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THE EULER IMPLICIT/EXPLICIT SCHEME FOR THE
2D TIME-DEPENDENT NAVIER-STOKES EQUATIONS
WITH SMOOTH OR NON-SMOOTH INITIAL DATA

YINNIAN HE

ABSTRACT. This paper considers the stability and convergence results for
the Euler implicit/explicit scheme applied to the spatially discretized two-
dimensional (2D) time-dependent Navier-Stokes equations. A Galerkin finite
element spatial discretization is assumed, and the temporal treatment is im-
plicit/explict scheme, which is implicit for the linear terms and explicit for the
nonlinear term. Here the stability condition depends on the smoothness of the
initial data up € H®, i.e., the time step condition is 7 < Cp in the case of
a =2, 7|logh| < Cp in the case of « = 1 and Th~2 < Cp in the case of a = 0
for mesh size h and some positive constant Co. We provide the H2-stability of
the scheme under the stability condition with @ = 0, 1,2 and obtain the opti-
mal H! — L2 error estimate of the numerical velocity and the optimal L2 error
estimate of the numerical pressure under the stability condition with o = 1, 2.

1. INTRODUCTION

Let © be a bounded domain in R? assumed to have a Lipschitz continuous
boundary 9 and to satisfy a further condition stated in (A1) below. We consider
the time-dependent Navier—Stokes problem

u —vAu+ (u-V)u+Vp=f, divu=0, (z,t) € Qx (0,T];
u(z,0) = up(z), = € Q; u(z,t)]on =0, t €[0,T],

where v = u(z,t) = (u1(x,t),ua(x,t)) represents the velocity vector, p = p(z,t)
the pressure, f = f(z,t) the prescribed body force, ug(z) the initial velocity, v > 0
the viscosity, and T > 0 a finite time.

There are numerous works devoted to the development of efficient schemes for
the Navier-Stokes equations [3, 4, @, [10, 1T} 13} 14} 15, 16l 19 20} 211, 23| 27, 6l
30, 32, B1l [37], fully implicit, semi-implicit and implicit/explicit scheme. A key
issue is the stability conditions of schemes. Usually the fully implicit schemes are
unconditionally stable. However, at each time step, one has to solve a system of
nonlinear equations. An explicit scheme is much easier in computation. But it
suffers the severely restricted time step size from stability requirement. A popular
approach is based on an implicit scheme for the linear terms and a semi-implicit
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2098 YINNIAN HE

scheme or an explicit scheme for the nonlinear term. A semi-implicit scheme for the
nonlinear term results in a linear system with a variable coefficient matrix of time,
and an explicit treatment for the nonlinear term gives a constant matrix. Stability
and convergence conditions of schemes have been studied by many authors. The
main results are summarized below, where we set @ ¢ R¢ with d = 2,3, and
0 < h < 1 denotes the mesh size in the spatial direction and 0 < 7 = % <1
denotes the step size in the time direction, which may change. However, T' > 0 is

fixed throughout this paper.

e For the Crank-Nicolson scheme (fully implicit), Heywood and Rannacher
[23] proved that it is almost unconditionally stable and convergent, i.e.
stable and convergent when

(12) T S Co,

for some positive constant Cy depending on the data (v, Q, T, ug, f) in the
case of d = 2, 3.

e For a two-step scheme (semi-implicit), He and Li [14] gave the following
convergence condition:

(1.3) Th™ Y2 < Q.

e For the Crank-Nicolson extrapolation scheme (semi-implicit), He [I5] has
proved that (2] is the stability and convergence condition of the scheme
in the case of d = 2.

e For the Crank-Nicolson/Adams-Bashforth scheme (implicit/explicit), Mar-
ion and Temam provided in [32] the following stability condition:

(1.4) th™% < Cy, d=2,3,
and recently, Tone [37] proved the convergence under the condition
(1.5) Th=2742 < Cy, d=2, 3.

e A modified Crank-Nicolson/Adams-Bashforth scheme (implicit/explicit)
was proposed by Johnston and Liu [26], in which the nonlinear term and
pressure term are discretized explicitly. They claimed in their numerical
simulations that the scheme is stable under the standard stability condition

(1.6) llul[gemh™ <1, d=2,3.

No theoretical analysis has been given.
e For a three-step backward extrapolating scheme (implicit/explicit), Baker
et al. [4] gave the convergence condition

(1.7) Th™*/7 < Cy,

in the case of d = 2, 3.
e (learly, the time-step condition

(18) Th™" S C(),
for some r > 0 was imposed in these previous works when an implicit/
explicit scheme is applied.

Recently, He and Sun [I9] have improved the result of (I.8) and proved that
the stability and convergence condition of the Crank-Nicolson/Adams-Bashforth

scheme is (L2).
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This paper focuses on the Euler implicit/explicit scheme with a finite element
approximation in spatial direction for solving the time-dependent Navier-Stokes
equations in the case of d = 2, which were studied by Marion and Temam [32], Tone
[37], Kim and Moin [27] and Issacson and Keller [25]. The scheme consists of using
a finite element pair (X, M) for the spatial discretization, the implicit scheme
for the linear term and the explicit scheme for the nonlinear term for the time
discretization. Under the assumptions (A1), (A2) in §2 with u® € D(A%/?), a =
0,1,2 and (A3) in §3, we prove that the scheme is stable, i.e.,

m—1

(L) o> () (|

when the stability condition
T<Cp, a=2,
(1.10) Tllogh| < Cy, a =1,
Th™2 < Cp, a=0.
is satisfied. Under the stability condition (LI0) with o = 1,2, we also provide the

H' — L? optimal error estimate for the numerical velocity and the L2-optimal error
estimate for the numerical pressure:

15+ vl Anui 15 + P 13) < K, 1 <m < N,

(1.11) u(tm) — a2 < k(6™ ()2 + 0~ (t,,)hY),
(1.12) lu(ty) — umﬁ{l < /-i(af(sfo‘)(tm)T2 + Uf(zfa)(tm)hz),
(1.13) Ip(tm) — D72 < k(0™ (tn) 7% + 0~ B9 (t0)17),

for all 1 < m < N. Here o(t) = min{1,t}, x is some positive constant depending
on the data (v,Q, T, ug, f), and Aj is a discrete Stokes operator.

Moreover, similar results were proved for the Euler implicit/explicit scheme
which is applied to the spatial discretization based on the spectral Galerkin method
by He [11], 12].

Remark 1.1. In the case of a = 2, for the first order scheme (the Euler im-
plicit/explicit scheme) we obtain the same H'-error bound of the numerical ve-
locity and a better L2-error bound of the numerical pressure than the second order
scheme (Crank-Nicolson scheme), excepting the L2-error estimate for the numerical
velocity. Previously, Heywood and Rannacher in [23] provided the following error
estimates for the numerical velocity and pressure:

(1.14)  Ju(tm) — w3 < &l (tm)T® +1h?), 1 <m < N,

(115)  lp(tm) =pillze < K072 (tm)7? + 07 (tm)h?), 1< m < N,
and the L2-error estimate for the numerical velocity:

(1.16) [[u(tm) —u)2: < k(o 2(tm)T + 1Y), tm € (0,T], 1 <m < N.

This paper is organized as follows. In §2 an abstract functional setting of the
Navier-Stokes problem is given together with some basic assumptions (Al) and
(A2) with @ = 0,1,2. In §3 we set out our assumption (A3) concerning the finite
element spaces X; and Mj, finite element Galerkin approximation in space and
some properties on the trilinear form b(-,-,-). Section 3 contains the optimal error
estimate and a priori estimate results of the finite element solution (up(t), pn(%)).
In §4 we describe the Euler implicit/explicit scheme and prove the stability result
of the scheme. In §5 we describe the dual scheme and prove its stability result. In
§6 we obtain the optimal H' — L2-error estimate of the numerical velocity and the
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optimal L2-error estimate of the numerical pressure under the stability condition

(CIa) with o =1, 2.
2. FUNCTIONAL SETTING OF THE NAVIER-STOKES EQUATIONS

For the mathematical setting of problem (IT]), we introduce the following Hilbert
spaces:

X =H}(Q)? Y =L*N)? M=L}Q) = {qeL2(Q);/ qd:v()}.
Q

The space L?(Q)?, d = 1,2,4, is associated with the usual L2-scalar product (-, -)
and L2-norm || - ||o. The space X is associated with its usual scalar product and
equivalent norm

((w,v)) = (Vu, Vo), Jlullx = [[Vullo.
Next, let the closed subset V of X be given by

V ={veX;dive=0}

and denote by H the closed subset of Y, i.e.,

H={veY;divv=0,v-nlsgg =0}.

We refer readers to [IL 10, 221 [36] for details on these spaces. We denote the Stokes
operator by A = —PA, where P is the L?-orthogonal projection of ¥ onto H and
the domain of A by D(A) = H?(Q2)2N V. As mentioned above, we need a further
assumption on  provided in [23].

(A1) Assume that Q is smooth so that the unique solution (v,q) € (X, M) of
the steady Stokes problem

—vAv+Vg=g, divv=0 1inQ, v|spo =0,
for any prescribed g € Y, exists and satisfies

[oll > + llall < cllgllo,

where ¢ > 0 is a generic constant depending on € and v, and may take different
values at its different occurrences.

We remark that the validity of assumption (A1) is known (see [10] 22] 28] [36])
if 0 is of C? or if Q is a two-dimensional convex polygon. From the assumption
(A1), it is well known [1 22| 29] that

(2.1) [olla> < cfAvllo, v e D(A),

(2.2) [ollo < 20lVollo, ve X, [[Vullo < yollAvllo, v e D(A),

where 7 is a positive constant depending only on 2. We usually make the following
assumption about the prescribed data for problem (1.

(A2) The initial velocity wg(x) and the force f(x,t) are such that wy €
D(A?), f, fo. fu € L®(0,T;Y) with

14 ugllo + sup {IF@)llo + 1 £:(Ollo + [l (B)llo} < €
0<t<T
for some positive constant C', and o = 0, 1,2, where D(A%) =V and D(AO) =

Moreover, we define the continuous bilinear forms a(-,-) and d(-,-) on X x X
and X x M, respectively, by
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and a trilinear form on X x X x X by

b(u,v,w) = ((u-V)v+ %(divu)v7 w)
1 1
= 5((“ Vv, w) — 5((“ -Vw,v), u,v,w € X.

With the above notation, the variational formulation of problem (LI reads as
follows: Find (u,p) € (X, M) for all t € [0,T] such that for all (v,q) € (X, M),

(2.3) (ug,v) + a(u,v) — d(v,p) + d(u, q) + blu,u,v) = (f,v),
(2.4) u(0) = wpg.

In order to proceed the theoretical and numerical analysis for the variational
formulation ([23)-(24), we need to introduce the following existence, uniqueness
and modified regularity results.

Theorem 2.1. Under the assumptions (Al) and (A2), the problem [23)-(24)
admits a unique solution u € L>®(0,T;H) N L*(0,T;V) satisfying the following
regularities:
L(1—a)(2— _
lu(t)llg + o2~ E= @) [ Vu(®) 5 + o~ () (| Au®)[§ + VeI + [l (6)]])
(2.5) + POVt <

t
1l —
/O{IIVuH%JrJQ(1 VE= () (Juell§ + | Aull§ + [ VpI13) s

t
(2.6) +/O {7 ()IVuellg + o= (s) (lueel§ + | Auell§ + [Vpel[§) bs < &,

forall0 <t <T.

Proof. For the existence and uniqueness of the solution in the case of a = 0, the
reader may refer to Temam [36]. For the regularity results related to a = 2, the
reader may refer to Heywood and Rannacher [22], and for the regularity results
related to o = 1, the reader may refer to Hill and Sili [24] and He [11I] and He et
al. [17].

The case a = 0 has been proved in [12], except for the estimates of ||[Vp(t)||3
and [|[Vp:||2. However, these can be done by using (L)) and some nonlinear term
estimates. (]

3. FINITE ELEMENT GALERKIN APPROXIMATION

Let h > 0 be a real positive parameter. The finite element subspace (X, M},)
of (X, M) is characterized by Jj, = Jj,(£2), a partitioning of Q2 into triangles K or
quadrilaterals K, assumed to be uniformly regular as h — 0. For further details,
the reader may refer to Ciarlet [7] and Girault and Raviart [10].

We define the subspace V}, of X}, given by

(3.1) Vi = {Uh € Xp; d(vn,qn) =0, Y € Mh} .

Let Py, : Y=V}, denote the L?-orthogonal projection defined by
(Prv, vp) = (v,vp), v €Y, vy € Vj.
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We assume that the couple (X}, Mj,) satisfies the following approximation proper-
ties:

(A3) For each v € H?(2)2N X and g € H'(2) N M, there exist approximations
v € Xy and prq € Mj, such that

(3.2) V(v = 7)o < chl|Avllo, [lg = prgllo < chl[Vallo.

For each v, € X}, one has the inverse inequality

(33) Hv'UhHO < Clh_lH’UhH(), vp € Xp;

and the so-called inf-sup inequality: For each q;, € My, there exists v, € Xy, vy # 0,
such that

(3.4) d(vns qn) = callanllol|Vonllo s

where ¢; and co are positive constants depending on ().

We give an example of the spaces X} and M}, such that the assumption (A3)
is satisfied. Let € be a convex, polygonal domain in plane and J, = Jn(Q2), a
partitioning of € into triangles K, assumed to be uniformly regular as h — 0. For
any nonnegative integer [, we denote by P;(K) the space of polynomials of degrees
less than or equal to [ on K.

Example 1 (Girault-Raviart [10]).
X, = {vn € C°(0)* N X; 04|k € Po(K)?, VK € Ju},
My, = {qn € M;qn|x € Po(K), VK € Jn}.

Example 2 (Bercovier-Pironneau [5]). We consider the triangulation .J; /5 obtained
by dividing each triangle of Jj, into four triangles (by joining the mid-sides). We
set

Xy = {on € C°(V)* N X; 04|k € PI(K)?, VK € Jp )0},
My, = {qn € C°(Q) N M;q,|x € Pi(K), VK € J},}.

The following properties are classical (see [2, 10, 22} 24]):

(3.5) [VPollo < cf|Vollo, v e X,
(3.6) v — Puollo + AV (v — Pyv)llo < ch?||Avlo, v € D(A),
(3.7) lv = Prollo < ch||V(v— Ppo)llo, v e X.

The standard finite element Galerkin approximation of (Z3)-(Z4) based on
(X, Mp,) reads as follows: Find (up,pn) € (Xp, Mp) such that for all 0 < ¢t < T
and (vp, qn) € (Xn, Mp),

(38) (uhta Uh) + a(Uh, U}L) - d(’Uh,ph) + d(uh7 Qh) + b(Uh, Uh, Uh) = (f’ Uh)a
(39) uh(O) = Uoh — Phuo.

With the above statements, a discrete analogue A, = —P,Aj of the Stokes
operator A is defined through the condition that (—Apup,vn) = ((up,vp)) for all
up, v € Xp,. The restriction of Ay to V}, is invertible, with the inverse Agl. Since

Agl is self-adjoint and positive definite, we may define “discrete” Sobolev norms
on V},, of any order r € R, by setting

|vnll- = ||AZ/2Uh||0, v, € V.
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These norms will be assumed to have various properties similar to their continuous
counterparts, an assumption that implicitly imposes conditions on the structure of
the spaces X} and Mj,. In particular, it holds that

lonlly = IVunllo, llvnllz = [ Anvallo, vn € Va.
By the way, we derive from (2.2) that
(3.10) [oallo < v0llVunllo: Vorllo < vollAnvallo, vn € Vi,

where 79 > 0 is a constant depending only on €.

This section considers preliminary estimates which are useful in the error esti-
mates of finite element solution. Some estimates of the trilinear form b are given
in the following lemma and the proof can be found in [15] 16} 24].

Lemma 3.1. The trilinear form b satisfies the following estimates:

(3.11) blu,vp,wp) = ((u-V)vp,wp) =—((u- V)wp,vp),
(312) b(uh,vh,wh) = fb(uh,wh,’uh),
b(un, vn, wr)| 4 [b(vk, Un, wi)| 4 [D(wh, Uk, vR)|
(3.13) < collog AIM2|funlly||va 1 lwn o,
b(un, vh,wi)| +  [b(ORs uns wh)| + [b(wh, un, vp)|
€o 1/2 1/2 1/2 1/2
< llunllo’ unlly lfon lfwnlly’™ feon
C
(3.14) 5 lunllalonlly o 13 feon 6" a1y,

for allu €V, up,vp, wp € Xp, and

|b(un, vn, wr)|  +  |b(vn, un, wr)| + |b(wh, un, va)|

1 1/2 1/2 1/2 1/2
< geollAnvally’*lonly*lun 1o’ fun ]y wn o
1 1/2 1/2
(3.15) + geollAnonlllonllg” sl o,

for all up, vy, € Vi, wy, € Xy, where ¢y > 0 is a constant depending only on €.

Before we proceed further, we need some continuous and discrete Gagliardo-
Nirenberg estimates (see Temam [36] and Hill and Sili [24]).

Lemma 3.2. It holds that

(3.16)
vl s < ellolly*[Vollg’%, Yo e X, [Vollpe < | Vol *[[Av]ly?, Vv € D(A),

1/2 1/2
onllze < ellvnlle’* I Anvalls®, Ilonllz= < cllog h|*2[Vonllo, Yor € Vi,

1/2 1/2
IVonllpe < el Voulls | Anon Iy >, Yor € V.

In order to perform our error analysis for time discretization, we recall the fol-
lowing smooth properties of (up, pr).
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Theorem 3.3. Assume that assumptions (A1)-(A3) are valid. Then the finite
element solution (up,pp) satisfies the following estimates:

lun ()]I3 + o2 A== (1) | Vuy (8) 2 + 02 (1) | Apun (2)]13
¢
1) + [ UITulg + 030 ) Al < v,
0
02+r_a(t)|\uht(t)|\3 <k, r=0,1,2,

t
(3.18) / {o20mC ) (6) une [§ + o (5) unel2}ds < k, v =1,2,
0

forall0<t<T.
For the proof of Theorem 3.3 in the case of & = 2, the reader is referred to
Heywood and Rannacher [23] and He and Sun [19]. Theorem 3.3 with o = 1,0 can

be proved in a manner similar to the one used in [23] [19].
Next, we can provide some bounds of the error (u — up,p — pr).

Theorem 3.4. Under the assumptions (A1), (A2) with a = 1,2 and (A3), it holds
that

= )ult) —un(®F + WOV (ult) = un(®))
(3.19) + TR |p(t) — pu(t)ll < Kh*,
for all t € (0,T].

Proof. For the case o = 2, Heywood and Rannacher [22] have proved (319). For
the case o = 1, Hill and Siili [24] have proved
(o(t) + 1) u(t) — un ()5 + 2 (B)[V (u(t) — un ()3
(3.20) t
0 [V ) s < i
0

for all t € (0,T).
Hence, it is sufficient to prove

(3.21) o(t)lp(t) = pr(t)llo < wh, vt € (0,77,

for a = 1.
We set ey, = Ppu — up, and subtract (8.) from (Z3]) with v = vy, to obtain

(ur — unt, vp) + alu — up, vp) — d(vp, p — pr) + b(u, u — up,vp)

3.22
( ) + b(u — up, u,vp) — blu — up, u — up,vp) =0, Yo, € Xp,.

Taking v, = 2ep: € Vi, in (B22) yields

d
erlld + 200 IV~ )3 + 200~ un, ere)
+  2b(u — up,u, ept) — 2b(u — up, U — Up, €xt)
d
(3.23) = 2a(u —un,us — Prug) + Q%d(eh,p — prp) — 2d(en, Pt — pupe)-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EULER IMPLICIT/EXPLICIT SCHEME FOR N-S EQUATIONS 2105

Due to (Z2), B2)-B3), (B6) and Lemmas 3.1 and 3.2, we have

2a(u — up, uy — Prug) < 20|V (u — up)|lo]|V(ue — Prut)llo
< ch[|V(u = un)lo]| Auello,

2|d(en, pt — pnpt)| < 2\/§||V€h||0”pt — puptllo
< ch(|IV (u = un)lo + Rl Aullo) I Vpelo,
2|b(uyu — up, ept)| + 2[6(u — up, u, ept)|
< A(llullpe= [V (u = up)llo + Vullsllu — unllzs) l[entllo

1
< §H6ht||3 + || AulgIIV (w — ua) |5,
20b(u — up, u — un, ent)| < cl|V(u— un) [l Venello
1 _
< i\lehtllg + ch™?||V (u — up)|[5-

Combining this inequality with ([B23]) gives

d d
lendlls + 20V (w = un)§ < 2—d(en,p = pap)

dt
+ |V (u = un)lollAutllo + ch([[V(w = un)llo + hl Aullo) [ Vptllo
(3.24) + el Aullf + A2V (u = un) [V (w — un) I3

Multiplying (324]) by o(t), and integrating with respect to time and then using
Theorem 2.1 and [B20), we obtain

t
[ o lenizas
0

IN

20(t)d(en(t), p(t) — pnp(t))

t t

Lo / ld(en,p — pnp)lds + 20 / 19t — wp)|3ds + b2
0 0

e ()h([|V (u — un) o + Bl Aulo) | Vollo

t
(3.25) + h/ (IV (u — up)|lo + R||Aul|o)||Vpllods + kh? < kh?,
0

for all t € (0,T).
Differentiating ([3.22)) with respect to time gives

(utt — unsesvn)  + a(ug — ung, vn) — d(vn, pr — pape) + b(ut, u — up, vp)
+ b(u — Up, Ut, Uh) + b(U;, Ut — Unt, Uh) + b(U;t — Uht, U, 'Uh)
(3.26) —  b(ug — upg,u — up,vp) — b(u — up, up — upt, vp) = 0, Yo, € V.

Taking vy, = 2ep; € Vj, in ([B:26) and using Lemma 3.1, one finds

d
EH@htH% + V[V (ue = wne) 5 + vIIVenelld + 2b(ue, w — un, ene) + 2b(u — wp, ue, )
+ 2b(u, uy — Phuyg, ept) + 2b(us — Prug, u, ept) + 2b(ent, up, €nt)

— 2b(uy — Ppug,u — up, ene) — 20(u — up, up — Pruy, eny)
(3~27) = V||V(Ut - Phut)||(2) + 2d(eht;Pt - Phpt)~
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Due to (Z2), 32), B8) and Lemma 3.1, we have
2[b(ut, u — up, ent)| + 2[b(w — un, ue, ent)|
< 8%0[VuellofV(u = un)llol Ventlo

1%
< SlIVentllf + cll Vue |31V (u — un)3,
216y wn, ent)| < dllendlls’* IV ene |y lunlly 1 Vun 1y
1%
< 2 Venel8 + cllunl 31V Fllent 13

2|b(u, up — Prug, ent)| + 2|b(us — Prug, u, epy)]
< 87|V (ut — Prhug)lol[Vullol[Ventllo

v
< g IVendll§ + eh?([Vullgll w5,

2|b(us — Prug, u — up, ens)| + 2|b(u — up, upg — Prug, ept)]
< 80|V (u — un) [[[V(ue — Prut) ol Ventllo

14
< §||Veht||(2) + ch? ||V (u — up) 1§ ]| Aue|5,
V||V (up — Poug) || + 2d(ent, pr —pnpr) < ch®||Aug||3 +ch||Vendlol| Voello
12
< §||V€ht||(2) + ch? (|| Aug ||y + [ Vpell3)-

Combining (3:27) with the above estimates yields

(3.28) + ch? (14 | Vull§ + [IVun |13 (1 Aue 1 + 1[VPell5), -
Multiplying ([B328)) by 02(t), and integrating with respect to time, we obtain

d
Zlenlls < cllunllgIVunlllends + el VudllglV (w = un) 5

t
POl < e / o (5)(L+ un |2V aun|2) en 2ds
t
+oe / o2() | Vg 2] (u — ) 3l

t
(3.29) + chQ/O o?(s)(1+ [[Vunllg + IVulld) (| Auell§ + Ve 5)ds.

Using (3.20), (3.25), Theorem 2.1 and Theorem 3.3 in (8:29)), we obtain
POllem®F < kb2,

which yields

20° (t)llene (4)1[5 + 20 (8) e (t) — Prue(t)I5

(3.30) 20°(t)llene (1)I[5 + ch?o™ () [Vur ()5 < wh*.

Finally, by using (2.2)), 32), (34), (322)) and Lemma 3.2, one finds

o®)lp®) —pa@llo < o) Ulpnp(t) = p®)llo + lorp(t) — pat)]o)
< co(®)fue(t) = uni(t)]lo + cha ()| Vp(H)llo
(3.31) + co@®+[[Vaullo + [[V(w = un)[[o)[[V(u(t) = un(t))o-

Using (3.20), (330) and Theorem 2.1 in (331]), we obtain ([B.21]). O

o*(O)lue — unelly <
<
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We will frequently use a discrete version of the Gronwall lemmas used in [I3]

and [34].
Lemma 3.5. Let C, 7, and a,, by, d,, for integers n > 0, be nonnegative numbers
such that
m m—1
(3.32) U + 7Y by <7D and, +C, m>1.
n=1 n=0
Then
m m—1
(3.33) am +7Y by < Cexp <72dn>, m > 1.
n=1 n=0

Theorem 3.6. Under the assumptions (Al), (A2) with a = 1,2 and (A3), upu
and upgr Satisfy the following bounds:

t
(3.34) / U?’*T*a(s)||A;T/2uhtt||(2)ds <k, r=01,2, a=1o0orr=0,1, a =2,
0

t
335) o Olluna @ + [ 0 (6) el + 145 wna s < .
0

forall 0 <t <T.
Proof. Differentiating (3.8]) with respect to ¢ gives
(3.36) (Untt, vn) + a(une, vr) + b(Unt, un, va) + b(tun, une, vn) = (fi,vn),

for all vy, € V.
In view of (B.I0) and Lemma Bl we deduce from (B.36]) that

1A, Punsello < (v + corol Vunllo) | A5 *unello + 7511 £ lo,

which yields
¢ 2 K 1 2

[ ot Punaliids < e [ @ IVunlR)o® T 614 Pl s
0 0

t
(3.37) +oe / 1 ill2ds,
0

forr=0,1,2, a=1orr=0,1, « =2. Using Theorem 3.3 in B37) gives (334).
Furthermore, by differentiating ([B:36]) with respect to t gives

(Uhttt, Uh) + a(uhtta Uh) + Qb(uhu Uht, Uh) + b(uhtta Up s Uh)
(3.38) +  b(un, untt, vn) = (fit, vn),

for all vy, € V},.
Taking v, = 2upy in (B38) and using (B10) and Lemma 3.1, we deduce

4
dt

+

[untell3 20| unee||F + 4b(wnts wne, unet) + 2b(Unte, Uny Wnee)

(3.39)

IA

v _
ZIIUhttII? +Ar g | I3
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In view of (BI0) and Lemma Bl we deduce from ([B36) that

Alb(ung, une, unee)| < 2co0lune |3l une |1
12 2

12
< Z||“htt||%+4V g llunelt,
21b(untt, un, unee)| < covollunttllol|wne |1 | Anunllo
v _
< Z||“htt||% + v gl Anun§lluned 13-

Combining these inequalities with [B39)) gives

Tllunalls + vilwnnllt < 407 g1 fu
-1.2_ 2

(3.40) + A Gllunellt + v g I Anun g lunel 5

Multiplying B40) by o*~(t) yields

d —a —« _

ay @ Olunal§) + vt Ollunlli < 4y g full
+ o () une It + (4 — @ + co(®) [ Anunlld) o (1) [unee 5.

Integrating ([B.41) from 0 to ¢ and using [334]) and Theorem 3.3, we deduce
t

(3.42) o) Juneelly + I// o7 (8) |unet||3ds < w, Vt € (0,T).
0

Finally, it follows from 338), (3I0) and Lemma 3.1 that
¢

t
/ ()| Ay Punene2ds < e / (L4 [lunl)o* = (s) une| 2ds
0 0

t
(3.43 e [ el + 1l
0
Using Theorem 3.3 in ([3:43), together with ([3:42), gives (3.30) for a =1, 2. O

4. THE EULER IMPLICIT/EXPLICIT SCHEME

In this section we consider the time discretization of the finite element Galerkin
approximation (B8)-(33). Usually for the fully implicit scheme, at each time step,
one has to solve a system of nonlinear equations. An explicit scheme is much easier
in computation. But it suffers the severely restricted time step size from stability
requirement. A popular approach is based on an implicit scheme for the linear
terms and an explicit scheme for the nonlinear term. An explicit scheme for the
nonlinear term results in a linear system with a constant coefficient matrix such
that the computation is easy and the time step restriction is 7 < Cy which will be
proved in this section and Section 6.

Let t, =nt(n=0,1,...,N), 7 = % the time step size, and N an integer. We
define v} = uop, = Phup and (uf,p?) € (Xn, Mp) by the Euler implicit/explicit
scheme:

(4.1) (dyujy, vn) +a(uf, vn) —d(vn, pit) +d(uy, gn) +b(up " up ™" on) = (F(ta), vn),

n_ 1(n n—1
here dyup = - (up —up™ ).

We see from B3] and B3)-@B4) that
(4.2) [uflla = llwonlla = | Phuolla < call A% uollo,

if ug € D(A®/?) for some constants ¢, with a = 0,1,2.
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The following theorem provides the stability of the scheme (@.T]).

Theorem 4.1. Suppose that the assumptions (Al)-(A3) are valid and 0 < 7 < 1
satisfies the following stability condition:

42=322 71t PR32 o =2,
(4.3) Gut v, Gp = 42c2v~tky|logh|, a =1,

4232 koh ™2, a = 0.
Then the following hold:

m
(4.4) i I3 + v Y lugll < wo,

n=1
7Y ot (1) 2| A |} + vildeu i + | deup13)
n=1
(4.5) + o219 (|12 < ki,
27 () (|12 + 1P3]13) + 270 (t,) [ deuft]2 <
g m tUp |0 Pr llo vT g n tUp |1 S R2,

n=1

(4.6) o* = (tm)V? | Apui I < k2,

2. o a/2 2 e _
— - 2 o
for all 0 < m < N, where kg > coV*||AY?ugll§ are some positive constants de
pending on the data (v,Q, T, ug, f).

Proof. First, taking v, = 2upT € V), and vy, = AthT—i—l/’ldtugT € Vi, respectively,
and ¢, = 0 in ([AJ) and using (BI2) and the relation

(4.7) 20z —y)w = |z> — |y + |z — y[*, Yo,y € R?,
we obtain
lup s = up =G + ldeun 1572 + 2vllup 3T + 26(up ~", uft, dyugy) 72
(4.8) = 2(f(tn),up)T,
luplli = lup =T+ Ideup 372 + v I deup 57 + vl Apug 157
+ b(uzfl,uzfl,AfLuZ + VﬁldtuZ)T
(4.9) = (f(tn), Apuy + v tdyul)T.

In view of Lemma [B.1] and (BI0]), it holds that

1
200y~ ulr = 2o, dep) |7 < G2k ldet o7
1 1 _
< Slldeag |37 + £ Gl DR,

v —
2/(f(tn),ui)lr < Zllu i + 4w~ 5 1 f ) 157
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and
b(up ™t u™ —uf ™t Apul + v dgul) |

1 _ _
<SG (up™h) dvui |1l Aniy + v dyu[lor

< g3 + 7GR (AR IR + v st I) 7,
|b(uZ*17 up, Apup + V_ldtuZ)\T

< co(lup = ol I 2 ety + N~ I e ll6)

x (| Anag s ([ Aug llo + v~ Y |deuf o)

V n 1 n
< §||Ahuh||c2>7 + 8—V||dtuh||(2)7

4 _ _ _
+2(=)%(llup G Nun 1T + ™ Rk 16y~ I,

_ v 1 _
|(f(tn), Anup, + v dyup) |7 < gllAhUleﬁT + g\ldtUleﬁT + 4| f ()15,

where

L2cgyollup il Anupllo, a =2,
(4.10) G(up) = < 4cgllog h[[|up|]?, o =1,
42cgcth?[lup|lg, o =0.

Combining these inequalities with (@8] and (£9) yields

R % e I A el i ] (A
(1) <RI
2} — 2ol IR + N 37 + ok 3 + 02| A I3
20— Gl ) (A I3 + v deg )
@12) < de g+ s )
where
oy = AP I + ™ 3R 1R).

Now, we define dyu = lim upt(t) through B.J), i.e.,

(4.13) (deud,vn)  +  a(up,vn) + b(ud, uh, vi) = (f(to), vn),
for all v, € V},. Then, we deduce from ([@Il) and [@I3]) that

1 [
(4.14) (duuhyvn) + aldeuhvn) =+ / (Fo(t), on)dt,
to

and

(dpup,vn) +  a(dwuy,vp) + b(dtuz_l, uZ_l, vp) + b(uZ_Q, dtuZ_l, vp)
1 [t
(4.15) = 2 [ oo

T Jtn_1
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for all 2 < n < N. Hence, it follows from (4.14) that

2 t1
(4.16) [|deup|lg + devup 572 + vidsup|[ir < [ldeu || + 770 / [ fell3dt.
to

Next, by taking vy, = 2d;uj7 in (15)) and using (BI12), we deduce
ldewills  — Ildeu, ™S + ldeeui 57 + 20| dyuft |37

+ 2b(dguy T u T dyu) T + 2b(u) 2, dyu, dygul) T
t

o[ fit), dyupat.

tn—1

In view of Lemma Bl and (BI0), it holds that

_ _ 1/2 _ 1/2 1/2 3/2
21b(dput, it deu)|r < collul ™ o up N s 12 | deu || P 7

(4.17)

v 2 _ _
< ZHdtuZHfTﬂL(;)gCéHUZ Mg lun = IR I deun 1T,
1
2|b(dtu"—dtuz_l,uz_l,dtuZ)h < §G1/2(u2_1)\|dtu2||1||dttuZ||072
1 1 _
< e 137 + L0 de 27

n— n n 1 n— n n
20b(uy, =%, dyu”, dyup)| T < DGR (™) dyug | i o

1 1 e "
< Z\|dttum|372 + ZG(U;L ) dpupi?,
t 2 t
" n Viion g [T
2|/ (fe(t), dyup)dt| < Z”dtuhH%T"" 70 [FAGIIRE2
tn—1 t

n—1

Combining these inequalities with (£17) yields

— 1 n n
Ideuplls = lldeuy =13 + §||dttuh||(2)72+V||dtuh||fT
1
+ 1(2'/ — Gup ") = Glup=?)7)||deup |37
4.5 4 142 142 2 A3 [t 2
(4.18) < 20 ) colluy ™ olluy ™ llilldeuhllor + == || £ () [odt,
tn—l

forall2<n<N.
Next, we deduce from (LI and Lemma 3.1 that

2wl Apufllo < 2ldiu™ o + 20Lf (ta)llo + collul ™ o i~ 1 | gl
(4.19) < 2ldeu o + 201 (tn)llo + VI Anul Mo + v Bllup lollur 3.
Moreover, we deduce from (22)), [34), ([EI) and Lemma 3.1 that

(4.20) pillo < evlfutlly + elldeu™[lo + el £(ta)llo + ellup 2|13

Now, we will prove ([@4)-([.8) by induction. For o = 0,1,2, we deduce from
E3) that
(4.21) Gu)T < Gupr <.

Due to (£2), (@4)-EH6) hold for m = 0. For a = 0,1, we can obtain (4.4)-(4.6)
with m = 1 by using (4.11)-(4.12), (4.20)-(4.21). For o = 2, (4.13) and Lemma 3.1
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can yield
(4.22) Ildeupllo < 2v[|Anudllo + [1f(to) o + G2 (up) uplhr-

Hence, we imply (£4)-(£8) with m = 1 by using (£2), (@II)-@EI2), (I6) and
(Z19)-(£22). Assuming that (£4)-(4) hold for m = 0,1,...,J, we want to prove
that they hold for m = J + 1.

Proof of (&4). In view of the induction assumption and (43]), it holds that
(4.23) Gup DT <Gur<wy, 1<n<J+1, Gul )T <Gpr<v, 2<n<J,

for « = 0,1,2. Summing (@I from n = 1 to J + 1 and using [@23]), we obtain
E4) for m = J + 1 in the case of « =0,1,2

Proof of ([@3). For a = 1,2, by summing (4.12) from n = 1 to n = J+ 1 and using
([#23)), we obtain

J+1
vilu T+ T (ldeup 1§ + videup 3T + v Apup][3)
n=1
J
(4.24) < 7Ty dovup|i+ 8T sup ||f( )Mo + 2vupli-
n=0
We set
an = vlupllf, C=8v'T sup [If(®)II5 +2v]upllf,
0<t<T
b = |ldepll§ + vlldeuq i + 2| Apup][5.

Applying Lemma 3.5 to (£24]) and using (£4]), we obtain ([@H) with m = J + 1.

For a = 0, multiplying (12)) by o(t,,), using (£23)) and noting o (t,) < o(tn—1)+
7, which will often be used later, we obtain

20 (ta)v|[upllf — 200 (tn—1)llup = 1T + o (ta) (ldeup s + viideah |37 + 02| Apun 1) 7
(4.25) < wluy T 4 doa (7 + o (1) W llug 1T+ 80T I ()G

forall 1 <n < .J+4 1. Summing @25) from n =1 to n = J + 1, we deduce

J+1
ot vl T+ TZ n) (I deup |13 + vl deug |37 + 02| Anus|[3)

< 47'Zd o y||uh||1+2VTZ||Uh||1

n=0
(4.26) + 8u” 1T sup || £(t)15 + 207 do[uf3-
0<t<T
Setting
an = o(ta)vupli, C=8v7'T Sup 1F @37,
bn = o (t) ([l deuiy |5 + V||dtuh||1T + V2||Ahuh|| )-
Applying Lemma 3.5 to (£26) and using ([@3))-([@4), we arrive at [@H]) for m = J+1.
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Proof of @T). If | Apuy (|0 < [[Anuf[lo, then the induction assumption yields
O Al T OIR < ke 1< TSN 1,

for « = 0,1, 2. Hence, we always assume that

(4.27) |Apui o > [|Apujllo, 1<J <N -—1.

For o = 2, summing [I]) from n = 2 to n = J + 1, adding ([@I6]) and using
ED)- @A) and [E23), we deduce

J+1
Idewy e+ 7> wldeullf + [ 5)
n=1
444 2 8’73 2 0|2
(4.28) < 2( ) cokori + = ||ft( )[odt + 2|y, [5-
Thus, by combining (£.27)-([#28) with (IHQI)—(IIZII) with n = J+1, we deduce ([0)

form=J+1.
For o = 1, by multiplying (I8) by o(¢,) and summing fromn =2ton =J+1
and using [@I2) with n = 1, we find

J+1
otrea)deuy UG+ VTZ o)l 1§
J+1
< TZ (1+ 2 )2egllup 3 lun I e 115
4 _
(4.29) + ”{/um»@m&a+%ﬂw@M+MVWﬂm%r
Now, by using (£217), E24) and (@I9)-@E20) in (@29), we obtain (£8) for m =

J+1

Finally, for o = 0, by multiplying [IR) by o%(t,), noting 02(t,) < 02(tn_1) +
30 (tn—1)7, which will often be used later, summing from n = 2 ton = J + 1 and
using ([EI2) with n = 1, we find

J+1
(tJ+1)||dtu‘”lHo+WZU )l |3
J+1 4
< TZ )2+2(7) Sepllup G llah D e |13

'Y _
(4.30) +—CT sup || fo(®)|§ +2(1 + dor)vllupllf + 160~ (1)

4 0<t<T
Hence, by using (£30), (£26)-(Z27) and @I9)-@20), we obtain [@G) for m =
J+ 1. [l
Theorem 4.2. Under the assumptions of Theorem 1], it holds that
(4.31) ¥ ()l |7+ vT Y 0T (b)) [ Andeup 1§ < ks,

n=2

(432) 7Y 0Pt lduupl} <k,
n=2
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for all2 < m < N and a = 1,2, where k3 and k4 are some positive constants
depending on the data (v,Q, T, ug, f).

Proof. First, taking vy, = 2A,dyupT € V3, in (4.15), we deduce
Ideupll? = Ndeup I + lduup 377 + 2v|| Andiui |57

+ 2b(dtu2_l, uz_l, Apdiup)T + 2b(u’}:_2, dtuZ_l, Apdiup)T

(4.33) ~ 9 / " Fu(8), Andeul)t.

tn—1
In view of Lemma Bl and (B0, it holds that
2b(dpu ™ ul ™t Apdyuit) | < 2cov0|| Anuy ™ Hlolldeu ™ 1 || Andeut o7
< gllAhdtUZH%T + 8 egyg | Anuy Gl deuy 1T,
2[b(uyy =, dyuy, Andeui) 7 < 2e0m0” a2l [dvp |12 Ay I 7
< L Andeuf 3 + 22 ctd 2 4o
20b(up 2, dyufy — dyuy ™", Apdyug)) |7 < %G”Z(UZ’Q)HdnUZIIlHAhdtu}iHoTz

1 1 _
< §Ildttu2\|%72 + ZG(“Z N Andeu 572,

tn v 8 tn
2 [ (o) Andui)at] < F | Andailr+ 5 [ A0
t

n—1 tn—1

Combining these inequalities with (£33)) yields

- n 1 — n
ldel? — e 1% + vl At 7 + 202 — Gl )7) | Andiag 3
_ _ _ 2. - n
< 8 og Ane IRl 3+ 2Bl et 7
8 tn
asy o+ o[ ol
tn—l

for all 2 < n < N. Multiplying (@34]) by 03~%(t,) and using ([E23)), we deduce
o= (tn)ldeup [T — 0= (tu-) ldeuy, T+ vo® % (tn) | AndeuillgT
< o (tn-1) | Apuy G deuy, IET
(4.35) + 0”7 (tn)|up | ldeu; 57
tn
+6027Q(tn—1)l|dtuﬁ_1|ﬁ7+C/ (PRI

tn—1

for all 2 < n < N. Summing [@35) from n = 2 to n = m and using ([&0]), we obtain

(.31).
Then, we deduce from [IH)), (3.10) and Lemma 3.1 that

ldeeuillo < vl Andeullo + clldeuy, ™ 1 ([ Anuy ™ llo + H (n = 3)[| Anug~*[lo)

1 tn
(4.36) + §H(2 — )G 2 (uf) | dyup |l + 7’1/2(/ £ ll3dt)/?

th—1
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for all 2 < n < N, where H(t) =1, ast > 0 and H(t) = 0, ast < 0. Thus, we
deduce from ([4.30) that

o7 (tn) ey |37

tn
< et ()l Anduf 3 + F(2 = )G r) b+ [ il
t

n—1

+co® ™ (tn—1) ldrup 13 (o (tn-1) [ Anugy =M1 + H(n — 3)o (tn—2) | Anup,2[13)T

Summing the above inequality from n = 2 to n = m and using Theorem 4.1, ({21

and ({31, we get (£32). O

5. DuaAL EULER SCHEME: STABILITY ANALYSIS

In order to derive the L%-bound on the error uy(t,) — u} in the case of a = 1,
we employ a parabolic argument that has already been used in [23] for the Crank-
Nicolson scheme of the time-dependent Navier-Stokes equation. Let 1 < m < N be
given. We consider the linearized “backward” counterpart of the discrete Navier-
Stokes ([@I)): For &" € V},, 1 <n <m, find @Z_l € V}, such that

(5.1)  (vp,d:®}) — a(vp, @Zﬁl) — b(up, vn, @Zﬁl) — b(vp, uy, @Zﬁl) = (vp, &M),

for vy, € V}, with an initial value ®}" = 0.
Here, we need to introduce the following discrete dual Gronwall lemma provided
in [T1].

Lemma 5.1. Let C > 0 and let ay,, by, dy,, for integers 0 < n < m, be nonnegative
numbers such that

(5.2) ak+Tan§T Z dpan, +C, 0 <k <m.
n==k n=k+1

Then

(5.3) ak—i—TangCexp(T Z dyn), 0 <k <m,
n=k n=k+1

m
where we assume that T Y, dp =0.
n=m-+1

The following lemma provides the stability of the scheme (G]).

Lemma 5.2. Under the assumptions of Theorem 1], the following a priori esti-
mate holds:

(5.4) 1Kl + v ) [1An®RE < m7 Y [I€7113,

n=~k n=1

forall0 <k <m.

Proof. The proof follows the line of argument used in the proofs of Theorem A1l
In view of Lemma 3.1 and (£3)), we can prove that (5]) admits a unique solution
sequence {®F}m.
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Moreover, by taking v, = —2A,®7 "' in (5]), we obtain
[Ealh @RI + llde @ 372 + 2v]| An @y~ I3T
26(Ap @} up, @R T + 2b(up, A @y @ )T

IN +

(55) YAy R + L ln3
From Lemma Bl and (3I0), we have
21b(AR®y up, @)+ 20b(uy, Ap®) T @7
< 2cov0ll Anui ol @711 | An @y~ o7

14 _ —
< 1A TG + T gl Anus I3l @R 1T
20b(An®y " upy, @ — @R+ 20b(uy, Ap®p T @) — @)
1 -
< GG l|d @y 1]l Any o7
1 n 1 n n—
< Sl + L Glup)lAn®yIgr.

Combining (5.0 with the above estimate gives

_ n - 1 n _
1R M = PRIT + I An @R 5T + 4 (v = Glup)7) | 4wy [

(5.6) < ATl Anuh IBIIRR 1T + 407 I€" I3,

for all 1 <n < m. Using (4.3) and Theorem 4.1 with a = 1,2, we have

(5.7) v—Gup)T>v—Gpr >0, Y0 <n <N.

Summing (.6]) from k + 1 to m and using (5.7 and Theorem FI], we obtain
m—1
IeRIIE + w7 > 14233

n=~k

(5-8) < dr Y vl Anup BRI + 4 e Y €M,
n=k+1 n=1

for all 0 < k <m — 1. Applying Lemma 5.1 to (B.8) and using Theorem 4.1 yields
). O
6. ERROR ANALYSIS

In this section, we establish the H'- and L?-bounds of the error e” = wy, (t,,) —u}
and the L2-bound of the error n™ = py(t,) — py for all 1 <n < N. To do this, we
take t = t,, in ([B.8) and note

g () — dyun(tn) = 71 / " (e (tn) — une(8))dt = 71 / "t undt,

to obtain
(dun(tn), vn) + a(up(tn), vn) — d(vn, patn)) + d(un(tn), qn) + b(un(tyn), un(tn), vn)
(6.1) = () =1 [ (=t (0. on)a
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Subtracting (@I)) from (GII), we obtain
(die™,vn) + a(e”, vn) — d(vn,n") + d(€", qn) + b(e”, un(tn), vn)

(62) +b(U;Z,€n,’Uh) = (En,Uh),
for all (vn, qn) € (Xpn, Mp) with
1 [t
(Eno) = =7 [ (=t (una®). en)i
tn—1
(6.3) + b(up Tt =g ul o) b T =l o).

Lemma 6.1. Under the assumptions of Theorem 1] with o = 1,2, the error E,
satisfies the following bounds:

(6.4) Y A PELR < kT
n=1
(6.5) Y A PRER < kre
n=1

m
(6.6) Yt A, PPE R < e

n=1
foralll1 <m < N, and
6.7) ) Enld 7Y o E)IE)E < kT 2<m <N,

n=2
(6.8) Y ot t) | A, PP Bl < k7% 3<m < N.
n=3

Proof. First, it follows from (6.3), (3.10) and Lemma 3.1 that

tW,
|A; L Py E, 3 < cr® / A5 V2t

tnfl

(6.9) +elldeug [§ g 13 + g, 1) 7,

tn
|A 2 Py E, |27 < ma/ o2 ()| A, Pup | 2t

tn—1

(6.10) +elldeup 13 (lup =M E + llup )7,
2%
0?7 ()| A, P PLEy|[3T < o7 / o2~ (t)]| Ay P unsel |3t
th—1
(6.11) + o (tn) g |3 lup =13 + Il |77,

Summing ([6.9)), (6.10) and (G.IT) from 1 to m, respectively, noting 72 < a2=%(t,, )7
and using (2.2), Theorem 3.6 and Theorem 4.1, we deduce (6.4)-(G.80) for o = 1, 2.
Next, by using (BI0) and Lemma Bl we deduce from (G.3]) that

17
IEalls < er /% / (= tnr)? unee |2t) /2
th—1
(6.12) b el An o + 1 Anu™ o) ldeuf o,
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for all 2 < n < N. Hence, we deduce from (G.I2]) that

tn
BB < er [ o)l
tnfl
(0.3 ot AR + ot} [ Apa” T [F)0™ 2 ) e 37,
tn
A B < e [ Ol
tnfl
(6.14) ot AR + ot} [ Ana" T [F)® 2 ) e 37,

for all 2 < n < N. Summing (6I3) from n = 2 to n = m and using (6.14) and
Theorems 3.6, 4.1 and 4.2, we deduce (G.7).
Moreover, we deduce from (G3]) that

tn t
(deEpyvp) = 77'*2/ (tftn_l)/ (wntee(s), vy )dsdt

t”71 t—7
—  b(duup, uZﬁl, Vp)T — b(uzfl7 dyuy, vp)T
(6.15) —  b(dwuy, dyuy, vp)T — b(dtuz_l, dtuZ_l, V)T,

for all 3 < n < N. Using (3.10) and Lemma 3.1, we deduce from (6.15) that

tn t
14, 2 Pud, Bl < W*W/ (t—t)?| [ unene(s)ds]2 de)!7?
tn71 t—7
el lloll An lor + clldend o] Ande o

+  clldguy ™ ol Andiuy, = lo,
which yields

tn
o)A PP B2 < er? / O A; P e |3 dt

tn—2
+ e’ (tn)o (tn) | dueuy 3]l Anug, IS
+ erat 7 () || dyup I3 | Anduu |5
(6.16) + 3ot (b)) IR Andiul |2,

for all 3 < n < N. Summing (GI6) from 3 to m and using Theorems 3.6, 4.1 and
4.2, we deduce (6.8). O

Lemma 6.2. Under the assumptions of Theorem A1l with oo = 1,2, we have

(6.17) le™ i+ 7> (lldie™ 57 + vlle™[[}) < w7,

n=1
forall1 <m < N.
Proof. Taking vy, = 2e™1 € V}, and g, = 0 in ([62)), we obtain
le™l5 = le" g + lldee™([57° + 2vlle™ |37 + 2b(e™, uf, e™)r

14 _ _
(6.18) Z||e”||§7+4y YA 2Py E, |27,
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Using Lemma 31l and (3I0), one finds

2fb(e" Y e < 2com e o lep Il el
< 2+ e I+ 2(%)36378\Iuﬁ\li‘lle"‘lllﬁﬂ
2b(e” — "L, e < %G“%umne”nlHdtenuor?
< Gl B + [Gh) e i

Hence, by combining the above inequalities with (6.1]), we obtain

n n— 1 n n
le™l5 = Ne™ MG + 5lldee™ 67 + vlem (I
v n n— 1 n n
+ e = llem M) + (v = Glup)T)lle[li7
2 B iy
(6.19) < 2 crllunliille G + v A, P E 3T,

for all 1 <n < N. Moreover, summing (6.I9)) from 1 to m and using (5.7), we have

m
m 1 n n
le™ 5+ 7Y _(Gldee™ 5T + vl D)

n=1
m—1 N

(6.20) < Y dalleB+ 4> AP PE |2,
n=0 n=1

where d,, = 2(2)3¢{3|lup |1 We set

N
1 _ _
an = e, b = 5lldee” 3+ vile™|}, ¢ = av7'r Y 4 E P B,
n=1
and apply Lemma 3.5 to (620) and use Theorem 4.1 and Lemma 6.1 to deduce

d

With the aid of Lemma [6.2] we obtain the following error estimate.

Lemma 6.3. Under the assumptions of Theorem [A1] with oo = 1,2, we have
(6.21) o> () €™+ 7D P ()l ] < K72,
n=1

foralll1<m < N.

Proof. For o« = 2, Lemma 6.2 yields (6€2I)). For a = 1, we let {®}}§" be the
solution of (5.I]), corresponding to the initial value ®7* = 0 and the right-hand side
of {&"}1* = {e™}". Then, by construction, it holds that

le*llsr = (e", d®})T — a(e”, @~ )7

(6.22) — b(up, e, BT — bl up, )T
Taking v, = @} '7 in (62) and adding (622)), we obtain
(6.23) [e™|3r = (e™, @F) — ("1, @) — (B, @77 1) 7 + b(e™, e, @717
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Summing (23] for 1 < n < m and using Lemmas 5.2, 6.1 and 6.2, we have

m m m
Y N5 < (DA BB Y [ An®y 1)
n=1 n=1 n=1
+ TZIIe”II le™ 152 ( ZHA@Z‘III%W2
n=1
(6.24) < mr(r Y eI < TZ||6"||O+m

n=

1
Next, multiplying (619) by o(t,), we deduce

v n n—
7@ = oltan) e HIT)T

_ v _ 2 B
< lle” 1H3T+ZH62 g 25 )Scévglluﬁlli‘\le" HigT

o(ta)lle™ 5 — oltn-v)lle" 5 + o(tn)vlle™ 3 +

(6.25)  +4vlo(ta)| A, P PuE 3T,
for all 1 <n < N. Summing (6.25) from n =1 to n = m, we have

a(tm)le™2 + wz ||e"||1+4a< m)llem™|3r

n=1
m

< Y (lelB +Tvllen3) +2TZ )3 3l ]|F]len 113
n=1 n=1
m

1/2
+ Z D14, 2P B2

Using (6:24), Theorem 4.1 and Lemmas 6.1 and 6.2 in the above inequality gives

©21) for a = 1. O

Lemma 6.4. Under the assumptions of Theorem 1l with o = 1,2, we have
(6.26) o~ (tm)lle™ T + 7 Zag *(tn)(lldee™ 5 + v* | Ane™[13) < w72,

forall1 < m < N.
Proof. Taking vy, = 2Ape™T € V}, and ¢, = 0 in ([6.2]), we obtain
le™ I = lle™ ™M + lldee™ 1372 + 2v]| Ane™ |37 + 2b(e™ un (tn), Ane™)T

(6.27) + 2b(up,ep, Ape™)T < %HAhe"H%T + 4| B, 3.
In view of Lemma [B1] and BI0]), we have

2|b(e", up(ty), e™)|r 2|b(up, e, Ape™)|T
2c07”? €™ 1 (- Anwillo + ([ Anten (ta)llo) | Ane™ o
< ZHAW"HST + ([ Anun(ta) I + | Anup |I3)ller 7.

IN +

Hence, by combining the above inequality with (627]), we obtain
le™12 = Ne™ T+ vl Ane |G
. < ¢ rUp|lo nun(tn)llo)lle 117 v 0T
(6.28) < e[l Apuplly + [ Anun(ta) 1) le" 3T + 4| En 3
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for all 1 <n < N. Multiplying ([628) by 03~ %(t,), we find

()T = Pt )l + v T (tn) | Ane™ 5T
< e () ([Anubllg + | Anun(ta) 13) e 37
(6.29) + e (gl R+ AT T () | Bl

for all 1 < n < N. Summing (629)) from 2 to m, and using Theorems 3.3 and 4.1
and Lemmas 6.1, 6.2 and 6.3, we deduce

m
(6.30) o (tm)|e™IF + v Y 0® ()| Ane(I§ < w77,
n=2

forall1 <m < N.
Finally, we deduce from (6.2]), (3I0) and Lemma 3.1 that

o (tn)lldee” I < o () (1 + lupllf + lep ) Ane™ 5

(6.31) + o’ (tn) | EnllgT,
for all 2 < n < N. Summing (G.3T)) from n = 2 to n = m and using ([6.30), Theorem
4.1 and Lemmas 6.1 and 6.2, we deduce ([6.26]). O

It remains to prove the error estimate for the discrete pressure p;*. To do this,
we need to estimate die™. It follows from (6.2) that

(dpe”,vn) +  a(die™, vp) + b(die™, up(ty),vn) + b(e"fl,dtuh(tn),vh)

(6.32) + b(dgu, e, vp) + b(uf Tt de™, vp) = (di B, vn),
for all v, € Vj, and 1 < n < N. Taking vy, = 2d;e"7 in (632) and using (312), we
get

ldee™ (|2 — [|dee™ 1|2 + 2v||dee™||2T + 2b(dse™, up (ty), dre™)T
(6.33) +2b(e" 1, dyu, dye™) T
+ 2b(dyuy,, €”, die™)T < %Hdte"H%T + 41/71||A;1/2Phthn||(2)7'.
In view of (BI0) and Lemma 3.1, we deduce
2b(dre” un(tn). dre™)r < o’ e [ e [ un (£ 17

v n 2 n
< gldee” i + (5 egrg llun )l dee™ (57,
2b(e™t, dyult, dee™)| T+ 2b(dpul, e, die™)T
< 2c070([|[Ane" o + 1 Ane™ o) I deu llolldee™ 17
<

v _ n— n n
Z\IdtG”H?TJr&/ g (1 Ane™ G + Il Ane™ 1) | deug I3
Combining these inequalities with ([@33]) gives
—Q n —Q n— —Q 2 n
ot () |die (5 — o (tnr) [ dee G < o (tn)(;)3037§||%(tn)II?Hdte 67
+ (0% () [|Ane™ MG + o () [ Ane™ [5)o (t) | deuit 5T
(6.34) + o (b1 || dee” 2T 4 cot T ()| Ay, P Prdy B 2

Summing ([©.34) from 3 to m and using Theorem 3.3, Theorem 4.1, Lemma 6.1,
Lemma 6.3 with m = 1,2 and Lemma 6.4, we obtain

(6.35) oty |dee™ |2 < k7%, 1 <m < N.
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Moreover, we deduce from (6.2]), (3I0) and Lemma 3.1 that

1E1 o

IN

ty
lane(t)lo + 7~ 2( / lune 2dt) "7

to
1
+ §(G1/2(U2)+G1/2(ui))\|dtui\|1ﬂ

which yields

ty
c T R)|EE < 00’4_a(t1)||uht(t1)||(2)+00’3_a(t1)/ [ une |3t

to
(6.36) + er?(G(up)T + G(u) 7)o~ (1)l deu, 13-
Using (&.1), Theorem 3.3 and Theorem 4.2 in ([6.36]), we obtain
(6.37) ctT) || By < kTR

By (34), 310), (62) and Lemma B1] we deduce

™Mo < elldee™ o + €™ [11) + elle™ [ ([luntm) 1 + [lui"ll1)
+ cl[Emllo,

which together with Theorems 3.3 and 4.1 yield

At ™S < wot T () lldee™ 13

(6.38) + Ko T () le™ T + 0t () | I3
Using (6.35]), (637), Lemma 6.1 and Lemma 6.4 in ([G.3])) yields
(6.39) o) In™E < kT2, 1<m < N.

Combining ([6.39) with Lemma 6.3 and Lemma 6.4 yields the following error
estimates results.

Theorem 6.5. Under the assumptions of Theorem 1], the following error esti-

mates hold:
(6.40) &~ () |un(tm) — upt 1§ + 0 (tm) lun(tm) — up' |7 < K72, tm € (0,71,
(6.41) ot (tm) lpn (tm) — PRI < K72, tm € (0, 7).

Remark. Combining Theorem 6.5 with (319) yields (LII)-(TI3).
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