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THE EULER SCHEME WITH IRREGULAR COEFFICIENTS1

BY LIQING YAN

University of British Columbia

Weak convergence of the Euler scheme for stochastic differential equa-
tions is established when coefficients are discontinuous on a set of Lebesgue
measure zero. The rate of convergence is presented when coefficients are
Hölder continuous. Monte Carlo simulations are also discussed.

1. Introduction. We consider the following stochastic differential equation
(SDE) with coefficients b and σ , driven by a Brownian motion B in R

r ,

Xt =X0 +
∫ t

0
b(s,Xs) ds +

∫ t
0
σ(s,Xs) dBs,(1)

where X0 is an R
d -valued random variable, which is independent of B , b is a

d-dimensional function of R
d+1, and σ = (σij ) is a d × r matrix-valued function

of R
d+1. For background information about SDEs, we refer to Chapter 5 of

Protter [19], Chapter 9 of Revuz and Yor [21] and Chapter 5 of Karatzas and
Shreve [13]. In applications one often wants to solve the SDE (1) numerically,
when possible. Because of simulation difficulties, it is usually advisable to solve
the SDE (1) with an Euler scheme, rather than a more complicated one. See the
survey paper of Talay [22] for a discussion of this issue. The continuous Euler
scheme {Xnt : 0 ≤ t ≤ T } for the SDE (1) on the time interval [0, T ] is defined as
follows: Xn0 =X0, and

Xnt =Xnτnk + b(τnk ,Xnτnk )(t − τnk )+ σ (τnk ,Xnτnk )(Bt −Bτnk ),(2)

for τnk < t ≤ τnk+1, k = 0,1, . . . , n, where 0 = τn0 ≤ τn1 ≤ · · · ≤ τnn = T is a
sequence of random partitions of [0, T ]. τnk is not necessary a stopping time. If we
define X̄nt =Xn

τnk
, for τnk ≤ t < τnk+1, then {X̄nt : 0 ≤ t ≤ T } is called a discretized

Euler scheme. Our goal of this paper is to study the conditions, without assuming
a continuity condition on b and σ , under which the Euler scheme converges to the
solution of the SDE (1) as long as a weak solution exits and is unique. Moreover,
we want to determine the rate of convergence without assuming the Lipschitz
condition.

We have two motivations for this problem. The first one is inspired by a result
of Englebert and Schmidt [10], who gave necessary and sufficient conditions on
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b and σ in order that the SDE (1) have a weak solution and that it be unique.
These necessary and sufficient conditions do not include the Lipschitz condition
(or even continuity) on b and σ . Lipschitz conditions however are standard in prior
work on showing that the Euler scheme converges weakly to the strong solution.
[The SDE (1) has a unique strong solution under Lipschitz conditions.] We want
to know how much we can relax the conditions and still have the convergence and
some rate of convergence.

Our second motivation is the computation of the expectation of functionals of
solutions of SDEs arising from probabilistic models, for example, the calculation
of the energy of the response of a stochastic dynamical system or the price of
a capital asset. In such models, one is often interested in estimating quantities
of the form E[f (XT )] or E[∫ T0 f (Xs) ds] for a fixed nonrandom time T and
some function f . For example, in capital asset pricing models (CAPM), such
quantities can represent the price of a financial derivative, such as options. One
wants to use a Monte Carlo technique to estimate E[f (XT )] or E[∫ T0 f (Xs) ds],
but one cannot do it immediately in general the distributions of f (XT ) or
of

∫ T
0 f (Xs) ds are not known. Instead, one can approximate E[f (XT )] or

E[∫ T0 f (Xs) ds] by using a numerical simulation of the solution {Xt : 0 ≤ t ≤
T } of the SDE (1). The simplest such scheme is the Euler scheme. Once we
know the convergence or the rate of convergence of Xn, we will have an idea
how well E[f (XnT )] and T

n

∑n
k=1E[f (Xntk )] can approximate E[f (XT )] and

E[∫ T0 f (Xs) ds], respectively.
Relaxing the Lipschitz condition to a Hölder continuity condition, or even

dropping the continuity condition altogether is not only a mathematical extension
but it also has possible applications in practice. For example, in stochastic
finance theory, the Black–Scholes model is a standard CAPM. It assumes that
the security follows a SDE (1) with its diffusion function being proportional to
the level of the security price [i.e., σ(s,Xs) = σXs ], or in finance terms, with a
constant volatility σ . While practitioners find that the volatility changes constantly,
randomly and with small or big jumps, sometimes, when the stock prices reach
some specific levels, their volatility becomes very large due to sudden heavy
trading. When using a Black–Scholes model, we always update the model daily or
half-daily, in that case, we are actually using a model with the volatility function
being a step function of time and its jump size depending on the price levels of
its underlying assets. This example illustrates that it is desirable to have a pricing
model with a discontinuous diffusion function.

An example of a model that leads to a truly discontinuous volatility, again
coming from finance theory, might be as follows: imagine an asset price that has
certain psychological trigger points. A current example may be the price of Euros
given in U.S. dollars. Parity (€1.00 = $1.00) has a certain appeal, it is easy to
imagine a sudden change in volatility if that level is breached. A trigger point might
be €1.00 = $0.80, or €1.00 = $1.18. A more subtle example may occur when
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stock prices of certain industry sectors surpass traditional psychological bounds for
price/earnings ratios (P/E). The volatility of these stocks may suddenly increase.
Discontinuities of volatility may also occur due to sudden external shocks, such
as Federal Reserve “irrational exuberance” remarks. A last example from finance
theory is that the drift function b(s,Xs) in SDE (1) may also have discontinuities.
For example, if one company announces a takeover of another, a sudden jump in
the drift of one or both companies can occur. This also can create volatility with
discontinuities.

The rate of convergence of the Euler scheme has been studied in many papers for
various convergence criteria: for convergence rate of the expectation of functionals
of solutions of SDEs (1) with smooth coefficients, see Talay and Tubaro [23];
for convergence rate of the distribution function, see Bally and Talay [2]; for
convergence rate of the density, see Bally and Talay [3]; for error analysis, see
Bally and Talay [1]; for reviews, see Talay [22] or Kloeden and Platen [14].
The case of SDEs driven by discontinuous semimartingales was studied by
Kurtz and Protter [16] in weak convergence of the normalized Euler scheme
error; Lp estimates of the Euler scheme error were given by Kohatsu-Higa and
Protter [15]. Protter and Talay [20] also studied the Euler scheme for SDE driven
by Lèvy processes. Protter and Jacod [12] obtained a celebrated result about the
asymptotic error distributions for the Euler scheme for SDEs driven by a vector of
semimartingales. A basic assumption of these prior works is that the coefficient
function satisfies a Lipschitz condition. The case of SDEs with discontinuous
coefficients has barely been investigated. Chan and Stramer [7] studied the weak
convergence of the Euler scheme for SDEs with coefficients satisfying some
regularity conditions.

In this paper, we prove the weak convergence of the Euler scheme by the
martingale representation theorem. Efforts are directed at the quadratic variation
of the limit of the Euler scheme. In Section 2 we consider the Euler scheme with
uniform partitions for the SDE without drift. In Section 3 we study the Euler
schemes with general partitions for a system of SDEs. In Section 4 we use an
estimation of the local time of the error process of the Euler scheme to get rates of
convergence by the Meyer–Tanaka formula and Gronwall’s lemma. In Section 5
we discuss the Monte Carlo approximation of E[f (XT )] and E[∫ T0 f (Xs) ds] by
simulating a discrete-time Euler scheme of SDEs.

2. SDEs without drift. In this section we consider the following SDE driven
by a Brownian motion B in R

1,

Xt =X0 +
∫ t

0
σ(Xs) dBs,(3)

where X0 is an R
1-valued random variable, which is independent of B , and σ is a

measurable function in R
1. Its Euler scheme with uniform partitions is defined as
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follows: Xn0 =X0, and

Xnt =Xntk + σ (Xntk )(Bt −Btk ),(4)

for tk < t ≤ tk+1, where tk = kT /n, k = 0,1, . . . , n. If we define ηn(t) = tk for
tk < t ≤ tk+1, then this Euler scheme can be written as

Xnt =X0 +
∫ t

0
σ
(
Xnηn(s)

)
dBs.(5)

Under the assumption that the SDE (3) has a unique weak solution, we study the
conditions under which the Euler scheme {Xnt : 0 ≤ t ≤ T } converges weakly to
the weak solution {Xt : 0 ≤ t ≤ T } of the SDE (3). In order to obtain the weak
convergence of the Euler scheme, it is necessary to have tightness. For this purpose,
we assume that σ(·) has at most linear growth, that is, there exist two constants c1

and c2 such that |σ(x)| ≤ c1 + c2|x| for all x ∈ R
1. From this we obtain the

uniform boundedness of the fourth moment of Xn in Lemma 2.1, which implies
that {Xn :n≥ 1} is tight in C[0, T ], the space of all continuous functions on [0, T ]
with the uniform topology. To ensure that the weak limit of the Euler scheme is the
weak solution of SDE (3), we assume that σ(·) is continuous almost everywhere
with respect to Lebesgue measure, and that the limit inferior of σ 2(·) is not zero at
its discontinuity points, which is illustrated in Theorem 2.2.

LEMMA 2.1. If E(X0)
4 <∞ and σ(·) has at most linear growth, then

sup
n≥1
E|(Xn)∗T |4 <∞ and sup

n≥1
E[Xn,Xn]2

T <∞,

where (X)∗T = max0≤t≤T |Xs |, [X,X]T is the quadratic variation of X.

PROOF. Since Xntk+1
=Xntk +σ(Xntk )(Btk+1 −Btk ), by induction on k we know

that E(Xntk )
4 <∞ for any k. Taking the fourth moment of Xntk+1

,

E
(
Xntk+1

)4 =E(Xntk )4 + 3T 2

n2 Eσ
4(Xntk )+ 6T

n
E
(
Xntkσ

(
Xntk

))2
.

Because σ(·) has at most linear growth, there exits a constant c such that
E(Xntk+1

)4 ≤ (1 + c/n)E(Xntk )4 + c/n. Recursively, E(XnT )
4 = E(Xntn)4 ≤ (1 +

c/n)n(E(X0)
4 + 1) ≤ (E(X0)

4 + 1)ec. Since {Xnt : 0 ≤ t ≤ T } is a martingale
for every fixed n, the lemma follows by Doob’s L4 maximal inequality and
Burkholder’s inequality. �

LEMMA 2.2. If the conditions of Lemma 2.1 are satisfied, then the Euler
scheme {Xn :n≥ 1} is tight in C[0, T ].
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PROOF. We will use the criterion in Theorem 8.3 on page 56 of Billingsley [4]
to prove the tightness. First, sinceE(X0)

4 <∞, {Xn0 =X0, n≥ 1} is tight. Second,
let c = supn≥1E(σ

4(Xnηn))
∗
T , since σ(·) has at most linear growth, c is a finite

constant by Lemma 2.1. For fixed t ∈ [0, T ], let

Zns =Xnt+s −Xnt =
∫ t+s
t

σ
(
Xnηn(r)

)
dBr.

By the Cauchy–Schwarz inequality,

E([Zn,Zn]s)2 =E
(∫ t+s
t

σ 2(Xnηn(r))dr
)2

≤ sE
∫ t+s
t

σ 4(Xnηn(r))dr ≤ cs2.

Since Zns is a continuous martingale, by Burkholder’s inequality there exists a
constant c4 such that E((Zn)∗δ )4 ≤ c4E([Zn,Zn]δ)2 ≤ c4cδ

2 for δ > 0. Now, for
∀ε > 0, η > 0, ∃δ = ε4η(c4c)

−1, which does not depend on t and n, such that

P
(

sup
t≤s≤t+δ

|Xns −Xnt | ≥ ε
)

≤ ε−4E
(
(Zn)∗δ

)4 ≤ ε−4c4cδ
2 = δη.

Therefore {Xn,n≥ 1} is tight in C[0, T ]. �

Since {Xn,n≥ 1} is tight in C[0, T ], which is a separable and complete space,
by Prohorov’s Theorem, {Xn,n ≥ 1} is relatively compact in C[0, T ]. Thus for
any subsequence n′ there exists a subsubsequence n′

k of n′ and a process X in
C[0, T ] such that Xn

′
k converges to X weakly. By the almost sure representation

Theorem 1.10.4 on page 59 of van der Vaart and Wellner [25] there exist a
probability space (#,F ,P ) and a sequence of processes Y k and Y , defined on #
taking values in C[0, T ] with L(Y k)= L(Xn

′
k ) for all k ≥ 1, L(X)= L(Y ), and

limk→∞ Y k = Y almost surely in C[0, T ]. Furthermore, we can choose Y k and
Y = Y∞as follows:

Y k(ω)=Xn′
k
(
φk(ω)

)
,(6)

with the maps φk measurable, and P k = P ◦ φ−1
k , for k = 1,2, . . . ,∞, where P k

is the probability measure on the original probability space where Xn
′
k lives on.

Since we build up our Euler scheme {Xn :n ≥ 1} on the same probability space,
P k actually does not depend on k. If we define

Wk(ω)= B(φk(ω)),
thenWk is a Brownian motion on (#,F ,P ). This is because for any Borel set D,

P(Wk ∈D)= P {B(φk(ω)) ∈D}= P {φ−1
k

(
B−1(D)

)}
= P k(B−1(D)

)= P (B ∈D).
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Therefore for every n≥ 1, Yn satisfies the following equation:

Ynt = Y0 +
∫ t

0
σ
(
Ynηn(s)

)
dWn

s ,(7)

which implies that [Yn,Y n]t = ∫ t
0 σ

2(Y nηn(s)) ds. By Lemma A.1 in the Appendix,
we can claim that Yt is a continuous martingale with respect to its natural
filtration Ft = σ(Ys, s ≤ t) ∨ N , where N is the class of all null sets of F
under the probability measure P , because Yt is the strong limit of Ynt , which is a
martingale for each n by (7) and which is uniformly integrable due to the uniform
boundedness of its second moment by Lemma 2.1. In order to use the martingale
representation theorem to show that Y is the unique weak solution of (3), we will
first show that [Y,Y ]t = ∫ t

0 σ
2(Ys) ds.

LEMMA 2.3. If the conditions of Lemma 2.1 are satisfied, then for 0 ≤ t ≤ T ,

[Yn,Y n]t L
1→ [Y,Y ]t ,(8) ∫ t

0
σ 2(Ynηn(s))1(Ys /∈Dσ )ds L1→

∫ t
0
σ 2(Ys)1(Ys �∈Dσ)ds,(9)

whereDσ is the set of discontinuous points of σ(·), 1(·) is an indicator function.

PROOF. By (7) and Lemma 2.1, E([Yn,Y n]t )2 are uniformly bounded for
all n and t . Since Yn is a continuous martingale with respect to its own filtration
and it converges to Y almost surely in C[0, T ], by Theorem 2.2 of Kurtz and
Protter [17],

∫
Yn dY n converges to

∫
Y dY in probability. Since [X,X] = X2 −

2
∫
XdX for any continuous semimartingale X, [Yn,Y n] converges to [Y,Y ] in

probability. The uniform boundedness of E([Yn,Y n]s)2 and Eσ 4(Y nηn(s)) implies

that {[Yn,Y n]t , n ≥ 1} and {∫ t0 σ 2(Y nηn(s))1(Ys �∈ Dσ )ds, n ≥ 1} are uniformly

integrable, from which L1 convergence follows. �

In the next theorem we give a necessary and sufficient condition under which the
Euler scheme converges weakly to the unique weak solution. For the necessary and
sufficient condition to establish the existence and uniqueness of the weak solution
for the SDE (3), we refer to Englebert and Schmidt [10].

THEOREM 2.1. If σ(·) has at most linear growth with Dσ of Lebesgue
measure zero and E(X0)

4 <∞, then the Euler scheme {Xnt : 0 ≤ t ≤ T } defined
in (4) converges weakly to the unique weak solution of the SDE (3) if and only if
the following conditions, ∫ T

0
1(Ys ∈Dσ ∩Nc)ds = 0 a.s.,(10)

lim
n→∞E

∫ T
0
σ 2(Ynηn(s))1(Ys ∈Dσ ∩N)ds = 0,(11)
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hold for all sequences Yn, which are chosen as (6), where Y is the almost sure
limit process of Yn and N = {x ∈ R

1 :σ(x)= 0}.

PROOF. We prove the necessity first. If X is the unique weak solution of the
SDE (3), then there exists a Brownian motion B on some probability space such
that the SDE (3) holds. By the occupation time formula,∫ T

0
σ 2(Xs)1(Xs ∈Dσ)ds =

∫ T
0

1(Xs ∈Dσ)d[X,X]s =
∫
Dσ

LxT dx = 0,

which implies that
∫ T

0 1(Xs ∈Dσ ∩Nc)ds = 0. If the Euler schemeXn converges
weakly to X, then X and Y have the same law. We can conclude (10) and

E[Y,Y ]T = E[X,X]T =E
∫ T

0
σ 2(Xs) ds

= E
∫ T

0
σ 2(Xs)1(Xs /∈Dσ)ds = E

∫ T
0
σ 2(Ys)1(Ys /∈Dσ)ds.

On the other hand, since [Yn,Y n]T = ∫ T
0 σ

2(Y nηn(s)) ds by (7),

lim
n→∞E

∫ T
0
σ 2(Ynηn(s))1(Ys ∈Dσ)ds

= lim
n→∞E[Yn,Y n]T − lim

n→∞E
∫ T

0
σ 2(Ynηn(s))1(Ys /∈Dσ)ds(12)

= E[Y,Y ]T −E
∫ T

0
σ 2(Ys)1(Ys /∈Dσ )ds = 0

by Lemma 2.3.
Combining (10) and (12) we can get (11). Next we prove the sufficiency. When

(10) and (11) hold, we have ∫ T
0
σ 2(Ys)1(Ys ∈Dσ)ds = 0,

lim
n→∞E

∫ T
0
σ 2(Ynηn(s))1(Ys ∈Dσ)ds = 0.

It follows from this and Lemma 2.3 that for 0 ≤ t ≤ T∫ t
0
σ 2(Ynηn(s))ds L1→

∫ t
0
σ 2(Ys) ds.(13)

Since the left-hand side of (13) is equal to [Yn,Y n] and it converges to [Y,Y ] in L1

by Lemma 2.3, we have [Y,Y ]t = ∫ t
0 σ

2(Ys) ds. Since Y is a square integrable
continuous martingale, by Theorem 7.1′ on page 90 of Ikeda and Watanabe [11],
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there exists a Brownian motion W on a possibly enlarged probability space such
that

Yt = Y0 +
∫ t

0
σ(Ys) dWs.

That is, Y is the weak solution of the SDE (3). Since Y k
a.s.→ Y as k → ∞ and

L(Y k) = L(Xn
′
k ), Xn

′
k converges weakly to Y , that is, for any subsequence Xnk

of the Euler schemeXn, there is always a subsubsequenceXn
′
k converging weakly

to the unique weak solution, which implies that the Euler scheme (4) converges
weakly to the unique weak solution of SDE (3). �

Next we give a sufficient condition under which the Euler scheme (4) converges
weakly to the weak solution of SDE (3). Let σ 2

1 (y)= lim infx→y σ
2(x).

THEOREM 2.2. Suppose that σ(·) has at most linear growth with Dσ of
Lebesgue measure zero and that E(X0)

4 < ∞. If σ 2
1 (y) > 0 for y ∈ Dσ , then

the Euler scheme (4) converges weakly to the unique weak solution of SDE (3).

PROOF. By Theorem 2.1 it suffices to prove that
∫ T

0 1(Ys ∈ Dσ)ds = 0 a.s.
For 0 ≤ r ≤ s ≤ t ≤ T ,

E([Y,Y ]t − [Y,Y ]r )= lim
n→∞E([Y

n,Y n]t − [Yn,Y n]r )

= lim
n→∞E

∫ t
r
σ 2(Ynηn(s))ds ≥E

∫ t
r

lim inf
n→∞ σ 2(Ynηn(s))ds

= E
∫ t
r
σ 2

1 (Ys) ds.

By the occupation time formula,

E

∫ T
0

1(Ys ∈Dσ)σ 2
1 (Ys) ds ≤ E

∫ T
0

1(Ys ∈Dσ )d[Y,Y ]s

= E
∫
Dσ

LxT (Y ) dx = 0,

because Dσ has Lebesgue measure zero and LxT (Y ) <∞ for almost all x. Since
σ 2

1 (·) > 0 on Dσ ,
∫ T

0 1(Ys ∈Dσ)ds = 0 a.s. �

Next, we extend our results to the Euler schemes with a general partitions for a
system of SDEs. Since we use the local time technique in one dimensional case,
we will put some conditions on the projections of the sets of discontinuity points
of the coefficients onto each time and space axis in the multi-dimensional case.
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3. A system of SDEs. In this section we study the conditions under which the
Euler scheme defined in (2) converges weakly to the weak solution of the SDE (1)
driven by a Brownian motion in R

r .

LEMMA 3.1. If E|X0|4 <∞, and the coefficients b and σ have at most linear
growth, that is, there exist two constants c1 and c2 such that, for all t ∈ [0, T ] and
x ∈ R

d , |b(t, x)| + |σ(t, x)| ≤ c1 + c2|x|, then

sup
n≥1
E|(Xn)∗T |4 <∞ and sup

n≥1
E|[Xn,Xn]T |2 <∞,

where | · | stands for Euclidean norm in the appropriate space.

PROOF. If we define ηn(s)= τnk for τnk < s ≤ τnk+1, then

Xnt =X0 +
∫ t

0
b
(
ηn(s),X

n
ηn(s)

)
ds +

∫ t
0
σ
(
ηn(s),X

n
ηn(s)

)
dBs.

By the inequality (a + b + c)4 ≤ 33(a4 + b4 + c4) for any real numbers a, b,
c and Hölder’s inequality and Burkholder’s inequality, there exist two positive
constants a and b such that

E|Xnt |4 ≤ a + b
∫ t

0
E
∣∣Xnηn(s)∣∣4 ds.(14)

Let fn(t)= E|Xnηn(t)|4, since ηn(t) ≤ t , fn(t) ≤ a + b ∫ t0 fn(s) ds. By Gronwall’s
lemma, fn(t) ≤ a exp(bt) for 0 ≤ t ≤ T . By (14) and Burkholder’s inequality we
can conclude the lemma. �

By the same argument as used in the proof of Lemma 2.2, we can show that
{Xn, n ≥ 1} is tight in C[0, T ]. Therefore it is relatively compact in C[0, T ].
By the arguments used in Section 2, for any subsequence n′ of n there exists a
subsubsequence n′

k of n′, and a process X in C[0, T ] such that Xn
′
k converges

weakly to X. By the almost sure representation theorem there exist a probability
space (#,F ,P ) and a sequence of processes Y k and Y , defined on # taking
values in C[0, T ] with L(Y k) = L(Xn

′
k ) for all k ≥ 1, L(X) = L(Y ), and

limk→∞ Y k = Y almost surely in C[0, T ]. Furthermore, we can choose Y k and
a Brownian motion Wn on # such that

Ynt = Y0 +
∫ t

0
b
(
ηn(s), Y

n
ηn(s)

)
ds +

∫ t

0
σ
(
ηn(s), Y

n
ηn(s)

)
dWn

s ,(15)

which implies that

[Yn(i), Y n(j)]t =
r∑
k=1

∫ t
0
σik

(
ηn(s), Y

n
ηn(s)

)
σjk

(
ηn(s), Y

n
ηn(s)

)
ds.(16)
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Since Yn converges to Y almost surely and E|(Y n)∗T |4 <∞, by Theorem 2.2 of
Kurtz and Protter [17], for 0 ≤ t ≤ T

[Yn(i), Y n(j)]t L
1→ [Y (i), Y (j)]t .(17)

In order that the weak limit of Xn be the solution of the SDE (1), we make the
following assumptions on the discontinuity points of b and σ :

H1: For every i from 1 to d , we have λ(D0
bi
) = 0 or there exists a k such that

λ(Dkbi )= 0, and σ 2
k (t, y) > 0 for (t, y) ∈Dbi .

H2: For every pair of (i, j) from 1 to d , we have λ(D0
σij
)= 0 or there exists a k

such that λ(Dkσij )= 0, and σ 2
k (t, y) > 0 for (t, y) ∈Dσij .

Here Dbiand Dσij are the sets of discontinuity points of bi and σij , respectively;
λ is Lebesgue measure on R

1;D0
bi

andD0
σij

are the projection ofDbi andDσij onto

the t axis respectively; that is, D0
bi

= {0 ≤ t ≤ T :∃(x1, . . . , xd) � (t, x1, . . . , xd) ∈
Dbi },Dkbi andDkσij are the projection ofDbi andDσij onto the xk axis, respectively.

σ 2
k (t, y)= lim infs→t,x→y(σ

2
k1(s, x)+ σ 2

k2(s, x)+ · · · + σ 2
kr(s, x)).

LEMMA 3.2. Under the conditions of Lemma 3.1, if hypotheses H1 and H2
hold, then for all i, j and t ,

(i)
∫ t

0
1
(
(s, Ys) ∈Dbi

)
ds = 0 and (ii)

∫ t
0

1
(
(s, Ys) ∈Dσij

)
ds = 0 a.s.

PROOF. Since (i) and (ii) can be proved by the similar arguments, we prove
only (i) here. For fixed i, if λ(D0

bi
)= 0 then

∫ t
0

1
(
(s, Ys) ∈Dbi

)
ds ≤

∫ t
0

1
(
s ∈D0

bi

)
ds ≤ λ(D0

bi

)= 0.(18)

If there exists a k such that λ(Dkbi )= 0 and σ 2
k (t, y) > 0 on Dbi , then we prove (i)

by using the local time formula. For 0 ≤ t1 ≤ s ≤ t2 ≤ T ,

E
([Y (k), Y (k)]t2 − [Y (k), Y (k)]t1

)
= lim
n→∞E

([Yn(k), Y n(k)]t2 − [Yn(k), Y n(k)]t1
)

= lim
n→∞E

r∑
j=1

∫ t2
t1

σ 2
kj

(
ηn(s), Y

n
ηn(s)

)
ds

≥E
∫ t2
t1

σ 2
k (s, Ys) ds,
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and hence, by the occupation time formula,

E

∫ t
0

1
(
(s, Ys) ∈Dbi

)
σ 2
k (s, Ys) ds ≤ E

∫ t
0

1
(
(s, Ys) ∈Dbi

)
d[Y (k), Y (k)]s

≤ E
∫ t

0
1
(
Ys(k) ∈Dkbi

)
d[Y (k), Y (k)]s

= E
∫
Dkbi

Lxt
(
Y (k)

)
dx = 0,

becauseDkbi has Lebesgue measure zero andLxt (Y (k)) <∞ for x a.s. We conclude

(i) by the assumption that σ 2
k (·) > 0 on Dbi . �

LEMMA 3.3. Let -n = max0≤k≤n|τnk+1 − τnk |. If the conditions in Lemma 3.2
are satisfied, and limn→∞-n = 0, then for all i, j and 0 ≤ t ≤ T , as n goes to ∞,∫ t

0
bi
(
ηn(s), Y

n
ηn(s)

)
ds

L2→
∫ t

0
bi(s, Ys) ds,(19)

∫ t
0
σik
(
ηn(s), Y

n
ηn(s)

)
σjk

(
ηn(s), Y

n
ηn(s)

)
ds

L1→
∫ t

0
σik(s, Ys)σjk(s, Ys) ds.(20)

PROOF. We prove only (19) here, we can use similar arguments to prove (20).
By the Cauchy–Schwarz inequality and Lemma 3.2,

E

(∫ t
0
bi
(
ηn(s), Y

n
ηn(s)

)− bi(s, Ys) ds
)2

≤ tE
∫ t

0

(
bi
(
ηn(s), Y

n
ηn(s)

)− bi(s, Ys))2 ds
= t

∫ t
0
E
(
b
(
ηn(s), Y

n
ηn(s)

)− b(s, Ys))21((s, Ys) /∈Dbi )ds
=: (I ).

Since b has at most linear growth and L(Y n) = L(Xn), by Lemma 3.1 we
know that Eb4

i (ηn(s), Y
n
ηn(s)

) is uniformly bounded for all t ∈ [0, T ] and n ≥ 1.
Therefore {bi(ηn(s), Y nηn(s))1(Ys /∈Dbi );n≥ 1} is uniformly integrable. Since for

any s ∈ [0, T ], bi(ηn(s), Y nηn(s))1(Ys /∈ Dbi )
a.s.→ bi(s, Ys)1(Ys /∈ Dbi ) as n→ ∞,

we have E(bi(ηn(s), Y nηn(s))− bi(s, Ys))21((s, Ys) �∈Dbi )→ 0. By the dominated
convergence theorem, (i) goes to zero. �

Now let’s denote Zt = (Zt (1), . . . ,Zt (d)) and Znt = (Znt (1), . . . ,Z
n
t (d)),

where
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Zt(i)= Yt(i)−
∫ t

0
bi(s, Ys) ds,

Znt (i)= Ynt (i)−
∫ t

0
bi
(
ηn(s), Y

n
ηn(s)

)
ds

= Y0(i)+
r∑
j=1

∫ t
0
σij
(
ηn(s), Y

n
ηn(s)

)
dBn,js by (15).

LEMMA 3.4. If the conditions in Lemma 3.2 are satisfied, then

[Z(i),Z(j)]t =
r∑
k=1

∫ t
0
σik(s, Ys)σjk(s, Ys) ds,(21)

for all i, j and 0 ≤ t ≤ T .

PROOF. Since [Zn,Zn] = [Yn,Y n] and [Z,Z] = [Y,Y ], by (17) for any pairs

of (i, j), [Zn(i),Zn(j)] L1→ [Z(i),Z(j)]. However, by (16) and Lemma 3.3,

[Zn(i),Zn(j)]t =
r∑
k=1

∫ t
0
σik
(
ηn(s), Y

n
ηn(s)

)
σjk

(
ηn(s), Y

n
ηn(s)

)
ds

L1→
r∑
k=1

∫ t
0
σik(s, Ys)σjk(s, Ys) ds for every t.

(22)

Both limits must be equal, so the lemma follows. �

THEOREM 3.1. If E|X0|4 <∞, limn→∞-n = 0 and b and σ have at most
linear growth with the assumptions H1 and H2 satisfied, then the Euler scheme
defined in (2) weakly converges to the unique weak solution of SDE (1) as n→ ∞.

PROOF. Because Zn is a martingale with respect to its own natural filtration
and Zn is uniformly integrable by Lemma 3.1, and Zn converges to Z in
probability by Lemma 3.3, by Lemma A.1 in the Appendix, we know that Zt is a
continuous martingale in R

d with the quadratic covariation

[Z(i),Z(j)]t =
r∑
k=1

∫ t
0
σik(s, Ys)σik(s, Ys) ds,

which is from Lemma 3.4. By Theorem 7.1′ on page 90 of Ikeda and Watan-
abe [11], there is a standard Brownian motion Bt in R

d on a possibly enlarged
probability space such that

Zt(i)=Z0(i)+
r∑
j=1

∫ t
0
σij (s, YS) dB

j
s .
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Since Zt(i)= Yt(i)− ∫ t
0 bi(s, Ys) ds, we have

Yt(i)= Y0(i)+
∫ t

0
bi(s, Ys) ds +

r∑
j=1

∫ t
0
σij (s, YS) dB

j
s ;

that is, Y is the unique weak solution of SDE (1). Since Y k
a.s.→ Y as k→∞, and

L(Y k) = L(Xn
′
k ), we have Xn

′
k converges weakly to Y , where Xn

′
k is a sub-

subsequence of any subsequence of the Euler scheme, which implies that the Euler
scheme converges weakly to the unique weak solution of SDE (1). �

4. The rate of convergence of the Euler scheme. In this section we will
consider the rate of convergence of the Euler scheme for the following SDE driven
by a Brownian motion B ∈ R

1 on the time interval [0, T ]:
Xt =X0 +

∫ t
0
b(s,Xs) ds +

∫ t
0
σ(s,Xs) dBs,(23)

where b and σ are measurable functions on [0, T ] × R
1, and the initial point X0

is independent of B . Suppose that the SDE (23) has a unique weak solution, that
is, there exists a probability space (#,F ,P ) on which we can define a standard
Brownian motion B and a process X such that (23) holds. We can build up its
Euler scheme on this probability space as follows: Xn0 =X0,

Xnt =Xntk + b(tk,Xntk )(t − tk)+ σ (tk,Xntk )(Bt −Btk ),(24)

for tk < t ≤ tk+1, where tk = kT /n and k = 0,1, . . . , n. If we define ηn(t)= tk for
tk < t ≤ tk+1, then this Euler scheme can be written as

Xnt =X0 +
∫ t

0
b
(
ηn(s),X

n
ηn(s)

)
ds +

∫ t
0
σ
(
ηn(s),X

n
ηn(s)

)
dBs.(25)

Jacod and Protter [12] proved that when the coefficient functions are in C1,
the Euler scheme (24) converges weakly to the solution of the SDE (23) at the
rate 1/

√
n. That is,

√
n(Xnt −Xt)weakly converges to a processUt , which satisfies

a linear SDE. However, it seems to be not easy to obtain the rate of convergence
of Xnt −Xt without assuming that the coefficient functions satisfy the Lipschitz
conditions. For example, we consider the rate of convergence of E(Xnt − Xt)2,
taking expectation on both sides after we apply Itô’s formula for (Xnt −Xt)2, we
have

E(Xnt −Xt)2 = 2
∫ t

0
E(Xns −Xs){b(ηn(s),Xnηn(s))− b(s,Xs)}ds

+
∫ t

0
E
{
σ
(
ηn(s),X

n
ηn(s)

)− σ(s,Xs)}2
ds.

It is hard to estimate E(Xnt − Xt)2 without the Lipschitz conditions of b and σ .
Fortunately in the one dimensional case we can use the Meyer–Tanaka formula
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to decompose the error |Xnt − Xt | as a summation of a finite variation process,
a martingale and a local time of (Xn −X). By taking expectations we can obtain
the rate of convergence of E|Xnt −Xt | by removing the martingale. A key step is
to estimate the expectation of the local time of (Xn −X). We do that first.

4.1. A local time inequality. Let X be a continuous semimartingale with
X0 = 0. For ε > 0 we define a double sequence of stopping times by σ1 = 0,
τ1 = inf(t > 0 :Xt = ε), σn = inf(t > τn−1 :Xt = 0), τn = inf(t > σn :Xt = ε). Let
Ut(X) = sup{n ∈ N : τn < t} be the number of upcrossings of X through [0, ε]
before time t. We denote n(t)= t ∧ σUt (X)+1.

LEMMA 4.1. Let X be a continuous semimartingale with X0 = 0, for any
ε > 0 and any real function F(·) ∈C2 with F(0)= 0, we have

L0
t (X)

(
F(ε)− εF ′(0)

)= 2F(ε)
(
X+
t −X+

n(t)

)− 2ε
(
F(X+

t )− F
(
X+
n(t)

))
− 2

∫ t
0
θs(X)

(
F(ε)− εF ′(X+

s )
)
dXs(26)

+
∫ t

0
θs(X)εF

′′(X+
s ) d[X,X]s,

where θs(X)=∑∞
n=1 1(σn < s ≤ τn,0<Xs ≤ ε).

PROOF. By the Meyer–Tanaka formula (see page 169 of Protter [19]),

X+
τn∧t −X+

σn∧t =
∫ τn∧t
σn∧t

1(Xs > 0) dXs + 1
2

(
L0
τn∧t (X)−L0

σn∧t (X)
)
.(27)

SinceX does not vanish on [τn, σn+1), L0
σn+1∧t (X)=L0

τn∧t (X). Summing up (27)
for all n,

∞∑
n=1

(
X+
τn∧t −X+

σn∧t
)= ∫ t

0
θs(X)dXs + 1

2L
0
t (X).(28)

By the definition of the sequence of stopping times, the left-hand side of (28) is
equal to εUt (X)+X+

t −X+
n(t), As a result,

εUt(X)=
∫ t

0
θs(X)dXs + 1

2L
0
t (X)−X+

t +X+
n(t).(29)

By Itô’s formula for a function F ∈C2,

F (X+
t )− F(X+

0 )=
∫ t

0
F ′(X+

s ) dX
+
s + 1

2

∫ t
0
F ′′(X+

s ) d[X+,X+]s .
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By the Meyer–Tanaka formula, we have dX+
s = 1(Xs > 0) dXs + 1

2 dL
0
s (X),

d[X+,X+]s = 1(Xs > 0) d[X,X]s . Therefore,

F(X+
t )− F(X+

0 )=
∫ t

0
F ′(X+

s )1(Xs > 0) dXs

+ 1
2

∫ t
0
F ′(X+

s ) dL
0
s (X)

+ 1
2

∫ t
0
F ′′(X+

s )1(Xs > 0) d[X,X]s .
For the sequence of stopping times τn ∧ t and σn ∧ t , we have

F
(
X+
τn∧t

)− F (X+
σn∧t

)=
∫
(σn∧t,τn∧t]

F ′(X+
s )1(Xs > 0) dXs

+ 1
2

∫
(σn∧t,τn∧t]

F ′(X+
s ) dL

0
s (X)

+ 1
2

∫
(σn∧t,τn∧t]

F ′′(X+
s )1(Xs > 0) d[X,X]s,

Summing over n and noting that F(0)= 0, and
∫ t

0 F
′(X+

s ) dL
0
s (X)= F ′(0)L0

t (X)

since the measure dL0
t (X) is almost surely carried by the set {t :Xt = 0}, we have

F(ε)Ut(X)+ F(X+
t )− F

(
X+
n(t)

)=
∫ t

0
θs(X)F

′(X+
s ) dXs + 1

2F
′(0)L0

t (X)

+ 1
2

∫ t
0
θs(X)F

′′(X+
s ) d[X+,X+]s .

(30)

We complete our proof by canceling Ut(X) in (29) and (30). �

Based on the above lemma we introduce a local time inequality, which is used
in the estimation of the error of the Euler scheme.

LEMMA 4.2. Under the assumption of Lemma 4.1, if F ′(0)= 0 and F(·) > 0
on (0, ε0) for some ε0 > 0, then for any 0<−ε < ε0 we have

0 ≤ L0
t (X)≤ 2ε− 2

F(ε)

∫ t
0
θs(X)

(
F(ε)− εF ′(X+

s )
)
dXs

+ 1

F(ε)

∫ t
0
θs(X)εF

′′(X+
s ) d[X,X]s .

PROOF. By the definitions of the double sequence of stopping times and
of Ut(X), we observe that if τUt (X) ≤ t < σUt (X)+1, then n(t) = t ; if σUt (X)+1 ≤
t < τUt (X)+1, then n(t) = σUt (X)+1, X+

n(t) = 0 and X+
t ≤ ε. Therefore, the first

term in the right-hand side of (26) is less than 2εF (ε) and the second term is less
than zero. The inequality follows from Lemma 4.1. �
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4.2. The rate of convergence of the Euler scheme. In order to get the rate
of convergence of the Euler scheme, we need some smoothness conditions on b
and σ . There are many different criteria for the rates of convergence. In this section
we prove a rate of convergence in L1. We assume that b satisfies the Lipschitz
condition in the space variable and that b is Hölder continuous in the time variable.
We also assume that σ is Hölder continuous in both space and time variables.
Specifically, there exists a constant c, 0 ≤ α, β1 ≤ 1, 0 ≤ β2 ≤ 2, such that

|b(s, x)− b(t, y)| ≤ c|x − y| + c|s − t|β1,(31)

|σ(s, x)− σ(t, y)|2 ≤ c|x − y|1+α + c|s − t|β2 ,(32)

for all x, y ∈ R
1 and s, t ∈ [0, T ]. Since this smoothness condition implies that b,σ

have at most linear growth, by Lemma 3.1 we know that supn≥1E((X
n)∗T )4 <∞.

We will denotem as the upper bound of supn≥1E((X
n)∗T )2, supn≥1E(b(·,Xn)∗T )2

and supn≥1E(σ(·,Xn)∗T )2. We present our result in the following theorem and
give its proof at the end of this section.

THEOREM 4.1. Under the smoothness conditions of (31) and (32), there
exists a constant c and γ = β1 ∧ α

2 ∧ α
1+αβ2 such that for n > T and 0 ≤ t ≤ T ,

E|Xnt −Xt | ≤ cn−γ .

LEMMA 4.3. Let δ = T/n≤ 1, for α ∈ [0,1] and 0 ≤ t ≤ T ,

E

∫ t
0

∣∣Xns −Xnηn(s)
∣∣1+α

ds ≤ 3mtδ(1+α)/2.

PROOF. By (25), for 0 ≤ s ≤ T ,

Xns −Xnηn(s) = b
(
ηn(s),X

n
ηn(s)

)(
s − ηn(s))+ σ (ηn(s),Xnηn(s))(Bs −Bηn(s)

)
.

Since |a+ b|1+α ≤ 2(|a|1+α + |b|1+α) for any real numbers a, b and α ∈ [0,1],
E
∣∣Xns −Xnηn(s)

∣∣1+α ≤ 2E
∣∣b(ηn(s),Xnηn(s))(s − ηn(s))∣∣1+α

+ 2E
∣∣σ (ηn(s),Xnηn(s))(Bs −Bηn(s)

)∣∣1+α

≤ 2m
((
s − ηn(s))1+α +E∣∣Bs −Bηn(s)

∣∣1+α)
≤ 4m

(
s − ηn(s))(1+α)/2

.

Our lemma follows from that
∫ t

0 (s − ηn(s))β ds ≤ tδβ/(1 + β) for any β ≥ 0. �
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LEMMA 4.4. Under the smoothness conditions of (31) and (32), we have

EL0
t (X

n −X)≤ 2ε+ 2ct
(
ε+ 3mδ1/2 + δβ1 + 2εα + 6mδ(1+α)/2ε−1 + δβ2ε−1),

for any ε > 0 and δ = T/n≤ 1.

PROOF. By (23) and (25), for 0 ≤ t ≤ T ,

Xnt −Xt =
∫ t

0

(
b
(
ηn(s),X

n
ηn(s)

)− b(s,Xs))ds
+
∫ t

0

(
σ
(
ηn(s),X

n
ηn(s)

)− σ(s,Xs))dBs.(33)

Since Xnt −Xt is a continuous semimartingale with initial value 0, we can apply
Lemma 4.2 with F(x)= x2,

L0
t (X

n −X)≤ 2ε− 2

ε

∫ t
0
θs(X

n −X)(ε− 2(Xn −X)+s
)
d(Xn −X)s

+ 2

ε

∫ t
0
θs(X

n −X)d[Xn −X,Xn −X]s .

By taking expectation on both sides, we can remove the martingale part. Noting
that 0 ≤ θs(Xn −X)≤ 1, θs(Xn −X)|ε− 2(Xn −X)+s | ≤ ε, we have

EL0
t (X

n −X)
≤ 2ε+ 2E

∫ t
0
θs(X

n −X)∣∣b(ηn(s),Xnηn(s))− b(s,Xs)∣∣ds
+ 2

ε
E

∫ t
0
θs(X

n −X)(σ (ηn(s),Xnηn(s))− σ(s,Xs))2 ds
≤ 2ε+ 2cE

∫ t
0
θs(X

n −X)
× (|Xns −Xs | +

∣∣Xns −Xnηn(s)
∣∣+ |ηn(s)− s|β1

)
ds

+ 2

ε
cE

∫ t
0
θs(X

n −X)

× (
2|Xns −Xs |1+α + 2

∣∣Xns −Xnηn(s)
∣∣1+α + |ηn(s)− s|β2

)
ds

≤ 2ε+ 2cE
∫ t

0

(
ε+ ∣∣Xns −Xnηn(s)

∣∣+ |ηn(s)− s|β1
)
ds

+ 2

ε
cE

∫ t
0

(
2ε1+α + 2

∣∣Xns −Xnηn(s)
∣∣1+α + |ηn(s)− s|β2

)
ds

≤ 2ε+ 2ct
(
ε+ 3mδ1/2 + δβ1 + 2εα + 6mδ(1+α)/2ε−1 + δβ2ε−1).

Therefore we complete the proof. �
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Before proving Theorem 4.1, we do some algebra. Let

hn(ε)= (2 + 6ct)εα + (
12mctδ(1+α)/2 + 2ctδβ2

)
ε−1 + 9mctδ1/2 + 3ctδβ1 .

For 0 ≤ α ≤ 1 and 0 ≤ ε ≤ 1, ε ≤ εα, by Lemma 4.4,

E
{
L0
t (X

n −X)}+ 3ctmδ1/2 + ctδβ1 ≤ hn(ε).(34)

Since hn(ε) reaches its minimum hn(ε0) at ε = ε0, where

ε0 =
(

2 + 6ct

12mctδ(1+α)/2 + 2ctδβ2
α

)−1/(1+α)
,

hn(ε0)= c(α)(12mctδ(1+α)/2 + 2ctδβ2
)α/(1+α)+ 9mδ1/2 + 3δβ1,

c(α)= (
α1/(1+α)+ α−α/(1+α))(2 + 6ct)1/(1+α).

When n≥ T , there exits a constant c0 such that

hn(ε0)≤ c0n
−γ .(35)

PROOF OF THEOREM 4.1. By (33) and the Meyer–Tanaka formula,

|Xnt −Xt | =
∫ t

0
sgn(Xns −Xs)(b(ηn(s),Xnηn(s))− b(s,Xs))ds

+
∫ t

0
sgn(Xns −Xs)(σ (ηn(s),Xnηn(s))− σ(s,Xs))dBs

+L0
t (X

n −X).

(36)

By taking expectation on both sides of (36) to remove the martingale part,

E|Xnt −Xt |
=E

∫ t
0

sgn(Xns −Xs)(b(ηn(s),Xnηn(s))− b(s,Xs))ds +EL0
t (X

n −X)

≤ cE
∫ t

0
|Xns −Xs | +

∣∣Xns −Xnηn(s)
∣∣+ |s − ηn(s)|β1 ds +EL0

t (X
n −X)

≤ c
∫ t

0
E|Xns −Xs |ds + 3ctmδ1/2 + ctδβ1 +EL0

t (X
n −X)

≤ cE
∫ t

0
|Xns −Xs |ds + hn(ε0).

By Gronwall’s lemma and (35), we have E|Xnt −Xt | ≤ hn(ε0)e
ct ≤ c0e

ctn−γ . �
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5. Monte Carlo simulations. In practice sometimes we must numerically
compute E[f (XT )] or E[∫ T0 f (Xs) ds] where f : R → R and X is the solution of
SDE (23). One application is the determination of the price of a financial security.
In Section 4 we get the L1 convergence of the continuous Euler scheme Xnt ,
defined in (24), to a weak solution Xt under the assumption that Xnt lives on
a probability space that supports the weak solution. Theoretically, we can use
E[f (XnT )] to approximate E[f (XT )] and use E[∫ T0 f (Xns ) ds] to approximate
E[∫ T0 f (Xs) ds]. However, in practice it is convenient and simple to obtain a
Monte Carlo approximation of E[f (XT )] or E[∫ T0 f (Xs) ds] by simulating a
discrete-time approximation of SDE (23). For example, the Euler scheme takes
approximation X̄n forX, where X̄n is the discrete-time process with time step size
h= T/n, defined by

X̄ntk+1
= X̄ntk + b(kh, X̄ntk )h+ σ (kh, X̄ntk )√hεk+1,(37)

and X̄n0 is a random variable with the distribution ofX0, where ε1, ε2, . . . is an i.i.d.
sequence of standard normal random variables on some probability space, which
might be different from the space that supports the weak solution. Since the exact
solution is defined in the weak sense, we are interested in the quantities related
to the law of the weak solution rather than the path properties of the solution. In
Section 4, we get the rate of convergence of the continuous Euler scheme Xnt ,
which is defined on the probability space that supports the weak solution. Because
X̄ntk has the same distribution as Xntk , we can obtain some rates of convergence by
usingE[f (X̄nT )] to approximateE[f (XT )], and by using the Riemann summation

T

n

n∑
k=1

Ef
(
X̄ntk

)

to approximate E[∫ T0 f (Xs) ds]. A recent work by Tanré [24] shows that∣∣∣∣∣Tn
n∑
k=1

Ef
(
X̄ntk

)− ∫ T
0
E[f (Xs)]ds

∣∣∣∣∣≤ c‖f ‖∞n−1,

with the assumption that b, σ ∈ C∞, where c is a constant and ‖f ‖∞ is the upper
bound of. In the next lemma we give a rate of convergence under some mild
conditions on f , b and σ .

LEMMA 5.1. If b and σ satisfy (31) and (32), and there exists a constant c̄
such that |f (x)− f (y)| ≤ c̄|x − y| for all x and y, then∣∣Ef (X̄nT )−Ef (XT )∣∣≤ c1n

−γ ,(38) ∣∣∣∣∣Tn
n∑
k=1

Ef
(
X̄ntk

)− ∫ T
0
E[f (Xs)]ds

∣∣∣∣∣≤ c1n
−γ ,(39)

for some constant c1 and n > T , where γ is defined in Theorem 4.1.
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PROOF. For any 0 ≤ tk ≤ T , E[Xntk ]4 <∞ by Lemma 2.1. The linear growth

of f givesE[f (Xntk )]4 <∞. Because X̄ntkhas the same distribution asXntk , we have
Ef (X̄ntk )=Ef (Xntk ). By the Lipschitz condition of f and Theorem 4.1,∣∣Ef (X̄ntk )−Ef (Xtk )∣∣≤ c̄E∣∣Xntk −Xtk

∣∣≤ c̄cn−γ ,(40)

which proves (38) when tk = T . Since Xt is the solution of SDE (23), it is
easy to see that there exists a constant c2 such that E|Xtk −Xs | ≤ c2

√
tk − s for

tk−1 ≤ s ≤ tk . By (40) we have∣∣∣∣∣Tn
n∑
k=1

Ef
(
X̄ntk

)− ∫ T
0
E[f (Xs)]ds

∣∣∣∣∣
≤
∣∣∣∣∣Tn

n∑
k=1

Ef
(
X̄ntk

)− T

n

n∑
k=1

Ef
(
Xtk

)∣∣∣∣∣+
∣∣∣∣∣
n∑
k=1

∫ tk
tk−1

E
[
f
(
Xtk

)− f (Xs)]ds
∣∣∣∣∣

≤ T c̄cn−γ + c̄c2n
−1/2 ≤ c̄(T c+ c2)n

−γ ,
since γ ≤ 1/2. This completes the proof of (39). �

Of course, we can not generally calculate the approximation T
n

∑n
k=1Ef (X̄

n
tk
),

or E[f (X̄nT )], but we can estimate them by Monte Carlo simulations. Let

X̄nitk+1
= X̄nitk + b(kh, X̄nitk )h+ σ (kh, X̄nitk )√hεik+1,(41)

for 1 ≤ i ≤ m and 1 ≤ k ≤ n, and {X̄ni0 : 1 ≤ i ≤ m} is an i.i.d. sample from
the distribution of X0 for each n, where {εik : 1 ≤ i ≤ m, 1 ≤ k ≤ n} is an i.i.d.
sequence of standard normal random variables. Since {f (X̄nitk ),1 ≤ i ≤m} is also
an i.i.d. sequence of random variables, the law of large numbers implies that

1

m

m∑
i=1

f
(
X̄niT

)→E
[
f
(
X̄nT

)]
a.s.,(42)

T

mn

m∑
i=1

n∑
k=1

Ef
(
X̄nitk

)→ T

n

n∑
k=1

Ef
(
X̄ntk

)
a.s.,(43)

as m→ ∞ for fixed n. In practice one can use variance reduction techniques to
improve the convergence properties of Monte Carlo simulations. For survey papers
on all variance reduction techniques, see Boyle, Broadie and Glasserman [6].
For control variates of Gaussian random variables, see Chorin [8]. For sampling
techniques, see Wagner [26], Newton [18].

In the next theorem, we present a reasonable tradeoff between n and m, that
is, m = O(n2γ ), which does not agree with the “optimal tradeoff” m = O(n2)

in Duffie and Glynn [9]. This is because we do not know the exact rate of
convergence (if it exists) when b(·, ·) and σ(·, ·)do not satisfy the Lipschitz
conditions.
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THEOREM 5.1. Under the conditions of Lemma 5.1, whenm=O(n2γ ) there
exists a constant c and γ , which is defined in Theorem 4.1, such that

E

∣∣∣∣∣ 1

m

m∑
i=1

f
(
X̄niT

)−Ef (XT )
∣∣∣∣∣≤ cn−γ ,(44)

E

∣∣∣∣∣ Tmn
m∑
i=1

n∑
k=1

f
(
X̄nitk

)− ∫ T
0
Ef (Xs) ds

∣∣∣∣∣≤ cn−γ .(45)

PROOF. We only prove (44) here. (45) can be proved similarly. By the same
reason as in the proof of Lemma 5.1, supn≥1E[f (X̄nT )]2 = supn≥1E[f (XnT )]2 <

∞. A triangle inequality and Lemma 5.1 give us

E

∣∣∣∣∣ 1

m

m∑
i=1

f
(
X̄niT

)−Ef (XT )
∣∣∣∣∣

≤E
∣∣∣∣∣ 1

m

m∑
i=1

f
(
X̄niT

)−E[f (X̄nT )]
∣∣∣∣∣+ ∣∣E[f (X̄nT )]−Ef (XT )∣∣

≤m−1/2(E[f (X̄nT )]2)1/2 + n−1/γ c.

which concludes (44) when m=O(n2γ ). �

APPENDIX

LEMMA A.1. Let {Yn :n≥ 1} be a sequence of stochastic processes. For each
fixed time t , Ynt is uniformly integrable; for each n, Ynt is a martingale with respect
to its own filtration. If Yn converges to Y in probability as n goes to ∞, then Y is
also a martingale with respect to its own filtration.

PROOF. By Exercise 3.6 on page 9 of Blumenthal and Getoor [5], it suffices
to prove that for any 0 ≤ s1 < s2 < · · ·< sm < s < t ≤ T the following equation:

E

(
Yt

m∏
i=1

fi
(
Ysi
))=E

(
Ys

m∏
i=1

fi
(
Ysi
))

holds for all fi(·) ∈ Cb(R), i = 1,2, . . . ,m, m ≥ 1, where Cb(R) is the space of
all continuous bounded functions on the real line. The above identity holds for Yn,
since it is a martingale. Because Y k converges to Y almost surely, and {Ynt :n≥ 1}
is uniformly integrable for fixed t , we have

EYt

m∏
i=1

fi
(
Ysi
)= lim

n→∞EY
n
t

m∏
i=1

fi
(
Ynsi

)= lim
n→∞EY

n
s

m∏
i=1

fi
(
Ynsi

)=EYs m∏
i=1

fi
(
Ysi
)
,

which completes the proof. �
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