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The Euler Characteristic is the Unique
Locally Determined Numerical Homotopy Invariant of
Finite Complexes
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Abstract. If a numerical homotopy invariant of finite simplicial complexes has a
local formula, then, up to multiplication by an obvious constant, the invariant is the
Euler characteristic. Moreover, the Euler characteristic itself has a unique local
formula.

1. Introduction

The Euler characteristic y is the best known as well as the most ancient
topological invariant. For a finite simplicial complex K (or, more generally,
a C-W complex) there is the familiar definition

dimK

(K) = Y (= Ve,

i=0

where ¢, = number of i-simplices (or i-cells if K is a C-W complex.) That
¥(K) is an invariant of homotopy type follows from the alternative definition

xK) = diix (—1) rank H{K; Z).

i=0

It is well known and easily verified that x(K) is locally determined in the sense
that given K, we may assign to each vertex ve K a rational number e,(v) such
that y(V) = ¥, e,(v). Here, e,(v) depends only on the simplicial structure of star
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v ={Jye, 0 (0 a simplex of K) and is given by

-1}
e,(v) = ' %_“‘)I‘Si(v),

where s(v) is the number of i-simplices of K containing v. Since star v is,
simplicially, the cone c(link v), we may think of e,(v) as an invariant of the simplicial
isomorphism type of link v = | J,¢scsaro 0> 1-€.,

dimlinky (_ 1)“’ 1
ey =elinkn)=1+ 3

i=0

-(number of i-simplices of link v).

Of course, there are countless other Z-valued (or R-valued) invariants of finite
complexes of finite complexes. It seems natural to ask whether any of these, other
than the Euler characteristic, is locally determined in this sense. Specifically, let p
denote any R-valued homotopy invariant of finite complexes. We always assume,
by way of normalization, that p(Z) = 0. Consider a real-valued function d(L)
defined on the set of finite simplicial complexes and depending only on the
simplicial isomorphism type of L. We say that p is locally determined by d if and
only if given any finite simplicial complex K we have p(K) = ), ¢ d(link v), where
the sum is taken over the vertices v of K. Clearly, the example we have in mind
is the Euler characteristic y, locally determined by e as above, and our question
is whether there are any other numerical homotopy invariants (in a nontrivial
sense) which are locally determined. The answer turns out to be negative.

Theorem A. Let p be any R-valued homotopy invariant of finite complexes locally
determined by some function d on simplicial-isomorphism classes of finite complexes.

Then p = p(pt.): x.

In other words, up to multiplication by a constant, y is the unique locally
determined homotopy invariant.
We prove Theorem A in the following form:

Theorem A'. If p is an R-valued homotopy invariant of finite complexes locally
determined by d and such that p(pt.) = 1, then p = y.

Theorem A obviously implies Theorem A’ and is, in turn, implied by it for the
following reason: Let p be as in the statement of Theorem A. If p(pt.) # 0, replace
p by p’ = p/p(pt.) and apply Theorem A’ to conclude p’ = x, hence p = p(pt)- x.
If, however, p(pt.) = 0 let o’ = p + x. Applying Theorem A’ to p/, we have p’ = x
hence p = 0 = p(pt.) 1.

The author is indebted to the referee for pointing out that the techniques below
will, in fact, lead to a somewhat stronger result.

Consider compact PL n-manifolds (not necessarily closed). Let p now denote
a real-valued PL-homeomorphism invariant of such manifolds. Let d be a
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real-valued function defined on triangulations of $"~! and D"~ . Then the notion
of p being locally determined by d transcribes, in an obvious way, to this context
from the definition given above. Corresponding to Theorem A’ we have

Theorem A”. If p is an R-valued invariant of compact PL n-manifolds with
() = 0, p(D™) = 1 and p is locally determined by some function d, then p = y.

Note that Theorem A” does, in fact, imply Theorem A’. Let p be a numerical
homotopy invariant of finite complexes with p((F) = 0, p(pt.) = 1. Then, for any n,
p is, a fortiori, a PL-homeomorphism invariant of compact PL n-manifolds with
p(D™) = 1. If p is locally determined, then Theorem A" tells us that p(M") = y(M")
for compact PL manifolds M" (n arbitrary). However, given a finite complex K,
there exists a compact manifold M" with K homotopically equivalent to M" {see,
e.g, [W1]). Hence p(K) = p(M") = y(M") = x(K).

The observation above notwithstanding, we shall, in the interest of simplicity
of exposition, prove Theorem A’ directly first and then show how Theorem A”
follows by a straightforward modification of the proof.

If we now go on to ask how many functions d, in addition to the e given above,
locally determine %, we find, in fact, that an even greater degree of rigidity prevails
than is asserted by Theorem A. Not only is y the only locally determined homotopy
invariant which evaluates to 1 on a point but, as well, there is only one function,
namely e(L), which determines it. We rephrase this:

Theorem B. If y is locally determined by d, then d = e.

Some remarks before we proceed to the proofs: If we examine more restricted
classes of finite complexes, Theorem A no longer holds. For instance, if we look
at the class of triangulated, oriented closed 4k-manifolds M, then the signature of
M, certainly an invariant of orientation-preserving homotopy type within this class
of spaces, is locally determined by a function defined on simplicial-isomorphism
classes of triangulated, oriented (4k — 1)-spheres. This is a special case of the fact
that rational Pontrjagin classes (as well as other PL characteristic classes) are
locally determined. See [C], [L], [LR], and [GM] for details.

Moreover, as the referee has astutely pointed out, Theorem B fails as well in
the context of closed PL n-manifolds. Given a combinational triangulation of such
a manifold M, let ¢, denote the number of i-simplices. Klee [K] discovered a family
of algebraic relations among the ¢; valid for all M and Wall [W2] showed this
list to be exhaustive. In consequence, there are nonstandard formulae for (M) in
terms of ¢; differing from the classical formula cited in the first paragraph. For
example (and, once more, the author is indebted to the referee for the observation),

{(n+ 1)/2] ,
x(M™) =cq + Z (—1Y2B;;¢55-1,

j=1
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where B,; is the 2jth Bernoulli number. From this it immediately follows that if
we set

ln=1)/2) (—1)i*+?
dLy=1+ ) ——— B,;., (number of 2j simplices of L),
o J+1
then d locally determines y on closed n-manifolds.

A word concerning notation: We abbreviate star v by st v and link v by Ik ». If
there is any ambiguity as to which ambient complex K is under consideration, we
resolve this by recourse to subscripts, e.g. Ik v, sty v, etc.

Finally, we note that our proof applies to C-valued or Q-valued invariants as
well.

2. Proof of Theorem A’
Theorem A’ follows immediately from:

Lemma 1. Let p be a numerical homotopy invariant of finite complexes locally
determined by some function d. Let K be a finite simplicial complex with K =
KoUK, KonK, =K, where K,, K,, K, are subcomplexes of K. Then p(K) =
p(Ko) + p(Ky) — p(K).

The derivation of Theorem A’ from Lemma 1 comes via a straightforward
induction. Given Lemma 1 and the hypothesis that p(pt.) = 1, it is immediate that
for a O-complex (i.e., discrete finite set) K, p(K) = number of points of K = y(K).
So assume, inductively, that p = y holds for complexes of dimension < k and for
(k + 1)-complexes having <j (k + 1)-simplices. Let K be a (k + 1)-dimensional
complex with exactly (j + 1) (k + 1)-simplices. Choose a (k + 1)-simplex ¢. Let
K, =0, K, = K-int ¢, so that K, = K, n K, is a k-sphere. Then

p(K) = p(Ko) + p(Ky) — p(K;) = 1 + 1K) — (8 = x(K,) + (= D! = ¢(K).

To prove Lemma 1, in turn, it is technically convenient to consider finite regular
cell complexes in addition to the more special category of finite simplicial
complexes. (See [SCF] for definitions and basic properties of regular cell com-
plexes.) Let d, be a function defined on pairs (J, p) where J is a regular cell complex
which is the union of cells all containing the vertex p. It is understood that d,
depends only on the isomorphism class of (J, p) as a regular cell-complex pair.
Thus in the case when J happens to be simplicial, we see that d; depends only on
the simplicial isomorphism class of {(J, p) and thus, since J will in this instance be
c(ik p}, only on the simplicial isomorphism class of Ik p. Consequently, d, may be
viewed as an extension of a function d(L), defined on simplicial complexes of the
sort we have heretofore been considering (that is, d(L) = d,(cL, #)). We say that
d, determines an R-valued homotopy invariant p of finite regular cell-complexes
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if and only if p(K) = ), d,(st v, v) where the sum is taken over the vertices v of K
and where st(v) is now understood to mean the union of all those cells of K
containing v.

Lemma 2. If d (defined on simplicial complexes) locally determines p on simplicial
complexes, then there is an extension of d to regular cell-complex pairs (J, p) as
above which locally determines p on regular cell-complexes.

(Of course, it is understood that since regular cell-complexes are triangul-
able—in fact the first barycentric subdivision is a simplicial complex—-the in-
variant p automatically extends to regular cell-complexes.)

The proof of Lemma 2 is quite straightforward. Given (J, p) let K be the first
barycentric subdivision of J, and hence a simplicial complex. Define d,{(J, p) as
follows: let ¢ be a cell of J, b, its barycenter, hence a vertex of K. Let V(e) denote
the number of vertices of the regular cell e. Then set d,(J, p) = Y, (1/v(e)) d(lkg b,)
where the sum is taken over all cells of J. The assertion that 4, must locally
determine p on regular cell complexes is an immediate consequence of this
definition.

We now proceed to the proof of Lemma 1. Assume that 4, which locally
determines p on simplicial complexes, has been extended to d,, which locally
determines p on regular cell-complexes. Let M be a finite regular cell-complex and
let I denote, as usual, the unit interval as a simplicial complex with one 1-simplex
[0, 1] and two vertices 0 and 1. M x [ is then well defined as a regular cell-complex
without need of further subdivision. If M has vertices v,,..., v, then M x I has
vertices uy, ..., 4, Wy, ..., w, where u; = (v;, 0), w; = (v;, 1):

Lemma 3.

k k
Y dy(stygxrti ) = 3, dyfStay . Wi, W)
iZ1 i=1

k
=3 Z dy(sty v;, ) = %p(M)
i=1

Proof. (styx 4;, u;) is isomorphic as a regular cell-complex pair to (sty «; w;, W),
thus it is immediate that

k

dy(Starny s u) = 3, di(Starus Wi, W)
1 =1

M=

i

But

k k k
Z dy(Stygwr Uiy u) + Z di(Styy <y Wi, W) = p(M X I) = p(M) = Z dy(sty v;, ),

i=1 i=1 i=1

which yields the remainder of the lemma. .|
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Now let I’ denote the first subdivision of I with two 1-simplices [0, 4] and [4, 1]
and three vertices 0, 3, 1. With M, v, as above, M x I’ is a regular cell-complex
with vertices u; = (v;, 0), w; = (v}, 1), x; = (v;, 3). Clearly, (st , ;- 4;, ;) is isomorphic
as a regular cell-complex pair to (st . ; 4;, 4;) and similarly for w;. This observation
leads to:

Lemma 4. Zf: 1 di(StMXI' xi, xi) = 0.

Proof.

k K k
pM x I') = Z dy(Stag oty ) + Y, dy(Stagup Wi, W) + Y dy(Styxp X, X))

i=1 i=1 i=1

Also

' k k
pM x Iy =pM x Iy = Y dylstypu;, u) + Z dy(Sty <1 Wi W)

i=1 i=1

By the remarks immediately preceding the statement of the lemma, the two
summands on the right-hand side of the second equation are respectively equal
to the first two summands in the right-hand side of the second. Hence the
remaining summand, namely ) ¥_,; d,(sty « - X;, X;), must vanish. O

Now we complete the proof of Lemma 1. Let K = K, v K, be a simplicial
complex with K, n K, = K,. We construct a homotopy-equivalent regular cell-
complex K, u (K, x I')u K, = B where K, K, are now disjoint and K, x 0 is
identified with the copy of K, in K, and K, x 1 with the copy of K, in K,. Let
By =Ky,uU (K, x [0,4]), B, = K, x [$, 1] U K,. Thus B, n B; = K, x 3. We de-
note the vertices of K, by v,,...,v,. Thus K, x 3 has vertices x; = (v;,3), i =
1,..., k. Two elementary observations:

(i) (stp, x;, x;) 18 isomorphié (as a regular cell-complex pair) to {stg,«{v;, 0),
(v;, 0)) and likewise for (stg, x;, X;).
(i) (stg x;, x;) is identical with (stg, ., X;, X;).

Now, since d, locally determines p, we have

k
P(Ko) = p(Bo) = Z dy(stg, x;, x) + Y,

i=1

where Y involves only the stars of vertices of By not in K, x §. Likewise,

k
p(Ky) = Z dl(StB, X, X)) + Z,

i=1
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where Z involves only the stars of vertices of B, not in K, x 1. Thus, by Lemma
3 and observation (i) above, we see immediately that

k

dl(StBo Xi, X)) = Z dl(StB| Xiy X;) = %P(Kz)-

1 i=1

M=

il

i

On the other hand, it is directly seen that p(K) = p(B) = Y - d,(stg, x;, X;) +
Y + Z. However, Y *_, d,(sty x;, x;) vanishes by virtue of observation (i) and
Lemma 4. So p(K) =Y + Z = [p(K,) — 3p(K)] + [p(K,) — 3p(K )] = p(Ko) +
p(K ;) — p(K,). The proof of Lemma 1, and hence of Theorems A and A’, is thus
complete.

The kindred result Theorem A" is easily established by a slightly modified
version of this reasoning. The key point is the following lemma, analogous to
Lemma 1.

Lemma 5. Let p be a locally determined numerical PL-homeomorphism invariant
for compact PL n-manifolds. Let K be a compact PL n-manifold of the form
K = K, u K, where K, K, are themselves compact n-manifolds and where K, =
K, ~ K is a codimension 0 submanifold of both 0K, and 0K ;. Then p(K) = p(K,) +
p(Ky) — p(K; x ).

First, we see quite easily that Lemma 5 implies Theorem A”. For a compact
PL n-manifold M, let h(M) denote the dimension of the highest dimensional handle
in a handlebody-decomposition of M where this highest dimension is minimal
(with respect to all possible handlebody structures). Our proof runs by induction
on h(M).

If h(M) = 0, then M is the disjoint union of some finite number m of n-disks,
whence p(M) = m = y(M).

Now suppose A” holds for all compact manifolds M with (M) <j<n.
Consider M, with h(M;)=j+ 1. Then M, =M U ((j+ 1)-handles) where
h(M) < j, whence p(M) = x(M) by inductive assumption, Let N denote the union
of all the (j + 1)-handles of M, ie., if there are m such handles, N is the disjoint
union of m n-disks, and so p(N) =m = x(N). Let L=M N <M, oN. L is
the disjoint union of m copies of $/ x D"™/™* hence A(L x I} =j and p(L x I} =
(L x I)=m (1 + (—1)). By lemma 5,

p(M ) = p(M) + p(N) — p(L x I) = x(M) + x(N) — (L x I)
= (M) + x(N) — fL) = x(M,).

The induction is thus complete.

As for Lemma 5 itself, we note that the argument for Lemma 1 goes through
almost word for word. Note that lemma 2 holds in the context of regular
cell-complex decompositions of PL manifolds. The analogue of Lemma 3 holds
where M is now a compact triangulated (n — 1)-manifold. The modified result
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reads

k k
z dy(Stagxr tyy ;) = Z dy(Starxp Wi, w) = 3p(M x 1),
i=1

i=1

Lemma 4 holds as well in this context.

The computations leading to Lemma 1 now serve equally well for Lemma 5.
Here it need only be observed that if K is a compact PL n-manifold decomposed
as Ky u K, (with K, = K, n K, a codimension-0 submanifold of /K, and dK,),
then B (as defined in the proof of Lemma 1) is now a compact PL n-manifold PL
homeomorphic to K while B,, B; are PL manifolds homeomorphic, respectively,
to K, and K,. The proof then goes through substituting p(K, x I) for p(K,) as
appropriate.

3. Proof of Theorem B

As noted in the introduction, the Euler characteristic y is locally determined by

dim L (__ i+1

elL)y=1+ Z
i=0

- (number of i-simplices of L).
i

We now show that no other function on simplicial isomorphism classes of finite
complexes can locally determine y.

To this end, let d be some other function for which y(K) =), d(lk V) for all
finite simplicial complexes K. Given any simplicial complex J with ¢ a simplex,
we call ¢ a maximal simplex of J if and only if ¢ is not a face of any larger simplex.
Note that any finite complex is the union of its maximal simplices.

Our proof that d(L) = e(L) proceeds via induction on the number of maximal
simplices of L. In the case where L has but one maximal simplex, it is clear that
L must be isomorphic to a standard simplex, say A* for some k > 0. Consider
K = v+ L for some disjoint vertex v. v* L is of course isomorphic to A**! so
1 = y(vx L) =d(L) + Y%, d(lkg v) (where v,...,uv, are the vertices of L) since
L = kg v. But kg v; is obviously a k-simplex fori = 0, ..., k. So we have d(lkg v;) =
d(L), whence 1 = (k + 2)d(L), d(L) = 1/(k + 2) = e(L).

Now suppose d(L) = e(L) for all L having < j maximal simplices. Let L have
j + 1 maximal simplices and let v,,..., v, denote the vertices of L. Consider
K =v* L = cL where v is a vertex distinct from v,,...,v,. L = lkg v. Consider
Ikg v;. This is clearly v«lk, v; = ¢ lk; v;. Thus lkgv; is isomorphic to st; v;.
However, st; v; is clearly the union of maximal simplices of L. Hence lky v; has
<j+ 1 maximal simplices.

Now because K is contractible, 1 = y(K) = d(L) + > ;_, d(Ikg v)). Segregate the
v; into two classes, u;, i=1,...,s, and w;,, i=1,...,t, with s+t =r, by the
criterion that lky u; has < j maximal simplices whereas lky w; has j + 1 maximal
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simplices. Thus d(lkg u;) = e(lkg u,) for i = 1, ..., s. Thus since

HK) = d(L) + i dilky u;) + }_z: d(lk, w))

i=1 i=1

= e(L) + i ek, u) + zl: elkg wy),

i=1 i=1

we have

(L) + z Ak, w) = e(L) + Z e(lky w,).

i=1 i=1

Note that v and w;, i = 1, ..., t, may be characterized as those vertices of K which
are common to all the maximal simplices of K. It follows that v, w,, ..., w, are the
vertices of 7 = (), o,, where {o,} is the set of maximal simplices of K. For any
pair of these vertices, it is clear that there is thus a simplicial automorphism of K
carrying the first into the second. In other words, L =lkgv = lkgw,, i=1,...,¢
Hence we see that {t + Dd(L) = (t + De(L) whence d(L) = e(L}). This completes the
proof.
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