kf > 0, asymptotic limits can be
obtained in the similar way.

4. DESIGN OF PASSIVE DAMPING MECHANJSMS

The following is a (more or less exhaustive) list of combinations
of dissipative boundary conditions for an Euler-Bernoulli beam:

2 2
“EIy, i l1.t) = -klvttl.t) . k3 >0 (4.1)
-Ely, (1,t) =0
-EIyxxx(l.t) =0
2 2 (4.2)
—Elyxxtl.t) = kzyxt(l,t) . k5 >0
ye(l.t) =0 \ s
- C 2 4.3
Elyxxx(l.t) klyt(l.t) . kl >0
yi1,t) =0 }
. 2 (4.4)
~Ely,, (1. t) kzyxt‘l't) . ks > 0
L2 2 -
—Elyxxx(l.t) = klyt(l.t) + Clyxt(]") . k1 > 0. (4.5)
Elyg, (1.6) = K3y, (1.8) « oy (1) . K5 >0 '
where in (4.5), <y and ¢, are real constants satisfying
(cy-cy)af - kia? - k282 s 0 vaper (4.6)
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Note that the boundary conditions (1.1.4) and (1.1.5) correspond to

v

€y =¢cy =0 in (4.5). Obviously, (4.6) is satisficd in this case.

i,n"

We want to show that all stabilization schemes (4.1)-(4.5) can be
realized in practice, at least by designing passive dampers.

As (4.5) seems to represent the most complicated case among
(4.1)-(4.5), we treat it here, at least for certain special values of <

':i -

Ll

and 2 (cf. (4.7) later). The other cases can be studied similarly.
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The following damper arrangement gives a design which effects the
coupling of shear (resp. bending moment) with velocity and angular
velocity:
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a) Inclined Damper
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b) Shortening Velocity ¢) Damper Forces on Beam
of Damper

Shear(1l,t) = -¢, v_ sin 9
d s

i

Moment(l,t) = ¢

- . 4 Vg €os 8 h/2 O

Figure 2 Damper arrangement for  (4.5) B
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Euler-Bernoulli Beam Equation

A single damper (cf. Figure 2a) is attached to the lower end of the beam
at an inclination angle @ wlth resgpect to the horizontal. Using the
velocity at the end of the damper, Vg and the associated forces shown

in Figure 2b and 2c¢, we obtain

Shear(1l,t) = “CqVy sin 6

. h
Moment(1,t) = cdvs(cos 9)2 .

where C4 represents the damping coefficient associated with the damper

in use. As

s h.
vg yt(l,t)ain e - yxt(l,t)égos e,

we get
Shear(1,t) = <Ely, . (1.t) = -(cysine)y, + (J + cysin @ cos 0)y,,
n? 2 h
Moment{1,t) = -Elyxx(l.t) = (a—cdcos e)yxt + (- icdsin 6 cos @)y, .
A comparison of the above with (4.5} shows that
2 = cosin2e: K2 = Mo cos?
1 = Cg4sin 9; k2 = 3°Cq4 CcOS [}
€y = "¢, = gcdsin @ cos 6, (4.7)

thus
(cy-cp)af ~ koa? - k282 = ~(kja-k g2 S0 Vap R

s0 (4.6) is satisfied and the boundary conditions (4.5) are dissipative.
It is noted that when @ = n/2 [{vertical damper), the above gain

é 2 = 2 = = = i
constants reduce to k1 = C4.1 and k2 €y = €y 0, cf. Figure 3a.
Similarly, for © = 0 (horizontal damper), the gailn constants become

kg = cd'2h2/4 and ki'- €, = ¢, = 0. as shown in Figure 3b.
Consequently, the boundary conditjons (1.1.4)-(1.1.5) can be realized as

2 . i 2 _ 2
in Figure 3c, with k1 * €44 and k2 = cd,Zh /4'
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4 v, (1,8) Yy (1.8)R/2 :’
x=1 ‘ x=1
|
|
f I h/2
| > :
4 yt(l,c) oy yxt(l,t)h/z
- _ 2
Shear(1l,t) = ~cy yt(l,t) Moment(1l,t) = 4 yxt(l,t) h™/4
a) Vertical Damper b) Horizontal Damper .
i
? < |
=
4 :
Y iica i
x=1 ,
¢) Shear(l,t) =—cdy[(l.t) , l
- 4 7
Moment (1,t) Cdyxt(l'c) ho/4 .
‘
Figure 3 Damper arrangement for (4.1), (4.2) and (1.1.4)+(1.1.5) T
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Euler-Bernoulli Beam Equation

x=1
i

Shear(l,t) = -cdyt(l,t)
Slope(l,t) = yx(l,t) =0

Figure 4 Damper arrangement for {4.3)

pisplfl,t) = y(l,t) = ©C

“
v (1,t) h/4
Xt

Moment(l,t) = ¢
d x

Figure 5 Damper_ arrangement for (4.4)
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The otner boundary conditions (4.1)-(4.4) can be realized and
designed., respectively, as {n Flgures 3a, 3b, 4 and 5.

The method of estimation which we have developed in this paper and
Huang's theorem (Thm. 1) can be applied to study exponential stability
for all of these boundary stabilization schemes.
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