

(1)												

11. TitLe (inclucte securty Elasthenond)

The Euler-Bernoulli Beam Equation with Boundary Energy Dissipation

DO FORM 1473. ©4 MAR
B3 APR edition may de used until exnausted. All opher editions are obsolete.

SECLRITT CLASSIFICATION OF - HIS PAGE

The Euler-Bernoulli Beam Equation with Boundary Energy Dissipation

G. Chen, S.G. Krantz*, D.W. Ma, C.E. Wayne
Department of Mathematics
The Pennsylvania State University
University Park, Pennsylvania
H.H. West
Department of Civil Engineering
Pennsylvania State University University Park, Pennsylvania

INTRODUCTION

Many problems in structural dynamics involve stabilizing the elastic energy of partial differential equations such as the Euler-Beruoulli beam equation by boundary conditions. Exponential stability is a very desirable property for such elastic systems. The energy multiplier method $\{1\}$, $\{2\}$, $\{7]$ has been successfully applied by several people to establish exponential stabllity for various PDEs and boundary conditions. However. it has also been found [2] that for certain boundary conditions the energy multiplier method is not effective in proving the exponential stability property.

A recent theorem of F.L. Huang $[4]$ introduces a frequency domain method to study such exponential decay problems. In this paper. we derive estimates of the resolvent operator on the imaginary axis and apply Huang's theorem to establish an exponential decay result for an Euler-Bernoulli beam with rate control of the bending moment only. We also derive asymptotic linits of eigenfrequencies. which was also done earlier by P. Rideau.[8]: Finally, we indicate the realizability of these boundary leedback stabilliation schemes by illustrating some mechanical designs of passive damping devices.
*Current affiliation: Washington University, St. Louis, Missouri

Supported in part by NSF Grants DMS 84-01297A01, 85-01306, 84-03664 and AFOSR Grant 85-0253. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyrlght notation thereon.

§1... BACKGROUND AND MOTIVATION

In this paper, we consider the following uniform Euler-Bernoulli beam equation with dissipative boundary conditions

$$
\left.\begin{array}{ll}
m y_{t t}(x, t)+E I y_{x x x x}(x, t)=0, & 0<x<1 . \\
y(0, t)=0, \\
y_{x}(0, t)=0 . & \tag{1.1}\\
-E I y_{x x x}(1, t)=-k_{1}^{2} y_{t}(1, t) . & k_{1} \in \mathbb{R} . \\
-E I y_{x x}(1, t)=k_{2}^{2} y_{x t}(1, t) . & k_{2} \in \mathbb{R} . \\
\left(y(x, 0), y_{t}(x, 0)\right)=\left(y_{0}(x), y_{1}(x)\right), & 0 \leq x \leq 1 .
\end{array}\right\}
$$

where m denotes the mass density per unit length, EI is the flexural rigidity coefficient, and the following variables have engineering meanlngs:

$$
\begin{aligned}
& y=\text { vertical displacement }, y_{t}=\text { velocity } \\
& y_{X}=\text { cotation, } y_{x t}=\text { angular velocity } \\
& -E I y_{X x}=\text { bending moment } \\
& -E I y_{x x x}=\text { shear }
\end{aligned}
$$

at a point x, at time t.
From now on, when we write equation (1.1.j), for example, we mean the j th equation in (1.1).

The above equation and conditions are intended to serve as a simple mathematical model for the mast control system in NASA's COFS (Control
of Flexible Structures) Program. See figure 1. A long flexible mast 60 meters in length is clamped at its base on a space shuttle. The mast is formed with 54 bays but can be idealized as a continuous uniform beam. At the very end of the mast. a CMG (control moment gyro) is placed which can apply bending and torsion rate control to the mast according to sensor feedback.

Boundary conditions (1.1.2) and (1.1.3) signify that the beam is clamped, at the left end, $x=0$, while boundary conditions (1.1.4) and (1.1.5) at the right end, $x=1$, respectively, signify
$\left\{\begin{array}{l}\left.\text { shear (-Ely } y_{x x}\right) \text { is proportional to velocity }\left(y_{t}\right) \\ \text { bending moment }\left(- \text { EI }_{x x}\right) \text { is negatively proportional to angular } \\ \text { velocity }\left(y_{x t}\right)\end{array}\right.$

Thus the rate feedback laws (1.1.4) and (1.1.5) reflect some basic features of the CMG mast control system in COFS.

Figure 1 Spacecraft mast control experiment

The elastic energy of vibration. $E(t)$, at time t, for system (1.1) is given by

$$
E(t)=\frac{1}{2} \int_{0}^{1}\left[m y_{t}^{2}(x, t)+E\left[y_{x x}^{2}(x, t)\right] d x .\right.
$$

Note that in (1.1) we have already normalized the beam length to 1 . The qualltative behavior of (1.1) has been studied in an earlier paper [2]. There it is shown that if $\mathrm{k}_{1}^{2}>0 . \mathrm{k}_{2}^{2} \geq 0$ in (1.1.4) and (1.1.5), respectively, then the energy of vibration of the beam decays uniformly exponentlally:

$$
\begin{equation*}
E(t) \leq K e^{-\mu t} E(0) \tag{1.2}
\end{equation*}
$$

for some $K, \mu>0$ uniformly for all initial conditions $\left(y_{0}(x), y_{1}(x)\right)$. Therefore the flexible mast system can be controlled and stabilized

The proof of the above in [2] was accomplished by the use of energy multipliers and the construction of a liapounov functional.
 Nevertheless, a major mathematical question remained unresolved in [2]:
[Q] "Does the unlform exponentinl decay property (1.2) hold under the assumption of $k_{1}^{2}=0, k_{2}^{2}>0$?"

This question is of considerable mathematical interest because the feedback scheme using bending moment only is simple and attractive.

For a long time, we have conjectured that the answer to [Q] is afflrmative, as asymptotic elgenfrequency estimates obtalned in [8] (and §3) have so suggested: Let A denote the infinitesimal generator of the C_{0}-semigroup corresponding to (1.1) with $k_{1}=0$ and $k_{2}^{2}>0$. and let $\sigma(A)$ denote the spectrum of A. Then there exists $\beta>0$ such that

$$
\begin{equation*}
\operatorname{Re} \lambda \leq-\beta<0 \quad \text { for all } \lambda \in \sigma(A) \text {. } \tag{1.3}
\end{equation*}
$$

Nevertheless, it is well known [4] that the following "theorem" is false.
"Let A generate a C_{0}-semigroup and

$$
\begin{equation*}
\sup \{\operatorname{Re} \lambda \mid \lambda \in \sigma(A)\} \leq-\beta<0 \tag{1.4}
\end{equation*}
$$

for some $\beta>0$. Then the C_{0}-semigroup is exponentially stable:

$$
\begin{equation*}
\|\exp (t A)\| \leq M e^{-\mu t} \text { for some } M \geq 1, \mu>0^{\prime \prime} \tag{1.5}
\end{equation*}
$$

Therefore, knowing (1.4) alone is not sufficient to confirm (1.5). This statement remalns false even if we assume additionally that A has a compact resolvent.

We have repeatedly tried to refine the energy multiplier technique used in (2) to establish (1.5) without much success, no matter how many different and elaborate multipliers were constructed. There always are boundary terms which cannot be absorbed by terms in the dissipative boundary condition.

A recent theorem by $F .1$. Huang offers an important direct method for proving exponential stability:

THEOREM 1 (F.L. Huang [4])

Let $\exp (t A)$ be a C_{0}-semigroup in a Hilbert space satisfying

$$
\begin{equation*}
\|\exp (t A)\| \leq B_{0}, \quad t \geq 0, \text { for some } H_{0}>0 \tag{1.6}
\end{equation*}
$$

Then exp(tA) is exponentially stable if and only if
$\{|\omega| \omega \in R\} C \rho(A)$, the resolvent set of A; and

$$
\begin{equation*}
B_{1}: \sup \left\{\left\|(I \omega-A)^{-1}\right\| \mid \omega \in R\right\}<\infty \tag{1.8}
\end{equation*}
$$

are satisfled.

Huang's theorem effects a frequency domaln method to proving
exponential decay properties. As mentioned earller. the energy multiplier method, which corresponds to a time domain method. has not been successful for the case $k_{1}^{2}=0, k_{2}^{2}>0$.

Therefore the work is to obtain bounds on the resolvent operator ($1 \omega-A)^{-1}$. Here we accomplish this by carrying out a careful analysis on the eigenfunctions and eigenfrequencies of the operator A. This is done ln §2.

Associated with [Q] is the question of the asymptotic distribution pattern of eigenfrequencies, as numerical study in [2] suggests that a "structural damping" phenomenon is present at low frequencies. Does it also appear at high frequencies? This is answered in §3. (We must state that the work and numerical verification was done ahead of us by P. Rideau in his recent thesis (8]).

In §4, we present mechanical designs of devices satisfying damping boundary conditions (1.1.3) and (1.1.4) to indicate the realizability of the feedback stabilization scheme using passive dampers.

Notations: We use II || to denote the $\varepsilon^{2}(0,1)$ norm. We define the Sobolev space

$$
H^{k}=H^{k}(0,1)=\left\{f:\left.[0,1] \rightarrow R\left|\|f\|_{H^{k}(0,1)}^{2} \quad \sum_{j=0}^{k} \int_{0}^{1}\right| f^{(j)}(x)\right|^{2} d x<\infty\right\}, k \in \mathbb{N} .
$$

Also, we let

$$
H_{0}^{2}=H_{0}^{2}(0,1)=\left\{f \mid f \in H^{2}(0,1), f(0)=f(0)=0\right\} .
$$

The underlying Hilbert space H for the PDE (1.1) is

$$
H=H_{0}^{2}(0,1) \times \mathcal{I}^{2}(0,1)=\left\{(f . g)\| \|(f . g) \|_{H}^{2}=\int_{0}^{1}\left(E\left[\left|f^{\prime \prime}(x)\right|^{2}+m \mid g(x) \|^{2}\right] d x<\infty\right\}\right.
$$

whose norm square is the elastic energy.
The unbounded linear operator A associated with (1.1) is given by

$$
A=\left[\begin{array}{ll}
0 & I \\
-\alpha^{4} \partial_{x}^{4} & 0
\end{array}\right], \quad a^{4}=\frac{E I}{m}
$$

with domain

$$
D(A)=\left\{(f, g) \in H^{4} \times H^{2} \mid-E I f^{\prime \prime \prime}(1)=-k_{1}^{2} g(1),-E I f^{\prime \prime}(1)=k_{2}^{2} g^{\prime}(1), f(0)=f^{\prime}(0)=0\right\}
$$

§2. ESTIMATION OF THE RESOLVENT OPERATOR ON THE IMAGINARY AXIS EXPONENTIAL, DECAY OF SOLUTIONS

Consider the resolvent equation: Given $(f, g) \in H$ and $\lambda \in C$, find $\left(w_{\lambda}, v_{\lambda}\right) \in D(A)$ such that

$$
(A-\lambda I)\left[\begin{array}{l}
w_{\lambda} \tag{2.1}\\
v_{\lambda}
\end{array}\right]=\left[\left[\begin{array}{cc}
0 & 1 \\
-\left[\alpha \frac{\partial}{\partial x}\right]^{4} & 0
\end{array}\right]-\lambda I_{2}\right]\left[\begin{array}{l}
w_{\lambda} \\
v_{\lambda}
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

This amounts to solving the following boundary value problem for w_{λ} :

$$
\left.\begin{array}{l}
\alpha^{4} w_{\lambda}(4)(x)+\lambda^{2} w_{\lambda}(x)=-[\lambda \Gamma(x)+g(x)], \quad x \in(0,1) \\
w_{\lambda}(0)=0 \\
w_{\lambda}^{\prime}(0)=0 \tag{2.2}\\
w_{\lambda}^{\prime \prime \prime}(1)-\lambda z_{1}^{2} w_{\lambda}(1)=\bar{k}_{1}^{2} f(1) \\
w_{\lambda}^{\prime \prime}(1)+\lambda k_{2}^{2} w_{\lambda}^{\prime}(1)=-\dot{k}_{2}^{2} f^{\prime}(1)
\end{array}\right\}
$$

where

$$
\begin{equation*}
\tilde{k}_{1}^{2}=k_{1}^{2}(E I)^{-1}, \quad \vec{k}_{2}^{2}=k_{2}^{2}(E I)^{-1} \tag{2.3}
\end{equation*}
$$

Once w_{λ} is found we obtalil

$$
\begin{equation*}
v_{\lambda}(x)=\lambda w_{\lambda}(x)+f(x) \tag{2.4}
\end{equation*}
$$

To simplify notation, from now on, unless otherwise specifically mentioned, we set $a^{4}=1 \ln (2.2 .1)$ and write k_{1}, k_{2} for \dot{k}_{1}, \bar{k}_{2}, respectively.

The main work in this section is to prove estimate (1.8). 1.e.. to show the existence of some $B_{1}>0$ such that

$$
\int_{0}^{1}\left[\left|w_{\lambda}^{\prime \prime}(x)\right|^{2}+\left|v_{\lambda}(x)\right|^{2}\right] d x \leq B_{1} \int_{0}^{1}\left[\left|f^{\prime \prime}(x)\right|^{2}+|g(x)|^{2}\right] d x
$$

for all $\lambda=i \omega, \omega \in R$ and all $(f, g) \in H$.

LEMMA $2 A^{-1}$ exists and is a compact operator on H. Furthermore, $\sigma(A)$ consists entirely of isolated eigenvalues.

Proof: Let $\lambda=0$ in (2.2), We see that w_{0} in (2.2) is obtained by Integrating four times:

$$
\begin{aligned}
w_{0}(x)= & -\int_{0}^{x} \int_{0}^{\xi_{3}} \int_{0}^{\xi_{4}} \int_{0}^{\xi_{2}} g\left(\xi_{1}\right) d \xi_{1} d \xi_{2} d \xi_{3} d \xi_{4} \\
& +\frac{x^{2}}{2}\left[\int_{0}^{1} \int_{0}^{\xi_{2}} \xi\left(\xi_{1}\right) d \xi_{1} d \xi_{2}-k_{2}^{2} f^{\prime}(1)\right] \\
& +\left[\frac{x^{3}}{6}-\frac{x^{2}}{2}\right]\left[\int_{0}^{1} g(\xi) d \xi \cdot k_{1}^{2} f(1)\right]
\end{aligned}
$$

and

$$
v_{0}(x)=f(x)
$$

Thus A^{-1} exists and maps H into $H^{4}(0,1) \times H_{0}^{2}(0.1)$. Therefore A^{-1} is compact. The rest of the lemma follows from Theorem 6.29 in [6. Chapter 3]. 0

LEMMA 3 The resolvent estimate (2.5) holds for $\lambda=i \omega$, $\omega \in \mathbb{R}$, provided that $|\lambda|$ is sufficiently large.

Proof: For simplicity, let us write (w,v) for ($w_{\lambda} \cdot v_{\lambda}$) when no ambiguities will occur.

Let

$$
\lambda=1 \omega=1 \eta^{2}, \quad \eta \neq 0 .
$$

We need only consider $\omega=\eta^{2}>0$. The estimates for $\omega<0$ are simllar. First, we find a particular solution $W_{p}(x)$ of (2.2.1).
$w_{p}(x)=-\frac{1}{2} \int_{0}^{x} \eta^{-3}[\sinh \eta(x-\xi)-\sin \eta(x-\xi)]\left[i \eta^{2} f(\xi)+g(\xi)\right] d \xi$

Then $W_{p}(x)$ satisfles

$$
\begin{align*}
& \left.w_{p}^{(4)}(x)-\eta^{4} w_{p}(x)=-\left[1 \eta^{2} f(x)+g(x)\right], \quad x \in(0,1)\right] \\
& W_{p}(0)=0 \tag{2.7}\\
& w_{p}^{\prime}(0)=0 .
\end{align*}
$$

Consider the solution $\vec{W}(x)$ of

$$
\left.\begin{array}{l}
{\underset{w}{w}}^{\sim}(4)(x)-\eta^{4} \tilde{w}(x)=0 \\
w(0)=0 \\
w^{\prime}(0)=0 \tag{2.8}\\
w^{\prime \prime \prime}(1)-1 \eta^{2} k_{1}^{2} w(1)=h_{1}, \quad h_{1}=-w_{p}^{\prime \prime \prime \prime}(1)+1 \eta^{2} k_{1}^{2} w_{p}(1)+k_{1}^{2} f(1) \\
w^{\prime \prime}(1)+1 \eta^{2} k_{2}^{2} w^{\prime}(1)=h_{2}, \quad h_{2}=-w_{p}^{\prime \prime}(1)-1 \eta^{2} k_{2}^{2} w_{p}^{\prime}(1)-k_{2}^{2} f(1)
\end{array}\right\}
$$

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{2.12}\\
\eta & i \eta & -\eta & -i \eta \\
\left(\eta^{3}-i \eta^{2} k_{1}^{2}\right) e^{\eta} & -\left(1 \eta^{3}+1 \eta^{2} k_{1}^{2}\right) e^{1 \eta} & -\left(\eta^{3}+i \eta^{2} k_{1}^{2}\right) e^{-\eta} & \left(i \eta^{3}-i \eta k_{1}^{2}\right) e^{-i \eta} \\
\left(\eta^{2}+i \eta^{3} k_{2}^{2}\right) e^{\eta} & \left(-\eta^{2}-\eta^{3} k_{2}^{2}\right) e^{1 \eta} & \left(\eta^{2}-1 \eta^{3} k_{2}^{2}\right) e^{-\eta} & \left(-\eta^{2}+\eta^{3} k_{2}^{2}\right) e^{-1 \eta}
\end{array}\right]
$$

If n^{-1} exists for η sufficiently large, then

$$
\left[\begin{array}{l}
A_{1} \tag{2.13}\\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right]=M^{-1}\left[\begin{array}{l}
0 \\
0 \\
h_{1} \\
h_{2}
\end{array}\right] .
$$

We now begin the estimation of $\int_{0}^{1}\left|w^{\prime \prime}(x)\right|^{2} d x$. The work below may mes tedious, but the idea is rather simple. The main observation is the the dominant terms in $w_{p}(x)$ and $\dot{w}(x)$ do not satisfy the bounds

$$
\begin{aligned}
& \int_{0}^{1}\left|w_{p}^{\prime \prime}(x)\right|^{2} d x \leq c \int_{0}^{1}\left[\left|f^{\prime \prime}(x)\right|^{2}+|g(x)|^{2}\right] d x \\
& \int_{0}^{1}\left|\tilde{w}^{\prime \prime}(x)\right|^{2} d x \leq c \int_{0}^{1}\left[\left|f^{\prime \prime}(x)\right|^{2}+|g(x)|^{2}\right] d x
\end{aligned}
$$

for | $\lambda 1$ large. However. in (2.9), those doninant terms cancel,
leviag $w(x)$ with smaller terms which are bounded by $\mathcal{O}\left(\|f\|^{\prime \prime}\| \| g\right)$.

If Step Estimation of $w_{p}^{\prime \prime}(x)$.
free (2.6).

$$
\begin{align*}
& \sim_{D}^{2}(x)=-\frac{1}{2} \int_{0}^{x} \eta^{-1}[\sinh \eta(x-\xi)+\sin \eta(x-\xi)]\left[\ln \eta^{2} f(\xi)+g(f)\right] d \xi \quad \text { (2.14) } \tag{2.14}\\
& --\frac{1}{2} \int_{0}^{x} \eta^{-1}[\sinh \eta(x-\xi)+\sin \eta(x-\xi)] g(\xi) d \xi \quad \text { (integration by parts) } \\
& \quad-\frac{1}{2} \int_{0}^{x} \eta^{-1}[\sinh \eta(x-\xi)-\sin \eta(x-\xi)] 1 f^{\prime \prime}(\xi) d \xi
\end{align*}
$$

$=-\frac{1}{2} \eta^{-1} \int_{0}^{x} \sinh \eta(x \cdot \xi)\left(1 f^{\prime \prime}(\xi)+g(\xi)\right] d \xi+O\left(\eta^{-1}\left[\left\|f^{\prime \prime}\right\|+\|g\|\right)\right.$
$=-\frac{1}{4} \eta^{-1} \int_{0}^{1} e^{\eta(x-\xi)}\left[i f^{\prime \prime}(\xi)+g(\xi)\right] d \xi+\theta\left(\eta^{-1}\left[\left\|f^{\prime \prime}\right\|+\|g\|\right]\right)$
$=-\frac{1}{4} \eta^{-1} e^{\eta x} \int_{0}^{1} e^{-\eta \xi}\left[1 f^{\prime \prime}(\xi)+g(\xi)\right] d \xi+O\left(\eta^{-1}\left[\left\|f^{\prime \prime}\right\|+\|g\|\right]\right)$

2nd Step Estimation of h_{1} and h_{2}.

From (2.6), (2.8) and (2.14),

$$
h_{1}=\int_{0}^{1} K_{1 \eta}(\xi)\left[i \eta^{2} f(\xi)+g(\xi)\right] d \xi+k_{1}^{2} f(1) .
$$

where

$$
K_{1 \eta}(\xi)=\frac{1}{2}[\cosh \eta(1-\xi)+\cos \eta(1-\xi)]-\frac{1}{2} k_{1}^{2} \eta^{-1}[\sinh \eta(1-\xi)-\sin \eta(1-\xi)]
$$

Integration by arts twice for f yields

$$
\int_{0}^{1} K_{1 \eta}(\xi) i \eta^{2} f(\xi) d \xi=\int_{0}^{1} \bar{K}_{1 \eta}(\xi) i f^{\prime \prime}(\xi) d \xi-k_{1}^{2} f(1)
$$

where

$$
\tilde{K}_{1 \eta}(\xi)=\frac{1}{2}[\cosh \eta(1-\xi)-\cos \eta(1-\xi)]-\frac{1}{2} k_{1}^{2} \eta^{-1}[\sinh \eta(1-\xi)+\sin \eta(1-\xi)] .
$$

We get

$$
\begin{aligned}
& K_{1 \eta}(\xi)=\frac{1}{4} \eta^{-1} e^{\eta}\left(\eta-i k_{1}^{2}\right) e^{-\eta \xi}+O(1) \\
& \tilde{K}_{1 \eta}(\xi)=\frac{1}{4} \eta^{-1} e^{\eta}\left(\eta-1 k_{1}^{2}\right) e^{-\eta \xi}+O(1)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
h_{1}=\frac{1}{4} \eta^{-1} e^{\eta}\left(\eta-i k_{1}^{2}\right) \int_{0}^{1} e^{-\eta t}\left[i f^{\prime \prime}(\xi)+g(\xi)\right] d \xi+O\left(\left\|f^{\prime \prime}\right\|+\|g\|\right) . \tag{2.15}
\end{equation*}
$$

Slollarly, from (2.6) and (2.8).

$$
h_{2}=\int_{0}^{1} k_{2 \eta}(\xi)\left[i \eta^{2} f(\xi)+g(\xi)\right] d \xi-k_{2}^{2} f^{\prime}(1)
$$

were

$$
\mathrm{K}_{2 \eta}(\xi)=\frac{1}{2} \eta^{-1}[\sinh \eta(1-\xi)+\sin \eta(1-\xi)]+\frac{1}{2} k_{2}^{2}[\cosh \eta(1-\xi)-\cos \eta(1-\xi)]
$$

keating this same integration by parts procedure twice more for f, met

$$
\int_{0}^{1} K_{2 \eta}(\xi) i \eta^{2} f(\xi) d \xi=\int_{0}^{1} \tilde{K}_{2 \eta}(\xi) i f^{\prime \prime}(\xi) d \xi+k_{2}^{2} f^{\prime}(1)
$$

4

$$
\begin{aligned}
& K_{2 \eta}(\xi)=\frac{1}{4} \eta^{-1} e^{\eta}\left(1+i k_{2}^{2} \eta\right) e^{-\eta \xi}+O(1) \\
& \tilde{K}_{2 \eta}(\xi)=\frac{1}{4} \eta^{-1} e^{\eta}\left(1+i k_{2}^{2} \eta\right) e^{-\eta \xi}+O(1)
\end{aligned}
$$

wet

$$
\begin{equation*}
h_{2}=\frac{1}{4} \eta^{-1} e^{\eta}\left(1+i k_{2}^{2} \eta\right) \int_{0}^{1} e^{-\eta \xi}\left[1 f^{\prime \prime}(\xi)+g(\xi)\right] d \xi+\theta\left(\left\|f^{\prime \prime}\right\|+\|g\|\right) \tag{2.16}
\end{equation*}
$$

Srd Step Estimation of A_{1}, A_{2}, A_{3} and A_{4}.

We flrst write

$$
M=\left[\begin{array}{lll}
1 & & 0 \\
& \eta & \\
& & \eta^{2} \\
0 & & \eta^{2}
\end{array}\right] M_{1}
$$

nere

$$
M=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\left(\eta-i k_{1}^{2}\right) e^{\eta} & \left(-i \eta-i k_{1}^{2}\right) e^{i \eta} & \left(-\eta-1 k_{1}^{2}\right) e^{-\eta} & \left(1 \eta-i k_{1}^{2}\right) e^{-i \eta} \\
\left(1+i \eta k_{2}^{2}\right) e^{\eta} & \left(-1-\eta k_{2}^{2}\right) e^{i \eta} & \left(1-i \eta k_{2}^{2}\right) e^{-\eta} & \left(-1+\eta k_{2}^{2}\right) e^{-i \eta}
\end{array}\right]
$$

So

$$
\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right]=M_{1}^{-1}\left[\begin{array}{c}
0 \\
0 \\
\eta^{-2} h_{1} \\
\eta^{-2} h_{2}
\end{array}\right]
$$

Purther, write

$$
M_{1}^{-1}=\left(\operatorname{det} M_{1}\right)^{-1}\left[\begin{array}{llll}
* & \cdots & \mu_{11} & \mu_{12} \\
\cdots & \mu_{21} & \mu_{22} \\
\cdots & \mu_{31} & \mu_{32} \\
\cdots & \mu_{41} & \mu_{42}
\end{array}\right]
$$

From the evaluation of cofactors,

$$
\begin{aligned}
\mu_{11} & =(1+1)\left[\left(1-\eta k_{2}^{2}\right) e^{-i \eta}+1\left(1+\eta k_{2}^{2}\right) e^{i \eta}+(1+1)\left(1-i \eta k_{2}^{2}\right) e^{-\eta}\right] \\
\mu_{12} & =(1-1)\left[\left(\eta-k_{1}^{2}\right) e^{-1 \eta}-1\left(\eta+k_{1}^{2}\right) e^{i \eta}+(1-1)\left(\eta+i k_{1}^{2}\right) e^{-\eta}\right]
\end{aligned}
$$

Let

$$
\begin{aligned}
\Sigma(\eta) & =\left(\eta-1 k_{1}^{2}\right) \mu_{12}+\left(1+i \eta k_{2}^{2}\right) \mu_{12} \\
& =(1+i) \eta\left(\left[\cdot 2 k_{2}^{2} \eta+(1+1)\left(1+k_{1}^{2} k_{2}^{2}\right)-2 i k_{1}^{2} \eta^{-1}\right] e^{-i \eta}\right. \\
& \left.+\left(2 i k_{2}^{2} \eta+(1+1)\left(1+k_{1}^{2} k_{2}^{2}\right)+2 k_{1}^{2} \eta^{-1}\right) e^{i \eta}\right\rangle \\
& +O\left(\eta^{2} e^{-\eta}\right)
\end{aligned}
$$

The term in braces above satisfies
|\{ || \geq |Bracket $2 \mid$ - |Bracket $|\mid$
$\rightarrow 2\left(1+k_{1}^{2} k_{2}^{2}\right)$, as $\eta \rightarrow \infty$

$$
\| \int_{0}^{1} e^{-\eta \xi}\left[1 f^{\prime \prime}(\xi)+\xi(\xi)\right] d \xi \left\lvert\,=O\left(\eta^{-\frac{1}{2}}\left[\left\|f^{\prime \prime}\right\|+\|p\|\right]\right)\right.
$$

Thus

$$
\begin{equation*}
A_{1} \eta^{2}=\frac{1}{4} \eta^{-1} \int_{0}^{1} e^{-\eta \xi}\left[i f^{\prime \prime}(\xi)+g(\xi)\right] d \xi+\theta\left(\eta^{\frac{1}{2}} e^{-\eta}\left[\left\|f^{\prime \prime}\right\|+\|g\|\right]\right) \tag{2.20}
\end{equation*}
$$

As for A_{2}, we have

$$
\begin{equation*}
A_{2} \eta^{2}=D_{1}^{-1}\left(\mu_{21} \mathrm{~h}_{1}+\mu_{22} \mathrm{~h}_{2}\right) \tag{2.21}
\end{equation*}
$$

where

$$
\begin{align*}
-\mu_{21} & =(i-i)\left(1+i \eta k_{2}^{2}\right) e^{\eta}+2\left(2-\eta k_{2}^{2}\right) e^{-i \eta}+(1+i)\left(1-i \eta k_{2}^{2}\right) e^{-\eta} \tag{2.22}\\
\mu_{22} & =(1-i)\left(\eta-i k_{1}^{2}\right) e^{\eta}-2 i\left(\eta-k_{1}^{2}\right) e^{-i \eta}-(1+i)\left(\eta-i k_{1}^{2}\right) e^{-\eta} \tag{2.23}
\end{align*}
$$

By (2.15), (2.16), (2.22) and (2.23). the dominant terms in $\mu_{21} h_{1}$ and $\mu_{22} h_{2}$ are $o\left(\eta e^{2 \pi}\right)$. But their coefficients in $\mu_{21} h_{1}+\mu_{22} h_{2}$ are such that they cancel out. We get

$$
\begin{equation*}
\Lambda_{2} \eta^{2}=D_{1}^{-1} \cdot O\left(\eta e^{\eta}\left[\left\|f^{\prime \prime}\right\|+\|g\|\right]\right)=O\left(\left\|f^{\prime \prime}\right\|+\|g\|\right) \tag{2.24}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{align*}
& A_{3} \eta^{2}=O\left(\left\|f^{\prime \prime}\right\|+\|g\|\right) \tag{2.25}\\
& A_{4} \eta^{2}=O\left(\left\|f^{\prime \prime}\right\|+\|g\|\right) \tag{2.26}
\end{align*}
$$

Final Step Estimation of $\left\|\omega^{\prime \prime}\right\|+\|v\|$

By (2.14) and (2.20), we have

$$
\begin{aligned}
& w^{\prime \prime}(x)=w_{p}^{\prime \prime}(x)+w^{\prime \prime}(x) \\
& =\left\{-\frac{1}{4} \eta^{-1} e^{\eta x} \int_{0}^{1} e^{-\eta \xi}[\text { if" }(\xi)+g(\xi)] d \xi+O\left(\eta^{-1}[\|f "\|+\|\xi\|]\right)\right\} \\
& +A_{1} \eta^{2} e^{\eta x}+A_{2}\left(-\eta \eta^{2}\right) e^{i \eta x}+A_{3}(-\eta)^{2} e^{\cdot \eta x}+A_{1} \cdot\left(-\eta^{2}\right) e^{\eta} \\
& =\left\{O\left(\eta^{-1}[\|f "\|+\|g\|]\right)+e^{\eta x} \cdot \theta\left(\eta^{\frac{1}{2}} e^{\eta}\left[\left\|f^{\prime \prime}\right\|+\|g\|\right]\right)\right\} \\
& +\left(-A_{2} \eta^{2} e^{i \eta x}+A_{3} \eta^{2} e^{-\eta x}-A_{4} \eta^{2} e^{-i \eta x}\right) .
\end{aligned}
$$

In the first parenthesized term, the z^{2}-norm of $e^{\eta x}$ is of order of magnitude

$$
\left[\int_{0}^{1}\left(e^{\eta x}\right)^{2} d x\right]^{1 / 2}=\left[\frac{1}{2 \eta}\left(e^{2 \eta}-1\right)^{1 / 2}=O\left(\eta^{-1 / 2} e^{\eta}\right)\right.
$$

hence

$$
\left[\int_{0}^{1} \mid \text { first parenthesized term }\left.\right|^{2} \mathrm{dx}\right]^{1 / 2}=0\left(\left\|\mathrm{P}^{\prime \prime}\right\|+\|g\|\right)
$$

The second parenthesized term also satisfies the above bound. because of (2.24), (2.25), and (2.26).

Hence

$$
\begin{equation*}
\left\|w^{\prime \prime}\right\| \leq C\left(\|f\|^{\prime \|}\|+\| g \|\right)=O(\|f "\|+\|g\|), \text { for } \eta \text { large. } \tag{2.27}
\end{equation*}
$$

For v, by (2.4) we have

$$
\begin{equation*}
\|v\| \leq|\lambda|\|w\|+\|f\| \tag{2.28}
\end{equation*}
$$

We want to show that

$$
\begin{equation*}
|\lambda|^{2}\|w\|^{2} \leq c\left(\left\|w^{\prime}\right\|^{2}+\left\|f^{\prime \prime}\right\|^{2}+\|f\|^{2}+\|g\|^{2}\right) \tag{2.29}
\end{equation*}
$$

for some constant $C>0$ independent of λ
Consider (2.2.1). With $a^{4}=1$ and $\lambda=i \eta^{2}$, and use k_{1}^{2}, k_{2}^{2} for \tilde{k}_{1}^{2} and \bar{k}_{2}^{2}. Multiply (2.2.1) by $\bar{w}(x)$ and integrate by parts twice. We get

$$
\begin{aligned}
w^{\prime \prime \prime}(1) \bar{w}(1) \cdot w^{\prime \prime}(1) \bar{w} \cdot(1)+\left\|w^{\prime \prime}\right\|^{2}-\eta^{4}\|w\|^{2} & =-\langle\lambda f+g, w\rangle \\
& =-\langle f, \lambda w\rangle-\langle\varphi, w\rangle .
\end{aligned}
$$

From (2.2.3) and (2.2.4), we get

$$
\begin{gathered}
i \eta^{2} k_{1}^{2}|w(1)|^{2}+k_{1}^{2} f(1) \bar{w}(1)+\left.\left|\eta k_{2}^{2}\right| w^{\prime}(1)\right|^{2}+k_{2}^{2} f^{\prime}(1) \bar{w}^{\prime}(1)+\left\|w^{\prime}\right\|^{2}-\eta \eta^{4}\|w\|^{2} \\
=-\langle f, \lambda w\rangle-\langle g, w\rangle .
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \eta^{4}\|w\|^{2}=\operatorname{Re}\left(\left\|w^{\prime \prime}\right\|^{2}+\langle f, \lambda w\rangle+\langle g, w\rangle+k_{1}^{2} f(1) \bar{w}(1)+k_{2}^{2} f f^{\prime}(1) \bar{w}^{\prime}(1)\right\} \\
& \leq\left\|w^{\prime \prime}\right\|^{2}+\frac{\mid \eta L^{4}}{4}\|w\|^{2}+2\|f\|^{2}+\frac{1}{2}\|g\|^{2}+\frac{1}{2}\|w\|^{2}+C\left[\left\|f^{\prime \prime}\right\|^{2}+\left\|w^{\prime \prime}\right\|^{2}\right],
\end{aligned}
$$

where we have applied the Poincare inequality and the trace theorem:

$$
\begin{aligned}
& |f(1)|^{2}+\left|f^{\prime}(1)\right|^{2} \leq c\left\|f f^{\prime \prime}\right\|^{2} \\
& |w(1)|^{2}+\left|w^{\prime}(1)\right|^{2} \leq c\left\|w^{\prime}\right\|^{2} .
\end{aligned}
$$

Therefore (2.29) follows for η sufficiently large.
By (2.27) and (2.29), we have
$\|v\| \leq c\left(\left\|f{ }^{\prime \prime}\right\|+\|f\|+\left\|w^{\prime \prime}\right\|+\|g\|\right)$
$\leq C\left(\left\|f{ }^{\prime \prime}\right\|+\|s\|\right)$
as

$\|f\| \leq c| | f " \|$

and (2.27) holds.
Combining (2.27) and (2.30), we have proved (2.5) for $|\lambda|$ surficicntly large, $\lambda * 1 \omega, \omega \in \mathbb{R}$. So Lemma 3 hiss been proved.

THEOREM 4. Let $k_{1}^{2} \geq 0$ and $k_{2}^{2}>0$ in (1.1). Then the uniform exponential decay of energy (1.2) holds.

Proof: In order to apply Theorem 1, we need to verify that assumptions (1.6), (1.7) and (1.8) are satisfled.

We note that (1.6) is satisfied, because A is dissipative and

$$
\|\exp (t A)\| \leq 1
$$

The verification of (1.7) and (1.8) is accomplished if we can verify merely (1.7):

$$
\begin{equation*}
(\lambda I-A)^{-1} \text { exists for all } \lambda=i \omega, \omega \in R . \tag{2.31}
\end{equation*}
$$

because by (2.31) and Lemma 3 ,

$$
\left\|w_{\lambda}^{\prime \prime}\right\|+\left\|v_{\lambda}\right\| \leq C^{\prime}\left(\left\|f{ }^{\prime \prime}\right\|+\|g\|\right), \quad \forall \lambda=1 \omega, \quad \omega \in \mathbb{R} .
$$

where

$$
\begin{gathered}
C^{\prime}=\max \left(C, C^{\prime \prime}\right), C \text { as in (2.27) and (2.30) } \\
C^{\prime \prime} \max _{|\lambda| \leq B_{2}}\left\|(\lambda I-A)^{-1}\right\|, \text { for some } B_{2} \text { sufficiently large. } \\
\lambda=i \omega, \omega \in R .
\end{gathered}
$$

To show (2.31), we assume the contrary that $\sigma(A) \cap\{i \omega \mid \omega \in \mathbb{R}\} \notin \mathbb{M}$. By Lemma 2. $\sigma(A)$ consists solely of isolated nonzero eigenvalues Without loss of generality, let

$$
\lambda_{0} \in \sigma(A), \quad \lambda_{0}=1 \eta_{0}^{2}, \quad \eta_{0} \in \mathbb{R}, \quad \eta_{0} \neq 0
$$

Then

$$
\left(\lambda_{0} I-A\right)\left[\begin{array}{l}
w_{0} \\
v_{0}
\end{array}\right]=0
$$

has a nontrivial solution $\left(w_{0}, v_{0}\right) \in D(A)$. Explicitly. ($\left.w_{0}, v_{0}\right)$ satisfles

$$
\left\{\begin{array}{l}
1 \eta_{0}^{2} w_{0}-v_{0}=0 \\
w_{0}^{(4)}+1 \eta_{0}^{2} v_{0}=0 \\
w_{0}(0)=0 \\
w_{0}^{\prime}(0)=0 \\
w_{0}^{\prime \prime}(1)-k_{1}^{2} v_{0}(1)=0 \\
w_{0}^{\prime \prime}(1)+k_{2}^{2} v_{0}^{\prime}(1)=0
\end{array}\right.
$$

$$
\text { on }[0.1]
$$

$$
\text { on }[0,1]
$$

Letting

$$
w(x, t)=e^{i \eta_{0}^{2} t} w_{0}(x) .
$$

we easily check that w satisfies

$$
w_{t t}+w_{x x x x}=0 .
$$

Also, the energy

$$
\int_{0}^{1}\left[\left|w_{x x}(x, t)\right|^{2}+\left|w_{t}(x, t)\right|^{2}\right] d x
$$

is constant, thus

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{1}\left[\left|w_{x x}(x, t)\right|^{2}+\left|w_{t}(x, t)\right|^{2}\right] d x \\
&=0 \\
&=\left.2 \operatorname{Re}\left[w_{x x}(x, t) \bar{w}_{x t}(x, t)-w_{x x x}(x, t) \bar{w}_{t}(x, t)\right]\right|_{x=0} ^{x=1} \\
&=-2\left[k_{1}^{2}\left|w_{t}(1, t)\right|^{2}+k_{2}^{2}\left|w_{x t}(1, t)\right|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Recause } k_{2}^{2}>0 \text { and } k_{1}^{2} \geq 0 \text {. we deduce } \\
& \left|w_{x t}(1,1)\right|=\eta_{0}^{2}\left|w_{0}^{\prime}(1)\right|=0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\left|w_{x x x}(1, t)\right|=\left|w_{0}^{\prime \prime}(1)\right|=0, \quad \text { if } \quad k_{1}^{2}=0: \\
\left|w_{x x x}(1, t)\right|=\left|w_{0}^{\prime \prime \prime}(1)\right|=0,\left|w_{t}(1, t)\right|=\eta_{0}^{2}\left|w_{0}(1)\right|=0, \quad \text { if } k_{1}^{2}>0 .
\end{array}\right.
$$

Thus $w_{0}(x)$ is a solution to the boundary value problem

$$
\left.\begin{array}{l}
w_{0}^{(4)}-\eta_{0}^{4} w_{0}=0 \quad \text { on }[0,1] \\
w_{0}(0)=0 \\
w_{0}^{\prime}(0)=0 \tag{2.32}\\
w_{0}^{\prime}(1)=0 \\
w_{0}^{\prime \prime}(1)=0 \\
w_{0}^{\prime \prime}(1)=0
\end{array}\right\}
$$

Write

$$
w_{0}(x)=A_{01} \cos \eta_{0}\left(x_{0}-1\right)+A_{02} \sin \eta_{0}(x-1)+A_{03} \cosh \eta_{0}(x-1)+A_{04} \sinh \eta_{0}(x-1)
$$

Then the ilve boundary conditions in (2.32) require that

$$
\left[\begin{array}{rrcc}
\cos \eta_{0} & -\sin \eta_{0} & \cosh \eta_{0} & -\sinh \eta_{0} \\
\sin \boldsymbol{\eta}_{0} & \cos \boldsymbol{\eta}_{0} & -\sinh \boldsymbol{\eta}_{0} & \cosh \boldsymbol{\eta}_{0} \\
0 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{01} \\
A_{02} \\
A_{03} \\
A_{04}
\end{array}\right]=0 \quad(2.33)
$$

has a nontrivial solution ($A_{01}, A_{02} \cdot A_{03} \cdot A_{04}$). However, it is ensy to check that the matrix in (2.33) has rank 4 for any $\eta_{0} \in R, \eta_{0} \neq 0$, a contradiction

Therefore the proof of Theorem 4 is complete
3. ASYMPTOTIC ESTIMATION OF EIGENFRFQUFNCIES

From the graphs in [2]. one notices that at low [requencing
eigenvalues of the damped operator A seem to exhitit a
"structural damping" [3] pattern. Uoes the structural damping patern
continue into high frequencies, or is it only a low frequency phenomenon. for beams with boundary dissipation? To answer this one must examine the asymptotics of eifenfrequencies.

The work of asymptotic analysis was first done by P. Rideau in his thesis [8] (cf. the acknowledgement at the end of the paper). Unaware of his results, we had carried out the analysis independently. We feel that it is of significant interest to include the work here as it will make the study in this paper more complete, and only a minor effort is required.

Let $(\boldsymbol{f}(x), \psi(x))$ be an eigenfunction of A belonging to the efgenvalue $\lambda(\neq 0)$. Then by (2.2), setting $f(x)=f(x)=0$ and $w_{\lambda}=0$. we see that satisfles

$$
\left.\begin{array}{l}
a^{4}(4)(x)+\lambda^{2}(x)=0 \\
(0)=0(0)=0 \tag{3.1}\\
\prime^{\prime \prime \prime}(1)-\lambda k_{1}^{2}(1)=0 \\
g^{\prime \prime}(1)+\lambda k_{2}^{2}(1)=0
\end{array}\right\}
$$

To simplify notations, we consider the following eifenvalue problem.

$$
\left.\begin{array}{l}
(4)(x)+\lambda^{2}(x)=0 \\
(0)=0 \\
(0)=0 \\
y^{\prime \prime \prime}(1)-\lambda k_{1}^{2}(1)=0 \tag{3.2}\\
\prime \prime(1)+\lambda k_{2}^{2}(1)=0
\end{array}\right\}
$$

Noting that the following correspondence

$$
\begin{aligned}
& \frac{\lambda}{a^{2}} \\
& a^{2} \dot{k}_{1}^{2} \\
& a^{2} \dot{k}_{2}
\end{aligned} \text { in (3.1)} \begin{cases}\lambda \\
k_{1}^{2} & \text { in (3.2) } \\
k_{2}^{2} & \end{cases}
$$

is in effect.
The boundary value problem (3.1) has a nontrivial solution if and only if

$=0$.
where μ is the eighth root of unity, $\exp (i \pi / 4)$. The derivation of the: above is identical to (2.10).(2.12).

Evaluating this determinant yields the transcendental equation

$$
\begin{aligned}
& 2 \sqrt{2} k_{2}^{2} \lambda\left\{1 e^{-L \sqrt{2 \lambda}}-e^{-\sqrt{2 \lambda}}-i e^{i \sqrt{2 \lambda}}+e^{\sqrt{2 \lambda}}\right\} \\
& +\sqrt{\lambda}\left\{8\left(1-k_{1}^{2} k_{2}^{2}\right)+2\left(1+k_{1}^{2} k_{2}^{2}\right) e^{-\sqrt{2 \lambda}}+2\left(1+k_{1}^{2} k_{2}^{2}\right) e^{1 \sqrt{2 \lambda}}\right. \\
& \left.\quad+2\left(1+k_{1}^{2} k_{2}^{2}\right) e^{d \overline{2 \lambda}}+2\left(1+k_{1}^{2} k_{2}^{2}\right) e^{i \sqrt{2 \lambda}}\right\} \\
& +2 \sqrt{2} k_{1}^{2}\left\{-i e^{-i \sqrt{2 \lambda}}-e^{-\sqrt{2 \lambda}}+i e^{L \sqrt{2 \lambda}}+e^{\sqrt{2 \lambda}}\right\}=0 .
\end{aligned}
$$

Now, write

$$
\begin{equation*}
\lambda=|\lambda| e^{i \theta} \tag{3.6}
\end{equation*}
$$

As the closfd ripht half plane does not contajn ally figenvalues. and because $\ln (3.5)$. λ is symmeric with respect to the real axis. we ured only consider $\frac{\pi}{2}<\theta \leq \pi$ in (3.6). We will actually first consider

$$
\frac{\pi}{2}<\theta \leq \pi-\delta, \text { for any } \delta>0 \text { surficinntly smajl (3.7) }
$$

The case of $\theta \rightarrow \pi$ will be considered in (3.11)-(3.12)
since

$$
\sqrt{\lambda}=|\lambda|^{1 / 2} \exp (i \theta / 2)=|\lambda|^{1 / 2}[\cos (\theta / 2)+i \sin (\theta / 2)]
$$

we see that

$$
\begin{aligned}
& e^{-\sqrt{2 \lambda}}=e^{-\sqrt{2}|\lambda| \cos (\theta / 2)} e^{-\sqrt{2}|\lambda|} \sin (\theta / 2) \\
& e^{i \sqrt{2} \bar{\lambda}}=e^{-\sqrt{2}|\lambda| \sin (\theta / 2)} e^{i \sqrt{2}|\bar{\lambda}| \cos (\theta / 2)}
\end{aligned}
$$

are $O\left(e^{-\gamma \gamma \sqrt{\lambda \mid}}\right.$, for some $\gamma>0$. Thus. from (3.5)

$$
\varepsilon \sqrt{\lambda}\left(1-k_{1}^{2} k_{2}^{2}\right)+e^{-i \sqrt{2 \lambda}}\left[2 \sqrt{2} k_{2}^{2} \lambda+2\left(1+k_{1}^{2} k_{2}^{2}\right) \sqrt{\lambda}-\left(2 \sqrt{2} k_{1}^{2}\right]\right.
$$

$$
+e^{\sqrt{2 \lambda}}\left[2 \sqrt{2} k_{2}^{2} \lambda+2 \sqrt{\lambda}\left(1+k_{1}^{2} k_{2}^{2}\right)+2 \sqrt{2} k_{1}^{2}\right)=0(|\lambda| \exp (-\gamma \sqrt{|\lambda|}))
$$

which implies
$e^{\sqrt{2}\lceil\lambda T[-\sin (\theta / 2)+\cos (\theta / 2)]}=-e^{-1 \sqrt{2}[\lambda T[\cos (\theta / 2)+\sin (\theta / 2)]} x$

$$
\times\left\{\frac{2 \sqrt{2} k_{2}^{2} \lambda+2\left(1+k_{1}^{2} k_{2}^{2}\right) \sqrt{\lambda}-12 \sqrt{2} k_{1}^{2}}{2 \sqrt{2} k_{2}^{2} \lambda+2\left(1+k_{1}^{2} k_{2}^{2}\right) \sqrt{\lambda}+2 \sqrt{2} k_{1}^{2}}\right\}+o(|\lambda| \exp (-r \sqrt{|\lambda|}))
$$

But (assuming $k_{2}^{2}>0$) the term in braces equals

$$
i+\frac{(1+i)}{\sqrt{2}} \frac{\left(1+k_{1}^{2} k_{2}^{2}\right)}{k_{2^{2}}^{2} \sqrt{|\lambda|}} e^{-i \theta / 2}+v\left(|\lambda|^{-1}\right)
$$

Thus we seek λ 's satisfying

$$
\begin{equation*}
e^{\sqrt{2}[\lambda[-\sin (\theta / 2)+\cos (\theta / 2)]} \tag{3.8}
\end{equation*}
$$

$$
\begin{gathered}
=\left[-i-\frac{(1+i)}{\sqrt{2}} \frac{\left(1+k_{1}^{2} k_{2}^{2}\right)}{k_{2^{2}}^{2} \sqrt{\lambda \mid}} e^{-i \theta / 2}\right] e^{-i \sqrt{2}|\lambda|}[\cos (\theta / 2)+\sin (\theta / 2)] \\
\\
+O\left(|\lambda|^{-1}\right)
\end{gathered}
$$

We observe immediately that $\theta \rightarrow \pi / 2$ as $|\lambda| \rightarrow \infty$. since the LHS of this equation would decrease to zero otherwise. furthermore. the equallty can be satisfled (up to higher order terms) only when the first term on the KHS is a positive real number. Thus

$$
\begin{aligned}
& e^{-1 \sqrt{2} T \lambda T[\cos (\theta / 2)+\sin (\theta / 2)]} \approx \mathrm{e}^{-i \sqrt{2} \mid \lambda T} \cdot \sqrt{2} \approx 1 \\
& 2 \sqrt{\lambda \mid} \approx\left(2 n-\frac{1}{2}\right) \pi
\end{aligned}
$$

or

$$
\begin{equation*}
|\lambda| \approx\left[\frac{\left(2 \pi-\frac{1}{2}\right)}{2} \pi\right]^{2}, \quad n \text { is a large positive integer. } \tag{3.3}
\end{equation*}
$$

The above gap of $O\left(n^{2}\right)$ for eigenvalues is common for Euler-Bernoulli beams with energy conserving boundary conditions. Now we see that Euler-Bernoulll beams with boundary energy disslpation also have this property.

One checks that when the RHS of (3.8) is real. its modulus is

$$
1-\frac{\left(1+k_{1}^{2} k_{2}^{2}\right)[\cos (\theta / 2)+\sin (\theta / 2)]}{\sqrt{2} k_{2}^{2} \sqrt{\lambda \mid}}+O\left(|\lambda|^{-1}\right)
$$

Thls in turn implles that the exponent on the bus of (3.8) must satisfy

$$
\sqrt{2}|\lambda|\left[-\sin \left(\frac{\theta}{2}\right)+\cos \left(\frac{\theta}{2}\right)\right] \approx-\frac{\left(1+k_{1}^{2} k_{2}^{2}\right)\left[\cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\theta}{2}\right)\right]}{\sqrt{2} k_{2}^{2} \sqrt{|\lambda|}}
$$

If we now write $\theta=\frac{\pi}{2}+c, \quad c>0$, and expand to lowest order in ε, we have

$$
\varepsilon z \frac{\left(1+k_{1}^{2} k_{2}^{2}\right)}{k_{2}^{2}|\lambda|}
$$

Now suppose $\lambda=\xi+i \eta$. Then $\theta=\tan ^{-1}(\eta / t)$ and $|\lambda|=\left(\xi^{2}+\eta^{2}\right)^{1 / 2}$ Expanding $\tan ^{-1}$ about $\eta / \xi=\infty$. we have

$$
c \approx-\frac{1}{\eta}
$$

or

$$
\frac{\xi}{\eta} \approx \frac{\left(1+k_{1}^{2} k_{2}^{2}\right)}{k_{2}^{2}\left(\xi^{2} \cdot \eta^{2}\right)^{1 / 2}}
$$

Hence

$$
\begin{equation*}
\xi \approx-\frac{1}{k_{2}^{2}}\left(1+k_{1}^{2} k_{2}^{2}\right) . \quad \text { as }|\lambda| \rightarrow \infty \tag{3.10}
\end{equation*}
$$

By (3.7), the only remaining case to be considered is when $\theta \rightarrow \pi$. i.e. when λ approaches the negative real axis. We write

$$
\sqrt{\lambda}=|\lambda|^{1 / 2}(\cos (\theta / 2)+i \sin (\theta / 2))
$$

as before, but this time was assume $|n-\theta|<\delta$, with δ small -- say $0 \leq \delta<\pi / 8$. Then one easily checks that

$$
\begin{align*}
& \left|e^{-\sqrt{2 \lambda}}\right| \leq c \tag{3.11}\\
& \left|e^{1 \sqrt{2 \lambda}}\right| \leq c
\end{align*}
$$

for some $c>0$ so that (3.5) can be rewritten as:

$$
\begin{align*}
& \left\{2 \sqrt{2} i k_{2}^{2} \lambda+2 \sqrt{2}\left(1+k_{1}^{2} k_{2}^{2}\right)-2 \sqrt{2} i k_{1}^{2}\right\} e^{\sqrt{2 \mid \lambda}(\sin (\theta / 2)-i \cos (\theta / 2))} \\
& =\left\{2 \sqrt{2} k_{2}^{2} \lambda+2 \sqrt{\lambda}\left(1+k_{1}^{2} k_{2}^{2}\right)+2 \sqrt{2} k_{1}^{2}\right\} e^{\sqrt{2 \mid \lambda} T}(\cos (\theta / 2)+i \sin (\theta / 2)) \\
& +O(\lambda) \tag{3.12}
\end{align*}
$$

However, for θ in the range of interest. $\sin (\theta / 2)>2 \cos (\theta / 2)$ and in particular, $\sin (\theta / 2)>0.5$. Thus, the modulus of the L.H.S. of (3.12) wfll be much larger than that of the R.H.S. (for $|\lambda|$ large) so this equation has no solutions if $|\lambda|$ is large

TIIEOREM 5 Let $\lambda=\xi$. in be an elgenfrequency of vibration of the beam equation (1.1). Then for $|\lambda|$ large.
$|\lambda| \sim\left[\frac{\left(2 n \frac{1}{2}\right) \pi}{2}\right]^{2}\left[\frac{E L}{m}\right]^{1 / 2}, \quad n ' s$ are large positfve integers.

$$
\begin{equation*}
\xi \rightarrow-\frac{[m(E I)]^{1 / 2}\left\{1+k_{1}^{2} k_{2}^{2}(m(E I)]^{-1}\right\}}{k_{2}^{2}} \text { as }|\lambda| \rightarrow \infty \tag{3.13}
\end{equation*}
$$

Proof: Just use (2.3), (3.3). (3.9) and (3.10).
By (3.13), the eigenvalues will be distributed nearly parallel to the imaginary axis at high frequencies. Therefore there is no"structural damping" when the frequencies are high. This has also been confirmed numerically in Rideau's thesis [8].

We note that when $k_{2}^{2}=0$ and $k_{1}^{2}>0$, asymptotic limits can be obtained in the similar way.
4. DESIGN OF PASSIVE DAMPING MECHANISMS

The following is a (more or less exhaustive) list of combinations of dissipative boundary conditions for an Euler-Bernoulli beam:

$$
\begin{align*}
& \left.\begin{array}{l}
-E I y_{X X X}(1, t)=-k_{1}^{2} y_{t}(1, t) \quad, \quad k_{1}^{2}>0 \\
-E I y_{X X}(1, t)=0
\end{array}\right\} \tag{4.1}\\
& -E I y_{X X X}(1, t)=0 \tag{4.2}\\
& \left.-E I y_{x x}(1, t)=k_{2}^{2} y_{x t}(1, t) \quad, \quad k_{2}^{2}>0\right\} \\
& y_{x}(1, t)=0 \\
& \left.-E I y_{X x X}(1, t)=-k_{1}^{2} y_{t}(1, t) \quad, \quad k_{1}^{2}>0\right\} \tag{4.3}\\
& \left.\begin{array}{l}
y(1, t)=0 \\
-E I y_{x x}(1, t)=k_{2}^{2} y_{x t}(1, t) \quad, \quad k_{2}^{2}>0
\end{array}\right\} \tag{4.4}\\
& \left.\begin{array}{l}
-E I y_{X X X}(1, t)=-k_{1}^{2} y_{t}(1, t)+c_{1} y_{X t}(1, t) \quad, \quad k_{1}^{2}>0 . \\
-E I y_{\dot{X X}}(1, t)=k_{2}^{2} y_{x t}(1, t)+c_{2} y_{t}(1, t) \quad . \quad k_{2}^{2}>0
\end{array}\right\} \tag{4.5}
\end{align*}
$$

where in (4.5), c_{1} and c_{2} are real constants satisfying

$$
\begin{equation*}
\left(c_{1}-c_{2}\right) \alpha \beta-k_{1}^{2} \alpha^{2}-k_{2}^{2} \beta^{2} \leq 0 \quad \forall \alpha, \beta \in \mathbb{R} . \tag{4.6}
\end{equation*}
$$

Note that the boundary conditions (1.1.4) and (1.1.5) correspond to $c_{1}=c_{2}=0$ in (4.5). Obviously, (4.6) is satisficd in this case.

We want to show that all stabilization schemes (4.1)-(4.5) can be realized in practice, at least by designing passive dampers.

As (4.5) seems to represent the most complicated case among (4.1)-(4.5), we treat it here, at least for certain special values of c_{1} and c_{2} (cf. (4.7) later). The other cases can be studied similarly

The following damper arrangement gives a design which effects the coupling of shear (resp. bending moment) with velocity and angular velocity:

a) Inclined Damper

b) Shortening Velocity
c) Damper Forces on Beam of Damper

$$
\begin{aligned}
& \operatorname{Shear}(1, t)=-c_{d} v_{s} \sin \theta \\
& \operatorname{Moment}(1, t)=c_{d} v_{s} \cos \theta h / 2
\end{aligned}
$$

Fiyure 2 Damper arrangement for (4.5)

A single damper (cf. Figure 2a) is attached to the lower end of the beam at an inclination angle θ with respect to the horizonthl. Usfing the velocity at the end of the damper, v_{s}, and the associaled forces shown in Figure $2 b$ and $2 c$, we obtain

$$
\begin{aligned}
& \text { Shear }(1, t)=-c_{d} v_{s} \sin \theta \\
& \operatorname{Moment}(1, t)=c_{d} v_{s}(\cos \theta) \frac{h}{2}
\end{aligned}
$$

where c_{d} represents the damping coefficient associated with the damper in use. As

$$
v_{s}=y_{t}(1, t) \sin \theta-y_{x t}(1, t) \frac{h}{2} \cos \theta
$$

we get

$$
\begin{aligned}
& \text { Shear }(1, t)=-E I y_{x X x}(1, t)=-\left(c_{d} \sin ^{2} \theta\right) y_{t}+\left(\frac{h}{2} \cdot c_{d} \sin \theta \cos \theta\right) y_{x t} \\
& \text { Moment }(1, t)=-E I y_{x x}(1, t)=\left(\frac{h^{2}}{4}-c_{d} \cos ^{2} \theta\right) y_{x t}+\left(-\frac{1}{2} c_{d} \sin \theta \cos \theta\right) y_{t}
\end{aligned}
$$

A comparison of the above with (4.5) shows that

$$
\begin{gather*}
k_{1}^{2}=c_{d} \sin ^{2} \theta ; k_{2}^{2}=\frac{h^{2}}{4}-c_{d} \cos ^{2} \theta \\
c_{1}=-c_{2}=\frac{h}{2} c_{d} \sin \theta \cos \theta \tag{4.7}
\end{gather*}
$$

thins

$$
\left(c_{1}-c_{2}\right) a \beta-k_{1}^{2} a^{2}-k_{2}^{2} \beta^{2}=-\left(k_{1} \alpha-k_{2} \beta\right)^{2} \leq 0 \quad \forall \alpha, \beta \in \mathbb{R}
$$

so (4.6) is satisfied and the boundary conditions (4.5) are dissipative. It is noted that when $\theta=\pi / 2$ (vertical damper), the above gain constants reduce to $k_{1}^{2}=c_{d, 1}$ and $k_{2}^{2}=c_{1}=c_{2}=0$. cf. Figure 3a. Similarly, for $\theta=0$ (horizontal dimper). the gatn constants become $k_{2}^{2}=c_{d, 2} h^{2 / 4}$ and $k_{1}^{2}=c_{1}=c_{2}=0$. as shown in Figure 3b. Consequently, the boundary conditions (1.1.4)-11.1.5) can be realized as In Figure $3 c$. with $k_{1}^{2}=c_{d, 1}$ and $k_{2}^{2}=c_{d, 2} h^{2 / 4}$.

Figure 3 Damper arrangement for (4.1), (4.2) and (1.1.4)+(1.1.5)

$$
\begin{aligned}
& \operatorname{Shear}(1, t)=-c_{d} y_{t}(1, t) \\
& \operatorname{Slope}(1, t)=y_{x}(1, t)=0
\end{aligned}
$$

Figure 4 Damper arrangement for (4.3)

$$
\begin{aligned}
& \text { Displ. }(1, t)=y(1, t)=0 \\
& \operatorname{Moment}(1, t)=c_{d} v_{x t}(1, t) h^{2} / 4
\end{aligned}
$$

Figure 5 Damper arrangement for (4.4)

The utacr boundary conditions (4.1)-(4.4) can be reilli\%ed and designed. respectively, as in flgures 3a, 3b, and 5

The method of estimation which we have developed in this paper and Huang's theorem (Thm. 1) can be applied to study exponential stability for all of these boundary stabili\%ation schemes.

ACKNOWLEDGEMFNT We wish to thank M.C. Delfour for pointing out the thesis of P. Rideau [g] to us. where kideau has already carried out the work of asymptotic analysis of eigenfrequencies. The priority should go to him. Recently. we have also found that D.L. Kussell [9] and his Ph.D student S. Hansen [5] have Independently obtained similar asymptotic results.

RE.FERENCES

[1] G. Chen. Energy decay estimates and exact boundary value controlability for the wave equat lon in a bounded domaln. J. Math. Pures Appl. $58(1979)$. pp. 249-273.
[2] G. Chen, M.C. Delfour, A.M. Krall and G. Payre. Modeling stabjlization and control of serially connected beams. Siam J. cont Opt., to appear
[3] G. Chen and D.L. Kussell. A mathematical mode] for linear elastis systems with structural damping. Quart. Appl. Math. 39(1981-82). pp. 433-454.
[4] Y.L. Huang, Characteristic conditions for exponential stabjlity of linear dynamical systems in Hilbert spaces. Ann. Diff. Eqs. 1(1). 1985. pp. 43. 53
[5] S. Hansen. Private communtcations.
[6] T. Kato, Perturbation Theory for Linear Uperators, Springer-Verlay. New York, 1966
[7] J. lagnesce Decay of solutions of wave equatjons in a bounded region with boundary dissipation. J. Diff. Eq. 50(1983). pp. 163-182
[8] P. Rideau. Controle d'un assemblage de poutres flexiblrs par des capteurs actionmeurs poncturls. etude du spectre du systene. These L'Ecole Nationale Superieure des Mines de Paris. Sophla-Antipolis. France, November, 1985.
[9] D.L. Russell. On mathematical models for the elastie beam with frequency proportlonal damplar. to appeat

$E N D$
DATE
FIMED
APRIL
1988
$D T I C$

