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TU Dresden, Institut für mathematische Stochastik,

01062 Dresden, Germany, bjoern.boettcher at tu-dresden.de

Alexander Schnurr

TU Dortmund, Fakultät für Mathematik, Vogelpothsweg 87,

44227 Dortmund, Germany, Alexander.Schnurr at math.tu-dortmund.de

July 6, 2018

Abstract

We consider the Euler scheme for stochastic differential equations with jumps, whose intensity might

be infinite and the jump structure may depend on the position. This general type of SDE is explicitly

given for Feller processes and a general convergence condition is presented.

In particular the characteristic functions of the increments of the Euler scheme are calculated in

terms of the symbol of the Feller process in a closed form. These increments are increments of Lévy

processes and thus the Euler scheme can be used for simulation by applying standard techniques from

Lévy processes.
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cesses.
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1 Introduction and main result

The most general stochastic differential equation (SDE) defining a time homogeneous Markov process (Xt)t>0

taking values in R
d, d > 1 is of the form

Xt = X0 +

∫ t

0

a(Xs−) ds+

n∑

j=1

∫ t

0

b(j)(Xs−) dW
(j)
s

+

∫ t

0

∫

|u|61

k(Xs−, u) q(·; ds, du)

+

∫ t

0

∫

|u|>1

k(Xs−, u) p(·; ds, du)

(1)

where a, b, k are the coefficients, W (j) are independent Brownian motions, p is a Poisson random measure
and q is the corresponding compensated Poisson random measure (cf. Skorokhod [23]). This equation even
includes time inhomogeneous Markov processes, since one can transform any time inhomogeneous Markov
process by extending the state space into a time homogeneous Markov process (cf.Wentzell [26] 8.5.5).

Note that letting k ≡ 0 in (1) yields a diffusion equation, the classical setting for the Euler-Maruyama
scheme. A Lévy driven SDE is also just a special case of this equation. To see this let f be a d × n

valued function, l ∈ Rn, σ a positive semi definite matrix in Rn×n and N an n-dimensional Lévy measure
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and set a(Xs−) = f(Xs−)l, b(Xs−) = f(Xs−)σ, k(Xs−, u) = f(Xs−) and let p have the dual predictable

projection dsN(du). Then equation Xt = X0 +
∫ t

0
f(Xs−)dZs where Zs is the Lévy process on Rn with

triplet (l, σ2, N). In contrast to these two examples k may depend on u in this note. For an overview of
numerical approximation schemes for this case with finite jump intensity see for example Bruti-Liberatia
and Platen [6].

The Euler approximation with step size h for an SDE of form (1) is given by

X̄0 := X0

and for m ∈ N0

X̄(m+1)·h := X̄m·h +

∫ (m+1)·h

m·h

a(X̄m·h) ds+

d∑

i=1

∫ (m+1)·h

m·h

b(j)(X̄m·h) dW
(j)
s

+

∫ (m+1)·h

m·h

∫

|u|61

k(X̄m·h, u) q(·; ds, du)

+

∫ (m+1)·h

m·h

∫

|u|>1

k(X̄m·h, u) p(·; ds, du).

(2)

For the convergence of the Euler scheme it is necessary that small changes of X0 only cause comparable
small changes of the distribution of Xt for fixed t > 0 and for t ↓ 0 the distribution of Xt should converge to
the Dirac distribution with point mass at X0. A natural choice of processes satisfying these conditions are
Feller processes (cf. Section 2).

Stroock [24] uses an Euler scheme approach to construct Feller processes as solutions to (1), although
the SDE is not mentioned explicitly. Therein conditions are formulated in terms of the coefficients, they are
related to the usual Lipschitz conditions which ensure the existence of a solution to (1) (see [23]).

Contrary to this, the conditions in the theorem below will be given in terms of the symbol of the generator
rather than in terms of the coefficients of the SDE. This is motivated by the following facts:

(i) For construction and analysis of Feller processes the generator is the natural object to start with,
see for example Ethier and Kurtz [12] Chapter 1. Furthermore using formula (3.13) of Courrège [11] it is
possible to calculate the symbol without knowledge of the SDE. Nevertheless, it is a natural question, if the
process can be described by an SDE and then approximated (and simulated) by an Euler scheme. Our main
theorem gives an affirmative answer to this question.

(ii) If the coefficients of an SDE of type (8) below are given, one can directly write down the symbol by
formula (9) and check if the assumptions of the Theorem are fulfilled.

(iii) If the process under consideration is given by a different type of SDE (cf.Métivier [16] Chapter 8) it
is sometimes hard to transform it into the Skorokhod-type. The symbol on the other hand can occasionally
be written down directly and in a neat way: in [21] it is shown that the symbol of the solution of the Lévy

driven SDE Xt = X0+
∫ t

0
f(Xs−)dZs is ψ(f(x)′ξ) where ψ is the characteristic exponent of the driving Lévy

process Zs.
(iv) While the coefficients depend on the choice of the SDE-type and the truncation function (in (2) we

have chosen 1{|u|61}; someone interested in limit theorems would probably choose a continuous function),
this is not the case for the symbol. In this sense the symbol is a ‘canonical object’.

Thus the conditions in our main theorem are stated in terms of the generator and its symbol:

Theorem. Let (Xt)t>0 be a Feller process with generator A. Assume that

C∞
c (Rd) is an operator core of A, i.e. the closure of A

∣∣
C∞

c (Rd)
is A. (A1)

Let q(x, ξ) be the symbol of A
∣∣
C∞

c (Rd)
and assume that

∃ c > 0 : |q(x, ξ)| 6 c(1 + |ξ|2) for all x and ξ, (A2)

q(x, 0) = 0 for all x. (A3)
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Then the Euler scheme (2) for the corresponding SDE converges to (Xt)t>0 weakly in D([0,∞),Rd), moreover
given that X̄(m)·h = x the next step of the Euler scheme X̄(m+1)·h has the characteristic function

eix
′ξe−hq(x,ξ). (3)

Since a Feller process is a time homogeneous Markov process it is the solution of an SDE of the form
(1), this SDE is meant by the corresponding SDE. The SDE will be explicitly given in Section 3 and the
definition of the other terms and objects appearing in the Theorem can be found in the next section.

Remark. For simulations formula (3) is the key. It shows that starting at x the next position of the scheme
is the sum of x and the increment (over time h) of a Lévy process with characteristic exponent ξ 7→ q(x, ξ).
Thus the simulation of Feller processes using the Euler scheme is obvious, if one knows how to simulate Lévy
increments. For the latter several techniques are well known, see for example Cont and Tankov [9].

An example of a simulation is given in Figure 1. It shows a simulated sample path of a one dimensional
stable-like process with generator −(−∆)α(x)/2 where α(x) = ((0.9+ x)∧ 1.9)∨ 0.9, i.e. the process behaves
almost like Brownian motion (with double speed) if Xt > 1 and almost like a Cauchy process if Xt < 0. The
state space dependent behavior can be nicely observed in the figure. For the existence of the process and its
properties see for example [1].

Further properties of the scheme as speed of convergence and error estimates are part of ongoing research.
A practitioners guide to simulation of Feller processes will be given in [4].
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Figure 1: Stable-like process, T = 5 with 1000 steps.

Note that in the Theorem the existence of the Feller process is assumed. It is clearly desirable to find
conditions for the family of symbols q(x, ξ) which already ensure the existence of the limit. This is part of
ongoing research, for a survey see for example Jacob and Schilling [13]. It is remarkable that the conditions
given in the usual constructions are much stronger then the requirements of the theorem above. Thus all these
processes can be approximated by the Euler scheme. One obvious idea to find further sufficient conditions
on the symbol would be to translate the conditions on the coefficients for example given by Stroock [24] into
conditions on q(x, ξ) but so far no general criterion for this is known, compare [24] 3.2.2. and Tsuchiya [25].
In this context note that (A2) reflects the assumption of bounded coefficients in the SDE setting.

In the next section we give the necessary definitions and in Section 3 the proof of the Theorem is presented.
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2 Preliminaries

Let C∞(Rd) and C∞
c (Rd) be the continuous functions vanishing at infinity and the arbitrary often differ-

entiable functions with compact support respectively. B0(1) is the closed unitball in Rd and we use the
notation 1{|g(y)|61} for 1B0(1)

(g(y)).

We consider R
d valued Markov processes in the sense of Blumenthal and Getoor [3] and denote such a

process by X = (Ω,F , (Ft)t>0, (Xt)t>0,P
x)x∈Rd . The expectation with respect to Px is denoted by Ex.

A stochastic process X is called Feller process if the family of operators (Tt)t>0 defined by

Ttu(x) := E
x(u(Xt)), u ∈ C∞(Rd),

is a Feller semigroup. This is a strongly continuous contraction semigroup on C∞(Rd) which is positivity
preserving. The semigroup and thus the corresponding process is called conservative, if Tt1 = 1.

The infinitesimal generator (A,D(A)) of a Feller semigroup is defined by

Au := lim
t→0

Ttu− u

t
on D(A) :=

{
u ∈ C∞(Rd) : lim

t→0

Ttu− u

t
exists strongly

}
.

If the test functions C∞
c (Rd) are contained in the domain of the generator A of a Feller semigroup, Courrège

[10] showed that A
∣∣
C∞

c (Rd)
has a representation as pseudo differential operator:

Au(x) = −q(x,D)u(x) = −

∫

Rd

q(x, ξ)eix
′ξû(ξ) dξ, u ∈ C∞

c (Rd)

where û(ξ) := (2π)−d
∫
Rd e

−ix′ξ u(x) dx is the Fourier transform of u. The function q : Rd×Rd → C is called
the symbol of the pseudo differential operator. It is measurable and locally bounded in (x, ξ). Furthermore
it is continuous and negative definite (in the sense of Schoenberg) as a function of ξ, that is ξ 7→ q(x, ξ)
admits for each x ∈ Rd the following Lévy-Khinchine representation:

q(x, ξ) = c(x)− iℓ(x)′ξ +
1

2
ξ′Q(x)ξ −

∫

y 6=0

(
eiξ

′y − 1− iξ′y1B1(0)
(y)

)
N(x, dy) (4)

where c(x) > 0, ℓ(x) ∈ Rd, Q(x) ∈ Rd×d is positive semidefinite and N(x, dy) is a kernel on Rd×B
(
Rd \ {0}

)

such that
∫
Rd\{0}(‖y‖

2 ∧ 1) N(x, dy) <∞ for all x. Especially one has

Re q(x, ξ) = c(x) +
1

2
ξ′Q(x)ξ +

∫

y 6=0

(1− cos(ξ′y)) N(x, dy) > 0. (5)

In the following we will assume without loss of generality that every Feller process we encounter has
càdlàg paths (cf. [17] Theorem III.2.7). The space of all càdlàg functions from [0,∞) to Rd is denoted
by D([0,∞),Rd) and convergence in this space is meant with respect to the Skorokhod J1-topology (cf. [15]).

A stochastic process is a Lévy process if it has stationary and independent increments and càdlàg paths.
In particular note that every L evy process is a Feller process with a symbol not depending on x, i.e.
q(x, ξ) = ψ(ξ) and ψ has a Lévy-Khinchine representation, see Sato [18] for further details.

Further we set P̃ := P ⊗ B(Rd) where P is the predictable σ-algebra and B(Rd) denotes the Borel sets
of Rd. An integral with respect to a vector of processes is meant as matrix-vector multiplication, i.e. for a
d× d-matrix valued process Y and and a d-dimensional vector valued process X we write

∫ t

0

Ys− dXs =




∑d
j=1

∫ t

0
Y 1j dX

(j)
s

...∑d
j=1

∫ t

0
Y dj dX

(j)
s


 .

Integrals with respect to random measures are denoted by H ∗ µ (cf. [14] Section 2.1) and this integral is
meant componentwise if H is a vector.

If random variables X and Y are equal in distribution we write X
D
= Y . Finally for a measure N and a

measurable function g the image measure (push forward) is denoted by N(g(•) ∈ dy).
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3 Proof of the Theorem

Let (Ω,F , (Ft)t>0, (Xt)t>0,P
x)x∈Rd be a càdlàg Feller process with generator A such that C∞

c (Rd) ⊂ D(A).
The process admits the symbol q : Rd × Rd → C given by (4) with c(x) = 0 for all x, since (A3) holds.

Note that A(C∞
c (Rd)) ⊂ C∞(Rd) and thus (A3) implies by Schilling [19] Theorem 4.4. that

x 7→ q(x, ξ) is continuous for all ξ. (6)

Furthermore Xt is conservative by Theorem 5.2. in [19] using (A1)-(A3).
Now the proof will be divided into three parts. First a result about Markov chain approximation of

Feller processes is recalled and afterwards the SDE of a Feller process is calculated explicitly. Finally the
characteristic functions of the increments of the Euler scheme to the SDE are calculated and the Markov
chain approximation result is applied.

Given the assumptions the main theorem of Böttcher and Schilling [5] is applicable. This shows that

Y h([· 1
h ])

h→0
−−−→ X. in D([0,∞),Rd)

where
(
Y h(k)

)
k∈N

is for each h > 0 a Markov chain with initial value Y h(0) := X0 and transition kernel

µx,h(dy) defined by ∫

Rd

eiy
′ξµx,h(dy) = eix

′ξ−hq(x,ξ).

To make our argumentation more self contained we note that this can also be seen in the following way: let
Uh be the transition operator corresponding to the kernel µx,h(dy). By (A1) we can apply Theorem 17.28
of Kallenberg [15]. Using the mean value theorem twice with suitable intermediate values r, s ∈ (0, h) and
applying (A2) and (5) it follows that

∣∣∣∣
e−hq(x,ξ) − 1

h
+ q(x, ξ)

∣∣∣∣ =
∣∣∣−q(x, ξ)

(
e−sq(x,ξ) − 1

)∣∣∣ =
∣∣∣sq(x, ξ)2e−rq(x,ξ)

∣∣∣ 6 c2h (1 + |ξ|2)2.

Thus for f ∈ C∞
c (Rd) we obtain

∣∣∣∣
Uhf(x)− f(x)

h
−Af(x)

∣∣∣∣ =
∣∣∣∣
∫
eix

′ξ

(
e−hq(x,ξ) − 1

h
+ q(x, ξ)

)
f̂(ξ) dξ

∣∣∣∣ 6 c2h

∫
(1 + |ξ|2)2|f̂(ξ)| dξ → 0

for h ↓ 0. This convergence is uniformly in x and thus the i) ⇒ iv) part of Theorem 17.25 [15] implies that
the Markov chain approximates the Feller process in D([0,∞),Rd).

In the following we will show that the approximation defined in (2) for the SDE corresponding to Xt

coincides with the Markov chain in distribution, i.e.

X̄(m+1)·h has the characteristic function eix
′ξe−hq(x,ξ) given that X̄m·h = x. (7)

For this we have first to find the SDE corresponding to Xt explicitly.
By Schnurr [22] Theorem 3.14 (see also Schilling [20]), using the assumption of conservativeness, one

obtains that (Xt)t>0 is an Itô process in the sense of Cinlar et. al. [8], i.e. it is a strong Markov process which
is a semimartingale with respect to every Px and its characteristics are

B
(j)
t (ω) =

∫ t

0

ℓ(j)(Xs(ω)) ds j ∈ {1, ..., d},

C
jk
t (ω) =

∫ t

0

Qjk(Xs(ω)) ds j, k ∈ {1, ..., d},

ν(ω; ds, dy) = N(Xs(ω), dy) ds,

5



with respect to the truncation function h(y) := y1B1(0)
(y). By Cinlar and Jacod [7] Theorem 3.33 we obtain

that on a suitable enlargement of the stochastic basis, the so called Markov extension, the process (Xt)t>0

is the solution of the following SDE. Let the Markov extension be

(Ω̃, F̃ , (F̃t)t>0, (Xt)t>0, P̃
x)x∈Rd .

On this space we have

Xt = x+

∫ t

0

ℓ(Xs−) ds+

∫ t

0

σ(Xs−) dW̃s

+

∫ t

0

∫

z 6=0

k(Xs−, z)1{|k(Xs−,z)|61}

(
µ̃(·; ds, dz)− dsÑ(dz)

)

+

∫ t

0

∫

z 6=0

k(Xs−, z)1{|k(Xs−,z)|>1} µ̃(·; ds, dz)

(8)

where W̃ is a d-dimensional Brownian motion, µ̃ is a Poisson random measure on [0,∞[× R\{0} with dual

predictable projection dtÑ(dz). Furthermore ℓ : Rd → Rd, σ : Rd → Rd×d and k : Rd × R\{0} → Rd are
measurable functions and such that

Ñ(k(Xs(ω), •) ∈ dy)ds = ν(ω; ds, dy)

P̃x-a.s. for every x ∈ Rd on the Markov extension (compare in this context Cinlar and Jacod [7] (3.9) and
their remark following Theorem 3.7). Note that
∫ t

0

∫

z 6=0

k(Xs−, z)
(
1{|k(Xs−,z)|61} − 1{|z|61}

)
Ñ(dz)ds

=

[ ∫ t

0

∫

0<|z|61

k(Xs−, z)
(
µ̃(·; ds, dz)− dsÑ(dz)

)
+

∫ t

0

∫

|z|>1

k(Xs−, z) µ̃(·; ds, dz)

]

−

[∫ t

0

∫

z 6=0

k(Xs−, z)1{|k(Xs−,z)|61}

(
µ̃(·; ds, dz)− dsÑ(dz)

)

+

∫ t

0

∫

z 6=0

k(Xs−, z)1{|k(Xs−,z)|>1}) µ̃(·; ds, dz)

]
.

The integral on the left hand side exists since representation (8) is valid and therefore either k(Xs−, z)
z→0
−−−→ 0

or Ñ integrates constants at the origin. Thus by a change of the cutoff function (8) is the same as

Xt = x+

∫ t

0

ℓ̃(Xs−) ds+

∫ t

0

σ(Xs−) dW̃s

+

∫ t

0

∫

0<|z|61

k(Xs−, z)
(
µ̃(·; ds, dz)− dsÑ(dz)

)

+

∫ t

0

∫

|z|>1

k(Xs−, z) µ̃(·; ds, dz)

where ℓ̃(x) = ℓ(x) −
∫
z 6=0

k(x, z)
(
1{|k(x,z)|61} − 1{|z|61}

)
Ñ(dz). Thus (Xt)t>0 is the solution of an SDE of

form (1).
In [22] Theorem 5.7 (see also [21]) it is shown that, given (6), the Itô process (Xt)t>0 has the symbol

p : Rd × Rd → C given by

p(x, ξ) = −iℓ(x)′ξ +
1

2
ξ′σ(x)σ(x)′ξ −

∫

z 6=0

(
eik(x,z)

′ξ − 1− ik(x, z)′ξ · 1B1(0)
(k(x, z))

)
Ñ(dz). (9)

6



i.e.

p(x, ξ) := − lim
t↓0

E
x e

i(Xt∧T −x)′ξ − 1

t

for every first exit time T of a compact set containing x. The symbol p(x, ξ) and the symbol q(x, ξ) coincide
for Feller processes by Corollary 4.5 of [22]. For every fixed x ∈ Rd both functions are continuous and
negative definite in the co-variable ξ. Since the Lévy triplet of such a function is unique for a fixed cut-off
function (cf. [2] Theorem 10.8), we obtain Q(x) = σ(x)σ(x)′ and

N(x, dy) = Ñ(k(x, •) ∈ dy). (10)

Now we define for fixed t > 0 and x ∈ Rd a process (Yh)h>0 by

Yh = x+

∫ t+h

t

ℓ(x) ds+

∫ t+h

t

σ(x) dW̃s

+

∫ t+h

t

∫

z 6=0

k(x, z)1{|k(x,z)|61}

(
µ̃(·; ds, dz)− dsÑ(dz)

)
(11)

+

∫ t+h

t

∫

z 6=0

k(x, z)1{|k(x,z)|>1} µ̃(·; ds, dz).

Lemma. For the process Y := (Yh)h>0 defined above we obtain:

a) Y is a Lévy process.

b) The following identity holds in distribution

Yh
D
= x+ hℓ(x) + σ(x)Wh

+

∫ h

0

∫

y 6=0

y · 1{|y|61}

(
µ̃(·; ds, k(x, •) ∈ dy)− dsN(x, dy)

)

+

∫ h

0

∫

y 6=0

y · 1{|y|>1} µ̃(·; ds, k(x, •) ∈ dy)

c) The characteristic function of Yh is

E
x
(
eiY

′

hξ
)
= eix

′ξe−hq(x,ξ).

Proof: Fix x ∈ Rd and t > 0. The four integral terms in (11) are stochastically independent and we will
treat them separately. For the first two integrals all statements of the Lemma are easily obtained, since for
every t > 0 ∫ t+h

t

ℓ(x) ds+

∫ t+h

t

σ(x) dW̃s = ℓ(x)h+ σ(x)(W̃t+h − W̃t)

where W̃t+h − W̃t is again a Brownian motion having the same distribution as (W̃h)h>0. For the integrals
with respect to the (compensated) random measures we will have to proceed step-by-step.

a) First we show that the random measure dsN(x, dy) is the dual predictable projection of the measure

µ̃(ω; ds, k(x, •) ∈ dy). To this end let H : (Ω,R+,R
d) → R be positive and P̃-measurable. Then we have

E
x
(
H(·, s, y) ∗ µ̃(·; ds, k(x, •) ∈ dy)

)
= E

x
(
H(·, s, k(x, z)) ∗ µ̃(·; ds, dz)

)

= E
x
(
H(·, s, k(x, z)) ∗ dsÑ(dz)

)

= E
x
(
H(·, s, y) ∗ dsÑ(k(x, •) ∈ dy)

)

= E
x
(
H(·, s, y) ∗ dsN(x, dy)

)

7



where we have used that dsÑ(dz) is the dual predictable projection of µ̃(·; ds, dz) and (10) for the last equality.
By Theorem II.1.8 of [14] we obtain that dsN(x, dy) is the dual predictable projection of µ̃(ω; ds, k(x, •) ∈ dy).

Now we are in the position to deal with the third integral term:

∫ t+h

t

∫

z 6=0

k(x, z)1{|k(x,z)|61}

(
µ̃(·; ds, dz)− dsÑ(dz)

)

= lim
n→∞

∫ t+h

t

∫

]−∞,−1/n]∪[1/n,∞[

k(x, z)1{|k(x,z)|61}

(
µ̃(·; ds, dz)− dsÑ(dz)

)

= lim
n→∞

∫ t+h

t

∫

k(x,·)(]−∞,−1/n]∪[1/n,∞[)

y1{|y|61}

(
µ̃(·; ds, k(x, •) ∈ dy)− dsN(x, dy)

)

=

∫ t+h

t

∫

y 6=0

y1{|y|61}

(
µ̃(·; ds, k(x, •) ∈ dy)− dsN(x, dy)

)
.

Let us emphasize that the integrals in the second and third line can be written as the difference of two
integrals with respect to the respective random measures. Therefore these measures can be transformed
one-by-one. The limit in third line exists and therefore does the limit in the second line, too.

In particular µ̃(·; ds, k(x, •) ∈ dy) is a Poisson random measure by the structure of its compensator,
because N(x, dy) is a Lévy measure for every fixed x ∈ Rd.

The fourth term can now be written as
∫ t+h

t

∫

z 6=0

k(x, z)1{|k(x,z)|>1} µ̃(·; ds, dz) =

∫ t+h

t

∫

y 6=0

y1{|y|>1} µ̃(·; ds, k(x, •) ∈ dy).

Putting the four terms together we obtain a Lévy-Itô decomposition (cf. Chapter 4 of [18]) of the process
Y = (Yh)h>0, although the third and fourth integral are still ‘shifted’. In particular Y is a Lévy process.

b) It is enough to give the proof for the case d = 1, because the integrals with respect to the (compensated)
random measures are defined componentwise. This time we start with the fourth term of (11). Since
µ̃(·; ds, k(x, •) ∈ dy) is a Poisson random measure we have

µ̃(·; ]a, b] , k(x, •) ∈ C)
D
= µ̃(·; ]t+ a, t+ b] , k(x, •) ∈ C)

for a < b and C ∈ B(R1\{0}). Therefore we obtain
∫ ∞

0

∫

{y>1}

1]a,b](s) · 1C(y) µ̃(·; ds, k(x, •) ∈ dy)
D
=

∫ ∞

0

∫

{y>1}

1]t+a,t+b](s) · 1C(y) µ̃(·; ds, k(x, •) ∈ dy).

In order to keep notation simple, we set

I(a, b; 1C) :=

∫ ∞

0

∫

{y>1}

1]a,b](s) · 1C(y) µ̃(·; ds, k(x, •) ∈ dy).

Now let ϕ : Rd\{0} → R+ be a simple function, i.e. ϕ can be written as ϕ(y) =
∑m

j=1 dj · 1Cj
(y) where

m ∈ N the Cj are disjoint sets in Rd\{0} and dj > 0 for every j ∈ {1, ...,m}. Since the Cj are disjoint
the random variables (I(a, b, 1Ci

))i=1,...,m and (I(t+ a, t+ b, 1Ci
))i=1,...,m are independent respectively. And

thus we obtain
I(a, b;ϕ)

D
= I(t+ a, t+ b;ϕ).

Furthermore there exists a sequence of simple functions (ϕn)n∈N such that ϕn ↑ id on (1,∞). In the limit
we obtain

I(a, b; id)
D
= I(t+ a, t+ b; id)

and analogous on (−∞,−1). The fact
(
]a, b]× {y > 1}

)
∩
(
]a, b]× {y < −1}

)
= ∅
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implies that the random variables

∫ b

a

∫

{y>1}

y µ̃(·; ds, k(x, •) ∈ dy) and

∫ b

a

∫

{y<−1}

y µ̃(·; ds, k(x, •) ∈ dy)

are independent. Therefore we obtain the representation of the fourth term of b).
To deal with the third term we write

∫ t+h

t

∫

y 6=0

y1{|y|61}

(
µ̃(·; ds, k(x, •) ∈ dy)− dsN(x, dy)

)

= lim
n→∞

∫ t+h

t

∫

{|y|>1/n}

y1{|y|61}

(
µ̃(·; ds, k(x, •) ∈ dy)− dsN(x, dy)

)

and note that by using the same arguments as for the fourth term we get

∫ t+h

t

∫

{|y|>1/n}

y1{|y|61} µ̃(·; ds, k(x, •) ∈ dy) =

∫ h

0

∫

{|y|>1/n}

y1{|y|61} µ̃(·; ds, k(x, •) ∈ dy).

The integrals with respect to dsN(x, dy) are clearly invariant with respect to a shift of t because of the
product structure and the non-randomness. Thus we obtain

Yh
D
= x+ hℓ(x) + σ(x)W̃h

+

∫ h

0

∫

y 6=0

y · 1{|y|61}

(
µ̃(·; ds, k(x, •) ∈ dy)− dsN(x, dy)

)
(12)

+

∫ h

0

∫

y 6=0

y · 1{|y|>1} µ̃(·; ds, k(x, •) ∈ dy).

c) The right-hand side of (12) is the Lévy-Itô decomposition of a Lévy process. This process has the same
one-dimensional distributions as Y . Therefore the characteristic functions of the two processes coincide and
we obtain

E
x
(
eiY

′

hξ
)
= eixξe−hq(x,ξ),

which proves the Lemma. �

For t = mh the Lemma shows that (7) holds and thus the Theorem is proven.
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