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INTRODUCTION %

'Many problems in structural dynamics involve stabilizing the elastic

energy of partial differential equations such as the Euler-Bernoulli P

beam equation by boundary conditions. Exponential stability is a very

desirable property for such elastic systems. The energy multiplier

method "-Fj-4h-- -f'has been successfully applied by several people to

establish exponential stability for various PDEs and boundary conditions.

However, it has also been found_12]'that for certain boundary conditions
the energy multiplier method Is not effective in proving the exponential

stability property.

A recent theorem of F.L. Huang 14] introduces a frequency domain

method to study such exponential decay problems. In this paper, we

derive estimates of the resolvent operator on the imaginary axis and

apply Huang's theorem to establish an exponential decay result for an

Euler-Bernoulli beam with rate control of the bending moment only. We

also derive asymptotic limits of eigenfrequencles. which was also done

earlier by P. Rideau.[8]) Finally, we indicate the realizability of

these boundary feedback stabilization schemes by illustrating some
mechanical designs of passive damping devices. W
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68 Chen, et al.

§I. BACKGROUND AND MOTIVATION

In this paper, we consider the following uniform Euler-Bernoulli beam

equation with dissipative boundary conditions

mytt(x.t)*EIyxx(xt) -0. 0 < x < 1

V(0.t) -0.
Yx(

0
t) - 0.

-ElYxx(l.t) = -k Yt(1.t) . kk 2 3.
-EZxxi') kyxtlZt) k2 e R.

(y(x,O),yt(x,0)) - (Yo(X),Yl(X)), 0 S x S I.

where m denotes the mass density per unit length, El is the flexural

rigidity coefficient, and the following variables have engineering

meanings:

y = vertical displacement. yt- velocity

Y= rotation, Yxt - angular velocity

=-Elyx bending moment

-EIYxxx = shear

at a point x, at time t.

From now on. when we write equation (1.l.J), for example, we mean p

the Jth equation in (1.1).
The above equation and conditions are Intended to serve as a simple

mathematical model for the mast control system in NASA's COFS (Control

of Flexible Structures) Program. See Figure 1. A long flexible mast 60
meters in length is clamped at its base on a space shuttle. The mast is

formed with 54 bays but can be idealized as a continuous uniform beam.

At the very end of the mast, a CMG (control moment gyro) is placed which

can apply bending and torsion rate control to the mast according to

sensor feedback.

Boundary conditions (1.1.2) and (1.1.3) signify that the beam is

clamped, at the left end, x = 0. while boundary conditions (1.1.4) and
(1.1.5) at the right end, x = 1, respectively, signify

Ishear (-Elyxxx) is proportional to velocity (yt}

bending moment (-EIyxx) is negatively proportional to angular

velocity (Yxt)

Thus the rate feedback laws (1.1.4) and (1.1.5) reflect some basic
features of the CMG mast control system In COFS.

7r
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Euler-Bernoulli Beam Equation 69

CMG

flexible ma3st

L space shuttle

Flure 1 Spacecraft mast control experiment

The elastic energy of vibration. E(t), at time t. for system

(1.1) is given by

EM a I f0 (my2(x.t) xt)Jdx ,.

Note that In (1.1) we have already normalized the beam length to 1.
The qualitative behavior of (1.1) has been studied in an earlier

paper [2]. There it is shown that if k2 > 0. k > 0 in (1.1.4) and ,

(1.1.5). respectively, then the energy of vibration of the beam decays .

uniformly exponentially: |

Et) < Ke-PtE(O) (1.2)

for some K,p > 0 uniformly for all initial conditions (yo(x).yl(x)). A

Therefore the flexible mast system can be controlled and stabilized.

The proof of the above In (2] was accomplished by the use of energy

multipliers and the construction of a Liapounov functional.

Nevertheless, a major mathematical question remained unresolved in (2]:

(Q] "Does the uniform exponentinl decay property (1.2) hold under the. Accession For

assumption of k2 .0o, k2 > 0?" NTIS CFA&I
2DTIC T,..

Unale' ouaneed

This question is of considerable mathematical Interest because the Juitification

feedback scheme using bending moment only is simple and attractive.

By
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70 Chen, et &I.

For a long time, we have conjectured that the answer to [Q) is

affirmative, as asymptotic elgenfrequency estimates obtained in (8] (and

§3) have so suggested: Let A denote the Infinitesimal generator of

the CO-semigroup corresponding to (1.1) with k1 = 0 and k2 > 0, and

let a(A) denote the spectrum of A. Then there exists P > 0 such that

Re X S -P < 0 for all X e o(A). (1.3)

Nevertheless, It is well known (41 that the following "theorem" is

false. 4
"Let A generate a Co-semigroup and

sup(Re N E o(A)) -P < 0 (1.4)

for some P > 0. Then the Co-semigroup is exponentially stable:

Jlexp(tA)IJ < Me-# t  
for some M > 1, p > 0". (1.5)

Therefore, knowing (1.4) alone is not sufficient to confirm (1.5). This

statement remains false even if we assume additionally that A has a

compact resolvent. 
I

We have repeatedly tried to refine the energy multiplier technique , 4
used in (2] to establish (1.5) without much success, no matter how many
different and elaborate multipliers were constructed. There always are

boundary terms which cannot be absorbed by terms in the dissipative ,P

boundary condition.

A recent theorem by P.L. Huang offers an important direct method

for proving exponential stability:

THEOREM 1 (F.L. Huang f41)

Let exp(tA) be a Co-semigroup In a Hilbert space satisfying

lexp(tA)II < B0 1 t > 0. for some B0 > 0. (1.6)

Then exp(tA) is exponentially stable if and only if

(Iwcj E R ) C p(A), the resolvent set of A; and (1.7)

B1  sup(II(i-A)- lll" e R) < - (1.8)

%

I)
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Euler-Bernoulli Beam Equation 71

are satisfied. 0

Huang's theorem effects a frequency domain method to proving

exponential decay properties. As mentioned earlier, the energy

multiplier method, which corresponds to a time domain method, has not

been successful for the case k2 . 0, > 0.

Therefore the work is to obtain bounds on the resolvent operator

(Iw-A)
- 1

. Here we accomplish this by carrying out a careful analysis

on the elgenfunctlons and elgenfrequencles of the operator A. This Is

done In §2.

Associated with [Q] is the question of the asymptotic distribution

pattern of elgenfrequencies. as numerical study In [2) suggests that a P,

"structural damping" phenomenon Is present at low frequencies. Does it

also appear at high frequencies? This is answered in §3. (We must state

that the work and numerical verification was done ahead of us by P.

Rideau in his recent thesis (8]).

In §4. we present mechanical designs of devices satisfying damping
boundary conditions (1.1.3) and (1.1.4) to indicate the realizability

of the feedback stabilization scheme using passive dampers,

Notations: We use II to denote the 12(0.1) norm. We define the S r

Sobolev space

k

Nk a H k (0 1 ) - (f:[OlJ.*RIfll 2  a XfO1if(j)(x)I2dx < -), k E N.
Hk(O.1) J'*0

Also, we let

2 a H2(0.1) n (fi G H2(0,1), f(O) - f'(0) - 0).

The underlying Hilbert space I for the PDE (1.1) is

14 .2 (0 )XZ2 2 ,* 1 *()
2
.M gx 2H0 (0, (0.1) .1 ((f.g)lll(f.g)ll 

•  
f 0 [Eilf"(x)1 mlglx)1 dx<-).

whose norm square is the elastic energy.

The unbounded linear operator A associated with (1.1) is given by

A _4a4 --

4% 

"po'7:S7

WM -7V fob? I It,,' 
*



72 Chen, et al.

with domain

D (A) •((r.g) IE H4xH21 I - "' ( l ) = - k 2 g ( 1) . - E I f ''" = 2 g ( 1 ~ } t (I) -k0

J2. ESTIKA'fION OF THE RESOLVENT OPERATOR ON THE IMAGINARY AXIS.

EXPONENTIAl. DECAY OF SOLUTIONS.

Consider the resolvent equation: Given (f.g) e If and X E C, find

(w).,v) G D(A) such that

A ,I - ( 4 - (2.1)
- , 3 2-1) o J [

This amounts to solving the following boundary value problem for w.:

4w(4x ) + X2w(x) = -[Xf(x)g(x)lj, x E (0.1)

w(O) - 0

W (O) *0
(2.2)

w() (1) -f(i)

W"w~(1) .,) _f,)

where

;2 k2(EI-', k2 uk 2 (EI)-1 23
1 2 2 2 1(23

Once wA is found we obtain

vX(x) - Awx(x) * f(x) (2.4)

To simplify notation, from now on. unless otherwise specifically

mentioned, we set 04 1 Itn (2.2.1) and write k1. k2  for k-l k2,

respectively.

The main work in this section is to prove estimate (1.8). i.e.. to

show the existence of some B1 > 0 such that

~°,

.:



Eular-Bernoulli Beam Equation 73

f2.Jw).xxj 2d !5x)H 2
., g(x)1 2]dx (2.5)

for all X - it. e 6 R and all (f,g) E I.

LEMMA 2 A- 1  exists and is a compact operator on If. Furthermore,

o(A) consists entirely of isolated elgenvalues. M

Proof: Let X = 0 in (2.2), We see that w0  in (2.2) is obtained by

integrating four times:

NOW . _x 3 S'4 2o L,(1)d d 1df2d(3d
d0  0 0 0 4

2 JLI [f g()d d(2 k2

's
W V(()df k M) .

0%

and

vOx) - f(x).

Thus A 1 
exists and maps Mf Into H4 (0.1) X l2(0.1). Therefore A-1

is compact. The rest of the lemma follows from Theorem 6.29 In [6.

Chapter 3]. 0

LEMMA 3 The resolvent estimate (2.5) holds for X = ici, 6 R,

provided that [IJ i sufficiently large.

Proof: For simp]iclty, let us write (w,v) for (wXvX) when no I

ambiguities will occur.

Let

.'

iw l 1772, 
Ze 

e0

I

.~? X 0 % ' s ~~=?'~~*~4'



74 Chen, et al.

2 %-

We need only consider * > 0. The estimates for w < 0 are

similar. First, we find a particular solution wp(x) of (2.2.1).

w _[(x) a -sinh q(x-() - sin '(x- l][/ 2f( ) g(f))df (2.6)

Then w p(x) satisfies

. (x) - 1 w (x) -fii,
2
f(x) g(x)I. x e (0.1)

N (0) = 0 (2.7)

w,(o) . 0.

Consider the solution w(x) of

;(4) (x) - 14;(X) 0 1-
;(0) =0

;'0 0 ~f1 (2.8)
2'(l i
2

-~~ 21 2 2~piw"(l) + I,
2
kw.(l) -h= h h2  -w,l) - I 2k1,w() + kf(l)

If we can find w(x), then the solution w(x) of (2.2) is obtainable:

w(x) = wp(X) 4 w(x). (2.9)
,

But we can solve for w(x) as follows. Since A2 = - g 0. we have

w(x) A lX

= + + A3 e-nx+ . (2.10)

The coefficients AV. 1 5 1 _< 4. satisfy

1.

Al
M I. 2 'p.

rA21 0 (2

A4 L [ h(22.11 I

where

e.

%.4

: - -- " - - " -- "G :..- -' , -- . '.: - -" -... - .4-



hlt-Bornoulli Beam Equation 75

1 1 1 1
3 2

i (:)h~ )" - 2 k)el (' -1773k 2)e- (-2 k2) e-iJ

(2.12)"l zf NN
U X I "

exists for 17 sufficiently large. then

A3  h1

A'4

A2 - 2.3

We now begin the estimation of w"l (x) 2dx. The work below may

U0

mm tedious, but the idea Is rather simple. The main observation is r

d at the dominant terms in wp(x) and w(x) do not satisfy the bounds

p

f lw(x)1,
2
dx :5 

1  If " (1)12 Ig(x)12]S0 0

f lw"(x)I2dx S Cfo If'lx)l + glxll2]dx

,%

har JI large. However, In (2.9). those dominant terms cancel,

leaving w(x) with smaller terms which are bounded by O(lit"l II+ ). ,

lot Ste Estimation of w'(x).

hasm (2.0).

..,

ex) Ux q'Csinh ij(x-f)+sin 77(x_.()](ii 2f(f ).g(()1d( (2.14)

I 4'

- 1(s lnh I(x-f)+sln 71(x--()]g(()d( (integration by parts)

x

S .-' (sinh 7(x-f)-sin 7j(x-f)if'(()df

P

,P.4

C'M.

'; :-*'w .p.,- * 4 .. ¢ .::, ..



76 Chen, et al.

- -~ ~ sinh 7(x--f)(J(j()-g(f)jdf ((i -[fjV'jl-jjgfI)

=-1 1e'1")if(f-gfld + 0(r [II Vi+gII)

Iqx I -,(iV1 f 1 1 i

From (2.6). (2.8) and (2.14),

2
h, K 1 77 f in f ( +g~f ldt + k if(1).

0V

where

K171 (J) -2.(cosh 7,(1-f)#.cos 7701-Wj I ~k 77 sinh 77(1-t4-sin 71(1-f~))

Integration by 'arts twice for f yields

foK17 M17i',f(f)df f , K17 (f)iVf"Uidf -~~)

where V

K~e 17[Qcosh 17,(--cos n~1-l I k 177
1
(sinh 77(1-f)*sin i7(1-f)).

We get

1 -1 77) -7

-1 77 2 -' j)

Therefore

1 
1 
el (-q- ik2) e-"7( f"( Q g Q )d( 0(11 V'[.f~ 1 . (2.15)

hi 1 f 
I

-Zd



Rler-Bernoulli Beam Equation 77

Similarly, from (2.6) and (2.8).

where

K() .- ,V7[sinh 71(1-1l+sin 7~(i-j)) + 62 (-)cs(-)]
2q ~~*~ 2 [cosh 71( co

ieeting this same integration by parts procedure twice more for f,

0 271eI'
2~ed f= 5 27 (f)iV'(()df 2f,

1 -1 71 2 -71f
K27 (f) =In~ e (1+ik 2 7j)e *0(1)

K f m113 2 -,,It

*~ uget

h I -le (1+ik'nf e"'q(iV(( ).g(Q)dt O(Ilf"Ill*Ilgil). (2.16) I
"2 -4'" e 1)S

WrdSWe Estimation of A1 .A 2,A 3 and A4.

We first write

o 2J

where

*R W. ,



78 Chen, et al.

(71,el 1- l 1--k ) ( 1-k 1e i

2)1 --7. -n~ -1 -ik. e I iU

So

A2  0

A3  Ml ,-2h
A I -2h

Further, write

M1 (det M )--21 122

Mi~i I'31 '"32

From the evaluation of cofactors.

~12 - (1-i)[((-ik e'77 - i(1+k )e'77 + (1+)(Iinkf)e71]

Z()1 ' (1ik)[(k2e" -2 (1k
1e7 +111(1+k )- )

2 (ii(-222 2-221 -7

2217i1+-I ) ( 1+k k2 )+2k 17 l

The term in braces above satisfies 
.'

I ( H I Bracket 21 -I Bracket 11

~2(1+k 2 2k 2 ), as 41-

1 2'

J 
.4-



-B .:I~'ernoulli Beam Equation 
79

If > 
2 for i, sufficiently large,

lie

IZ(t) > 2, Z( ) 7
2

) (217)

D 1 a det M, (1-lk2)e .u I + (l+iik2)e77 1  + 0(72)

" Z(')e 7  
O( 2), therefore

= (e 7(7)Je- + O(e' ) (2.18)

n d by (2 .17 ). 
"

D- 0(7i le1). 
(2.19)

(2 15). (2.16) and (2.19),

A Di (.1 1h1+"12h2)44

(0-1) . I 7
1 

Z , en f ( g df +0( -

8 PIIP 2 are 0(71). Continuing from the above:

4T e 7)fo' 
~-

+

+ O~e ' [ll~ll~lgll])(by (2.17), (2.18))"'

= 1 - '[{P ~()d + (77e-I e11Cf"(f)*g(e)]d( 
;j

k 

"

P

1%

F IPWVp.

Opp V~ - *-.

,.,.



80 Chen, et al.

0fZe i,(),(} ( [lfiil~ileII]).

Thus

A112 -4q 'So e[" if' Qlg( jd 0 e [JIf"11I'iglI]) (2.20)

As for A 2. we have

A271
2  

Di (#21hl P22h2) (2.21) *J.

where

By (2.15). (2.16), (2.22) and (2.23). the domiiiant terms In 1,2 1hl and

" 22h2  are O(77e
2

71). But their coefficients in u2lh, + P22h2  are such

that they cancel out. We get

2 -1
A2

n2  D1 O(ie"[llfIllIlgll]) = O("f' lgll) (2.24)

Similarly, we can show that 2,I).

471 2 = O(lf " Ilgll) (2.26)

Final Steo Estimation of )1l1w"1 AI.

By (2.14) and (2.20), we have "

.- %

S

P*

77-. '-1
A -O0



Euler-Bernoulli Beam Equation 81

w"(x) -, w"(x) w(x)

= 1. -eX e' /(ilfl(fl~gl(]de2 Oclf- [lf'lllgU]) 1
V e o

* ,21i At
2  

1Ix A 1 ~ 2e -1ix *2 e ?IX
- A l?2 ; lix + A 2 (..,2-') x A 3 ( ./ 2 - x A4 . (_ 2 1 , x

= (00-1 tllf"jl-!lgj]) + e 
7X  

O('0e7 enflf"I-jgli])

+ (-A 2,2e i .x 3 712e- x - A4'1
2
e- ilX),

In the first parenthesized term, the X
2
-norm of e'I

x  
is of order of

magnitude

(ellx)
2
dx]l/

2  
1 [q(e2711/2 3 Ohq-1/2el)

0N
hence

I first parenthesized terml 
2dx]1/ 2 . O(if"ll+lgl).0

The second parenthesized term also satisfies the above bound, because of

(2.24), (2.25), and (2.26).

Hence

IIw"I1 S C(llf"ll+llgll) - O(llf"ll. llgll), for q large. (2.27) %

For v, by (2.4) we have

Ilvil S I I+wI If -l. (2.28) .

We want to show that

1 12 11W1 2  < C(lIl Il2 ll 2*llfll2.llg l2). (2.291

for some constannt C > 0 independent of X.

Consider (2.2.1). with =4 I and X - in 2. and use k
2
, k

2 
for

1 2

k and ;2. Multiply (2.2.1) by w(x) and integrate by parts twice.

We get %

%.

4 4
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82 Chen, et al. I

w"( w),(i).-w"( )q'(t ) + 11w"112  
- 41 

2  =

=-<f,',w>+<"w>.

From (2.2.3) and (2.2.4), we get

=-<f,Nw>~<g,w>.

Hence

1 4 lw1l2 = Re(llw"l12+<f,Xw>+.<g,w>+k2f(1)w(1) k 2 f (I)w (1))

_< Ilw"J 2 + 4JL, Jw2 +211fh 2+ 1 e2 1 +JjwlJ2 2f+iiw..12],

where we have applied the Poincare inequality and the trace theorem:

iflI)l2 . if,(1)1
2 <_ (:llf,,ll2

lw(1)l 2 + Iw' (1)l
2  

5 CIw"lj
2

.

Therefore (2.29) follows for 17 sufficiently large.

By (2.27) and (2.29), we have

Ilvll <- C(llf"ll-llfll+llw"ll+!lgll) (2.30)

C Ilfll <  
ll f llas

and (2.27) holds.
Combining (2.27) and (2.30). we have, proved (2.5) for J1"

sufficiently large. X - iw. w E R. So Lemma 3 has been proved. 0

THEOREM 4. Let k2 0 and k2 > 0 in (1.I). Then the uniform

exponential decay of energy (1.2) holds.

%,

i -' " - " .... .. . "' '. ++P 5 , r: +"'+

a-

Da
"-

* S.• i



83 Euler-Bernoulli Beam Equation

Proof: In order to apply Theorem 1. we need to verify that assumptions

(1.6). (1.7) and (1.8) are satisf(ed.
We note that (1.6) Is satisfied, because A is dissipative and

ffexp(tA)II _5 1.

The verification of (1.7) and (1.8) is accomplished if we can

verify merely (1.7):

(AI-A)
- 1 

exists for all A = iw, w 6 R. (2.31)

because by (2.31) and Lemma 3.

IlwXll + IlvN JI S C'(llf"ll+1lglj), VX = Ic. w C R,

where

C' - max(C.C"). C as in (2.27) and (2.30)

C" a max I(lXl-A)-II, for some B2 sufficiently large, N

I -ji5821, f e 2

To show (2.31). we assume the contrary that o(A) n (ticj e P) .
By Lemma 2. o(A) consists solely of isolated nonzero eigenvalues.

Without loss of generality, let

X e o(A). X0  112 0 E R, 70 0e 0.

Then

(Xo'-A) v0  0

has a nontrivial solution (wov 0 ) C D(A). Explicitly. (wo,V0 )

satisfies

2er2 '- #- v: -. - . . :: g : ¢ ¢e; J - : : "' ,.,' ,''e",.. .; .-..;, -.,x:, ,I,.
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17 2WO -o VO 0 on (0.1]1

( ) 2w ij v . 0 on [0,1]

WO(O) -0

W6 0 (1

w-d(I) k2 vb(l) _ 0

Letting

w(x,t) =e 0t WOW.)

04
we easily check that w satisfies01

w ~ 0.

Also, the energy

0

d f Ref w~c(x.t) xtx.tu1w]xt~ct]~

--2(k~Iwt(1.t)I 
2

.k~lj w(I.t)j
2~

Because k2> 0 and k2 >0. we deduce 1
21

2 , 'WI~ ?1

OIW6(1)' 0
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2.%

t Iwxxx(1.t)I - Ih(l)I - 0. it ki 0: %.P
x (1tL) - lj-6(1) - 0. Iwt(1.t)I ,2lwo(1)l 0, if k

2  
> 0.

Thus wo(x) is a solution to the boundary value problem e

(4 ) 
- ' 0  0 on [,01]0oO =1 0 0

w(0) - 0

(2.32)

wb(l) . 0

w'(1) - 0 .
w (1) - 0

Write V

W(X) A 0 1cos '/0(x0 -l) A0 2 sln i 0(xl)+A0 3 cosh 70 (x-l)}A 04sinh 170 (x-1)

Then the five boundary conditions in (2.32) require that %

5.'.,

cos -sin o cosh " sinh no Ao1 .
sin n0 cos no -sinh no cosh no A 2  %

0 1 0 1 /A03  -0 (2.33)

-1 0 1 0 A04 j

0 -1 0 1

has a nontrivial solution (A01 ,A0 2.A 03.A 0 4 ). llowever, it is easy to

check that the matrix In (2.33) has rank 4 for any no e R, no 0. a e.

contradiction.

Therefore the proof of Theorem 4 is complete. 0

1%

3. ASYMPTOTIC ESTIMATION OF EI(;ENFREII1ENCI -S

From the graphs in [2]. one notices that at low freuuencirs

eigenvalues of the damped operator A seem to exhibit a

structural dampin=" [31 pattern. Does the structural damping pattern

II

-N,

le%

b.

Ram 
.,



86 Chen, et aI.

continue into high frequencies, or is it only a low frequency phenomenon,

for beams with boundary dissipation? To answer this one must examine the

asymptotics of etgeafrequencles.

The work of asymptotic analysis was first done by P. Rideau in his
thesis [8] (cf. the acknowledgement at the end of the paper). Unaware

of his results, we had carried out the analysis independently. We feel

that It is of significant interest to include the work here as it will

make the study in this paper more complete, and only a minor effort is

required.

Let (M(x).*W(x)) be an etgenfunction of A belonging to the

elgenvalue aX(;O). Then by (2.2). setting f(x)= g(x) a 0 and wx - 0.

we see that 0 satisfies

04 0l4l(x)._ X2(x) = 0'
€(0) - ' (0) - 0
€ (1) - ),;1 (1) - 0 (3.1)

1(= o "1' .p

To simplify notations, we consider the following elgenvalue problem.

01 4)(x + 2lx) 6 ,

0(0) = 0 -

-10 A0( (302)

2.

€ *(0 k0_ (3.) ,* 0"

Noting that the following correspondence

A

a2- In (3.1) k2 in (3 2) (3.3)

2 T1

Is in effect.

The boundary value problem (3.1) has a nontrivi;tl solution if and

only If
P1%

j%

% 'S

* C-,

. - • - =, =p - .r • .= , , • . = .- . ,,, , - " -. , " ".%, % ". ",%, ".% % %j, %
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(3.4)

............ ................: ................ .............

pM ,,Kp%- p7/

3 . 3 . 3 . 3

............ ................ ................ .......
3 3 3 3de ePV ep3

" 
.X .P 1/X • p . e#J3.'

2 3~ 3 13 52 4
1A 2 Xk 2 X2) OA6xA ~ k 2 .\") 10) Xjp 5k 2 X2 1 Aj +pA k2X-2

-0.

where ju Is the eighth root of unity, exp(iit/4). The derivation of the

above is identical to (2.10)-.(2.12).

Evaluating this determinant yields the transcendental equation

Zj2 fI e - ei./ , -2) -X

-e e e' } %

2 28k2 ki'2" -V2"Xk iek 2 /2"X.e 2 2 O./2

Now, write _

1= 2Xle
ie  e (3.6)

As the closePd right half plalne doP.s nnt conttin i=rcy eIigonvajues. and "

because in~ (3.5). )X is .symmntric with reslpeCt to the real axis, we need

onl cosidr < 0 _< a in (3 6). We will atualy first consider '

S< 0 <_w - 6. for any 6 > 0 su[fficintly smal] (3 7) '

The case of 0 4 a will be considered irn (3.11)-(3.12}.

+1= I)kkt
2
exp(/2) i/2cos(O/2).I sln(G.,2)J.

C',

1 2 1

U~ ~ ~~2 I, 2xU~-p4 ,. a*=SC-S
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we see that

e2- = e-
2-TCOS(/

2)e-L/2- sin(e/2)

e4.
= 4'

e VTl~(~2 e i,2..csG2

are ( -
7

T' ^T) for some 7 > 0. Thus, from (3.5)

a/-,(lk2 e - 4/2 +2(+k~k2)3 12/-k0]

eV2X[2/./k 2 X2J(.l+k 2 2.)+ 2]  O(jI) exp(-,yT.T)).

which implies

e/2T T[-sinle/2)cosle/2)] - -e-L./2'T[cos(e,12)+sin(G/2)]

t~ 2 122- -
2,22X+2( 1 k2 j~)./k

But (assuming k2 > 0) the term in braces equals W,

2 2

J(1,1) (l+klk 2) e-
1
G/

2 
+ O(pI)I.

Thus we seek X's satisfying ',

e -',/T [-sin(e /2) cos(e /2)] (381

%'

We observe immediately that 0 - w/2 as IX) - o, since the LHS of

this equation would decrease to zero otherwise. Furthermnore. the

equality can be satisfied (up to higher order terms) only whon the first

term on the RHS is a kositive real number. Thus

'6.
'p

A._

6|

-?%"k -11
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e
"V

2 
]X'T ~e

o%(
e /2

)
*s tn (

0
/2

)
] 
.Z e-"/4T- 2.

w

p

or

(2n - ~ 2

IXI [- , n is a large positive integer. (3.9)

The above gap of Oln 2 1  
for elgenvalues is common for Euler-Bernoulll

beams with energy conserving boundary conditions. Now we see that

Euler-Bernoulli beams with boundary energy dissipation also have this

property.

One checks that when the RHS of (3.8) is real. its modulus is

22 .
(lk k 2 )[cos(e/2)lsln(e/2)] -).i " [ '[T"O(iXl %

This in turn Implies that tile exponent on the LIIS of (3.8) must satisfy

- _in()+cos)- (kk) cs(]zsin )

if we now write 0 = c . t > 0. and expand to lowest order in r.

we have

12

-l 22 2 /
Now suppose X - , l'.. Then G tan -(7/() and IAI (f 2? ,T.

or

Exadn ta'4bu q(=owehv

~~S V-A , -.V % ."% A %
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;-" llence )1~ 22

By (3.7), the only remaining caseI to be cnnsidered is when e - .. -

i.e. when X approaches the negative real axis. We write",

.. f 12

1/ [[/2 (cos(G/2)+isin(G/2))

as before, but this time was assume ja-el 8 , with 6 small -- say

0 <. 8 < /8. Then one easily checks that I

1 , ~(3.11) '.

for some c > 0 so that (3.5) can be rewritten as: ,

Ifenre %

(=J ik-4 1k2-Ji2 e
- T

(cs
n
(9/2)

-
i
c
sn(

o
/2) ) .'

* Ol2). (3.12)

However, for e in the range of interest. sin(G/2) >2cos(9/2) and in q..__

particular, sin(G/2) > 0.5. Thus, the modulus of' the L.H.S. of (3.12) , :

will be much larger than that of' the RH.S. (for ]×( large) so this-:
equation has no solutions if I a Is large. c

TlIE.Iwh 5 Let X = apr iah he an e algenfreqlu~cy of vibr ,tion of th.
beam equation .1). Then for eX large. that

t-* ~ le ns ar ge pos tve

I

(3.11)

'

'S'%

(2/ ik -X2,I .r---- 2 -rT7;l(02-co(/
2 1 k2)-2r~ik1 )e

(2 h2 \2,/-~l~2 k )+,( 2 )v,27X (os(/2)+s1./2)
2 1 2 1

+ O(A)(3.12

Howver fo 0 In the rang of Inteest si'S)> cs )adi
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2 as I'l (3.13)

Proof: Just use (2.3), (3.3), (3.9) and (3.10).

By (3.13), the eigenvalues will be distributed nearly parallel to

the imaginary axis at high frequencies. Therefore there is no"structural

damping" when the frequencies are high. This has also been confirmed

numerically in Rideau's thesis [8].

We note that when k = 0 and k > 0, asymptotic limits can be

obtained in the similar way.

4. DESIGN OF PASSIVE DAMPING MECHANISMS
'U

The following is a (more or less exhaustive) list of combinations

of dissipative boundary conditions for an Euler-Bernoulli beam:

-Elyx(1,t) = 0-k2 
}

-EIYxx(1,t) = I (4.2)

-Ely xxx (ZI )=- ytt) 0 (4.2) .

y(1,t) = 0 1
-EIyxx(1.t) k2yx t(1,t) k

2 
> O (4.3)

-E lyY(,t) = k2xtl t ) c2Yt(1.t) > 2

where in (4.5). c1  and c2  are real constants satisfying

o.;"4

I 4.x
d ..

(c I- 2I.. 2a -, 0 V 6 46

% %4
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Note that the boundary conditions (1.1.4) and (1.1.5) correspond to

c, . c2 - 0 in (4.5). Obviously, (4.6) Is satisfied In this case.

We want to show that all stabilization schemes (4.1)-(4.5) canj be

realized in practice, at least by designing passive dampers.

As (4.5) seems to represent the most complicated case among i
(4.1)-(4.5). we treat It here, at least for certain special values of c

and c2 (cf. (4.7) later). The other cases can be studied similarly.

The following damper arrangement gives a design which effects the V
coupling of shear (resp. bending moment) with velocity and angular

velocity:

hi

h/2

a) Inclined Damper

Vs [Ly(lt) s e h ] co Vs Cos

Cv s

~~of Damper -:

-%
Shear(l,t) =-c. d' sin 9

Moment(l,t) c d v ] Cd v h/2

Fiue2 Damper arrangemLL.t for ( ,...

ILI%

C%

dv5, .

- "; • " %) I = ,' %%,%' %, % .".-.% " %-,%." -,%C v .j n 9
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A single damper (cf. Figure 2a) is attached to the lower end of the beam

at an inclination angle 0 with respect to the hoz1'7ontn. Using the

velocity at the end of the damper, v s , Mnd the associuted forces shown

in Figure 2b and 2c, we obtain

A

Shear(Jt) = -CdVS sin 0

Moment(1,t) = CdVs(cos h ,

where cd represents the damping coefficient associated with the damper

in use. As

v s = Yt(,t)sill 0 - Yxt (It)hcos 0.

we get

Shear(lt) = -ElY xxx(lt) = -(cdsin
2
e)yt ( h2  cdsin 0 cos O)Yxt

h hMoment(l.t) -Elyxx(t) = (h-cdcos e)yxt * - cdsin 0 cos O)y,.

A comparison of the above with (4.5) shows that

2 2 
2  

Cos 2
k

2 
= CdSi n2 ; 2 i = hd

c 1 = -c 2 = PCdsin 0 cos 0, (4.7)

thus

Ik c kjO - -(kja-k) S 0 a

so (4.6) is satisfied and the boundary conditions (4.5) are dissipative.

It is noted that when e = r/2 (vertical damper), the above gain

constants reduce to R =Cd and k2 . c = c 2 = 0. cf. Figure 3a.
d %"

Similarly. for 0 = 0 (ho'lzonta l damper ), the gain constalts become

k2 = 2 /4 = c 2  0 0, as shown in Figure 3b.

Consequently, the boundary conditions (1.1)-(1.1.5) can be realized as

in Figure 3c. with k 2 Cd. 1 and k = Cdh
2
/4.

-.1 ,.. .. , ,. . .
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h/2

x=1

h/2

cd (It Cd y (l,t)h/'2

Shear(1,t) -c Cd Yt (1,t) Moment(l,t) c Cd yxt(l,t) h 2/4

a) Vertical Damper b) Horizontal Damper

Cd

4H
C d

X-1

c) Shear(l,t) =-cdytC1.'t) -

Moment(1,t) -= Cy (l't) h/

Figure 3 Damper arrangement for (4.1), (4.2) and (1.1.4)+(1.1.5)
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£O2

Shear(l,t) - C dYt (1,t)

Slope(l,t) -Y~ (1,t) -0

Figure Damper arrangement for (4.3) 
Sp

c'

%.

Y(I-t)

Momet~l~) cY, t(l~t h /

Figue Daper rranemen for(4.4

Cd --'p..

r.
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The otner boundary conditions (4.1)-(4.4) can be realiszed and

designed, respectively, as in Figures 3a, 3h, 4 and 3.

Tire method of estimation which we have developed in this paper and

Huang's theorem (Thm. 1) can be applied to study exponential stability

for all of these boundary stabilization schemes.
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