Discrete Comput Geom 7: 59-67 (1992)

The Euler Characteristic is the Unique Locally Determined Numerical Homotopy Invariant of Finite Complexes

Norman Levitt

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. If a numerical homotopy invariant of finite simplicial complexes has a local formula, then, up to multiplication by an obvious constant, the invariant is the Euler characteristic. Moreover, the Euler characteristic itself has a unique local formula.

1. Introduction

The Euler characteristic χ is the best known as well as the most ancient topological invariant. For a finite simplicial complex K (or, more generally, a C-W complex) there is the familiar definition

$$\chi(K) = \sum_{i=0}^{\dim K} (-1)^i c_i,$$

where $c_i =$ number of *i*-simplices (or *i*-cells if K is a C-W complex.) That $\chi(K)$ is an invariant of homotopy type follows from the alternative definition

$$\chi(K) = \sum_{i=0}^{\dim K} (-1)^i \operatorname{rank} H_i(K; \mathbb{Z}).$$

It is well known and easily verified that $\chi(K)$ is *locally determined* in the sense that given K, we may assign to each vertex $v \in K$ a rational number $e_1(v)$ such that $\chi(V) = \sum_{v} e_1(v)$. Here, $e_1(v)$ depends only on the simplicial structure of star

 $v = (\int_{v \in \sigma} \sigma (\sigma \text{ a simplex of } K) \text{ and is given by}$

$$e_1(v) = \sum_i \frac{(-1)^i}{i+1} \cdot s_i(v),$$

where $s_i(v)$ is the number of *i*-simplices of K containing v. Since star v is, simplicially, the cone c(link v), we may think of $e_1(v)$ as an invariant of the simplicial isomorphism type of link $v = \bigcup_{v \notin \sigma \subset \text{starv}} \sigma$, i.e.,

$$e_1(v) = e(\text{link } v) = 1 + \sum_{i=0}^{\dim \text{link } v} \frac{(-1)^{i+1}}{i+2} \cdot (\text{number of } i \text{-simplices of link } v).$$

Of course, there are countless other Z-valued (or R-valued) invariants of finite complexes of finite complexes. It seems natural to ask whether any of these, other than the Euler characteristic, is locally determined in this sense. Specifically, let ρ denote any R-valued homotopy invariant of finite complexes. We always assume, by way of normalization, that $\rho(\emptyset) = 0$. Consider a real-valued function d(L)defined on the set of finite simplicial complexes and depending only on the simplicial isomorphism type of L. We say that ρ is *locally determined* by d if and only if given any finite simplicial complex K we have $\rho(K) = \sum_{v \in K} d(\ln k v)$, where the sum is taken over the vertices v of K. Clearly, the example we have in mind is the Euler characteristic χ , locally determined by e as above, and our question is whether there are any other numerical homotopy invariants (in a nontrivial sense) which are locally determined. The answer turns out to be negative.

Theorem A. Let ρ be any \mathbb{R} -valued homotopy invariant of finite complexes locally determined by some function d on simplicial-isomorphism classes of finite complexes. Then $\rho = \rho(\text{pt.}) \cdot \chi$.

In other words, up to multiplication by a constant, χ is the unique locally determined homotopy invariant.

We prove Theorem A in the following form:

Theorem A'. If ρ is an \mathbb{R} -valued homotopy invariant of finite complexes locally determined by d and such that $\rho(\text{pt.}) = 1$, then $\rho \equiv \chi$.

Theorem A obviously implies Theorem A' and is, in turn, implied by it for the following reason: Let ρ be as in the statement of Theorem A. If $\rho(\text{pt.}) \neq 0$, replace ρ by $\rho' = \rho/\rho(\text{pt.})$ and apply Theorem A' to conclude $\rho' = \chi$, hence $\rho = \rho(\text{pt.}) \cdot \chi$. If, however, $\rho(\text{pt.}) = 0$ let $\rho' = \rho + \chi$. Applying Theorem A' to ρ' , we have $\rho' = \chi$ hence $\rho = 0 = \rho(\text{pt.}) \cdot \chi$.

The author is indebted to the referee for pointing out that the techniques below will, in fact, lead to a somewhat stronger result.

Consider compact PL *n*-manifolds (not necessarily closed). Let ρ now denote a real-valued PL-homeomorphism invariant of such manifolds. Let d be a

real-valued function defined on triangulations of S^{n-1} and D^{n-1} . Then the notion of ρ being locally determined by *d* transcribes, in an obvious way, to this context from the definition given above. Corresponding to Theorem A' we have

Theorem A". If ρ is an \mathbb{R} -valued invariant of compact PL n-manifolds with $\rho(\emptyset) = 0$, $\rho(D^n) = 1$ and ρ is locally determined by some function d, then $\rho = \chi$.

Note that Theorem A" does, in fact, imply Theorem A'. Let ρ be a numerical homotopy invariant of finite complexes with $\rho(\emptyset) = 0$, $\rho(\text{pt.}) = 1$. Then, for any *n*, ρ is, *a fortiori*, a PL-homeomorphism invariant of compact PL *n*-manifolds with $\rho(D^n) = 1$. If ρ is locally determined, then Theorem A" tells us that $\rho(M^n) = \chi(M^n)$ for compact PL manifolds M^n (*n* arbitrary). However, given a finite complex K, there exists a compact manifold M^n with K homotopically equivalent to M^n (see, e.g., [W1]). Hence $\rho(K) = \rho(M^n) = \chi(M^n) = \chi(K)$.

The observation above notwithstanding, we shall, in the interest of simplicity of exposition, prove Theorem A' directly first and then show how Theorem A'' follows by a straightforward modification of the proof.

If we now go on to ask how many functions d, in addition to the e given above, locally determine χ , we find, in fact, that an even greater degree of rigidity prevails than is asserted by Theorem A. Not only is χ the only locally determined homotopy invariant which evaluates to 1 on a point but, as well, there is only one function, namely e(L), which determines it. We rephrase this:

Theorem B. If χ is locally determined by d, then d = e.

Some remarks before we proceed to the proofs: If we examine more restricted classes of finite complexes, Theorem A no longer holds. For instance, if we look at the class of triangulated, oriented closed 4k-manifolds M, then the signature of M, certainly an invariant of orientation-preserving homotopy type within this class of spaces, is locally determined by a function defined on simplicial-isomorphism classes of triangulated, oriented (4k - 1)-spheres. This is a special case of the fact that rational Pontrjagin classes (as well as other PL characteristic classes) are locally determined. See [C], [L], [LR], and [GM] for details.

Moreover, as the referee has astutely pointed out, Theorem B fails as well in the context of closed PL *n*-manifolds. Given a combinational triangulation of such a manifold M, let c_i denote the number of *i*-simplices. Klee [K] discovered a family of algebraic relations among the c_i valid for all M and Wall [W2] showed this list to be exhaustive. In consequence, there are nonstandard formulae for $\chi(M)$ in terms of c_i differing from the classical formula cited in the first paragraph. For example (and, once more, the author is indebted to the referee for the observation),

$$\chi(M^n) = c_0 + \sum_{j=1}^{\lfloor (n+1)/2 \rfloor} (-1)^j 2B_{2j} c_{2j-1},$$

where B_{2j} is the 2*j*th Bernoulli number. From this it immediately follows that if we set

$$d(L) = 1 + \sum_{j=0}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^{j+1}}{j+1} B_{2j+2} \text{ (number of } 2j \text{ simplices of } L\text{)},$$

then d locally determines χ on closed *n*-manifolds.

A word concerning notation: We abbreviate star v by st v and link v by lk v. If there is any ambiguity as to which ambient complex K is under consideration, we resolve this by recourse to subscripts, e.g. $lk_K v$, st_K v, etc.

Finally, we note that our proof applies to C-valued or Q-valued invariants as well.

2. Proof of Theorem A'

Theorem A' follows immediately from:

Lemma 1. Let ρ be a numerical homotopy invariant of finite complexes locally determined by some function d. Let K be a finite simplicial complex with $K = K_0 \cup K_1, K_0 \cap K_1 = K_2$ where K_0, K_1, K_2 are subcomplexes of K. Then $\rho(K) = \rho(K_0) + \rho(K_1) - \rho(K_2)$.

The derivation of Theorem A' from Lemma 1 comes via a straightforward induction. Given Lemma 1 and the hypothesis that $\rho(\text{pt.}) = 1$, it is immediate that for a 0-complex (i.e., discrete finite set) K, $\rho(K) =$ number of points of $K = \chi(K)$. So assume, inductively, that $\rho = \chi$ holds for complexes of dimension $\leq k$ and for (k + 1)-complexes having $\leq j$ (k + 1)-simplices. Let K be a (k + 1)-dimensional complex with exactly (j + 1) (k + 1)-simplices. Choose a (k + 1)-simplex σ . Let $K_0 = \sigma$, $K_1 = K$ -int σ , so that $K_2 = K_0 \cap K_1$ is a k-sphere. Then

$$\rho(K) = \rho(K_0) + \rho(K_1) - \rho(K_2) = 1 + \chi(K_1) - \chi(S^k) = \chi(K_1) + (-1)^{k+1} = \chi(K).$$

To prove Lemma 1, in turn, it is technically convenient to consider finite regular cell complexes in addition to the more special category of finite simplicial complexes. (See [SCF] for definitions and basic properties of regular cell complexes.) Let d_1 be a function defined on pairs (J, p) where J is a regular cell complex which is the union of cells all containing the vertex p. It is understood that d_1 depends only on the isomorphism class of (J, p) as a regular cell-complex pair. Thus in the case when J happens to be simplicial, we see that d_1 depends only on the simplicial isomorphism class of (J, p) and thus, since J will in this instance be c(lk p), only on the simplicial isomorphism class of lk p. Consequently, d_1 may be viewed as an extension of a function d(L), defined on simplicial complexes of the sort we have heretofore been considering (that is, $d(L) = d_1(cL, *)$). We say that d_1 determines an \mathbb{R} -valued homotopy invariant ρ of finite regular cell-complexes if and only if $\rho(K) = \sum_{v} d_1(\text{st } v, v)$ where the sum is taken over the vertices v of K and where st(v) is now understood to mean the union of all those cells of K containing v.

Lemma 2. If d (defined on simplicial complexes) locally determines ρ on simplicial complexes, then there is an extension of d to regular cell-complex pairs (J, p) as above which locally determines ρ on regular cell-complexes.

(Of course, it is understood that since regular cell-complexes are triangulable—in fact the first barycentric subdivision is a simplicial complex—the invariant ρ automatically extends to regular cell-complexes.)

The proof of Lemma 2 is quite straightforward. Given (J, p) let K be the first barycentric subdivision of J, and hence a simplicial complex. Define $d_1(J, p)$ as follows: let e be a cell of J, b_e its barycenter, hence a vertex of K. Let V(e) denote the number of vertices of the regular cell e. Then set $d_1(J, p) = \sum_e (1/v(e)) d(\ln_K b_e)$ where the sum is taken over all cells of J. The assertion that d_1 must locally determine ρ on regular cell complexes is an immediate consequence of this definition.

We now proceed to the proof of Lemma 1. Assume that d, which locally determines ρ on simplicial complexes, has been extended to d_1 , which locally determines ρ on regular cell-complexes. Let M be a finite regular cell-complex and let I denote, as usual, the unit interval as a simplicial complex with one 1-simplex [0, 1] and two vertices 0 and 1. $M \times I$ is then well defined as a regular cell-complex without need of further subdivision. If M has vertices v_1, \ldots, v_k , then $M \times I$ has vertices $u_1, \ldots, u_k, w_1, \ldots, w_k$ where $u_i = (v_i, 0), w_i = (v_i, 1)$:

Lemma 3.

$$\sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} u_i, u_i) = \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} w_i, w_i)$$
$$= \frac{1}{2} \sum_{i=1}^{k} d_1(\operatorname{st}_{M} v_i, v_i) = \frac{1}{2} \rho(M).$$

Proof. $(st_{M \times I} u_i, u_i)$ is isomorphic as a regular cell-complex pair to $(st_{M \times I} w_i, w_i)$, thus it is immediate that

$$\sum_{i=1}^{k} d_1(\mathrm{st}_{M \times I} \ u_i, \ u_i) = \sum_{i=1}^{k} d_1(\mathrm{st}_{M \times I} \ w_i, \ w_i).$$

But

$$\sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} u_i, u_i) + \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} w_i, w_i) = \rho(M \times I) = \rho(M) = \sum_{i=1}^{k} d_1(\operatorname{st}_M v_i, v_i),$$

which yields the remainder of the lemma.

Now let I' denote the first subdivision of I with two 1-simplices $[0, \frac{1}{2}]$ and $[\frac{1}{2}, 1]$ and three vertices $0, \frac{1}{2}$, 1. With M, v_i as above, $M \times I'$ is a regular cell-complex with vertices $u_i = (v_i, 0), w_i = (v_i, 1), x_i = (v_i, \frac{1}{2})$. Clearly, $(st_{M \times I'}, u_i, u_i)$ is isomorphic as a regular cell-complex pair to $(st_{M \times I}, u_i, u_i)$ and similarly for w_i . This observation leads to:

Lemma 4. $\sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I'} x_i, x_i) = 0.$

Proof.

$$\rho(M \times I') = \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I'} u_i, u_i) + \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I'} w_i, w_i) + \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I'} x_i, x_i).$$

Also

$$\rho(M \times I') = \rho(M \times I) = \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} u_i, u_i) + \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} w_i, w_i)$$

By the remarks immediately preceding the statement of the lemma, the two summands on the right-hand side of the second equation are respectively equal to the first two summands in the right-hand side of the second. Hence the remaining summand, namely $\sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I'} x_i, x_i)$, must vanish.

Now we complete the proof of Lemma 1. Let $K = K_0 \cup K_1$ be a simplicial complex with $K_0 \cap K_1 = K_2$. We construct a homotopy-equivalent regular cellcomplex $K_0 \cup (K_2 \times I') \cup K_1 = B$ where K_0 , K_1 are now disjoint and $K_2 \times 0$ is identified with the copy of K_2 in K_0 and $K_2 \times 1$ with the copy of K_2 in K_1 . Let $B_0 = K_0 \cup (K_2 \times [0, \frac{1}{2}]), B_1 = K_2 \times [\frac{1}{2}, 1] \cup K_1$. Thus $B_0 \cap B_1 = K_2 \times \frac{1}{2}$. We denote the vertices of K_2 by v_1, \ldots, v_k . Thus $K_2 \times \frac{1}{2}$ has vertices $x_i = (v_i, \frac{1}{2}), i =$ $1, \ldots, k$. Two elementary observations:

- (i) $(\operatorname{st}_{B_1} x_i, x_i)$ is isomorphic (as a regular cell-complex pair) to $(\operatorname{st}_{K_2 \times I}(v_i, 0), (v_i, 0))$ and likewise for $(\operatorname{st}_{B_2} x_i, x_i)$.
- (ii) $(\text{st}_{B} x_{i}, x_{i})$ is identical with $(\text{st}_{K_{2} \times I'} x_{i}, x_{i})$.

Now, since d_1 locally determines ρ , we have

$$\rho(K_0) = \rho(B_0) = \sum_{i=1}^k d_1(\operatorname{st}_{B_0} x_i, x_i) + Y,$$

where Y involves only the stars of vertices of B_0 not in $K_2 \times \frac{1}{2}$. Likewise,

$$\rho(K_1) = \sum_{i=1}^k d_1(\mathrm{st}_{B_1} x_i, x_i) + Z,$$

64

where Z involves only the stars of vertices of B_1 not in $K_2 \times \frac{1}{2}$. Thus, by Lemma 3 and observation (i) above, we see immediately that

$$\sum_{i=1}^{k} d_{1}(\operatorname{st}_{B_{0}} x_{i}, x_{i}) = \sum_{i=1}^{k} d_{1}(\operatorname{st}_{B_{1}} x_{i}, x_{i}) = \frac{1}{2}\rho(K_{2}).$$

On the other hand, it is directly seen that $\rho(K) = \rho(B) = \sum_{i=1}^{k} d_1(\operatorname{st}_{B_1} x_i, x_i) + Y + Z$. However, $\sum_{i=1}^{k} d_1(\operatorname{st}_B x_i, x_i)$ vanishes by virtue of observation (ii) and Lemma 4. So $\rho(K) = Y + Z = [\rho(K_0) - \frac{1}{2}\rho(K_2)] + [\rho(K_1) - \frac{1}{2}\rho(K_2)] = \rho(K_0) + \rho(K_1) - \rho(K_2)$. The proof of Lemma 1, and hence of Theorems A and A', is thus complete.

The kindred result Theorem A'' is easily established by a slightly modified version of this reasoning. The key point is the following lemma, analogous to Lemma 1.

Lemma 5. Let ρ be a locally determined numerical PL-homeomorphism invariant for compact PL n-manifolds. Let K be a compact PL n-manifold of the form $K = K_0 \cup K_1$ where K_0 , K_1 are themselves compact n-manifolds and where $K_2 = K_0 \cap K_1$ is a codimension 0 submanifold of both ∂K_0 and ∂K_1 . Then $\rho(K) = \rho(K_0) + \rho(K_1) - \rho(K_2 \times I)$.

First, we see quite easily that Lemma 5 implies Theorem A". For a compact PL *n*-manifold M, let h(M) denote the dimension of the highest dimensional handle in a handlebody-decomposition of M where this highest dimension is minimal (with respect to all possible handlebody structures). Our proof runs by induction on h(M).

If h(M) = 0, then M is the disjoint union of some finite number m of n-disks, whence $\rho(M) = m = \chi(M)$.

Now suppose A" holds for all compact manifolds M with $h(M) \le j < n$. Consider M_1 with $h(M_1) = j + 1$. Then $M_1 = M \cup ((j + 1)$ -handles) where $h(M) \le j$, whence $\rho(M) = \chi(M)$ by inductive assumption. Let N denote the union of all the (j + 1)-handles of M_1 , i.e., if there are m such handles, N is the disjoint union of m n-disks, and so $\rho(N) = m = \chi(N)$. Let $L = M \cap N \subseteq \partial M$, ∂N . L is the disjoint union of m copies of $S^j \times D^{n-j-1}$, hence $h(L \times I) = j$ and $\rho(L \times I) = \chi(L \times I) = m (1 + (-1)^j)$. By lemma 5,

$$\rho(M_1) = \rho(M) + \rho(N) - \rho(L \times I) = \chi(M) + \chi(N) - \chi(L \times I)$$
$$= \chi(M) + \chi(N) - \chi(L) = \chi(M_1).$$

The induction is thus complete.

As for Lemma 5 itself, we note that the argument for Lemma 1 goes through almost word for word. Note that lemma 2 holds in the context of regular cell-complex decompositions of PL manifolds. The analogue of Lemma 3 holds where M is now a compact triangulated (n-1)-manifold. The modified result

reads

$$\sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} u_i, u_i) = \sum_{i=1}^{k} d_1(\operatorname{st}_{M \times I} w_i, w_i) = \frac{1}{2}\rho(M \times I).$$

Lemma 4 holds as well in this context.

The computations leading to Lemma 1 now serve equally well for Lemma 5. Here it need only be observed that if K is a compact PL *n*-manifold decomposed as $K_0 \cup K_1$ (with $K_2 = K_0 \cap K_1$ a codimension-0 submanifold of ∂K_0 and ∂K_1), then B (as defined in the proof of Lemma 1) is now a compact PL *n*-manifold PL homeomorphic to K while B_0 , B_1 are PL manifolds homeomorphic, respectively, to K_0 and K_1 . The proof then goes through substituting $\rho(K_2 \times I)$ for $\rho(K_2)$ as appropriate.

3. Proof of Theorem B

As noted in the introduction, the Euler characteristic χ is locally determined by

$$e(L) = 1 + \sum_{i=0}^{\dim L} \frac{(-1)^{i+1}}{i+2}$$
 (number of *i*-simplices of L).

We now show that no other function on simplicial isomorphism classes of finite complexes can locally determine χ .

To this end, let d be some other function for which $\chi(K) = \sum_{v} d(\ln V)$ for all finite simplicial complexes K. Given any simplicial complex J with σ a simplex, we call σ a maximal simplex of J if and only if σ is not a face of any larger simplex. Note that any finite complex is the union of its maximal simplices.

Our proof that $d(L) \equiv e(L)$ proceeds via induction on the number of maximal simplices of L. In the case where L has but one maximal simplex, it is clear that L must be isomorphic to a standard simplex, say Δ^k for some $k \ge 0$. Consider K = v * L for some disjoint vertex v. v * L is of course isomorphic to Δ^{k+1} so $1 = \chi(v * L) = d(L) + \sum_{i=0}^{k} d(\operatorname{lk}_{K} v_{i})$ (where v_{0}, \ldots, v_{k} are the vertices of L) since $L = \operatorname{lk}_{K} v$. But $\operatorname{lk}_{K} v_{i}$ is obviously a k-simplex for $i = 0, \ldots, k$. So we have $d(\operatorname{lk}_{K} v_{i}) = d(L)$, whence 1 = (k + 2)d(L), d(L) = 1/(k + 2) = e(L).

Now suppose d(L) = e(L) for all L having $\leq j$ maximal simplices. Let L have j + 1 maximal simplices and let v_1, \ldots, v_r denote the vertices of L. Consider $K = v * L \cong cL$ where v is a vertex distinct from v_1, \ldots, v_r . $L = lk_K v$. Consider $lk_K v_i$. This is clearly $v * lk_L v_i \cong c \ lk_L v_i$. Thus $lk_K v_i$ is isomorphic to $st_L v_i$. However, $st_L v_i$ is clearly the union of maximal simplices of L. Hence $lk_K v_i$ has $\leq j + 1$ maximal simplices.

Now because K is contractible, $1 = \chi(K) = d(L) + \sum_{i=1}^{r} d(\lg_K v_i)$. Segregate the v_i into two classes, u_i , i = 1, ..., s, and w_i , i = 1, ..., t, with s + t = r, by the criterion that $\lg_K u_i$ has $\leq j$ maximal simplices whereas $\lg_K w_i$ has j + 1 maximal

simplices. Thus $d(lk_K u_i) = e(lk_K u_i)$ for i = 1, ..., s. Thus since

$$\chi(K) = d(L) + \sum_{i=1}^{s} d(\mathbf{lk}_{K} u_{i}) + \sum_{i=1}^{t} d(\mathbf{lk}_{K} w_{i})$$
$$= e(L) + \sum_{i=1}^{s} e(\mathbf{lk}_{K} u_{i}) + \sum_{i=1}^{t} e(\mathbf{lk}_{K} w_{i}),$$

we have

$$d(L) + \sum_{i=1}^{t} d(\mathbf{lk}_{K} w_{i}) = e(L) + \sum_{i=1}^{t} e(\mathbf{lk}_{K} w_{i}).$$

Note that v and w_i , i = 1, ..., t, may be characterized as those vertices of K which are common to all the maximal simplices of K. It follows that $v, w_1, ..., w_t$ are the vertices of $\tau = \bigcap_{\alpha} \sigma_{\alpha}$, where $\{\sigma_{\alpha}\}$ is the set of maximal simplices of K. For any pair of these vertices, it is clear that there is thus a simplicial automorphism of K carrying the first into the second. In other words, $L = lk_K v \cong lk_K w_i$, i = 1, ..., t. Hence we see that (t + 1)d(L) = (t + 1)e(L) whence d(L) = e(L). This completes the proof.

References

- [C] Cheeger, J., Spectual geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983), 575-657.
- [GM] Gelfand, I. M., and MacPherson, R., A combinatorial formula for the Pontrjagin classes (preprint).
 - [K] Klee, V., A combinatorial analogue of Poincaré's duality theorem, Canad. J. Math. 16 (1964), 517-531.
 - [L] Levitt, N., Grassmannians and Gauss Maps in Piecewise-Linear Topology, Lecture Notes in Mathematics, Vol. 1366, Springer-Verlag, Berlin, 1989.
- [LR] Levitt, N., and Rourke, C., The existence of combinatorial formulae for characteristic classes, Trans. Amer. Math. Soc. 239 (1978), 391-397.
- [SCF] Steenrod, M., Cooke, G., and Finney R., *Homology of Cell Complexes*, Princeton University Press, Princeton, NJ, 1967.
- [W1] Wall, C. T. C., Classification problems in differential topology, IV—Thickenings, Topology 5 (1966), 73–94.
- [W2] Wall, C. T. C., Arithmetic invariants of subdivisions of complexes, Canad. J. Math. 18 (1966), 72-96.

Received September 13, 1989, and in revised form July 3, 1990.