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Abstract

Background: The Indian Tectonic Plate split from Gondwanaland approximately 120 MYA and set the Indian

subcontinent on a ~ 100 million year collision course with Eurasia. Many phylogenetic studies have demonstrated

the Indian subcontinent brought with it an array of endemic faunas that evolved in situ during its journey,

suggesting this isolated subcontinent served as a source of biodiversity subsequent to its collision with Eurasia.

However, recent molecular studies suggest that Eurasia may have served as the faunal source for some of India’s

biodiversity, colonizing the subcontinent through land bridges between India and Eurasia during the early to

middle Eocene (~35–40 MYA). In this study we investigate whether the Draconinae subfamily of the lizard family

Agamidae is of Eurasian or Indian origin, using a multi locus Sanger dataset and a novel dataset of 4536

ultraconserved nuclear element loci.

Results: Results from our phylogenetic and biogeographic analyses revealed support for two independent

colonizations of India from Eurasian ancestors during the early to late Eocene prior to the subcontinent’s hard

collision with Eurasia.

Conclusion: These results are consistent with other faunal groups and new geologic models that suggest

ephemeral Eocene land bridges may have allowed for dispersal and exchange of floras and faunas between India

and Eurasia during the Eocene.
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Background

The collision of the Indian subcontinent (ISC) into

Eurasia caused the formation of some of the world’s

most iconic deserts and mountain ranges, dramatically

changing Asian climates, while simultaneously sculpting

its biodiversity. Much interest has centered on investi-

gating the evolutionary and geological processes that

have influenced the origins and diversification of the

ISC’s unique biotas ([1]; and references therein). Phylo-

genetic studies of birds, dipterocarp trees, terrestrial

gastropods, crabs, freshwater fish, and certain groups of

amphibians, suggests these lineages originated on the

ISC and were a source of biodiversity for regions of Asia

and areas as far west as Africa after the Indian Plate split

off from Gondwanaland [2–7]. However, a suite of

phylogenetic studies across a variety of other taxa sug-

gest an alternative biogeographic hypothesis postulating

Eurasia as the ancestral source of diversity for the ISC.

In these groups Asian lineages dispersed to, and success-

fully colonized, the subcontinent before its hard collision

with Eurasia 25–30 MYA [8–12].

The previous lack of geologic models describing the

fine scale events of the final 50 million years of the ISC’s

collision, left researchers with no mechanistic explan-

ation for the striking differences between these two “ISC

faunal origin” hypotheses. Fortunately, newer models are

available that take into account continental connections

between the approaching ISC and areas of mainland
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Asia prior to the ISC’s collision with Eurasia [13–15].

Acton [13] and Ali and Aitchison [15] hypothesized that

between 34–55 MYA (middle Eocene-late Eocene), India

was connected to Eurasia via land-bridges with Sumatra,

and then along what is now the Thai-Malay Peninsula

and Burma (which would have been one land mass

during this time). Two recent studies have recovered

phylogenetic support for these Eocene land bridges and

hypothesized that these pre-collision continental con-

nections would have allowed for faunal exchanges be-

tween the ISC and Eurasia as the ISC continued

northward [7, 16]. We present data from a diverse radi-

ation of Indian and Southeast Asian lizards that provide

an additional model system, with largershould be large

not "larger" amounts of generic diversity of Indian line-

ages and Asian lineages, to test for phylogenetic support

for these Eocene land bridges, which we refer to as the

Eocene Exchange Hypothesis (EEH).

The Draconinae is a subfamily within the lizard family

Agamidae that contains 27 genera and 199 species [17]

comprising approximately 50 % of total Agamid diver-

sity. Members of the Draconinae collectively range

throughout mainland Asia (Indochina), Sundaland,

India, and Sri Lanka (Fig. 1). Draconinae lizards are di-

urnal omnivores exhibiting a range of arboreal and

terrestrial life styles and are some of the dominant mem-

bers of diurnal lizard communities throughout South

and Southeast Asia [18, 19]. To date, only two studies

have investigated the phylogenetic relationships within

the Draconinae. However, both were part of broader sys-

tematic studies on the entire Agamidae family [20, 21].

Moody’s [20] dissertation included 60 extant taxa, was

based on 122 morphological characters, and included

data from 18 fossils. This work was the first study to

hypothesize a Eurasian origin for the Indian draconine

lineages. Macey et al. [21] was the first study to provide

a molecular phylogeny for the Agamidae (including Dra-

coninae), and included an analysis of 72 taxa and one

mitochondrial gene. This analysis demonstrated that

mainland Asian agamids were paraphyletic with respect

to Indian and Sri Lankan lineages. However, multiple

deeper nodes within the Draconinae were characterized

by poor support, resulting in ambiguous relationships

[21]. The authors then used a series of parsimony

methods to suggest that these problematic areas of the

draconine phylogeny, along with a lack of biogeographic

signal, were likely due to an Indian-Asian faunal ex-

change just after the hard collision, 20–25 MYA. Subse-

quent reviews of Indian-Eurasian collision regarded the

biogeographical interpretations of Macey et al. [21] with

skepticism due to the poorly supported relationships

within the Draconinae ([22]; and references therein).

Since Moody [20] and Macey et al. [21], new Draconinae

genera have been discovered, and previously unsampled

rare genera have been collected, providing additional gen-

etic material for reanalysis of draconine relationships. The

lower per-base cost of next-generation sequencing has also

led to the development of genomic methods extend-

ing the number of genetic markers that have limited

the phylogenetic resolution in previous studies. Here,

we generate a genomic data set of 4536 nuclear loci

derived from ultraconserved elements (UCEs), along

with traditional Sanger sequencing data, to resolve

the problematic relationships within the Draconinae

reported by Macey et al. [21]. With the addition of

new taxa, and genomic sequence-capture data, ana-

lyzed in combination with newly developed geological

models, we are poised to reinterpret the biogeo-

graphic origins of Indian and Southeast Asian draco-

nine lineages. Specifically, we tested (1) Moody’s [20]

pre-collision hypothesis versus Macey et al. [21] post-

collision hypothesis for the origins of Indian lineages;

and (2) suggest that a conclusion in favor of Moody’s

[20] pre-collision hypothesis would show phylogenetic

support for the Eocene land bridge connections pro-

posed by Acton [13] and Atchison et al. [14]. We

term this the Eocene Exchange Hypothesis (EEH).

Methods
DNA extraction, Sanger mitochondrial and nuclear DNA

sequence data collection

Genomic DNA was extracted from muscle or liver tissue

samples on loan form La Sierra University, Villanova

University, the California Academy of Sciences, the

Zoologisches Forschungsmuseum Alexander Koenig,

and the Chicago Field Museum. Extractions were pre-

formed using a DNeasy tissue kit (Qiagen, Inc.) and se-

quenced for the mitochondrial and nuclear genes, ND2

(primers from [21]) and RAG-1 (primers from [23]), re-

spectively, using standard PCR and Sanger sequencing pro-

tocols. We edited the sequences and aligned them within

Geneious Pro 5.0.4 (http://www.geneious.com, [24]) and

these new sequence data were combined with existing data

from [21] and [23] (Additional file 1: Table S1). In total, the

dataset included 17 of the 26 draconine genera, including

all but two of the Indian genera (Psammophilus and Cory-

phophylax). Hyrdosaurus and Physignathus were not in-

cluded as their phylogenetic affinities are with other agamid

lineages outside of the Draconinae [21]. At least three spe-

cies (or individuals if the genus was monotypic) per genus

were sampled, for a total of 44 individuals. ND2 and RAG-

1 were selected as they are the most frequently sequenced

markers across acrodont lizards and therefore provide max-

imum taxonomic coverage. We used these markers to pre-

liminarily place new genera in a phylogenetic context, and

as a guide tree in our selection of genera for UCE develop-

ment to resolve problematic relationships. No experimental

research was carried out on these animals in this study.
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Ultraconserved elements (UCE) data collection

To resolve the problematic areas in the phylogeny from

the Sanger data (pink nodes: Fig. 2a), we selected 24 in-

dividuals representing 12 genera (underlined taxon

names in Fig. 2) from across four species groups (brown

nodes: Fig. 2a) for ultaconserved element (UCE) enrich-

ment. Sequence-capture data collection followed a modi-

fication of the approach outlined by Faircloth et al. [25].

Briefly, we fragmented genomic DNA with a Covaris S220

ultrasonicator (Covaris, Inc.), and prepared Illumina

libraries using KAPA library preparation kits (Kapa

Biosystems) and custom sequence tags unique to each

sample [26]. Libraries were pooled into groups of 8

taxa and enriched for 5060 UCE loci (5472 probes).

We amplified enriched pools with a limited-cycle PCR

(18 cycles) and sequenced final libraries on a partial

Ilumina HiSeq 2000 lane. Reads were quality filtered using

the Illumiprocessor [27] wrapper for Trimmomatric [28],

and assembled into contigs using Trinity [29]. Where

alternate alleles differing by less than 5 % sequence diver-

gence (or two nucleotide positions, whatever was greater)

were present in a sample for any given UCE locus, Trinity

retained the allele supported by the largest number of

reads. We used PHYLUCE v. 1.4 (Faircloth et al. [25, 30])

to match contigs to UCE loci and generated two align-

ments in MAFFT [31]: one containing no missing loci

across all individuals (complete) and another containing

data for at least 75 % of taxa per locus (75 % complete),

which returned alignments of 1114 loci and 4536 loci,

respectively.

Phylogenetic and biogeographic analyses

Sanger data

We first used Bayesian analyses with MrBayes 3.2.2 [32] of

the ND2 and RAG-1 datasets independently in the con-

text of the entire Agamidae to ensure that Draconinae was

monophyletic. Once monophyly and lack of conflict be-

tween loci was established, we concatenated the two gene

Fig. 1 Map showing the distribution of Draconinae and the four biogeographic area (differently-colored borders) used in ancestral

range reconstructions
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partitions for subsequent analyses. We used uniform

priors in MrBayes 3.2.2 and partitioned the dataset by

locus and codon within each locus for just the members

Draconinae sub-family. We then assigned the GTR+ Γ

substitution model for each partition and used three

chains (two hot and one cold), and carried out 100 million

generations, sampled every 10,000 generations. Due to the

risk of substitution saturation, we performed analyses in-

cluding and excluding the third codon position for the

ND2 alignment. Convergence between chains, likelihood

scores, and estimate sample size (ESS) values were evalu-

ated using Tracer 1.6 [33] In order to obtain a reliable root

age for divergence-time estimates within Draconinae, we

expanded our ND2 and RAG-1 datasets to include data

from all acrodont lineages. We analyzed this expanded

dataset using eight acrodont fossils (Additional file 2:

Table S2) within a Bayesian framework in BEAST 2.3 [34]

using the fossilized-birth-death model [35, 36]. The

fossilized-birth-death process provides a model for the

distribution of speciation times, tree topology, and distri-

bution of lineages sampled before the present, and treats

the fossil observations as part of the prior on node time

estimates. We used the root age for the Draconinae result-

ing from this analysis (85 MYA) as a minimum-age cali-

bration for the root of the Draconinae for subsequent

time of divergence estimates within the Draconinae clade.

Sequence-capture data

We performed likelihood analyses in RAxML v.8.1.20

[37] on concatenated datasets for the incomplete (4536

loci) and complete (1114 loci) matrices, using the GTR+ Γ

substitution model, and ran 100 fast bootstrap replicates.

Fig. 2 a Bayesian analysis (in MrBayes) of ND2 and RAG-1 data, with black dots denoting nodes with posterior probabilities above 0.95. Brown

nodes indicate four well-supported species groups (1–4; see text for details) and pink nodes identify poorly supported relationships among these

species groups. Underlined taxon names are genera selected for UCE enrichment. b Multi-species coalescent (“species tree”) from the species tree

estimation using average coalescence times STEAC analysis, using the complete matrix of 1114 UCE loci. Black dots denote nodes with 100

bootstrap support. Brown nodes indicate the four species groups (Group 2 = brown circle; see text for discussion). Blue nodes identify problematic

nodes recovered in Likelihood analysis of the Sanger dataset, resolved with sequence-capture data
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In addition to the concatenated analysis, maximum likeli-

hood gene trees were constructed for each of the UCE loci

included in the complete matrix using Phyluce with

RAxML v.8.1.20 [37], under default settings. Phyluce and

RAxML were also used to generate gene trees for 500

multi-locus bootstraps [38]. Custom R-scripts (R v3.2.0; R

Core Team 2015) and the R library Phybase [39] were

then used to infer the STEAC [40] summary species tree

for the original and bootstrapped data.

Grafted phylogeny and divergence dating

Using 85 MYA as a minimum age limit for the ancestor

of the Draconinae, divergence dates for subclades were

estimated in BEAST 2.3 using the ND2 and RAG-1

datasets with linked clock and tree models. We applied

Birth-Death tree priors and constrained the relationships

to match the results from the analyses of the UCE loci

(blue nodes: Fig. 2b) and let the relationships within

each species group be estimated by the BEAST analyses.

We used a relaxed uncorrelated lognormal clock model

and an exponential prior for the mean rate of each parti-

tion. Default values were used for all other priors, and

the analysis was run for 150 million generations sam-

pling every 12,000 generations, with chain stationarity,

and ESS values were evaluated in Tracer 1.6. The first

25 % of trees were discarded as burn-in and the max-

imum clade credibility tree with median node heights

was summarized using TreeAnnotator 2.3 [34]. We con-

verted our alignments to fasta format using seqmagick

(http://seqmagick.readthedocs.org/en/latest/). Then, with

the estimate for divergence between Mantheyus and

other draconine species of 85MYA, we estimated the

TMRCA of subclades based on pairwise Hamming

distances [41] between UCE loci (with a sequence sat-

uration correction of 0.95) calculated through fas-

tphylo [42], assuming a naïve strict clock. We carried

out the calculations using a custom R-script [43]. Any

loci where subgroup divergence times exceeded those

of the calibration time were discarded due to the like-

lihood of incomplete lineage sorting and/or excessive

rate variation. Using the same methods, we then esti-

mated the time to most recent common ancestor

(TMRCA) of the Draco + Ptyctolaemus and species

group 1–4 clades using the estimated age of the Non-

Mantheyus clade. The estimate of the TMRCA of

species group 1–4 was then used to age the split be-

tween Acanthosaura and Pseudocalates (species group

1), and the ancestor of species groups 2/3/4. The spe-

cies group 2/3/4 TMRCA estimate was then used to

age the split between Salea and Calotes (species

group 2 and 3), and the ancestor of species group 4.

Finally, the estimate for the TMRCA of species group

4 was used to obtain an estimate of the TMRCA of

Certaophora/Lyriocephalus/Cophotis.

Ancestral area reconstructions were performed using

likelihood and Bayesian methods in LAGRANGE within

the program RASP 3.0 [44], and in RevBayes 10.10 [45]

respectively. Taxa were assigned to their biogeographic

zone (Fig. 1) based on their modern day distributions

and RevBayes reconstructions were visualized using

the online resource Phylowood [46]. Traditionally, the

Philippines is not classified as part of Sundaland how-

ever, we included taxa from this archipelago in the

Sundaland biogeographic area because the entire Philippine

agamid fauna is Sundaic in origin.

Results
Sanger mitochondrial and nuclear data phylogenetic

analyses

The Bayesian analyses of the combined Sanger dataset

recovered new relationships that have not been reported

in any previous study (Fig. 2a). Mantheyus was recov-

ered as sister to the remaining Draconinae. The next

lineage to diverge was a well-supported clade containing

Draco, and Ptyctolaemus (Fig. 2a). Lastly, there were

four well-supported species groups (brown nodes:

Fig. 2a). The relationships within each of these species

groups were well supported. However, the relationships

between the species groups were poorly resolved and

characterized by short branches (pink nodes: Fig. 2a). As

the resolution of the relationships between the species

groups is vital for testing hypotheses of Indian or

Eurasian origins, representatives of the taxa from each

of these species groups were included in a phylogenetic

reconstruction from analyses of UCE data.

Sequence-capture data phylogenetic analyses

There were 4536 loci with data for at least 75 % of

the n = 23 individuals included in this study. These loci

had an average length of 644.7 bp (S.D. = 249.7 bp), of

which an average of 10.5 % of sites (S.D. = 20.0 %) were

parsimony informative. The average amount of missing

data per locus was 23.6 % (S.D. = 19.4 %), including both

missing individuals (up to 25 % of individuals at each

locus) and shorter sequence lengths for individuals that

were present (Additional file 3: Table. S3). All analyses of

the sequence-capture data were successful in resolving the

problematic relationships recovered from the Sanger data

(blue nodes; Fig. 2b) and recovered each of the four spe-

cies groups within the Draconinae, with high support

(brown nodes; Fig. 2b), consistent with the results from

the Sanger datasets.

Biogeographic analyses, divergence dating, and

ancestral areas

Both of the methods employed to estimate ancestral

ranges (LAGRANGE and RevBayes analyses) returned

comparable estimates of ancestral areas, however, the

Grismer et al. BMC Evolutionary Biology  (2016) 16:43 Page 5 of 11
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RevBayes reconstructions were more conservative. Given

the short branch lengths leading to some of the deeper

nodes in our phylogeny, the RevBayes reconstructions

are a better reflection of geology at the times of these

nodes. Therefore only the RevBayes reconstructions are

discussed. The grafted BEAST time-tree (Fig. 3a) was

concordant with the phylogenies derived from the Se-

quence capture data and Sanger data (Fig. 2). The

BEAST time-tree (Fig. 3) indicated the most recent com-

mon ancestor (MRCA) for the Draconinae originated

approximately 92 MYA in mainland Asia ~30 million

years after the ISC broke off Gondwanaland. The MRCA

for Draco and its relatives most likely originated in

mainland Asia 53 MYA and diverged from the other

mainland Asian and Sundaic lineages around 69 MYA

from a mainland Asian ancestor. The three remaining

species groups appear to have diversified from one an-

other rapidly between 51–59 MYA, most likely from a

mainland Asia ancestor that existed approximately 59

MYA. The Indian endemic Salea (Species group 2) rep-

resents the first invasion of India (D#1: Fig. 3a), having

diverged from a mainland Asian ancestor it shared with

Calotes (Species group 3) approximately 56 MYA

(Fig. 3a). The MRCA for Acanthosaura and Psuedoca-

lotes (species group 1) was estimated at 56 MYA with a

high probability that this ancestor originated in either

mainland Asia or Sundaland (where both genera pres-

ently occur). Within this species group, we recovered

support for a second invasion of India and Sri Lanka,

with the ancestor of Sitana and Otocryptis originating

from a predominantly Sundaic ancestor between 51–27

MYA (D#2: Fig. 3a). Lastly, the MRCA for the Sri Lan-

kan and Sundaland radiations (species group 4) origi-

nated around 51 MYA in Sundaland or Sri Lanka

(Fig. 3a). Within species Group 4, Aphaniotis, Broncho-

cela, and Gonocephalus appear to have diverged from

one another 42 MYA and form the sister lineage to the

Sri Lankan genera Lyriocephalus, Cophotis, and Cerato-

phora (Fig. 3a). The Sri Lankan lineages diverged from

one another 28 MYA. We obtained these timing esti-

mates for key divergences and dispersal events using

Sanger data (as they were available for a broader taxo-

nomic sample, including key fossils in comparison with

the UCE data) in BEAST, with the topology constrained

by the results from UCE data. We then crosschecked

these estimates using the minimum divergence time for

Draconinae of 85 MYA, and sequence divergence among

UCE loci between clades of interest. This method is some-

what cruder than the BEAST estimates because it cannot

account for among lineage rate variation. However, the es-

timates obtained using this approach were broadly com-

parable with results or our Bayesian analysis performed in

BEAST (Fig. 4), offering support for our timing of key dra-

conine dispersal events in Southeast Asia.

Discussion
In this study, we utilized unprecedented sampling of the

Draconinae, both in taxonomic diversity and genetic

markers, to give fresh biogeographic insight into the ori-

gins of the Indian and Southeast Asian Draconinae line-

ages. In particular, the thousands of loci generated using

sequence-capture and next-generation sequencing were

successful in resolving previously problematic relation-

ships within the Draconinae (brown nodes: Fig. 2). Using

the fully resolved UCE phylogeny to constrain the top-

ology of our Sanger dataset, we generated a grafted

Bayesian time tree (Fig. 3a), which supported the hy-

pothesis that there were at least two independent

colonization events of India by Southeast Asian lineages

during the Eocene. These results favor Moody’s [20] pre-

collision hypothesis with the estimated times of the

Eurasian invasions in accordance with the Eocene land

bridges proposed by Acton, [13] and Ali and Aitchison

[14]. These hypothesized land bridges would have con-

nected areas of Eurasia (now Sundaland and the Thai-

Malay peninsula) and the ISC before its collision, and

are the likely conduits for terrestrial faunal exchange

and range expansion in the lineages leading to to-

day’s Indian subcontinent endemics Salea, Sitana,

and Otocryptis.

The Eocene exchange hypothesis

The first Draconinae invasion into India consisted of a

lineage represented today by the endemic genus Salea,

which descended from a mainland Asian ancestor that

also gave rise to the Indochinese genus Calotes. This

colonization event most likely resulted from an early

Eocene land-bridge connection or an over-water dis-

persal event just prior to the ISC’s connection with

Sundaland (Eurasia) 50–55 MYA (Fig. 3b). Given the

sedentary and arboreal natural histories of extant dra-

conine species, we feel the former hypothesis is more

likely than the latter, although we acknowledge the

possibility of both. We expect a broader sampling

within this clade of Southeast Asian, and especially

Indian, species will provide a better estimate of the

ancestral area at this node (Salea + Calotes: Fig. 3a).

The second dispersal event into India occurred with

the divergence of the Indian and Sri Lankan endemics

Sitana and Otocryptis from an ancestor most likely

found in Sundaland during the middle Eocene. This

colonization of the Indian subcontinent most likely

was facilitated via a land bridge that connected the

ISC with Sumatra and the Thai-Malay peninsula at 48

MYA. Additionally, the lineage sister to Sitana and Oto-

cryptis, Japalura, and Pseudocalotes, is Phoxophrys (Fig. 3a).

This genus is endemic to the lowland forests of Borneo and

Sumatra—further supporting an India-Sundaland (Eurasia)

connection via Sumatra and the southern portion of the
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Fig. 3 (See legend on next page.)
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Thai-Malay Peninsula during the middle Eocene. These in-

dependent colonization events not only support Moody’s

[20] pre-collision biogeographic hypothesis, but also give

additional phylogenetic support for Eocene land bridges

postulated by Acton, [13] and Ali and Aitchison [14]. Our

results contribute to a growing body of literature demon-

strating the possibility of floral and faunal exchange be-

tween India and Eurasia during the Eocene, before the

ISC’s hard collision 20–25 MYA (e.g. freshwater crabs: [7];

rhacophorid tree frogs: Li et al. [16]). Given the ecology of

these organisms, and of the draconine species sampled

here, we feel that it is less likely Eocene faunal exchanges

occurred as the result of over water dispersal events. It is

unclear whether the Eocene land bridges were two separate

spatial/temporal features, versus possibly the same entity,

just changing position as the ISC progressed northward. In

either case, their existence may have provided continental

connections between Southeast Asia and India during the

Fig. 4 Box-and-whisker plots, showing results of our analysis using our UCE_divergence_timing R script (minimum, 25 % quartile, 75 % quartile,

maximum) with a minimum estimate for the age of Draconinae of 85 MYA used to calibrate the ages of the Non-Mantheyus clade. For

subsequent subgroups, the estimated age of the clades were contained within this calibration point. For each group’s divergence timing

estimate, only loci that appeared “clock-like” (ingroup age estimate did not exceed the calibration age) were used. Percentages of loci that were

“clock-like” versus non-“clock-like” (likely affected by rate variation or incomplete lineage sorting), and loci with missing data for outgroups (sister

species of the groups of interest) are shown in pies above box-and-whisker plots (see key). Clades with red arrows show slow-downs relative to

their outgroups i.e. average cumulative branch lengths leading to ingroup taxa from the ingroup/outgroup node are shorter than those leading

to the outgroups (this appears to be correlated with underestimates of divergence times using the naïve strict clock method), clades with green

arrows show rate speed-ups relative to their outgroups i.e. average cumulative branch lengths leading to ingroup taxa are longer than those

leading to the outgroups. Bayesian estimates of divergences times performed in BEAST are shown as small blue diamonds, for comparison

(See figure on previous page.)

Fig. 3 a Time-calibrated Bayesian analysis of ND2 and RAG-1 data, with black dots denoting nodes with posterior probabilities above 0.95,

followed by the estimated divergence time for each node in MYA. Pink circles identify nodes where topology was constrained based on

Likelihood and species tree analyses of UCE data (Fig. 2B). Brown circles indicate the four species groups. Biogeographic distributions of

contemporary samples follow area coding depicted in Fig. 1, with probability of areas at ancestral nodes from our Bayesian analysis in

RevBayes. Inferred dispersal events into India are labeled D#1 and D#2, resulting in Indian or Indian/Sri Lankan Salea, Sitana, and Otocryptis.

b Hypothesized position of the ISC and an early Eocene land bridge allowing for the first inferred dispersal event (D#1 in a) from Eurasia into India,

50–55 MYA. c. Hypothesized position of the ISC and a middle-late Eocene land bridge allowing for the second first inferred dispersal event (D#2 in a)

from Eurasia into India between 35–50 MYA (paleomaps modified from Klaus et al. [7])
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Eocene, which could have allowed for terrestrial exchanges

between these areas. These results collectively represent a

broad-scale pattern of faunal exchange between the ISC

and areas of Eurasia before its collision with Asia, at least

partially facilitated by land bridges, which we term the

“Eocene Exchange Hypothesis.” Furthermore, we believe

the reoccurring and somewhat subjective disagreement be-

tween the Indian vs. Asian origins hypotheses [2–12, 16],

have simply identified opposing perspectives of a broad

geographic and temporal conduit of opportunity for faunal

exchange between India and Eurasia. Future studies would

benefit from an attempt to empirically focus on the timing

and direction of faunal exchange between these biogeo-

graphic regions, rather than a prevalence of one scenario

over the other.

Revision of the age of draconinae

Our estimate for the age of Draconinae is significantly

older than those previously published in broad scale

squamate phylogenetic studies (most recently [47]). Our

older estimates are largely due to our consideration of

the acrodont fossils, Mimeosaurus and Priscagama, as

leiolepids rather than stem agamids, following Estes

et al. [48]. These fossils have had a rather turbulent his-

tory of classification, with various studies suggesting

Mimeosaurus was allied with the Chameleonidae [49];

then hypothesized to be located along the branch lead-

ing to Leiolepis and Uromystax [20]; and lastly united

with Priscagama in an extinct subfamily, Priscagaminae

[50], considered to be a stem lineage of Leiolepis and

Uromystax [51].

This confusion has persisted because when Mimeo-

saurus and Priscagama were first described, the con-

temporary genera Leiolepis and Uromystax were still

included within the family Agamidae and demonstrated to

be the sister group to the remaining agamids [20] (this re-

lationship has been further confirmed with molecular data

[21, 23, 52, 53]. However, Estes et al. [48] removed Leiole-

pis and Uromystax from the Agamidae and placed them

in their own family (the Leiolepidae), and this taxonomy

has not been followed by subsequent studies. Thus, the

acrodont fossils of Priscagama and Mimeosaurus have

been consistently considered as stem fossils for all aga-

mids and not their sister group, Leiolepis and Uromystax.

We followed the taxonomy of Estes et al. [48] and consid-

ered Mimeosaurus and Priscagama as stem leiolepids and

not stem agamids. It was this placement that lead to our

older estimates of Draconinae origins (85–92 MYA).

However, this estimate is consistent with the ages of new

amber agamid fossils being described out of Indochina

and previous studies on Iguanian lizards ([54]; Bauer et al.,

unpublished data; personal communication with JLG

and PW). We recommend that researchers continue

to follow the taxonomy of [48] with the recognition

of the Leiolepidae as a distinct family and the place-

ment of priscagamine fossils as stem to Leiolepis and

Uromystax, as suggested in the original descriptions

of these fossils [20, 50, 51].

Conclusions
The use of additional taxa, sequence-capture data, and

newer geological models—all data not available to previ-

ous studies on Draconinae—resulted in novel and well-

resolved relationships, leading to new biogeographic

insights in this unique subfamily of lizards. Using these

biogeographic insights and a broad comparison with pre-

vious biogeographic literature, we propose the Eocene Ex-

change Hypothesis, and the simple but well supported

assumption that land bridges may have facilitated a broad-

scale pattern of faunal exchange between the ISC and

areas of Eurasia before its collision with Asia during the

Eocene. We expect that with additional sampling of Indian

and mainland Asian species, some factors that may have

biased our biogeographic interpretations within the

Draconinae to (i.e., Indian extinction events), can be eval-

uated. In addition, sampling of additional draconine spe-

cies will allow us to test more fine-scaled hypotheses

concerning dispersal and diversification within this group.

Our phylogenomic analysis add to a growing body of

knowledge addressing the effects of the ISC’s collision on

biogeography and offers new ideas to be tested by future

studies.
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