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Abstract. If a numerical homotopy invariant of finite simplicial complexes has a 
local formula, then, up to multiplication by an obvious constant, the invariant is the 
Euler characteristic. Moreover, the Euler characteristic itself has a unique local 
formula. 

1. Introduction 

The Euler characteristic g is the best known as well as the most ancient 
topological invariant. For a finite simplicial complex K (or, more generally, 
a C-W complex) there is the familiar definition 

dimK 
z ( K ) =  ~' (--1)ic,, 

i=0  

where cl = number of i-simplices (or /-cells if K is a C-W complex.) That 
x(K) is an invariant of homotopy type follows from the alternative definition 

dlmK 
z(K) = ~, (--1) i rank Hi(K; 7/). 

i=0  

It is well known and easily verified that x(K) is locally determined in the sense 
that given K, we may assign to each vertex v e K  a rational number el(v) such 
that z(V) = ~v el(v). Here, el(v) depends only on the simplicial structure of star 
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v = [,.)~, a (a a simplex of K) and is given by 

el(v) = ~. i + 1  ( -  1 "Si(v)' 

where si(v ) is the number of i-simplices of K containing v. Since star v is, 
simplicially, the cone c(link v), we may think of el(v) as an invariant of the simplicial 
isomorphism type of link v = Uv*~=starv a, i.e., 

dimlinkv (__ 1)~+ 1 
e~(v) = e(link v) = 1 + 

i=o i + 2  
(number of i-simplices of link v). 

Of course, there are countless other Z-valued (or R-valued) invariants of finite 
complexes of finite complexes. It seems natural to ask whether any of these, other 
than the Euler characteristic, is locally determined in this sense. Specifically, let p 
denote any R-valued homotopy invariant of finite complexes. We always assume, 
by way of normalization, that p(~;) = 0. Consider a real-valued function d(L) 
defined on the set of finite simplicial complexes and depending only on the 
simplicial isomorphism type of L. We say that p is locally determined by d if and 
only if given any finite simplicial complex K we have p(K) --- ~ w x  d(link v), where 
the sum is taken over the vertices v of K. Clearly, the example we have in mind 
is the Euler characteristic X, locally determined by e as above, and our question 
is whether there are any other numerical homotopy invariants (in a nontrivial 
sense) which are locally determined. The answer turns out to be negative. 

Theorem A. Let p be any R-valued homotopy invariant of finite complexes locally 
determined by some function d on simplicial-isomorphism classes of finite complexes. 
Then p = p(pt.)'Z. 

In other words, up to multiplication by a constant, X is the unique locally 
determined homotopy invariant. 

We prove Theorem A in the following form: 

Theorem A'. I f  p is an R-valued homotopy invariant of finite complexes locally 
determined by d and such that p(pt.) = 1, then p - Z. 

Theorem A obviously implies Theorem A' and is, in turn, implied by it for the 
following reason: Let p be as in the statement of Theorem A. If p(pt.) # 0, replace 
p by p' = p/p(pt.) and apply Theorem A' to conclude p' = ~, hence p = p(pt.)'X. 
If, however, p(pt.) = 0 let p' = p + X- Applying Theorem A' to p', we have p' = X 
hence p = 0 = p(pt.)" X. 

The author is indebted to the referee for pointing out that the techniques below 
will, in fact, lead to a somewhat stronger result. 

Consider compact P L  n-manifolds (not necessarily closed). Let p now denote 
a real-valued PL-homeomorphism invariant of such manifolds. Let d be a 
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real-valued function defined on triangulations of S ~- 1 and D"- 1. Then the notion 
of p being locally determined by d transcribes, in an obvious way, to this context 
from the definition given above. Corresponding to Theorem A' we have 

Theorem A". I f  p is an R-valued invariant o f  compact PL  n-manifolds with 
p ( ~ )  = O, p(D n) = 1 and p is locally determined by some function d, then p = ~. 

Note that Theorem A" does, in fact, imply Theorem A'. Let p be a numerical 
homotopy invariant of finite complexes with p(~)  = 0, p(pt.) = 1. Then, for any n, 
p is, afortiori,  a PL-homeomorphism invariant of compact PL n-manifolds with 
p(D n) = 1. If p is locally determined, then Theorem A" tells us that p(M n) = x(M ~) 
for compact PL manifolds M" (n arbitrary). However, given a finite complex K, 
there exists a compact manifold M" with K homotopically equivalent to M" (see, 
e.g., [W1]). Hence p(K) = p (M ~) = x(M ~) = x(K). 

The observation above notwithstanding, we shall, in the interest of simplicity 
of exposition, prove Theorem A' directly first and then show how Theorem A" 
follows by a straightforward modification of the proof. 

If we now go on to ask how many functions d, in addition to the e given above, 
locally determine Z, we find, in fact, that an even greater degree of rigidity prevails 
than is asserted by Theorem A. Not only is X the only locally determined homotopy 
invariant which evaluates to 1 on a point but, as well, there is only one function, 
namely e(L), which determines it. We rephrase this: 

Theorem B. I f  ~ is locally determined by d, then d = e. 

Some remarks before we proceed to the proofs: If we examine more restricted 
classes of finite complexes, Theorem A no longer holds. For instance, if we look 
at the class of triangulated, oriented closed 4k-manifolds M, then the signature of 
M, certainly an invariant of orientation-preserving homotopy type within this class 
of spaces, is locally determined by a function defined on simplicial-isomorphism 
classes of triangulated, oriented (4k - 1)-spheres. This is a special case of the fact 
that rational Pontrjagin classes (as well as other PL characteristic classes) are 
locally determined. See [C], ILl,  [LR], and [GM] for details. 

Moreover, as the referee has astutely pointed out, Theorem B fails as well in 
the context of closed PL n-manifolds. Given a combinational triangulation of such 
a manifold M, let c i denote the number of i-simplices. Klee [K] discovered a family 
of algebraic relations among the ci valid for all M and Wall [W2] showed this 
list to be exhaustive. In consequence, there are nonstandard formulae for x(M) in 
terms of c i differing from the classical formula cited in the first paragraph. For 
example (and, once more, the author is indebted to the referee for the observation), 

[(n + 1)/2] 

x(M ~) = Co + ~, (--  1)J2B2jc2j - I, 
j = l  



62 N. Levitt 

where B2j is the 2jth Bernoulli number. From this it immediately follows that if 
we set 

t~.- 1)/2~ ( _  1F+ 
d(L) = 1 + X 

~=0 j + l  
- -  B2j+2 (number of 2j simplices of L), 

then d locally determines X on closed n-manifolds. 
A word concerning notation: We abbreviate star v by st v and link v by lk v. If 

there is any ambiguity as to which ambient complex K is under consideration, we 
resolve this by recourse to subscripts, e.g. lk x v, s tr  v, etc. 

Finally, we note that our proof applies to C-valued or Q-valued invariants as 
well. 

2. Proof of Theorem A' 

Theorem A' follows immediately from: 

Lemma 1. Let p be a numerical homotopy invariant of finite complexes locally 
determined by some function d. Let K be a finite simplicial complex with K = 
Ko u KI, Ko n K 1 = K 2 where Ko, Ka, K 2 are subcomplexes of K. Then p(K) = 
p(Ko) + p(K,) - p(K2). 

The derivation of Theorem A' from Lemma 1 comes via a straightforward 
induction. Given Lemma 1 and the hypothesis that p(pt.) = 1, it is immediate that 
for a 0-complex (i.e., discrete finite set) K, p(K) = number of points of K = •(K). 
So assume, inductively, that p = ~ holds for complexes of dimension < k and for 
(k + D-complexes having < j (k + 1)-simplices. Let K be a (k + 1)-dimensional 
complex with exactly (j + 1) (k + 1)-simplices. Choose a (k + 1)-simplex a. Let 
Ko = a, K1 = K-int a, so that K 2 = K o c~ K 1 is a k-sphere. Then 

p(K) = p(Ko) + p(KO - p(K2) = 1 + z(KO - z(S k) = z(KO + ( - 1 )  k+' = z(K). 

To prove Lemma 1, in turn, it is technically convenient to consider finite regular 
celt complexes in addition to the more special category of finite simplicial 
complexes. (See [SCF] for definitions and basic properties of regular cell com- 
plexes.) Let da be a function defined on pairs (J, p) where J is a regular cell complex 
which is the union of cells all containing the vertex p. It is understood that dl 
depends only on the isomorphism class of (J, p) as a regular cell--complex pair. 
Thus in the case when J happens to be simplicial, we see that dl depends only on 
the simplicial isomorphism class of (J, p) and thus, since J will in this instance be 
c(lk p), only on the simplicial isomorphism class of lk p. Consequently, d 1 may be 
viewed as an extension of a function d(L), defined on simpticial complexes of the 
sort we have heretofore been considering (that is, d(L) = d~(cL, ,)). We say that 
d~ determines an R-valued homotopy invariant p of finite regular cell-complexes 
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if and only if p(K) = ~ d~(st v, v) where the sum is taken over the vertices v of K 
and where st(v) is now understood to mean the union of all those cells of K 
containing v, 

Lemma 2. I f  d (defined on simplicial complexes) locally determines p on simplicial 
complexes, then there is an extension of d to regular cell-complex pairs (J, p) as 
above which locally determines p on regular cell-complexes. 

(Of course, it is understood that since regular cell-complexes are triangul- 
able in fact the first barycentric subdivision is a simplicial complex-- the  in- 
variant p automatically extends to regular cell-complexes.) 

The proof  of Lemma 2 is quite straightforward. Given (J, p) let K be the first 
barycentric subdivision of J, and hence a simplicial complex. Define dl(J, p) as 
follows: let e be a cell of J, b~ its barycenter, hence a vertex of K. Let V(e) denote 
the number  of vertices of the regular cell e. Then set dt(J, P) = ~ (1Iv(e)) d(lkx be) 
where the sum is taken over all cells of J. The assertion that dj must locally 
determine p on regular cell complexes is an immediate consequence of this 
definition. 

We now proceed to the proof of Lemma 1. Assume that d, which locally 
determines p on simplicial complexes, has been extended to d~, which locally 
determines p on regular cell-complexes. Let M be a finite regular cell-complex and 
let ! denote, as usual, the unit interval as a simplicial complex with one 1-simplex 
[0, 1] and two vertices 0 and 1. M × I is then well defined as a regular cell-complex 
without need of further subdivision. If M has vertices v l , . . . ,  vk, then M × ! has 
vertices ul . . . .  , U k ,  W 1 . . . . .  W k where ul = (vi, 0), w i = (vi, 1): 

Lemma 3. 

k k 

dl(stM × x Ui, Ul) = ~ dl(stM × t Wi, W,) 
i = 1  i = 1  

k 

= ½ ~ dl(stM vi, vi) = ½p(M). 
i = 1  

Proof (st M × ~ u i, ui) is isomorphic as a regular cell-complex pair to (st M × i wi, wi), 
thus it is immediate that 

k k 

dl(stM× x u,, ui) = ~ dl(stu× x wl, w,). 
i = 1  i = 1  

But 

k k k 

dl(stM ×1 Ui, Ui) q- ~ dl(stM×l Wi' Wi) = p(M x I) = p(M) = ~ dl(st u v,, vi), 
i = 1  i = 1  i = 1  

which yields the remainder of the lemma. [ ]  
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Now let I '  denote the first subdivision of I with two 1-simplices [0, ½] and [½, 1] 
and three vertices 0, ½, 1. With M, vi as above, M x I' is a regular cell-complex 
with vertices ui = (vi, 0), wi = (vi, 1), xi = (vi, ½). Clearly, (stM ~ i, ui, ul) is isomorphic 
as a regular cell-complex pair to (stu × l ui, ui) and similarly for w i. This observation 
leads to: 

Lemma 4. ~k= 1 dl(stM × r x,, xi) = O. 

Proof. 

k k k 

p ( M  x I') = ~ dl (Stuxr  ui, ul) + ~ dl(s tu×r  wi, wi) + ~', dt(stM×l, xi,  xi). 
i = l  i = 1  i = i  

Also 

k k 

p ( M  x I') = p ( M  x l) = ~ dl(stM× t ui, ui) + ~ dl(stM,x wi, wi). 
i = 1  i = 1  

By the remarks immediately preceding the statement of the lemma, the two 
summands on the right-hand side of the second equation are respectively equal 
to the first two summands in the right-hand side of the second. Hence the 
remaining summand, namely ~k= 1 dl(stM × I' Xi, Xl), must vanish. [ ]  

Now we complete the proof of Lemma 1. Let K = Ko u K1 be a simplicial 
complex with K 0 c~ K x = K2. We construct a homotopy-equivalent regular cell- 
complex K 0 u (K 2 x I') u KI = B where K o, K 1 are now disjoint and K2 x 0 is 
identified with the copy of K2 in K 0 and K 2 x 1 with the copy of K2 in K 1. Let 
B o = K o u ( K 2  × [0,½]),B I = K  2 × [ ½ , 1 ] u K  1 .ThusB oc~B l = K z  ×½. Wede-  
note the vertices of K2 by v I . . . . .  v k. Thus K2 x ½ has vertices xi = (vl, ½), i = 
t . . . . .  k. Two elementary observations: 

(i) (stB, xi,  xi) is isomorphic (as a regular cell-complex pair) to (stK2 ×t(vi, 0), 
(vi, 0)) and likewise for (stn2 xi,  xi). 

(ii) (stn x~, xi) is identical with (Str2 x I' X,, xi)- 

NOW, since d~ locally determines p, we have 

k 

p(Ko) = p(Bo) = ~ dl(stno xi,  xi) + Y, 
i = 1  

where Y involves only the stars of vertices of B o not in K 2 × ½. Likewise, 

k 

p(KO = ~ dl(stB, xi,  xi) + Z, 
i = 1  
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where Z involves only the stars of vertices of B1 not in K 2 × ½. Thus, by Lemma 
3 and observation (i) above, we see immediately that 

k k 

dl(stno x,, xi) = ~ d,(stB, xi, xi) = ½p(K2). 
i=1  i=1 

xi) + On the other hand, it is directly seen that p(K) = p(B) = ~i= 1 dl(stn, xi, 
k Y + Z. However, ~ = 1  dl(stn xi, xg) vanishes by virtue of observation (ii) and 

Lemma 4. So p(K) = Y + Z = [p(Ko) - ½p(K2) ] + [p(K1) - ½p(K2)] = p(Ko) + 
p(K 0 - p(K2). The proof of Lemma 1, and hence of Theorems A and A', is thus 
complete. 

The kindred result Theorem A" is easily established by a slightly modified 
version of this reasoning. The key point is the following lemma, analogous to 
Lemma 1. 

L e m m a  5. Let p be a locally determined numerical PL-homeomorphism invariant 
for  compact P L  n-manifolds. Let  K be a compact P L  n-manifold o f  the jbrm 
K = K o w K 1 where K o, K 1 are themselves compact n-manifolds and where K 2 = 
K o c~ K 1 is a codimension 0 submanifold o f  both OK o and OK ~. Then p(K) = p(Ko) + 
p ( K a ) -  p(K 2 x l). 

First, we see quite easily that Lemma 5 implies Theorem A". For  a compact 
PL n-manifold M, let h(M) denote the dimension of the highest dimensional handle 
in a handlebody-decomposition of M where this highest dimension is minimal 
(with respect to all possible handlebody structures). Our proof runs by induction 
on h( M). 

If h(M) = 0, then M is the disjoint union of some finite number m of n-disks, 
whence p(M) = m = z(M). 

Now suppose A" holds for all compact manifolds M with h ( M ) < j  < n. 
Consider M 1 with h ( M O = j + l .  Then M l = M w ( ( j + l ) - h a n d l e s )  where 
h(M) <<_ j, whence p(M) = z(M) by inductive assumption. Let N denote the union 
of all the (j + 1)-handles of M 1, i.e., if there are m such handles, N is the disjoint 
union of m n-disks, and so p(N) = m = z(N). Let L = M c~ N ___ c~M, ON. L is 
the disjoint union of m copies of S j x D " - j - l ,  hence h(L × I) = j  and p(L x I) = 
z(L x I) = m (1 + ( -  1}/). By lemma 5, 

p(M 0 = p(M) + p(N) - p(L x I) = x(M) + x(N) - x(L x I) 

= x ( M )  + z ( N )  - x(L) = z ( M O .  

The induction is thus complete. 
As for Lemma 5 itself, we note that the argument for Lemma 1 goes through 

almost word for word. Note that lemma 2 holds in the context of regular 
cell-complex decompositions of PL manifolds. The analogue of Lemma 3 holds 
where M is now a compact triangulated ( n -  1)-manifold. The modified result 
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reads 

k k 

dl(stu×x ui, ui) = ~ dl(StM×, wl, wl) = ½p(M x I). 
i=1 i=1 

Lemma 4 holds as well in this context. 
The computa t ions  leading to Lemma 1 now serve equally well for Lemma 5. 

Here it need only be observed that  if K is a compact  PL  n-manifold decomposed  
as K o w K 1 (with K 2 = K o c~ K 1 a codimension-0 submanifold of  0K o and 0K1), 
then B (as defined in the p roof  of  Lemma 1) is now a compact  P L  n-manifold P L  
homeomorph ic  to K while Bo, B1 are P L  manifolds homeomorphic ,  respectively, 
to Ko and K1. The proof  then goes through substituting p ( K  2 × I) for p(K2) as 
appropriate.  

3. Proof  of  Theorem B 

As noted in the introduction,  the Euler characteristic Z is locally determined by 

dimL (__ 1)i+ 1 
e(L) = 1 + ~ - -  (number  of  i-simplices of L). 

i=o i + 2  

We now show that no other  function on simplicial i somorphism classes of  finite 
complexes can locally determine X. 

To  this end, let d be some other  function for which x(K) = ~v  d(lk V) for all 
finite simplicial complexes K. Given any simplicial complex J with a a simplex, 
we call a a m a x i m a l  simplex of  J if and only if a is not  a face of any larger simplex. 
No te  that  any finite complex is the union of its maximal  simplices. 

O u r  p roof  that d(L) = e(L) proceeds via induct ion on the number  of  maximal  
simplices of  L. In the case where L has but one maximal  simplex, it is clear that  
L must  be isomorphic  to a s tandard  simplex, say A k for some k > 0. Consider  
K = v ,  L for some disjoint vertex v. v ,  L is of  course isomorphic  to A k÷ 1 so 
1 = X(v * L)  = d(L) + ~ =  o d(lkK vi) (where v o . . . . .  V k are the vertices of  L) since 
L = lkx v. But lk K vi is obviously a k-simplex for i = 0 . . . . .  k. So we have d(lkK vi) = 
d(L), whence 1 = (k + 2)d(L), d(L) = 1/(k + 2) -- e(L). 

N o w  suppose d(L) = e(L) for all L having < j maximal  simplices. Let L have 
j + 1 maximal  simplices and let vl . . . .  , vr denote the vertices of  L. Consider  
K = v *  L ~- c L  where v is a vertex distinct from Vl, . . . ,  yr. L = lk x v. Consider  
lk K v i. This is clearly v . l k  L vl ~ c lk L vi. Thus lk x vi is isomorphic  to st L v i. 
However,  st L vg is clearly the union of maximal  simplices of  L. Hence lkg v~ has 
< j + 1 maximal  simplices. 

N o w  because K is contractible, 1 = z(K) = d(L) + ~ =  ~ d(lk K vi). Segregate the 
vi into two classes, ui, i = 1 . . . .  ,s ,  and w~, i =  1 . . . . .  t, with s + t = r, by the 
criterion that  lkx u~ has _< j maximal  simplices whereas lk K w i has j + 1 maximal  
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simplices. Thus  d(lk~ ui) = e(lk K ui) for i = 1 . . . . .  s. Thus since 

z(K) = d(L) + ~ d(lk K ui) + ~ d(lk K w,) 
i = 1  i = 1  

= e(L) + ~ e(lk~ ui) + ~ e(lk~ wi), 
i = 1  i = l  

we have 

d(L) + d(lk K wi) = e(L) + ~.  e(lk~ wi). 
i = 1  i = t  

Note  that v and w i, i = 1 . . . . .  t, may  be characterized as those vertices of K which 
are c o m m o n  to all the maximal simplices of K. It follows that v, w 1 . . . . .  w t are the 
vertices of  z = 0 ,  a~, where {a~} is the set of  maximal simptices of  K. For  any 
pair  of these vertices, it is clear that there is thus a simplicial au tomorphism of K 
carrying the first into the second. In other words, L = lk~ v ~ lk~( wi, i =  1 . . . . .  t. 
Hence we see that  (t + 1)d(L) = (t + 1)e(L) whence d(L) = e(L). This completes the 
proof. 
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