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Abstract

This  thesis  investigates  relationships  between  the  European  Union  Emission  Trading 

Scheme (EU ETS) and energy markets. A special focus is given to fuel switching, the main short-

term abatement measure within the EU ETS. This consists in substituting Combined Cycle Gas 

Turbines (CCGTs) for hard-coal plants in off-peak power generation. Thereby coal plants run for 

shorter periods, which allows power producers to reduce their CO2 emissions.

In Chapter 1, we outline different approaches explaining relationships between carbon and 

energy markets. We also review the literature relating to these issues. Next, we further describe the 

fuel switching process and, in particular, we analyze the influence of energy and environmental 

efficiency of thermal power plants (coal and gas) on fuel switching.

In Chapter 2, we provide a theoretical analysis that shows how differences in the efficiency 

of CCGTs can rule interactions between gas and carbon prices.  The main result shows that the 

allowance price becomes more sensitive to the gas price when the level of CO2 emissions increases.

In Chapter 3, we examine interactions between carbon, coal, gas and electricity prices in an 

empirical study. Among the main results, we find that there is a significant link between carbon and 

gas prices in the long-run equilibrium.

In Chapter 4, we analyze the cross-market price discovery process between gas and CO 2 

markets. We identified in previous chapters that there is a robust significant link between gas and 

CO2 markets. They are linked commodities, and their prices are affected by the same information. 

In  an  empirical  analysis,  we  find  that  the  carbon  market  is  the  leader  in  cross-market  price 

discovery process.

Keywords: Carbon  Finance,  Climate  change  economics,  Energy  economics,  EU  ETS,  Fuel 

switching, Partial equilibrium analysis, Financial econometrics, Cross-market price discovery.
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Le Marché Européen du CO2 et les marchés de l'énergie : 

Analyse économique et financière

Résumé

Cette thèse porte sur les relations entre le Système Communautaire d'Échange de Quotas 

d'Émission  (SCEQE)  et  les  marchés  de  l'énergie.  Une  attention  particulière  est  donnée  au 

changement de combustible, le principal moyen de réduire les émissions de CO2 à court-terme dans 

le SCEQE. Cela consiste à substituer des centrales gaz aux centrales charbon dans la production 

d'électricité en dehors des heures de pointes. Ainsi, les centrales charbon fonctionnent sur de plus 

courtes périodes, ce qui permet de réduire les émissions de CO2.  

  
Le Chapitre  1  décrit  différentes  approches  expliquant les  relations  entre  les  marchés  de 

l'énergie et du CO2. Une revue de littérature est ensuite présentée. Nous donnons une description 

détaillée du processus de changement de combustible. En particulier, l'influence de l'efficacité des 

centrales est analysée. 

Le Chapitre 2 fournit une étude théorique de l'impact des différences d'efficacité parmi les 

centrales gaz pour le changement de combustible. Le principal résultat montre que la sensibilité du 

prix du CO2 vis-à-vis du prix du gaz dépend du niveau des émissions de CO2.

Le Chapitre 3 examine les interactions entre les prix de l'électricité, du charbon, du gaz et du 

CO2 dans une étude empirique. Les résultats montrent une qu'il existe une relation significative 

entre le gaz et le CO2 à l'équilibre de long-terme.

Le  Chapitre  4  étudie  le  processus  de  découverte  des  informations  qui  influencent  la 

formation des prix du gaz et du CO2. La forte relation entre le gaz et le CO2 indique que leurs prix 

sont affectés par les mêmes informations. Nous montrons dans une étude empirique que le marché 

du CO2 domine le processus de découverte de ces informations.

Mots clés : Finance carbone, Économie du changement climatique, Économie de l'énergie, SCEQE,

Fuel switching, Équilibre partiel, Économétrie financière, Processus de découverte de l'information.
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Introduction

In ratifying the Kyoto Protocol, the European Union committed itself to reducing its greenhouse gas 

(GHG) emissions by 8% relative to the 1990 level in the first Kyoto commitment period (2008-

2012). In January 2005, to meet this target in a cost-effective way, the European Union established 

the  European  Union  Emission  Trading  Scheme  (EU  ETS),  a cap-and-trade system for  carbon 

emissions in the energy and industrial sectors. It is the world's largest emissions trading system to 

date. According to the 2003/87/EC directive, the EU ETS covers about 11,000 installations,1 which 

represent almost 50% of CO2 emissions and 40% of total GHG emissions in the European Union.

The EU ETS is  nowadays  the  central  piece  of  the  European climate  policy which  was 

initiated in 1991, with the first Community strategy to limit CO2 emissions and increase energy 

efficiency. At the end of the 1980s, the observation of an average temperature increase near the 

Earth's surface2 of about +7°C since the pre-industrial period has raised the question of the impact 

of human activities. This has been further suggested by the intriguing concomitance of recorded 

sharp increases in temperatures and GHG concentrations since 1850 (see Figures 1 and 2).

1 Covered installations are those defined in Annex 1 of the  2003/87/EC directive. Combustion installations of the 
energy sector with installed capacities superior to the threshold of 20 thermal MW are notably concerned. Other 
installations are those of sectors such as cement, refineries, pulp and paper, iron and steel. 

2 The scientific reliability of calculation of a  globally averaged surface temperature is disputed by some scientists. 
However,  most  of  the  scientists  agree  that  regional  climate  variations  can  modify climatic  conditions  in  other 
regions of the world. Accordingly,  “climate change” is a more accurate terminology than “climate warming” in  
describing this phenomenon. 
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Following conclusions of the Intergovernmental Panel on Climate Change (IPCC), there was a wide 

consensus among scientists and policymakers in the early 1990s to recognize that the influence of 

anthropogenic  GHG emissions  (i.e.  human-made GHG emissions)  on  the  observed  increase  in 

globally averaged temperatures is very likely. However, human activities are not the only source of 

GHG emissions. Natural phenomena such as solar activity or volcanic eruptions also contribute to 

temperature variations and GHG concentration. Moreover, no formal proof of human influence on 

temperatures and climate has been given yet. Accordingly, there are a few scientists who dispute the 

21

Figure 1: Northern hemisphere temperature variations from IPCC [2001] and Guesnerie [2003]

Figure 2: Atmospheric CO2 concentrations from IPCC [2001] and Guesnerie [2003]



idea of a human-caused climate change. Nevertheless, while there do remain scientific uncertainties 

about the human influence, the correlation between high increases in temperature variations (and 

possible global warming) and anthropogenic GHG emissions give strong presumptions.  From an 

economic point of view, those uncertainties do not justify delaying immediate actions to reduce 

human-made GHG emissions. The nature and scale of potential risks (as well as the fact that some 

effects could be irreversible and could accelerate processes) are so huge that inaction, if unfavorable 

events  occur,  may be more costly than  action,  even though occurrence  is  uncertain.3 After  all, 

should we refuse to insure our house because we cannot be sure that it will burn? As pointed out in 

the Stern Review on the economics of climate change (Stern [2006a]), stabilization of atmospheric 

CO2 concentrations at 550 ppm4 would be five to twenty times less costly than the cost of inaction.5 

Such considerations have brought policymakers to develop an international response to the 

problem of climate change. Following the precautionary principle,6 many countries have committed 

to implementing climate policies, i.e. policies established to address the problem of climate change 

by reducing GHG emissions and financing a low-emission development. Most of those initiatives 

have been decided at an international level. They are reviewed in what follows.

Review on international climate policies

The  EU  ETS  is  closely  related  to  the  Kyoto  Protocol  Flexibility  Mechanisms:  the  Joint 

Implementation  mechanism  (JI,  article  6  of  the  Protocol),  the  Clean  Development  Mechanism 

(CDM, article 12), and the Emissions Trading mechanism (article  17).  The Kyoto Protocol has 

extended the United Nations framework originated from the United Nations Framework Convention 

on Climate Change (UNFCCC) of 1992. The UNFCCC was the first step in international treaties 

dealing with reducing temperature increases and anthropogenic climate change (i.e. climate change 

with presumption of human influence). With the  Kyoto Protocol, adopted in  the United Nations 

3 Due to irreversibility and acceleration in the increase of the greenhouse effect with higher GHG concentrations,  
inaction may create more and more damage and increase the cost of delayed actions. See Guesnerie [2003] and 
Stern [2006b].

4 Ppm (parts per million) is the measure of the number of GHG molecules in the total number of molecules of dry air. 
For example, 550 ppm means 550 molecules of a GHG per million molecules of dry air. See IPCC [2007].

5 Note that the Stern Review's methodology is subject to numerous discussions that we do not report here.
6 While the precautionary principle is sometimes criticized as an absurd call for “zero risks” required by anxious  

people, the extraordinary nature of potential consequences of climate change makes it probably much more relevant 
in this case.
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summit of Kyoto in December 1997,7 an international GHG emissions reduction commitment was 

set for the first time. Developed countries listed in Annex B of the Protocol have committed to 

reduce collectively their CO2 emissions by 5.2% compared with the 1990 level, between 2008 and 

2012 (i.e.  taking as  reference the year  1990 for  each year).  Among these  countries,  individual 

contributions  to  the  global  effort  span  from -8% (the  European Union-15)  to  +10% (Iceland), 

depending on historical contributions to concentration of CO2 in the atmosphere (see Table 1). 

Table 1: Annex B countries emission reduction targets (in the period 2008-2012) compared to the 1990 levels, based on 

Brohé [2008] 

Country Target (in %)

Iceland 10

Australia 8

Norway 1

New Zealand, Russian Federation, Ukraine 0

Croatia -5

Canada, Hungary, Japan, Poland -6

United States -7

Bulgaria, Czech Republic, Estonia, Latvia, Liechtenstein, Lithuania, Monaco, 
Romania, Slovakia, Slovenia, Switzerland

-8

European Union - 15 -8

Countries'  targets  are  converted  into  Assigned  Amount  Units  (AAU)8 which  are  received  by 

governments of Annex B countries (“Annex B Parties”). In order to facilitate the achievement of 

emission reduction objectives and to minimize the overall cost, an international emissions trading 

system  offers  the  possibility  to  trade  AAUs  among  Annex  B  Parties.  The  Emissions  Trading 

mechanism allows countries that have AAUs in excess – due to higher emission reductions than 

their targets – to sell these spare units to countries that are over their targets. Other emissions units 

can be  traded (and used for  compliance)  under  the Kyoto Protocol's  emissions  trading system. 

These units are the Emission Reduction Units (ERUs) and the Certificates of Emission Reduction 

(CERs). The ERUs are units issued from the JI mechanism. The JI mechanism allows an Annex 1 

7 While adopted in 1997, the Kyoto Protocol did not come into force before February 2005 due to late ratification of  
Russia. Australia is the latest Annex B country (i.e. countries with binding emission reduction targets in the Kyoto 
Protocol) to have ratified the Protocol on December 2007. So far, the United States is the only signatory (Annex B) 
country which has not ratified the Protocol.

8 Each unit gives the right to emit one tonne of CO2.
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country  (i.e.  a  country  listed  in  Annex  1  of the  UNFCCC)9 to  earn  ERUs  from an  emission 

reduction project in another Annex 1 country. The CERs are units generated through the CDMs. The 

CDMs encourage emission reduction projects by Annex 1 countries in non-Annex 1 countries. The 

aim is to assist developing countries (i.e. non-Annex 1 countries) in achieving a sustainable low-

carbon development. There are also units that can be used for compliance although they cannot be 

traded. These are the Removal Units (RMUs, articles 3.3 and 3.4 of the Kyoto Protocol) which are 

issued on the basis of emission reduction projects through the Land Use, Land Use Change and 

Forestry (LULUCF) activities.10 In each case, the CERs, ERUs and RMUs are delivered after a 

validation and certification process that warrants effective emission reductions. Those certification 

are guaranteed by the CDM Executive Board (CDM EB), for the CDMs, and by the JI Supervisory 

Committee (JISC), for the JI and JI-LULUCF.11 It has to be noted that there is a major difference 

between the JI mechanism and the CDMs regarding accounting of emission credits. While CERs 

are additional credits, issued in addition to AAUs, ERUs are converted AAUs (i.e. a volume of  

AAUs equivalents to the volume of emission reductions is converted into ERUs). This was decided 

in order to avoid “double accounting” of emission reductions. Indeed, if the host country of the 

project is an Annex B country, and if the ERUs were created in addition to the host country's AAUs, 

emission reductions would be counted twice: as ERUs for the investing country and as unused 

AAUs (due to emission reductions from the project) for the host country.

Negotiations for a post-Kyoto agreement began with the Conference of the Parties (COP) of 

Bali in December 2007. It introduced a new negotiation process with the aim to reach an agreement 

for the post-2012 period at the COP of Copenhagen in December 2009. In the meanwhile,  the 

European Union has adopted the “Climate and Energy Package”, in December 2008, which extends 

the EU's climate policy after 2012. The package includes three “20 targets” to reach by 2020: 

reducing  GHG  emissions  by  20%,  reaching  20%  of  renewable  energy  in  the  total  energy 

9 The  UNFCCC  distinguishes  between  Annex  1  and  non-Annex  1  countries.  Annex  1  countries  are  developed 
countries with high past emissions, whereas non-Annex 1 countries are developing countries. Annex 1 countries had 
committed  themselves  to  reducing  their  GHG  emissions  under  the  UNFCCC.  They  agreed  to  maintain  their  
emissions to the 1990 levels by 2000, even though these targets were not legally binding (as opposed to targets of 
Annex B countries under the Kyoto Protocol, which are legally binding). Annex 1 and Annex B countries are often 
assimilated in practice, since most of Annex 1 countries are also Annex B countries (and vice versa). Turkey is the 
only country  included in Annex I but not in Annex B, while Croatia, Liechtenstein and Monaco are included in 
Annex B but not in Annex 1 (see Brohé [2008] and the UNFCCC website). 

10 Note that  only afforestation and  reforestation are eligible as project-based emission reductions in non-Annex 1 
countries,  whereas all kind of LULUCF activities are eligible in Annex 1 countries (afforestation, reforestation, 
revegetation,  forest  management,  cropland  management,  grazing  land  management).  Accordingly,  projects  in 
LULUCF are sometimes referred to as JI-LULUCF. See JMOE and GECF [2006]. 

11 There is another type of project-based units outside the Kyoto Protocol regime. These are the Verified Emissions 
Reductions (VERs) which are issued from projects that do not follow all the JI and CDM requirements, and are not  
subject to certification of the CDM EB or JISC. They are traded in the voluntary markets.
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consumption and increasing energy efficiency to save 20% of energy consumption. Besides, the EU 

ETS has been confirmed for a Phase 3 (2013-2020).

Despite the great hope in the Copenhagen Summit, it did not achieve the global binding 

agreement that was expected to prolong the Kyoto Protocol. The Copenhagen Accord was notable 

in that it referred to a collective commitment to allocate new resources to finance climate policies in 

developing countries: 30 billion USD for the period 2010-2012. It also stated that actions should be 

taken to stabilize an average temperature increase at +2°C, as recommended by the IPCC. However, 

no  explicit  binding  emission  targets  were  specified  in  the  Accord.  By  contrast,  the  signatory 

countries stated what actions they are willing to take if a binding agreement is achieved in the future 

(see Table 2).12 

Table 2: “Variable geometry” commitments of some of the main signatory countries to the Copenhagen Accord, from de 

Perthuis et al. [2010]

Country 2020 emission reduction target
Benchmark 

year

Annex 1 countries

Australia
between  5% and 15% (if  there  is  an  international  agreement  that  includes  the 
developing countries), or even 25% (if there is a target not to exceed 450 ppm of 
GHG in the atmosphere)

2000

Canada 17% 2005

EU - 27
20%  or  30%  (if  there  are  equivalent  commitments  from  the  other  developed 
countries and an adequate contribution from developing countries)

1990

Japan
25% (if there is a fair and ambitious international agreement that includes the main 
economies)

1990

New Zealand

between 10% to 20%, if  there  is  a  full  international  agreement  (aiming not  to 
exceed a 2°C rise in temperature,  comparable efforts from the other  developed 
countries, adequate measures from developing countries, rules on LULUCF, access 
to an efficient international carbon market)  

1990

Russia
15%  to  25%,  depending  on  the  recognition  of  forests  and  the  main  emitter's 
commitment to reducing their emissions  

1990

United States around 17% (subject to Congress voting on the international legislation) 2005

non-Annex 1 countries (developing countries)

Brazil between 36% and 39% compared with the “business-as-usual” assumption 2020

China 40% to 45% reducing in GDP CO2 intensity 2005

India 20% to 25% reducing in GDP GHG intensity (excluding agricultural emissions) 2005

12 The Copenhagen Accord has specified a “variable geometry” commitment system, with different targets from one 
country to another. This is a different approach with respect to the Kyoto Protocol which provided a collective  
emission target for Annex B countries. For a detailed analysis of the Copenhagen Accord, see  de Perthuis et al. 
[2010].
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At the same time, no economic mechanism has been provided in the Accord, as it was the case in 

the Kyoto Protocol with the Flexible Mechanisms.  

One year after the Copenhagen Summit, the next COP was held in Cancun in December 

2010.  While  the  Cancun  Agreements  reaffirmed  the  principles  of  the  Copenhagen  Accord,  no 

precise decision was adopted on the legal form of countries'  binding emission targets, financial 

resources and economic mechanisms for the post-Kyoto period. Nevertheless, Cancun has yielded 

some success. Notably, the enshrining of the main elements of the Copenhagen Accord into the 

UNFCCC  framework  (e.g.  stabilization  of  average  temperature  increase  at  +2°C,  calling  on 

developed countries to reduce their GHG emissions, helping developing countries to implement a 

low-emissions development) and the reassurance of the intention to continue with market-based 

mechanisms (CDMs, Emissions Trading, etc) even in the absence of a post-Kyoto commitment. 

Moreover,  a  “Green  Climate  Fund”  was  mentioned  with  the  goal  for  developed  countries  to 

mobilize  jointly 100 billion USD per  year  by 2020 to assist  developing countries  in  financing 

emission reductions and adaptation. However, there was no agreement on how money will be raised 

to feed that fund.

Many important decisions were agreed on during the COPs of Copenhagen and Cancun, 

even  though  Parties  were  often  very  vague  regarding  concrete  enforcements.  Among  those 

decisions, the recognizing of the +2°C global target and the creation of a fund to finance the clean 

development of developing countries, are particularly important. However, there was no agreement 

on how to  extend the  Kyoto  Protocol  beyond 2012.  Besides,  although a  majority  of  signatory 

countries  have confirmed their  support  for  the  Copenhagen  Accord,  emission  reduction  targets 

remain unbinding and often undefined precisely.13 Thus, the primary concern of the next rounds of 

negotiations will be to adopt a new global agreement that prolongs the Kyoto Protocol, with legally 

binding emission targets, new economic mechanisms and institutions. Recently, the COP of 2011 

was held in Durban in December 2011. Once again no legally binding agreement was achieved. 

However, the outcomes include a decision by Parties to adopt a universal legal agreement no later  

than  2015  (Durban  Platform  for  Enhanced  Action).  The  Green  Climate  Fund  has  also  been 

confirmed. The next COP will be held in Qatar in December 2012.

So far we have reviewed how the problem of climate change has been tackled at the international 

level in climate policies. We have also reported the negotiations which are currently under way to 

13 Note that reaching unanimity among Parties is a very important task since unanimity is required to enforce legally 
binding agreements under the UNFCCC's rules (de Perthuis et al. [2010]). In that respect, the Kyoto Protocol was an 
exception since the condition for  the Protocol  to  be enforced was the ratification of  at  least  55 Parties of  the  
Convention representing 55% of the global emissions of the Parties in 1990.
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prolong international climate policies beyond 2012. Let us now discuss origins of the concept of 

emission trading and give a presentation of first experiences that were implemented before the EU 

ETS.

Emission trading: theory and previous experiences

An externality exists when an agent takes decisions that are not accounted for in a market price 

even though they affect other agents'  well-being.  Accordingly,  producers of externalities do not 

have  any incentives  to  take  into  account  the  effects  of  their  decisions  on  others.  Pollution  is 

generally considered as  a negative externality. A negative externality causes divergence between 

social and private costs. The private cost of polluting activities is under-estimated with respect to 

the social cost, since it neglects the “external” cost of damages created by pollution. As a result, the 

chosen level of pollution is higher than the socially optimal level (i.e. the level which equalizes the 

social marginal cost to the social marginal benefit of pollution).

The problems of excessive pollution are sometimes also tackled in terms of “public good” or 

“common asset”. A public good is a good that exhibits properties of non-excludability (i.e. no one 

can be excluded from using the good) and non-rivality (i.e. the consumption of the good by one 

individual does not reduce the availability of the good for others). The open access to public goods 

leads to a problem which is well known by economists: free-riding, that induces over-exploitation 

and potential destruction of “common assets” (“the tragedy of the commons”, as defined by Hardin 

[1968]). Environmental goods and services are particularly exposed to that kind of inefficiency. 

Ecosystem services such as waste absorption capacities are typical examples of public goods which 

are subject to over-exploitation and this results in excessive pollution.14 The problem of climate 

change is unusual in that respect, since it concerns a global public good: climate stability. 

However pollution is referred to – negative externality or deterioration of a public   good – it 

leads to a market failure that results in inefficient outcomes. For economists, the solution consists in 

putting a price on pollution in  order to  “internalize” the cost  of  pollution in private decisions. 

Basically, there are two categories of economic instruments to internalize pollution: Pigouvian tax 

and emissions trading scheme (“cap-and-trade”). Both have been advocated by economists because 

they  minimize  the  overall  cost  of  environmental  regulation  compared  to  rigid  “command-and-

14 Pollution is  sometimes  referred  to  as  a  “public  bad” to  point  it  out  as  a  negative  externality deteriorating an  
environmental public good.
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control” approaches. Command-and-control regulations generally apply uniform emissions limits 

on regulated firms, regardless of the fact that firms are not equally efficient in reducing emissions. 

By contrast, with economic instruments, individual firms are free to choose how much they will 

reduce  their  emissions  by  comparing  their  abatement  costs  with  the  price  of  pollution.  As  a 

consequence, firms with lower costs make higher share of the overall effort of emissions reduction, 

and vice versa. This leads to the “least-cost solution” in which each firm equalizes its marginal 

abatement cost to the price of pollution.

Pigouvian tax was introduced by Pigou [1920] as a way to restore market  efficiency in 

presence of negative externalities. In his famous example, Pigou explains that social benefits of 

railway  services  in  the  England  of  the  19th century  was  over-estimated  due  to  negligence  of 

damages caused by sparks from engines. To correct the negative externality,  Pigou proposed to 

place a tax on railway companies varying with the amount of smoke produced and equivalent to the 

monetary value of the externality (i.e. equivalent to the difference between the social cost and the 

private cost). Hence, by making companies financially liable for the damages created by sparks, the 

Pigouvian tax gives an incentive to reduce the output to the socially optimal level.

The concept of the emission trading scheme was introduced by Dales [1968],15 based on the 

Coase theorem. Coase [1960] proposed a solution that consists in establishing property rights on 

emission  of  externalities.  If  transaction  costs  are  negligible,  Coase  shows  that  parties  –  i.e. 

“disrupters”  and “victims” – can achieve  a  socially optimal  level  of  externality by bargaining, 

regardless of who initially received the property rights. The socially optimal level of externality is 

attained when the marginal benefit of the externality (i.e. profits arising from the activity which 

generates the externality) is equal to the marginal cost of the externality.16 Moreover, a market price 

emerges for the externality. Based on the Coasian approach, market-based instruments (MBIs) have 

been popularized as an efficient way to reduce pollution. They work with a central authority which 

sets a cap on the total amount of pollutant that can be emitted. The cap is converted into allowances 

that give the right to emit a certain amount of pollutant. Allowances are allocated to polluters, and 

they can be traded on a secondary market. A market price emerges17 and buyers pay that price to 

increase their emissions, while sellers can earn money by selling unused allowances. Thus, polluters 

15 First references to emission trading can be found in Crocker [1966].
16 In  his  1960  paper,  Coase  argued  that  the  traditional  Pigouvian  approach  may lead  to  results  “which  are  not  

necessarily” the true social optimum, because it neglects the “reciprocal nature” of externalities: inducing disrupters 
to reduce harm on victims also inflicts harm on disrupters. He proposed his solution as a way to overcome this  
problem.

17 Emission trading schemes are sometimes referred to as “quantity instruments” because they fix the overall emission 
level (quantity) and allow the price to vary according to supply and demand conditions (i.e. according to scarcity of 
allowances, which is set by volume of emissions). By contrast, a Pigouvian tax on emissions is a “price instrument” 
because it fixes the price and allows quantities (i.e. emissions) to vary. 
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with low abatement costs have an incentive to reduce their emissions by more than needed, and 

those with high abatement costs can buy more allowances rather than engage in costly emission 

reductions. Accordingly, MBIs theoretically achieve emission reduction targets at the lowest cost to 

society.  Such a “least-cost”  solution implies  equalization of marginal  cost  of  abatement among 

polluters. Montgomery [1972] formalized this result and showed that it is verified in the equilibrium 

of the market for allowances.18

Before the EU ETS and the Kyoto Protocol, MBIs were used in many previous programs to 

reduce different kinds of pollution. The first experiences appeared in the United States in the 1970s 

and 1980s. The US Environmental Protection Agency (EPA) started in 1976 with the adoption of 

the  “offset”  mechanisms  that  became  part  of  US  legislation  with  the  1977  Clean  Air  Act 

Amendments (CAAAs) to the Clean Air Act of 1970. The 1977 CAAAs allowed emission trading 

among facilities  subject  to  emission  restrictions  regarding six  air  pollutants  (ozone,  particulate 

matter, carbon monoxide, sulfur dioxide, nitrogen oxide and lead), under the National Ambient Air 

Quality  Standards  (NAAQS).19 Other  examples  of  early  MBI  implementations  are  the  1980 

Wisconsin's program to reduce BOD (Biochemical Oxygen Demand) discharges in the Fox River, 

the 1982 EPA lead reduction program for gasoline refiners20 or the Regional Clean Air Incentives 

Market  (RECLAIM,  1994)  for  SOX (sulfur  oxide)  and  NOX (nitrogen  oxide)  emissions  in 

California. However,  the first nation-wide emission trading program in the US appeared in 1995 

with  the  US  Acid  Rain  Program  (ARP),  established  under  Title  IV  of  the  Clean  Air  Act 

Amendments of 1990.  The ARP sets annual reduction targets for SO2 emissions of power plants. 

SO2 emissions of affected facilities were capped annually at about half of their 1980 levels. Ex-post 

evaluations of the ARP have demonstrated high cost savings  with respect to previous command-

and-control approaches (see Ellerman [2003]).

Emission trading schemes related to pollutants responsible for acid rains have also been 

implemented in Europe.  On the basis of the national NOX and SO2 reduction targets established 

under the 2001/81/EC directive (the “National Emission Ceilings” directive), Slovakia (2002) and 

18 Montgomery [1972] provides formal proof that such an equilibrium exists under certain conditions (competitive 
market, no transaction-costs, etc).

19 While the offset-mechanisms introduced a market for emissions reduction credits, it was only designed for new  
facilities. Thus, it was limited in size.

20 While the lead reduction program was recognized as a success with annual cost savings estimated at 200 million 
USD by the EPA (see Newell and Kristian [2003]), the Fox River program ended in failure with only one trade in  
five years due to numerous administrative requirements discouraging the trading of allowances (see Hahn [1989] 
and [1991]).
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the Netherlands (2005) have set legally-binding caps for NOX (the Netherlands) and SO2 (Slovakia) 

emissions of industrial thermal facilities.21 The Slovakian SO2 trading program came into operation 

in 2002. The aim was to reduce SO2 emissions in 2010 to 36% of the 1999 emissions. It applied to 

sources  with  installed  thermal  capacities  above  50  MW,  and  it  represented  about  90% of  the 

Slovakian SO2 emissions in 1998. There were very few trades.  The Dutch NOX emissions trading 

system applies to approximately 250 facilities with installed thermal capacities of more than 20 

MW. It covers about 85% of industrial emissions and 25% of the overall Dutch emissions. Between 

2005 and 2010, the Dutch government set a target of 55,000 tonnes of NOx emissions per year for 

affected  facilities,  compared to  1995 base  year  emissions  of  122,000 tonnes.  Nevertheless,  the 

allowance price was very low. Yet, the Dutch NOX trading program has been prolonged until 2013. 

Discussions about the future of the program for after 2013 are currently under progress.22   

However, the first national MBI in Europe was the Individual Transferable Quotas (ITQ) 

system in the fishery sector in Iceland (1984). Between 1945 and 1983, the value of capital stock in 

the Icelandic fishery sector increased by 1,200%. The fishery stocks were clearly over-fished, which 

motivated the introduction of the ITQ system.  The program allocated quotas attached to boats. 

However, transfers of quotas were not allowed, unless boats were wrecked or sold abroad. These 

restrictions have led to incentives to destroy boats in order to sell quotas. To avoid such destruction,  

unrestricted transfers of quotas were allowed in 1991.  The ITQ system reduced the number of 

fishing boats in Iceland, and brought the fishery sector better in line with fish stocks (see EEA 

[2006]). ITQ systems were also used in Canada (1983), Australia (1984) and New Zealand (1986).  

In Europe,  ITQ  systems  have  been  implemented  in  the  fishery  sector  of  Denmark,  Italy,  the 

Netherlands, Portugal and the UK (see Branch [2004]). 

Another example of the MBI system which is not related to GHG emissions can be found in  

the packaging waste regulation.  In the wake of the EU Packaging and Packaging Waste Directive 

(94/62/EC), the UK government implemented in 1997 the Packaging Recovery Note (PRN) system 

which allows affected companies to trade quotas limiting packaging discharges. So far, the UK PRN 

is the only application of MBIs to limit packaging.

Due to the interest in promoting renewable energies in Europe, MBIs have been designed to 

foster penetration of renewables. The EU adopted a directive in 2001 (2001/77/EC) to increase the 

21 See EEA [2005], EEA [2006], IEA [2006] and Ecofys [2010].
22 For several years the EU has been assessing opportunities on developing an EU-wide NOX and SO2 trading scheme 

for IPPC installations, i.e. installations subject to the directives 96/61/EC and 2008/1/EC about Integrated Pollution 
Prevention and Control (see EC [2010]). However, in March 2011, the Commission officially announced that it will 
not be pursuing further work on NOX/SO2 trading due to potential conflicts with the Industrial Emissions Directive 
(the IDE directive 2010/75/EU) and uncertainties about the impact on local air quality (see Eurofer [2011]). Same 
questions about interferences with the IDE directive are the main topic regarding the future of the Dutch NO X 

trading program. 
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share of green electricity in the total electricity consumption. It established different national targets 

for Member States in order to meet an overall objective for the EU.23 To achieve this aim, markets 

for “Tradable Green Certificates” (TGCs) – or “Tradable Renewable Energy Certificates” (TRECs) 

– have been  established  in several EU Member States, including the UK, the Netherlands, Italy, 

Denmark, Belgium, Sweden, and Austria (see Bertoldi and Rezessy [2004]). TGC schemes impose 

quantified obligations on electricity buyers (e.g. retailers or consumers). The obligated buyers must 

surrender  to  an  authority  a  number  of  certificates  corresponding to  a  percentage  of  their  total 

electricity sales or consumption. The authority issues (a fixed number) and distributes certificates to 

producers of green electricity (typically, one certificate refers to one MWh of green electricity).  

Certificates are sold by power producers to obligated buyers and they vanish after submission. TGC 

schemes can be regarded as market-based subsidies rather than pure MBIs as defined before.

MBIs are particularly appropriate for GHG emissions since greenhouse effect is a global 

process,  and  thus  local  differences  in  air  concentrations  do  not  matter.  Created  in  1996,  the 

Canadian PERT (Pilot Emission Reduction Trading) program was the first emission trading scheme 

applying to GHG emissions.  The  PERT was a voluntary market  for industrial  emissions in  the 

Ontario region. While the initial focus was NOX and VOC (Volatile Organic Compound) emissions, 

the program was expanded in 1997 to include CO2 and  carbon monoxide emissions.  It operated 

between 1996 and 2001, and it was directly linked to the Canadian government through supervision 

of the Canadian federal environmental agency. It appears that only a small number of trades were 

completed  during  the  program.24 The  Greenhouse  Gas  Abatement  Scheme  (GGAS)  is  another 

example of emission trading scheme applying to GHG emissions. It was introduced by the New 

South Wales (NWS – Australia) state government in 2003 (see GGAS [2008]). It is a mandatory 

emission  trading scheme.  The program covers  GHG emissions  of  electric  generators  and large 

consumers of power.  The  GGAS establishes an annual state-wide target for emissions which is 

converted into NSW Greenhouse Abatement Certificates (NGACs). Individual sources receive each 

year an initial allocation of NGACs, with the ability to buy and sell those certificates to meet their 

obligations. The GGAS remains operational to date.25 

Prior to the creation of the EU ETS, the first European CO2 trading schemes were introduced 

in Denmark and in the UK.26 The Danish CO2 emissions trading system came into operation in 

2000,  after  the  “Electricity  Reform”  and  the  “CO2 Quota  Act”  were  passed  by  the  Danish 

parliament in March and June 1999, respectively. The system covered the eight largest electricity 

23 This was confirmed in 2008 with the Climate and Energy Package.
24 For further details see LECG [2003].
25 Even though it  has been delayed several  times since 2007, an Australian Federal  Emission Trading Scheme is  

expected to be operationnal in 2013.
26 See Pedersen [2000], EEA [2005], EEA [2006], DEFRA [2006] and Green [2008].
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producers in Denmark,  representing approximately 90% of the CO2 emissions  from the Danish 

electricity production, and about 30% of the total GHG emissions in Denmark. It operated between 

2000  and  2004.  Legally-binding  allowances  were  allocated  each  year  to  affected  producers, 

representing 66% of their average annual emissions between 1994 and 1998. However, the low non-

compliance fees of DKK 40 (i.e. about EUR 5.40) per tonne made the constraint less restrictive. 

The program obtained contrasted results with very few trades and several companies that failed to 

comply in 2002 and 2004, while they were collectively long of allowances. Nevertheless, efficiency 

was not the first objective of the program. The aim was rather to prepare the country for the EU 

ETS. In that respect, it was a success. The UK ETS (United Kingdom Emission Trading Scheme) 

was a voluntary scheme launched in the UK in April 2002 for the five-year period 2002-2006, and 

which formally ended in March 2007. It intended to prepare the UK companies for the EU ETS, and 

London's financial place for emissions trading.  The UK ETS was the world's first economy-wide 

GHG emissions trading scheme, since it covered a wide range of sectors.  The reduction targets 

(with respect to baseline emission levels between 1998 and 2000) were set through an auction in 

March  2002.  Sources  sold  their  reduction  targets  to  the  government,  and  received  tradable 

allowances  in  exchange.  The aim was  to  provide  a  financial  incentive  for  companies  to  adopt 

emission reduction targets voluntarily.  The thirty-three direct participants committed to reducing 

collectively their CO2 emissions by 3.96 million tonnes by the end of the scheme. However, over 

the life of the program, a total of 7.2 million tonnes of CO2 were reported. 

Following  the  European  leadership  on  carbon  trading,  several  GHG  emissions  trading 

schemes have been implemented in the last few years and others are on the horizon. Examples are 

the Specified Gas Emitters Regulation (SGER, state of Alberta, Canada, 2007), the New Zealand 

Emissions  Trading  Scheme (NZ ETS,  New Zealand,  2008)  and  the  Regional  Greenhouse  Gas 

Initiative (RGGI, United States, 2008). There are now GHG emissions trading schemes in America, 

Europe and Oceania. However, the EU ETS is still, by far, the more ambitious program. The main 

characteristics of the EU ETS are presented in the following.  

The EU ETS: characteristics and main issues

The EU ETS officially started in January 2005. It is made up of consecutive “Phases” which are 

trading periods of several years. Phase 1 covered the period 2005-2007. It was designed as a pilot 

phase to “learn by doing” and gain experience for subsequent Phases. Phase 2, which is currently in 
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progress, corresponds to the first Kyoto commitment period, i.e. 2008-2012. Phase 3 will start in 

2013 and end in 2020. It is supposed to be part of a post-Kyoto agreement.

The EU ETS was established to help the EU Member States to fulfill their commitments in  

the  Kyoto  Protocol.  Under  the  Burden-Sharing-Agreement  of  1998  (EU  Council  Document 

97/02/98), the EU-15 collective target (see Table 1) has been translated into differentiated national 

targets for each Member State (see Table 3). Moreover, ten of the twelve Member States that were 

not part of the EU in 1997 have individual commitments under the Kyoto Protocol (see Table 1).  

Table 3: Distribution of the EU-15 Kyoto target in the Burden-Sharing-Agreement, from Guesnerie [2003]

National targets of the EU-15 countries under the Burden-Sharing-Agreement

(emission reductions in the period 2008-2012 compared to the 1990 levels)

Country Target (in %) Country Target (in %) Country Target (in %)

Austria -13 Germany -21  Netherlands -6

Belgium -8 Greece 25 Portugal 27

Denmark -21 Ireland 13 Spain 15

Finland 0 Italy -6.5 Sweden 4

France 0 Luxembourg -28 UK -12.5

In order to meet national targets, each Member State has to set a national cap on CO 2 emissions for 

each Phase of the EU ETS. Indeed, the Directive 2003/87/EC establishes that each Member State 

has to develop a National Allocation Plan (NAP) stating the total number of allowances it intends to 

allocate for the Phase (the cap), how it proposes to allocate them (free allocations or auctions), what 

the receiving installations and the new entrant reserves are. Each NAP has to be approved by the 

European Commission before validation. In the case of incompatibility with criteria listed in the 

Directive  2003/87/EC or if  allocations are judged too generous with respect to obligations,  the 

European Commission may reject NAPs and send them back to Member States for revisions. The 

EU ETS is a decentralized system, in which Member States have a lot of freedom in designing their 

NAPs. But, on the other hand, the European Commission decides the general rules (e.g. which are 

the affected sectors and facilities). Thus, it is halfway between an EU centralized system and a fully 

decentralized system ( Kruger et al. [2007]).
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Allocation

The EU ETS concerns facilities with energy consumption or installed thermal capacities which 

exceed some thresholds (see Annex 1 of the Directive 2003/87/EC) in sectors of power and heat, 

refineries, cement and lime, iron and steel, pulp and paper, glass, ceramic, metal ore processing and 

coke ovens.27 Based on accepted NAPs, each participating installation receives a certain volume of 

EUAs (European Union Allowances) at the beginning of each year, on 28th February. Each EUA 

gives the right to emit one tonne of CO2, and can be traded on several exchanges (i.e. organized 

market places) across Europe. 

Options for allocation of EUAs in the EU ETS are grandfathering (i.e. free distribution of 

allowances  on  the  basis  of  historical  emissions)  or  auctioning.28 Auctioning  has  been  widely 

advocated  by  economists,29 who  support  that  it  can  reduce  adverse  effects  associated  with 

grandfathering such as  unfair  distributional  effects  (transfer  of  resources “from the poor to  the 

rich”)30 or perverse dynamic incentives to emit more now in order to receive a larger allocation in 

the future. Moreover, auctioning is likely to be more efficient than free allocation because it ensures 

that more allowances are received by firms which need them more (i.e. firms with higher abatement 

costs) and it offers scope to reduce distortionary taxes in the economy by “recycling” the auction 

revenue. According to the Directive 2003/87/EC, Member States can auction up to 5% of the total 

number of EUAs allocated for Phase 1, and up to 10% for Phase 2. Nevertheless this only gives an 

upper limit and Member States can determine freely the exact volume of allowances they want to 

auction. During Phase 1,  only four countries decided to use auctioning: Denmark (5%), Hungary 

(2.4%), Lithuania (1.5%) and Ireland (0.5%). For Phase 2,  eleven countries decided to  include 

auctioning in their NAPs. Examples are Germany (8.8%), the UK (7%), the Netherlands (3.7%) or 

Hungary (2%).31 There  will  be  change  in  Phase  3.  The  Directive  2009/09/EC,  which  sets  out 

changes to the EU ETS from 2013 onwards, states that 100% of the allocation will be auctioned in 

the electricity sector. In other industrial sectors, with limited exposure to international competition, 

the allocation via auction will increase from 20% in 2013 to 70% in 2020 (and 100% in 2027).  

Besides, firms of the newly-included aviation sector will have to buy 15% of their EUAs at auction. 

27 With the start of Phase 3 in 2013, new sectors will be covered by the EU ETS such as aviation, petrochemical or  
aluminium.

28 Allocations based on benchmarking (i.e. allocations on the basis of specific benchmarks) are also allowed. They 
seem to yield better outcomes compared to grandfathering (see Betz et al. [2006]), that we do not discuss here. In 
practice,  benchmarking is often used for  new entrant allocations.  Only France used benchmarking for  existing 
installations in Phase 1, and very few countries in Phase 2 including Belgium, Malta and Cyprus.

29 See Crampton and Kerr [2002], Hepburn et al. [2006] and Mougeot and Naegelen [2009].
30 Most of the rent from grandfathered allowances ultimately accrue to shareholders of the profiting firms, who tend to 

be wealthier than the general population. See Hepburn et al. [2006].
31 See Charpin [2009] for an overview on main characteristics of auction procedures adopted by Member States in 

Phases 1 and 2.
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Thus,  the auctioning of EUAs will sharply increase in Phase 3, with more than one billion EUAs 

auctioned annually, compared to less than 150 million in Phase 2.32

According to the Phase 1 NAPs, about 2181 million EUAs per year have been distributed 

between 2005 and 2007. In Phase 2, yearly allocations account for about 2082 million EUAs. This 

corresponds to a reduction of about 217 million EUAs per year compared to Phase 1 (excluding the  

Romanian and Bulgarian Phase 2 NAPs of calculation to make Phases 1 and 2 comparable since 

those countries did not have Phase 1 NAPs). Regarding the repartition of EUA allocations, there are 

strong  disparities  between  Member  States  (see  Figures  3  and  4).  During  Phase  1  Germany 

distributed 499 million EUAs annually, while the following countries were Italy, Poland and the 

United Kingdom, with about 235 million EUAs allocated a year. Six countries (France, Germany, 

Italy, Poland, Spain and the UK) total 70.5% of EUAs distributed in Phase 1, and 66.7% in Phase 2. 

32 See Charpin [2009], Delbosc [2009], Mougeot and Naegelen [2009] and Sator [2010].
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Figure 3: Phase 1 NAPs in percentages of total EUA allocations (based on CITL data, 

available at www.ec.europa.eu/environment/ets)

http://www.ec.europa.eu/environment/ets


The volume of EUA allocated in Germany is particularly high due to its massive carbon emissions 

from electricity, which is largely generated with coal and lignite in this country. Germany is by far 

the biggest carbon emitter in Europe. For instance, in 2005, carbon emissions in Germany were 

twice as high as in the UK, the second biggest carbon emitter (see Ellerman and Buchner [2008]).  

Regarding differences between allocations and verified emissions, an allowance surplus of 155.7 

million  EUAs  was  recorded  during  Phase  1,  equivalent  to  2.5%  of  the  three-year  allocations 

(Trotignon and Delbosc [2008]).  This  surplus  decreased  from 83 million  tonnes  in  2005 to  36 

million  tonnes  in  2007.  However,  positions  are  heterogeneous  between  Member  States.  Some 

countries recorded a net deficit  of allowances (e.g.  the UK, Spain or Italy),  despite the overall 

surplus (see Figure 5).  
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Figure 4: Phase 2 NAPs in percentages of total EUA allocations (based on CITL data, 

available at www.ec.europa.eu/environment/ets)

http://www.ec.europa.eu/environment/ets


For the first time the EU ETS revealed a deficit of 115 million tonnes EUAs in 2008 (Trotignon 

[2009]), the first year of Phase 2, while 2009 ended with a surplus of 170 million tonnes EUAs due 

to  reductions  of  CO2 emissions  that  came  with  the  economic  recession  (Trotignon  [2010]). 

Excluding auctioned allowances,  the 2009 net surplus is  85 million tonnes EUAs. In 2010, the 

economic  recovery  reduced  the  surplus  to  55  million  tonnes  EUAs  (excluding  auctioned 

allowances) even though the EU ETS is still globally long (Trotignon and Stephan [2011]).

Monitoring, reporting and allowance trading 

Rules for monitoring and reporting of emissions are defined in the Decision 2007/589/EC amending 

the Decision 2004/156/EC of the European Commission (Brohé [2008]). It states that each Member 

State has to report its previous year's verified emissions (recorded between January 1 and December 

31) to the European Commission before March 31 of the following year, and that affected firms 

must surrender the allowances corresponding to their previous year's verified emissions before April 

30 (see Mansanet-Bataller and Pardo [2008a]). For example, for the 2005 emissions, reports had to 

be  submitted  before  March  31  and  April  30,  2006  was  the  deadline  to  surrender  allowances 
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Figure  5:  Net  positions  of  Member  States  in  Phase  1,  from  Trotignon  and  Delbosc 

[2008]. Shortages and surplus are expressed as percentages of the national allocations 

(colored areas) and in million tonnes CO2 (numeric values) 



corresponding  to  verified  emissions.  Once  all  reports  have  been  submitted  and  approved,  the 

European Commission can officially publish, on May 15 of the following year, the previous year's 

verified emissions (see Chevallier [2010]). This monitoring and reporting process is summarized in 

Figure 6.

In Phase 2, if an installation fails to surrender enough allowances to cover its verified emissions, it  

must pay a penalty of 100 Euros per tonne of CO2 in excess (in Phase 1 the penalty was 40 Euros 

per tonne of CO2). In addition to paying penalties, firms are compelled during the following year to 

return all allowances that were not surrendered for compliance in the previous year.  

According to the European Parliament and Council Decision 280/2004/EC, each Member 

State  has  to  establish  a  registry  where  the  balance  of  bought  and  sold  allowances  of  each 

participant is recorded, as well as verified emissions. Therefore, registries are used to check the 

compliance of each participant. The national registries are linked to the  Community Independent 

Transaction Log (CITL),  the European registry that  centralizes all  information contained in the 

national registries. Since October 16, 2008, the CITL is connected to the UNFCCC International 

Transaction  Log  (ITL),  the  international  registry  system  under  the  Kyoto  Protocol.33 Thus, 

participants are now allowed to meet part of their obligations with international credits (CERs and 

ERUs). 

Participants  can  trade  allowances  through organized trading platforms  (exchanges)  or  in 

33 Information available at http://cdm.unfccc.int/Registry/index.html. Note that the European Commission announced 
on July 7, 2011 that it intends to set a single European Union registry (EUTL – European Union Transaction Log) to 
replace  all  Member  States  registries  which  are  centralized  in  the  CITL  (information  available  at  
http://ec.europa.eu/environment/ets).
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Figure  6:  The  EU  ETS  monitoring  and  reporting  deadlines,  based  on  Mansanet-Bataller  and  Pardo  [2008a] and 

Chevallier [2010]

http://ec.europa.eu/environment/ets
http://cdm.unfccc.int/Registry/index.html


over-the-counter (OTC) transactions. Several organized exchanges exist where it is possible to trade 

EUAs and related financial products such as futures contracts or options. Eight are based in Europe: 

BlueNext  (Paris),  Climex  (Amsterdam),  EEX  (European  Energy  Exchange,  Leipzig),  EXAA 

(Energy  Exchange  Austria,  Vienna),  GME  (Gestore  Mercato  Elettrico,  Rome), ICE-ECX 

(Intercontinental  Exchange  -  European  Climate  Exchange,  London),34 NordPool  (Oslo)  and 

SendeCO2 (Spain). Another is located in the United States: GreenX (Green Exchange,  New York 

Mercantile Exchange). As for stock exchanges, these platforms offer standardized contracts and 

provide clearing and settlement services.35 In terms of size, BlueNext is the most important market 

place for spot contracts with 73% of total spot volume in Phase 1, while ECX is the most important 

platform for  future contracts  with 96% of  total  transactions  in  Phase 1 (Mansanet-Bataller  and 

Pardo [2008a]).36 ECX and GreenX are the only platforms offering the possibility to trade options 

on EUAs. EUA/CER and EUA/ERU swaps are traded bilaterally, over-the-counter.

Banking, borrowing and linkage

In principle, firms have to build a compliance strategy for each year since, at the end of each year,  

they have to surrender a number of allowances equal to their verified emissions. However, the EU 

ETS rules allow them to bank and borrow allowances. Therefore, in practice, abatements can be 

smoothed  over  time,  and  allowances  can  be  traded  between  years.  Despite  the  Directive 

2003/87/EC which gives the Member States the possibility to allow banking between Phases, all  

countries decided to prohibit the transfer of allowances between Phase 1 and Phase 2.37 Thus, during 

Phase 1, it was impossible to bank EUAs in order to use them in Phase 2. Borrowing EUAs from 

Phase 2 to cover Phase 1 emissions was also forbidden. Banking and borrowing were only allowed 

within the same  Phase.38  Since the beginning of Phase 2, it is now allowed to bank allowances 

between Phases (i.e. in Phase 2 for Phase 3) in all the Member States.39 By contrast, borrowing 

34 ECX is a former subsidiary of the Chicago Climate Exchange (CCX). In 2006, ECX, CCX and CCFE (Chicago  
Climate Futures Exchange) were grouped in the “Climate Exchange Plc” holding. In 2010, ICE acquired Climate  
Exchange Plc, after a five-year partnership between ICE and ECX.

35 For a detailed presentation of products and services in the different exchanges, see  Kristiansen et al. [2006] and 
Mansanet-Bataller and Pardo [2008a].  

36 See also see Benz and Klar [2008] and Daskalakis et al. [2009].
37 See Alberola and Chevallier [2009] for a discussion on reasons that justified these decisions.
38 A “one-year” borrowing is allowed within the same Phase. That is firms are allowed to borrow allowances from the 

following year for compliance in the current year. For example, in 2005, permits could be borrowed from 2006, but 
not from 2007.

39 The Directive 2003/87/EC establishes that allowances allocated for a given Phase have to be canceled by Member 
States at the end of this Phase. For example, EUAs that were part of Phase 1 NAPs had to be canceled after April 30, 
2008. However, the Directive allows Member States to replace those canceled allowances with valid allowances of  
the next Phase (Phase 2 in our example), which leads to an “inter-phase” banking. In other words, the Directive  
states that inter-phase banking is possible in principle, and it gives the Member States the responsibility to decide if  
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allowances between Phases is still forbidden. 

Since the CITL is connected to the ITL, installations can use international credits to comply 

with their obligations.40 Firms are allowed to import CERs and ERUs in the EU ETS, up to a certain 

percentage of their initial allocations. The rules for using international credits in the EU ETS are 

stated  in  the  linking  Directive  2004/101/EC,  amending  the  Directive  2003/87/EC.  The  linking 

Directive states that Member States may allow imports of international credits by specifying it in  

their NAPs. If permission is given, Member States have to set a limit on how many CERs and 

ERUs can be  surrendered  by installations.  Limits  are  expressed  in  terms  of  percentage  of  the 

allocation of allowances to each installation. This translates into an overall limit for each country. 

Those limits vary from 0% of allocations in Estonia, to 20% in Germany, Lithuania and Spain. This 

means that installations in Germany can import 450 million credits over Phase 2, representing more 

than a fourth of the total volume of international credits in the EU ETS. CERs and ERUs can be 

obtained by investing in CDM and JI projects, or by purchasing them on the secondary market. As 

for EUAs, it is possible to trade international credits through organized exchanges or in over-the-

counter transactions. NordPool, ECX, BlueNext and GreenX are example of exchanges which offer 

the possibility to trade CERs and ERUs. In 2008 and 2009, the overall quantity of international 

credits used for compliance in the EU ETS was about 85 million tonnes CO2. In 2010, this quantity 

rose by almost 65%, to reach about 140 million tonnes CO2 (see Trotignon and Stephan [2011]). To 

date, about half the CERs and ERUs issued have been surrendered in the EU ETS.  The use of 

credits  is  particularly  high  in  Slovakia,  Romania  and  Hungary,  where  about  50% of  the  total 

quantity allowed for the three years has already been surrendered. In other countries like Spain, 

Portugal, Finland and Germany, the use of credits has also not been negligible with about 30% of 

the allowed limit  already surrendered.  Here it  is  interesting to note that  there has been a legal 

loophole in the EU ETS, regarding the use of international credits (Sator [2011]). The loophole 

allowed credits already used for compliance in the EU ETS to re-enter the market and be traded 

again.  This  problem became evident  in  March 2010,  when some of  those CERs that  were sill  

circulating  on  the  EU ETS were  identified.  The  Hungarian  government  had  resold  them even 

though  they had  already  been  used  for  compliance  by  Hungarian  installations.  To  avoid  such 

“dishonest dealings”, an amendment to the EU registry legislation was decided in April 2010. The 

amendment states that surrendered credits must be placed in a specific retirement account from 

which the resale is forbidden.41   

it is allowed in practice. With the European Union “Climate and Energy Package” of December 2008, the European  
Commission decided that inter-phase banking will be clearly allowed, at the EU level, from the beginning of Phase 
2. This was confirmed later in the Directive 2009/09/EC.

40 Before connection, issued international credits remained in the UNFCCC registries.
41 Other kinds of fraud were observed on the EU ETS in 2010 and 2011, such as VAT frauds and allowance thefts 
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Sectoral analysis

Among  sectors  covered  by  the  EU  ETS,  the  power  sector  is  of  special  relevance.  Both  CO2 

emissions and allowance allocations in this sector account for more than half of the total volumes of 

the EU ETS (see  Figures 7 and 8).42 Hence,  the power sector represents more than half  of the 

potential demand and supply for EUAs, and thus, understanding its position is crucial. Moreover,  

power plant allocations represent more than 50% of the total power and heat allocations. As pointed 

out in Trotignon and Delbosc [2008], the share of power plants in the power and heat allocations is 

even higher in some Member States. During  Phase 1, it ranged from 50% in France to more than 

80% in Italy and in the UK. Countries where emissions and allocations of the power sector are 

particularly high are those which generate large volumes of electricity with fossil fuels such as coal, 

natural-gas or lignite. These countries include Germany, Italy, Poland, Spain and the UK. 

(Sator [2011]). In VAT frauds, fraudsters set up an account in one country and buy allowances from a seller to  
another country without paying VAT in the purchase price (because EU VAT rules exempt cross-border sales of 
allowances from VAT). Next, the fraudsters resell allowances in domestic transactions with VAT added into the 
price. However, instead of refunding the collected VAT to the Sate, the fraudsters pocket it and disappear. Allowance 
thefts also occur when fraudsters acquire access details to accounts of some EU ETS operators. Thus, fraudsters can 
steal allowances by transferring them from the victim's account to another account. In order to access the victim's  
accounts, fraudsters can use fishing techniques (e.g. fake links or e-mails requesting access details to accounts) or 
trojan virus (e.g. the “Nimkey” trojan).  

42 See Point Carbon [2006], Ellerman and Buchner [2008] and Trotignon and Delbosc [2008].
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Figure  7:  The  2006  EUA  allocations  by  sector  (data  available  at 

http://dataservice.eea.europa.eu/PivotApp)
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Regarding the difference between allowance allocations and verified emissions, the position of the 

power and heat sector is also remarkable. In Phase 1, it was the only sector with a net deficit of 

allowances. The deficit  accounted for about 1% of allocations in this sector,  and it  was mainly 

explained by the short position of power producers. The net deficit of power producers accounted 

for about 7% of the power plant's allocations, while other sub-sectors were long of allowances (see 

Trotignon and Delbosc [2008]). The net short position of the power and heat sector was confirmed 

and strengthened in Phase 2. In 2008, 2009 and 2010, the net deficit of allowances in the sector was 

respectively 240 (20% of allocations), 112 (9.3% of allocations) and 125 (10.2% of allocations) 

million tonnes CO2. As a comparison, in 2006 and 2007 the power and heat sector net deficit was 24 

(1.7% of allocations) and 33 (2.3% of allocations) million tonnes CO2, respectively.43

Price drivers

Numerous factors influence the price of CO2 allowances. Like on other markets, the EUA price is 

driven  by  the  balance  between  supply  and  demand,  long-term  investment  decisions,  market 

structure and institutional factors such as general rules or information disclosure. 

43 Data available at http://dataservice.eea.europa.eu/PivotApp.
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Figure  8:  The 2009  EUA  allocations  by  sector  (data  available  at 

http://dataservice.eea.europa.eu/PivotApp)
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On the supply side, the main price driver is the volume of EUAs allocated to installations, 

since it sets the overall stringency of the EU ETS. The lower the cap is with respect to business-as-

usual emissions, the stricter the trading scheme will be. Uncertainties regarding the exact number of 

EUAs issued for a Phase may also be important. Because of special reserves for new entrants, the 

total amount of EUAs that would be available during a Phase is uncertain. It may be important if the 

market is stressed. Other factors influencing the supply side are the use of international credits and 

banking or  borrowing between Phases.  During Phase 1,  both were irrelevant  since inter-phases 

banking (and borrowing) was prohibited and the CITL was not connected to the ITL. However, as  

we have seen, inter-phase banking and the use of international credits are now possible in the EU 

ETS. 

Political  decisions  and  information  disclosure  also  impact  the  EUA  price.  Regarding 

information disclosure, 2006 gave a good example. The publication by four countries (the Czech 

Republic, France, Spain and the Netherlands) of 2005 verified emissions (25 April 2006) and the 

European Commission communication announcing that the EU ETS was globally long for 2005 (15 

May 2006), caused the EUA price crash of Spring 2006 (see Figure 9).
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Figure 9: Spot and futures EUA prices in Phase 1. The spot price is the price of the BlueNext spot contract, and  

the futures prices are those of the ECX futures contracts with expiry in December 2006, 2007, 2008 and 2009 

(data are available on the BlueNext and ECX websites)  



Another example is the price drop that occurred in October 2006, when the European Commission 

announced that Phase 2 validated NAPs of 17 Member States were stricter than submitted draft 

versions (see Figure 9).44 This changed the perception of market participants, which realized that 

Phase 1 and Phase 2 were two different markets. Consequences have been a divorce between prices 

for Phase 1 and Phase 2. Due to banking restrictions, the EUAs issued for Phase 1 were useless 

at the end of Phase 1. As information disclosures revealed that the market was oversupplied in 

Phase 1, the spot price of Phase 1 (and prices of futures contracts expiring in Phase 1) stabilized at  

around zero from Spring 2007 until the end of Phase 1. By contrast,  prices of futures contracts 

expiring in Phase 2 ranged from 15 to 25 Euros (see Figure 9).

Market structure is also important in price formation. With a small number of large buyers 

and sellers, the EUA price is expected to react strongly to individual decisions. As pointed out by 

Trotignon and Delbosc [2008], during Phase 1 more than half of the EUAs were held by thirty 

companies, among which there was a majority of power producers. Some authors argued that the 

level of prices before the crash of Spring 2006 could be explained by incentive for power producers 

to exert market power on the carbon market in order to keep high prices for EUAs (Betz et al. 

[2006]). In doing so, power producers would have tried to increase their windfall profits by passing 

through a higher carbon cost to the electricity price.45

The demand for EUAs is determined by the CO2 emissions of covered installations. Power 

generation represents more than half of the total of CO2 emissions in the EU ETS. Hence, factors 

that affect emissions in the power sector are the main drivers for EUA demand. They include energy 

prices, weather conditions (temperatures, rainfall, wind speed, etc) and economic activity. Because 

they  determine  electricity  demand  and  the  composition  of  power  generation  (i.e.  the  carbon-

intensity of technologies that are used to produce), those factors drive the  CO2 emissions  in the 

power sector, and thus the demand for EUAs of power producers. 

Temperatures influence energy demand because they determine energy needs for heating (in 

winter) and cooling (in summer). As a consequence, temperatures influence carbon emissions and 

EUA prices. In particular, variations in carbon emissions depend heavily on extreme temperatures 

(i.e. extremely hot and cold temperatures) and on unexpected temperature changes (i.e. deviations 

44 The econometric  paper  by Alberola  et  al.  [2008]  reports  statistical  evidence of  influence  of  those  information 
disclosures on the EUA price.

45 Hintermann [2010] has reported evidence of a “CO2 bubble” in the EU ETS before the price crash of Spring 2006. 
He found that the EUA price was disconnected from its fundamentals (energy prices, temperatures, rainfall, etc) 
during this period, and driven by “self-fulfilling expectations” captured by lagged values of the EUA price.

44



from historical averages).46

The relationship between CO2 emissions and economic activity is supposed to be positive, 

since, for example, an economic recession is expected to decrease energy consumption. However, 

there may be another simultaneous opposite effect. Indeed, it is sometimes argued that recessions 

can create some increases in carbon emissions, simultaneously with decreases that come with cuts 

in production (Declercq et al. [2011]). Because energy prices tend to decrease during recessions, 

there is an incentive to consume more energy and so to emit more CO2. In 2009, which was a year 

of recession in Europe,  verified emissions in the EU ETS sectors declined by 11% (compared to 

2008), while they rose by 2.5% in 2010 with the recovery.47 This suggests that the quantity effect 

(decrease in CO2 emissions due to reduced production) dominates the price effect (increase in CO2 

emissions due to lower energy prices),48 so that there would be a net positive relationship between 

CO2 emissions and economic activity. This is confirmed by the decline in EUA prices observed  in 

2008 and 2009 (see Figure 10).

46 Several papers have shown that extreme temperatures and unexpected temperature changes are the most important 
weather variables  for the EU ETS (see  Mansanet-Bataller et al. [2007] and  Alberola et al. [2008]). They matter 
more than temperatures themselves, which indicates that the relationship between temperatures and the carbon price 
seems to be non-linear.

47 See Trotignon [2010] and Trotignon and Stephan [2011].
48 Verified emissions have revealed a decrease of emissions in the power sector over the years 2008 (-30 million tonnes 

CO2 compared  to  2007)  and  2009  (-130  million  tonnes  CO2 compared  to  2008).  Data  are  available  at 
http://dataservice.eea.europa.eu/PivotApp.  Note  however  that  the  power  sector  have  been  globally  short  of 
allowances during this period. See Trotignon [2010], Declercq et al. [2011]. 
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Figure 10: Decline in EUA prices during the 2009 recession

http://dataservice.eea.europa.eu/PivotApp


The depressive impact of the economic crisis has been accentuated by the credit crunch that came 

with the financial  crisis.  Thanks to emission reductions,  regulated firms were able to sell  large 

amounts of unused allowances in order to raise cash during the credit crunch.49 This has translated 

into a stronger price decrease, especially on the spot market.

Rainfall, wind speed and cloudiness conditions also influence carbon emissions because they 

determine the share of power generation that can be obtained from hydroelectricity, wind and solar 

plants.  The more hydro, wind and solar plants available to produce, the less electricity has to be 

generated by burning fossil fuels, and thus the lower the CO2 emissions are. For example, a dry year 

in Nordic countries is likely to increase carbon emissions, because of high use of hydroelectricity in 

those countries. In such a situation, power producers have to replace hydroelectric capacities (from 

Norway and Sweden) by fossil-fuel-based capacities (coal plants from Denmark). Therefore, carbon 

emissions rise. 

According to literature, fuel prices are the most significant price drivers for EUAs, due to 

the ability of European power producers to reduce their carbon emissions by switching fuels from 

coal to gas in electricity generation.50 The  basic idea of fuel switching is that relative fuel prices 

determine the demand for carbon allowances by setting the composition of power generation. In the 

EU ETS, this is known as the most important short-run abatement option, since power producers are 

major actors in the scheme.51 Thus, fuel prices strongly influence EUA prices. Without carbon price, 

coal plants are usually brought on line first, because of their cheaper fuel cost. Gas plants are used 

next, during shorter periods, when demand for power is higher. However, with a price for carbon 

emissions, gas plants may be preferable to coal plants, due to their lower carbon intensity. That is, if 

the  cost  of  increased  carbon emissions  with  coal  plants  is  higher  than  the  additional  fuel  cost 

associated with the decision to produce with gas rather than with coal, it is cheaper to use gas plants  

first instead of coal plants. If such a switching occurs, carbon emissions are reduced, because coal 

plants are brought on line during shorter periods. Therefore, all other things being equal, a relatively 

high gas price encourages the use of more coal, which drives up demand for allowances and the 

carbon price (and vice versa). 

Among energy prices, the electricity price is another important driver of EUA prices in the 

short-run. This is explained by the short-run rent capture theory (Keppler [2010]). According to this 

49 See De Pertuis [2009], Sikorski [2009] and Charpin [2009].
50 See Bertrand [2011a] for a review of econometric and theoretical papers dealing with fuel switching.
51 Fuel switching we refer to here involves coal plants and Combined Cycle Gas Turbines (CCGTs). Of course fuel 

switching can also take place with other plants for other levels of load. For example, switching can occur between 
oil plants and open cycle gas turbines, or also between coal and lignite. However, as quantities of carbon concerning 
switching between coal plants and CCGTs are much higher,  this type of switching is the main focus of power 
producers and researchers (and the main EUA price driver).
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approach, the electricity price influences the carbon price in the very short-run because no carbon 

abatements can be performed. This implies that power producers have to reduce their production to 

sell allowances. In this situation, the margin between the price of electricity (set by monopolistic 

suppliers)  and  its  marginal  cost  will  be  captured  in  the  carbon  price.  In  other  words,  power 

producers with market power have the ability to “monetize” on the carbon market their scarcity 

rents in the electricity market.52 

In  the  long-run,  the  demand  for  allowances  strongly  depends  on  investment  decisions. 

Investing today in measures such as carbon capture and storage, energy efficiency or in building 

new low-carbon power plants, will reduce carbon emissions in the future and thus the demand for 

allowances. However, high investment costs, uncertainties,53 the time horizon before investments 

produce  effects  and  irreversibility  are  many  discouraging  factors  that  often lead  to  delay 

investments.54 

The long-run trends in energy markets are also important.  In particular, trends in the gas 

market  should be strongly influential,  given the interest for gas in carbon abatement decisions. 

Thus, the EU ETS should be impacted by information about pipeline projects, non-conventional gas 

extraction or progresses in gas liquefaction. Regarding nuclear, the current debate in Europe about 

the  renewal  of  installed  capacities  is  of  major  importance  for  the  EU ETS.  Yet,  Germany has 

already announced that  it  renounces  to extend the life of its  nuclear  plants and the position of 

several other Member States has been uncertain since the Fukushima disaster. The consequences of 

those decisions would be huge for the EU ETS. This would drastically increase the demand for 

EUAs in Phase 3, and cancel the surplus of allowances created by recession in Phase 2.55  

52 Note that market power in the electricity market does not imply a permanent market dominance of some particular 
firms. This is rather a short-run rotating position during peak-load hours, depending on scarcity of capacities (see 
Keppler [2010]).

53 As pointed out by Chao and Wilson [1993],  purchases  of  allowances have an intrinsic advantage compared to 
investments in abatement measures, because they avoid uncertainties about volumes of abatements and their costs. 
As a consequence, allowances have an additional value (an “option value”) with respect to investments in abatement  
measures, which justifies that the allowance price should exceed the marginal cost of abatements. 

54 In Phase 1, the EU ETS has triggered very few large-scale investment decisions with long amortization times (e.g.  
building new power plants). Covered firms have been mainly engaged in allowance trading or short-run abatement  
decisions to meet their obligations (see Hoffmann [2007]). 

55 For more details, see Berghmans [2011].
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Purpose of this thesis

This  thesis  studies  the interplay between the EU ETS and energy markets.  Our objective is  to 

understand better how the EU ETS has modified power generation, and how energy markets impact 

the EU ETS. In particular, we investigate the influence of fuel prices and power generation on the 

price of EUAs. We also examine the influence of the EU ETS on fuel and electricity markets. 

This thesis is composed of four chapters. The first chapter presents the European fuel and 

electricity markets and their relationships with the carbon market. The next three chapters are based 

on personal research.

The aim of the first chapter is to provide a general introduction on interactions between the 

EU ETS and energy markets.  We review different  approaches  explaining relationships  between 

carbon,  fuel  and  electricity  prices.  Additionally,  the  consequences  of  the  EU  ETS  for  power 

generation are discussed. A special focus is given to fuel switching, the main short-term abatement 

measure within the EU ETS. The main concepts and methodological tools are introduced. Most of 

them are well known, some are new. Thanks to this synthesis, we  highlight what the important 

questions are about our subject, and the gaps in the literature. Notably, we identify that not one of  

the previous theoretical works on fuel switching has addressed the question of the influence of 

differences in the energy efficiency of power plants. We also find that  no previous econometric 

work has applied a  full  VAR-VECM approach to analyze the dynamic of  interactions  between 

carbon,  fuels  and electricity prices  in  Phase  2 of  the  EU ETS.  Finally,  the  cross-market  price 

discovery in the European gas and CO2 markets has not been investigated to date.

In  Chapter  2,56 we  examine  the  implications  of  the  fuel  switching  behavior  of  power 

producers, in a context where power plants used in the fuel switching process do not all have the 

same energy efficiency. Our aim is to identify how relationships between fuel and allowance prices 

are affected. To do so, we build a tractable equilibrium model along the lines of the equilibrium 

models for tradable permits developed since the pioneering work of Montgomery [1972]. Using a 

cost function that represents the expense engendered by switching from coal plants to CCGTs, we 

follow the same strategy as in Fehr and Hinz [2006]. Unlike them however, we explicitly model 

differences in the energy efficiency of CCGTs used in the fuel switching process. This differs from 

previous equilibrium models on the subject. As a consequence, the level of fuel switching effort 

56 This chapter is based on Bertrand [2010].
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influences the marginal cost of fuel switching. The main result shows that the carbon price becomes 

more sensitive to the gas price when the level  uncontrolled carbon emissions (i.e. “business-as-

usual” carbon emissions, that determine the level of switching effort) increases. This is explained by 

differences in the energy efficiency of CCGTs that are used in fuel switching.

Chapter  357 explores interactions  between carbon,  coal,  gas and electricity prices on the 

European  markets.  We  examine  the  relevance  of  different  approaches  explaining  relationships 

between energy and carbon markets though an empirical analysis in Phase 2 of the EU ETS. We 

estimate a Vector  Error Correction Model  (VECM) that enables us to investigate short-run and 

equilibrium relationships between carbon, coal,  gas and electricity prices. The analysis includes 

Granger causality tests and impulse response functions. Up to now, to the best of our knowledge, no 

other econometric work has applied a full VAR-VECM approach to study relationships between 

carbon, coal, gas and electricity prices in Phase 2 of the EU ETS. Our study fills this gap in the 

literature. Among the main results, we find that there is a significant link between carbon and gas 

prices in the equilibrium. We also find that coal and gas prices appear to be sensitive to the carbon 

price in the short-run. This last result could be explained by the crisis.

In Chapter 4,58 we analyze the cross-market price discovery process between the European 

gas and CO2 markets. We have identified in previous chapters that there is a robust significant link 

between gas and CO2 markets. The reason is that gas and EUAs can be considered as substitutable 

inputs in electricity generation. Indeed, during certain hours in the year, power producers can decide 

to increase the share of gas in their production (and reduce the share of coal) to reduce their EUA 

consumption.  Alternatively,  they can reduce the share of gas and increase their  consumption of 

EUAs. Therefore, gas and EUAs are linked commodities, and their prices are affected by the same 

information.  The question is which market captures incremental information first. In other words, 

which one is the leader in the cross-market price discovery process. This is a significant question 

since the price of the market which processes new information faster, may be used, in many cases,  

to anticipate the price fluctuations on the other market. The aim of this chapter is to investigate this 

process. We want to evaluate the relative contribution of each market to the cross-market price 

discovery. To the best of our knowledge, no other econometric work has investigated this question 

before. To address this objective, we use the common factor approach builds on work by Schwarz 

and Szakmary [1994] and Gonzalo and Granger  [1995].  The first  step consists  in  estimating a 

57 This chapter is based on Bertrand [2011a].
58 This chapter is based on Bertrand [2011b].
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VECM with the price series. Next, to quantify the relative contribution of each market to the cross-

market  price  discovery,  we  compute  the  Common  Factor  Weights  as  defined  Schwarz  and 

Szakmary [1994]. We find that the carbon market is the leader in the cross-market price discovery 

process.
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Chapter 1

Relationships between European 

carbon and energy markets

European power producers have a major influence on the European carbon market, given that both their 

CO2 emissions and their allowance allocations account for more than half of the total volumes of the EU 

ETS. Moreover,  as  the electricity generation's basic function is to convert  fuels – and other primary 

energies – into electricity, the links between electricity, fuel and carbon markets are obviously tenuous. 

The aim of this chapter is to present the main characteristics of energy markets and their interactions with 

the EU ETS.

1. General presentation of energy markets

We begin this  chapter with a general presentation of European energy markets. We pay special 

attention to the electricity market, since it is at the core of all interactions between energy markets 

and the EU ETS. The European coal and gas markets are also presented because of their strong 

influence on carbon and electricity markets. Finally, we briefly describe some developments in the 

oil market that have influenced other energy markets and the EU ETS. 

1.1. The electricity market

Electricity is  an essential good for households and industry. It is available at any time, in almost 

every place. However, unlike other energy commodities (e.g. oil, coal, gas, wood, etc), the main 

characteristic of electricity is that it cannot be stored (non-storability).1 Thus, electricity has to be 

produced at the same time as it is consumed.  

1 For an overview on physical characteristics of electricity, see Hansen and Percebois [2010].
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Another important characteristic is that demand for electricity varies during the day, and, for 

any given hour of the day, it depends on the season. Typically, demand for electricity is usually  

lower in mid-seasons (i.e. autumn and spring) compared with summer and winter. This is due to 

lower power needs for heating (winter) and cooling (summer) during those seasons.2  

With regard to variations of demand during the day, hours are basically classified into two 

categories:  peak  and  off-peak  hours.  Peak  hours  are  hours  during  which  demand  is  maximal, 

because  household  appliances  are  switched  on  while  factories  are  still  running.  These  are, 

approximately, hours between 10 am and 1 pm, in the morning, and between 6 pm and 8 pm, in the  

evening, when households are cooking and watching TV. They correspond to levels of production 

that are referred to as peak-load, and which occur about 20% of the day. Off-peak hours are hours  

during which demand is relatively low. They represent about 80% of the day, and they correspond 

to levels of production that are referred to as base-load.3

Because electricity is a non-storable commodity with demand varying during the day, power 

plants have to be switched on and off depending on hourly demand. For example, during off-peak 

hours, some capacities have to be available to be brought online when demand will increase (during 

peak-hours). Because of these special features, the electricity supply system has to be designed for 

the maximal demand, i.e.  installed capacities  are determined by the expected maximal level of 

demand. Moreover, as some power plants will run more than others, the cost of production of each 

technology has  to  be  considered.  Accordingly,  technologies  are  stacked  in  order  of  increasing 

marginal  cost  of  production,  so  that  power  producers  add more  and more  expensive  plants  to 

production  as  demand  increases.  This  ranking  of  power  plants  is  known  as  “merit  order”  or 

“stacking  order”  (see  section  2.3  of  this  chapter).4 Thus,  among  power  plants  we  distinguish 

between base-load plants, intermediate-load plants and peak-load plants (see Unger [2002]). Base-

load plants run more than 80% of the time. They are hydro, nuclear, coal (the cheapest coal plants 

here, including lignite in countries like Germany) and renewable technologies (e.g. solar or wind). 

Intermediate-load plants run between 20 and 80% of the time. These are mainly coal plants and 

Combined Cycle Gas Turbines (CCGTs). Finally, peak-load plants run less than 20% of the time. 

They are mainly gas- and oil-fired open cycle turbines.5 

2 Moreover, demand for electricity is higher in winter than in summer for any hour in the day. The reasons are that  
more power is needed for heating than for cooling and there is more need for (artificial) light in winter.  

3 One more distinction can be made in off-peak hours between base-load and intermediate-load. Intermediate-load 
corresponds to levels of production that occur between 20 and 80% of the time, while base-load corresponds to 
levels of production occurring more than 80% of the time. See section 2.3 of this chapter.  

4 Note that marginal cost of production is the most important factor explaining the merit-order, but it is not the only 
one. Flexibility is another determinant. Some power plants run continuously 24 hours a day (e.g. nuclear), while 
others (with more flexibility) can be ramped up and down more easily depending on hourly demand.

5 While base- and intermediate-load plants have high fixed costs and relatively low marginal costs, peak-load plants 
have lower fixed costs but higher marginal costs. 
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To summarize, the maximal demand of electricity is the main driver of fixed costs (since it 

sets the needed installed capacities), while the time of consumption impacts the variable costs (since 

it sets the technologies that are used to produce at a certain time).

To  date,  the  European  power  generation  mix  is  dominated  by  coal  and  nuclear,  which 

represent  about  two-thirds  of  European electricity.  Natural  gas is  the third source,  followed by 

hydroelectricity, oil and renewable (see Keppler [2010]). While the share of gas is already important 

(it is about as much as the share of hydro, oil and renewable together), it is expected to rise strongly 

in the next couple of years. Indeed, the environmental constraint set by the EU ETS encourages the 

use of gas as opposed to coal or oil. According to the International Energy Agency's forecast, the 

share of gas in European electricity would double by 2030. Renewable energy is also expected to 

grow very fast  with  the  EU's  target  of  reaching 20% of  renewable  energy in  the  total  energy 

consumption  by 2020.  Among  renewable  sources,  the  potential  of  large  hydroelectric  stations 

(reservoirs and run-of-the-river) is limited since it has been exhausted to a large extent. The growth 

potential  is  more  important  for  wind,  solar,  biomass  or  micro-hydroelectricity.  With  regard  to 

nuclear there are a lot of uncertainties. Several countries have made commitments to reduce the 

share of nuclear in their electricity production since the Fukushima disaster (see Introduction of the 

thesis). However, this would cause severe problems for energy and the environment. This is a big 

issue for the future.6

In 1997 the Directive 96/92/EC on the Internal Market in Electricity came into force (it was 

confirmed later in the Directive 2003/54/EC). It provided the opening of national electricity markets 

to  competition.7 While  transmission  and  distribution  of  electricity  are  regarded  as  natural 

monopolies because of the substantial economies of scales,8 generation and retailing are thought to 

be potentially competitive. Therefore, the Directive prescribed separation between the monopoly 

elements (transmission and distribution) and the potentially competitive segments (generation and 

retailing). The aim was to prevent controllers of monopoly in transmission and distribution from 

abusing their market power in generation and retailing. This separation is called unbundling, and it 

introduces competition in generation and retailing, whereas transmission and distribution are left to 

6 Drawbacks  of  nuclear  electricity  are  often  pointed  out  (e.g.  impacts  of  radioactivity,  dismantling  of  nuclear 
facilities). But nuclear also creates positive externalities such as reduction of CO2 emissions, easing of gas prices, 
low electricity prices and security of supply. See Chevalier and Percebois [2008].

7 Competition was introduced before 1997 in a few European countries. These are England and Wales (1989), Norway 
(1991) and Sweden (1995).

8 Transmission  is  the  transportation  of  electricity  at  high  voltage  from power  plants  to  step-down transformers.  
Distribution is the transportation of electricity at lower voltage from step-down transformers to final consumers. See 
Unger [2002].
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regulated firms (see Unger [2002]).  In practice, there are still significant differences between the 

Member  States  regarding  the  level  of  competition  in  the  power  sector.  While  high  levels  of 

competition  have  been  achieved  in  several  countries  (e.g.  the  UK,  Germany,  Spain  and  the 

Scandinavian  countries),  the  degree  of  competition  is  still  low  in  other  countries  where  the 

liberalization process has been slower and is still under progress (e.g. France and Italy). 

The reason that  motivated  the  liberalization  of  the  electricity  sector  in  the  EU was the 

improvement of efficiency and the reduction of prices paid by consumers. Indeed,  moving from a 

vertically integrated industry – controlling generation, transmission, distribution and retailing – to a 

chain of specialized and competing firms is supposed to improve efficiency. Moreover, according to 

microeconomic theory, the transition from a private monopoly to a competitive market implies a 

price decline and an improvement in the consumer's welfare. However, in the case of electricity,  

introduction of competition would not necessarily result in sharp falls in prices, because electricity 

companies were not private monopolies before the deregulation but rather regulated monopolies. 

Nevertheless,  there  was  an  overall  downward  trend  in  prices  until  2003  (see  Kanen  [2006]). 

Liberalization led to more competition between 1998 and 2003. As a consequence, power prices 

have declined in several European countries (see Figure 11).

However,  this  changed from 2003 onwards,  when increasing fuel  prices  started pushing power 

prices up. The rise in fuel prices happened in a context of increasing oil prices in the wake of the 
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Figure 11: Enduse electricity prices for industrial consumers in European countries (Eurostat data).



Iraq war and growing world demand for energy. The upward trend in fuel prices continued until the 

financial crisis of 2008 and the economic recession that occurred next. Power prices followed the 

same pattern (see Figure 11).  

The  liberalization  of  the  electricity  market  has  also  introduced  new  responsibilities  for 

power producers. Their profits are no longer determined by regulatory formulas, and thus, they are 

much more concerned with profitability and uncertainties. As for other commodities, the business of 

electricity now involves risk management and trading activities. Besides, power producers have to 

manage a new risk with the EU ETS. Carbon emissions are now considered as an input entering 

power generation. Therefore, as for other inputs, power producers are concerned with the volatility 

of the price of carbon.

1.2. The gas market

Natural gas is an important input for power generation in Europe. Over the last  few years, the 

proportion of natural gas in European electricity has significantly increased (see Figure 12). 

The growth was particularly strong in Spain,  where the proportion of  natural  gas  in  electricity 

increased from 1% to almost 30% between 1998 and 2008. In the UK, since the beginning of the 
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Figure 12: Proportion of natural gas in the European power generation, expressed as the ratio between 

the production of electricity by gas-fired plants and the total gross production of electricity (own  

calculations based on Eurostat data).



1990s, gas has become the main energy source due to the 1980s policies encouraging the use of 

more gas (see Kanen [2006]). To date, about 40% of electricity comes from natural gas in the UK. 

The share of gas in the European power generation is still rising and it is expected to continue in the 

future with the tightening of the EU ETS constraint. Globally, the rise in gas consumption is a long-

run trend in Europe (see Figure 13). The EU produces about 40% of its natural gas consumption9 

and  strongly  depends  on  imports  from  three  countries:  Russia  (between  40  and  50%  of  the 

European imports),  Norway (21%) and Algeria (11%).10 The EU dependence on gas imports  is 

expected to exceed 65% in 2030 (Chevalier and Percebois [2008]). Therefore, gas has acquired the 

same geopolitical risk characteristics as oil.11 Managing this risk is probably one of the key issues 

for the European energy policy. 

Despite worries about the geopolitical risks, gas consumption is still growing in Europe. As 

pointed out by Keppler [2010], the rising share of gas in European electricity can be explained by 

some  important  advantages  of  this  fuel  that  foster  investment  in  gas-fired  power  plants  and 

especially in  CCGTs. First,  CCGTs have relatively low capital  costs  and high efficiency.  Thus, 

investing in CCGTs enables power producers to increase the efficiency of their parks with lower 

risks and shortened pay-back times compared with competing technologies. Second, producing with 

9 The main  gas  producers  in  the  EU are  the  UK (4% of  world production) and  the  Netherlands  (3% of  world  
production and 7% of exports). See Chevalier and Percebois [2008].

10 Note that 90% of European imports come from pipelines. The remaining 10% comes from Liquefied Natural Gas 
(LNG) terminals. See Kanen [2006] and Hansen and Percebois [2010].

11 World reserves of natural gas are mainly located in a few countries. Among those countries, Russia controls about 
30% of reserves, followed by Iran (15%) and Qatar (15%). See Chevalier and Percebois [2008].   
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Figure 13: Evolution of gross inland natural gas consuption in Europe (Eurostat data).



gas often constitutes an automatic hedge against variations of prices. Indeed, gas technologies are 

often the marginal technologies (i.e.  the last  units  to be brought  online,  which set the price of 

electricity) because of their high marginal costs. Thus, electricity prices are expected to be highly 

correlated with gas prices, which constitutes an automatic hedge for power producer. Finally, the 

introduction of a price for carbon emissions with the EU ETS encourages the use of more gas due to 

the lower CO2 emissions. 

An indirect effect of the EU ETS is to strengthen the link between gas and electricity, by 

rendering power generation more dependent on gas. This tends to reduce price-elasticity of demand 

for  gas  by  power  producers  (Grubb  and  Newberry  [2008]),  which  may  induce  unfavorable 

consequences such as gas price rises (Reinaud [2007]) and greater geopolitical risks (Bunn and 

Fezzi [2007] and Grubb and Newberry [2008]). Indeed, gas production is largely an oligopolistic 

market in Europe and the European imports  are highly concentrated in few companies,  namely 

Gazprom,  Sonatrach  and  Statoil  (Chevalier  and  Percebois  [2008]).  Besides,  in  addition  to 

production (“upstream operators”),  import and wholesale activities (“mid-stream operators”) are 

also dominated by a few companies (e.g. Gaz de France or Ruhrgas), which are frequently vertically 

integrated into electricity generation.12 Those gas companies would exert their market power on the 

electricity market by raising the price of gas to increase electricity prices and hence the profits of 

their merged partners (Grubb and Newberry [2008]). Therefore, there would be a greater incentive 

to raise gas prices. All  of this should be a concern for future European policies regarding both 

diversification of imports and the problem of vertical integrations between gas suppliers and power 

producers.13   

As opposed to coal and oil which can easily be shipped all over the world, creating truly 

global markets, natural gas is mainly distributed through pipelines. Therefore, the gas market is 

more regional compared with competing fuels.14 Moreover, despite the EU liberalization process, 

which was introduced in 1998 (with the Directive 98/30/EC),  the European gas  market  is  still 

dominated by former state monopolies, except in the UK. Those historic operators sell most of their 

gas through bilateral long-term contracts whose prices are indexed to oil prices. Nevertheless, in the 

last few years, short-term contracts and trades on exchanges have developed rapidly in Europe, with 

12 For  example,  Ruhrgas,  the  dominant  German gas  company,  has  merged  with  E.On,  one  of  the  leading power  
producers in Germany. Another example is the Gaz de France-Suez merger.

13 Note that this problem is very close to the one which led to the unbundling in the power sector (i.e. the separation 
between transmission and distribution, on the one hand, and generation and retailing, on the other hand). For further 
details on the vertical integration problems between gas and electricity companies and their possible regulatory 
remedies, see Vázquez et al. [2006].

14 However, progresses in gas liquefaction are increasingly creating a similar world market for gas, with more shipping 
opportunities. 
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prices  reflecting  more  supply  and  demand  of  gas.  Exchanges  have  notably  developed  in  the 

National  Balancing Point,  in the UK, and in the hub of Zeebrugge, in  Belgium, where several  

pipelines connect (see Kanen [2006]). As shown in Figure 14, gas prices followed the same upward 

trend as other energy commodities until the crisis of 2008. 

In order to diversify import sources and, particularly, to reduce exposure to Russian gas, 

many efforts have been made in the last few years to increase the capacity of pipelines connecting 

the EU to  Algerian  gas.  Examples  are  the Trans-Mediteranean and the Magreb-Europe (Kanen 

[2006]). A new pipeline was also inaugurated in March 2011. The Medgaz pipeline, which connects 

directly Algeria and Spain. Another project is the Galsi, which will connect Algeria and Italy. It is 

expected to become operational in 2012 (Hansen and Percebois [2010]). There are also projects to 

connect  the EU and the Southern Caspian region.  Among them, there is  the Nabucco pipeline, 

which is backed by the EU. Construction should begin in 2013 and it is expected to be operational 

in  2017.15 In  addition  to  pipelines,  there  are  more  and  more  projects  to  build  LNG terminals 

bringing non-Russian gas further into Europe. To date, Italy has started to build LNG terminals and 

there are advanced plans for the Netherlands, Norway and France. LNG is more expensive than gas  

delivered through pipelines because liquefaction is costly. In general, it becomes competitive when 

transported over distances greater than 5000 kilometers (Kanen [2006]). However, progresses in gas 

15 See the Nabucco website: www.nabucco-pipeline.com.
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Figure 14: Enduse prices of natural gas for industrial consumers in European countries (Eurostat  

data).
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liquefaction should make LGN more competitive and create more shipping opportunities. Another 

very important challenge for the future of the gas market regards the technological progress in the 

extraction of Non-Conventional Gases (NCG): shale gas, tight gas sands and coalbed methane.16 

While the extraction of NCGs is problematic with current technologies – because of pollution of 

water tables – there is a huge potential and especially in Europe. The NCG reserves may account for 

more than four times those of conventional gas. The gas market should be strongly impacted.    

1.3. The coal market

The coal market is a world market with international exporters such as Australia, South Africa, 

Columbia, the US and China. Coal resources are abundant and especially in countries such as the 

US, Russia, China, Indonesia and Australia.17 To a lesser extent, resources are also important in the 

EU (see Kanen [2006] and IEA [2010]). However, in the past forty years, many coal mines have 

been closed in several EU countries. This has happened because European producers had a lot of 

difficulties  competing  against  international  coal  exporters.  Therefore,  the  EU  imports  have 

continuously increased in the past decades.18 Antwerp, Rotterdam, Amsterdam (ARA) are the main 

coal-importing ports in Europe. Their prices are used as a reference for the coal price in the EU. 

Nowadays, the European coal production comes essentially form three countries: Poland, Germany 

and the Czech Republic. Notably, Germany is the biggest producers of lignite in the world.19 

As we can see in Figure 15, coal prices strongly increased during the 2000s with the rise in  

fuel prices. European demand for coal was driven by high oil and gas prices, even in 2005 and 2006 

despite high CO2 prices. Interestingly, Figure 15 also shows that the coal market was more impacted 

by the crisis of 2008 compared with the gas market (Figure 14). Indeed, as opposed to gas which is 

almost entirely dedicated to power generation,  coal is  also used for steel making.20 Thus, since 

16 For an overview on NCGs, see Hansen and Percebois [2010].
17 The fact that Australia, China and the US are big producers and exporters of coal may explain why they are so 

reluctant to accept any binding agreements on climate policy. They fear that such agreements reduce the value of 
their coal reserves, in making coal less profitable for power generation. 

18 See Hansen and Percebois [2010] for details.
19 In Germany, subsidies are given to lignite producers to keep the industry alive for strategic and political reasons.  

This explains why lignite represents about 25% of the German power generation.
20 Basically, coal can be separated into three groups: hard coal, lignite (or brown coal) and peat. Hard coal has the  

highest calorific value followed by lignite and peat (Percebois [1989]). While hard coal and lignite are used in the 
power and industrial sectors, peat is dedicated to household heating. Moreover, there are two sub-categories of hard 
coal: coking coal (used in steel production) and steam coal (used in steam raising and power generation). See United 
Nations [2005].
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industrial sectors were more affected by the recession than the power sector,21 the demand for coal 

has been more impacted than gas.

Over the last decades, the Eastern Europe consumption has continuously declined. Between 

1996 and 2006, it fell by 26% (Kanen [2006]). Nevertheless, coal still represents an important share 

of European electricity. The biggest with nuclear. Poland, Germany, the Czech Republic and Estonia 

are  the  EU countries  that  depend  most  on  coal  for  electricity,  with  more  than  50% of  power 

generation supplied by coal plants for each of them. In the UK about one third of electricity comes 

from coal, and one quarter in Spain. That can explain why countries such as Germany, Poland, 

Spain and the UK are the biggest CO2 emitters in the EU (see Ellerman and Buchner [2008]).22 In 

addition to hard coal, lignite is also an important input for power generation in some EU countries. 

Thus, almost 60% of power generation comes from lignite plants in Greece, and about 25% in 

Germany.  

21 Demand for electricity was globally more stable because the demand of households continued to rise even during 
the recession. See Eurostat data.

22 Note that there are technologies that can reduce CO2 emissions from existing coal-fired plants. Some of them are 
available, others are under study. They rely on increasing the efficiency of plants or on carbon capture and storage. 
See Hansen and Percebois [2010].  
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Figure 15: Steam coal prices in Europe and Asia (from IEA [2010]).



1.4. The oil market

The oil market is not our main focus. However, oil prices strongly impact energy markets and, in 

turn, the carbon market. Therefore, the main characteristics of the oil market are presented in this 

sub-section. We also discuss some developments on the oil market during the last few years. 

Oil is used to produce electricity during peak hours in some European countries (e.g. France 

and Lithuania, see Reinaud [2007]), but globally it represents a small share of European electricity. 

More importantly, the oil price is the main driver of the gas price which, in turn, is the main driver  

of power prices. Moreover, coal and gas prices also depend heavily on the price of oil, because coal, 

gas and oil are substitutes for many purposes (e.g. in the chemical industry). Hence, since the price 

of  carbon depends on coal,  gas  and electricity prices,  the price of  oil  also impacts  the  carbon 

market. This can be seen in Figure 16.  

As we mentioned before, there was an upward trend in the oil price from 2003 until the 

crisis of 2008 (see Figure 17). 
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Figure 16: Influence of soaring fuel prices (2003-2008) on the European carbon 

price. The price of carbon is the EUA price of the OTC market (based on Point 

Carbon [2009]) 



The  origin  of  the  crisis  was  the  first  liquidity  crisis  that  occurred  in  August  2007,  when  the 

subprime bubble burst. However, the financial crisis really exploded in September 2008, with the 

failure of Lehman Brothers and the difficulties of several key firms in the financial sector. This 

caused a dramatic credit crunch which rapidly turned into an economic crisis with the collapse of 

economic activity in Europe and in the world. In response, the price of oil fell from autumn 2008 

until the first signs of recovery in mid-2009 (see Figure 17). 

Because oil impacts energy and carbon markets, understanding how the oil market works is 

an important issue in analyzing relationships between energy markets and the EU ETS. In addition 

to geopolitical factors and the market power of producers, supply and demand for oil have specific 

characteristics  resulting  from the  centrality of  oil  in  the economy and the depletable nature  of 

reserves. Among those characteristics, the fact that the oil market is highly sensitive to information 

disclosures (due to uncertainties about reserves) and the inelasticity of supply and demand (at least 

in the short-run) are very important.23

Both oil consumers and suppliers have low price-elasticity in the short-run. Thus, when the 

price of oil varies, changes in supply and demand do not happen immediately. Consumers do not 

quickly adjust their consumption when the oil price goes up. In the same way, producers cannot  

react rapidly because of capacity constraints. The main consequence is that shifts in demand or 

supply can have a huge impact on the price of oil. For example, a quick rise in demand (such as the 

rise in world demand during the last decade) can trigger a huge price increase with a fixed supply.   

23 We focus on those characteristics because they are particularly relevant in the short-run. We do not discuss other  
factors  such  as  geopolitical  risks  or  market  concentration.  For  an  extensive  presentation  of  economic  and 
geopolitical drivers of the oil market, see Percebois [1989] and Hansen and Percebois [2010].
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Figure 17: Brent crude oil price (data available at www.indexmundi.com)

http://www.indexmundi.com/


With regard to oil reserves, the first thing to know is that their effective level depends on the 

price of oil. Indeed, reserves that can be exploited economically go up when oil prices are high, and 

vice versa. Thus, prices affect reserves and reserves affect prices. This makes estimates difficult24 

and sensitive to information disclosures. In addition, both producers and consumers have an interest 

in keeping private information from the other side. This makes the market even more sensitive to 

information.

24 According to IEA, peak oil (i.e. the point in time when production will decline) should occur around 2015. Note that 
coal and gas are also depletable resources and, therefore, their productions will also peak in the future. However,  
reserves are much higher than for oil, especially if we take into account the potential of non-conventional gases. If  
we consider the reserves-to-production ratio (= amount of known reserves / amount used per year), the world holds 
oil reserves for about 45 years, 65 years for natural gas and more than 150 years for coal.
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2. Interactions between carbon and energy markets: theories and 

literature review

Relationships between fuel, electricity and carbon markets have been of growing interest since the 

creation of the EU ETS, and have produced a literature with theoretical, simulation and econometric 

studies. The economic theory offers several keys to address these questions. Basically, they can be 

broken down into three approaches: the pass-through of the carbon cost, the short-run rent capture  

and  the fuel-switching approach.  The first  two concern interplay between electricity and carbon 

markets, while the third is relevant in explaining relationships between coal, gas and carbon prices. 

In this section, we present these three approaches and we review those papers dealing with these 

questions.

2.1. The pass-through approach

The term of “pass-through” refers to the percentage of the carbon price that is passed through to the 

electricity price.  Carrying carbon allowances entails  an opportunity cost because of profits  that 

would be obtained if they were sold, regardless of whether allowances have been received for free 

or purchased at an auction (see Sijm et al. [2005], Sijm et al. [2006] and Neuhoff et al. [2006]). 

Therefore, power producers will integrate this opportunity cost into the cost of generating power, 

according to economic theory. 

Since the launching of the EU ETS the question of the carbon cost pass-through has been a 

controversial issue because of windfall profits of power producers in a context of free allocation of 

carbon allowances.  Sijm et al. [2005] developed a model (COMPETES – Comprehensive Market 

Power in Electricity Transmission and Energy Simulator) to analyze the implications of emissions 

trading  for  power  prices  and  profits.  With  the  same  COMPETES  model,  Sijm  et  al.  [2006] 

estimated a cost-pass-through rate between 60 and 80% depending on the country, with the highest 

value for Germany. They also reported empirical evidence (using OLS estimations) of pass-through 

rates between 60 and 117% for Germany, and between 64 and 81% in the Netherlands. 
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In theory,  with a fully competitive electricity market, the pass-through rate would have to be 

100%. Indeed, in a perfectly competitive market,  all  the marginal cost of production is passed-

through  into  the  price,  including  opportunity  costs.25 However,  in  practice,  there  have  been 

significant differences between the EU Member States regarding the level of liberalization in the 

power sector (see section 1.1). In countries with a fully liberalized electricity market, retail prices 

are supposed to reflect the opportunity cost of carrying allowances. By contrast, in countries where 

a significant fraction of the sector is still subject to price regulations, retail prices are supposed to be 

less impacted by this opportunity cost. That can explain why the rate of pass-through can differ 

between countries. Nevertheless, even in countries with a high level of competition in the electricity 

market, less than 100% of the carbon cost has actually been transmitted into the price of electricity. 

One may think that the reason is that power prices are set under imperfect competition. Indeed, 

scarcity of  generation  capacities  at  certain  times  of  the  day (during  peak periods)26 justify  the 

existence of some form of market power in the electricity market (see Keppler [2010]). Therefore, 

profit-maximizing  firms  under  oligopolistic  market-conditions  will  not  automatically  pass  any 

increase of their marginal cost through consumers, since power prices are already relatively high 

above marginal  costs.  They actually arbitrate  between their  marginal  revenue and their  market 

shares. Thus, they do not fully pass on increases in the carbon cost, since it may lead to strong 

reductions  in  demand  (depending  on  price  elasticity  of  demand).27 Hence,  in  less  competitive 

markets, the effective pass-through rates tend to be less than 100%.

Other factors can also lead to pass-through rates which are lower than 100% (see Sijm et al. 

[2005], Sijm et al. [2006]). The main one are: changes in the merit order due to fuel switching,  

updating of free EUA allocations or market imperfections and non-optimal behaviors.

25 Theoretical justifications are available in Bonacina and Gullì [2007], Gullì [2008] and Sijm et al. [2008]. These  
papers develop theoretical models of carbon cost pass-through under perfect and imperfect competition. They show 
that the pass-through rate is 100% in the case of perfect competition, while it is lower than 100% under market  
power (Bocacina and Gullì [2007] show that the pass-through rate under market power may be very close to that of  
perfect competition when there is excess capacity, if the share of the most polluting power plants in the market is 
low enough).

26 Note that scarcity of capacities in peak-hours may be partially explained by investment retentions to create market 
power in face of rising demand. This may be a way for power producers to cover high fixed costs of peak-load 
plants. See Keppler [2010].

27 Price elasticity of demand for electricity is usually low. Especially, demand by households and other small-scale  
consumers is generally considered as inelastic,  while it  may be more significant for power-intensive industries.  
Here, differences in price-elasticity may also explain differences in pass-through rates. See Sijm et al. [2005] and  
Sijm et al. [2008].
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The proportion of the carbon cost which is effectively passed through to the electricity price 

depends on eventual changes in the merit order. To illustrate, let us take an example from Sijm et al. 

[2005]  and Sijm et  al.  [2006].  We assume two technologies,  A and B,  which  are  ranked in  a 

simplified merit  order (with only two technologies). According to the merit order principle,  the 

technology on the left is brought online first, and thus, it runs for a longer period. By contrast, the  

technology on the right is the last to be brought on line and it runs for a shorter period. 28 Thus, the 

technology on the right is the marginal technology which sets the electricity price. Moreover, we 

assume that A has a lower fuel cost and a higher carbon cost. Typically, A would be a coal plant and  

B a CCGT. If there is no carbon cost, in the business-as-usual (BAU) scenario, A is on the left and 

B on the right,  due to  the lower fuel cost of A. However,  with a carbon cost,  in the EU ETS 

scenario, B is on left and A on the right, due to the lower carbon cost of B (i.e. producers switch 

between A and B in the merit order). Finally, like Sijm et al. [2005] and Sijm et al. [2006], we make 

a distinction between the extent to which producers “add on” the opportunity cost of EUAs to their 

marginal cost (the “add-on rate”) and the extent to which the EUA costs ultimately “work on” 

power prices after eventual changes in the merit order (the “work-on rate”). Because of changes in 

the merit order, the work-on rate may be less than 100% even if the add-on rate is 100%. This is 

illustrated in Figures 18 and 19.

28 The merit order principle and fuel switching are further described in section 2.3 of this Chapter.
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Figure 18: Pass-through rate when there is no change in the merit order (based on Sijm et al. [2005] and Sijm 

et al. [2006]).  pe  is the electricity price in the BAU scenario,  pe
'  is the electricity price in the EU ETS 

scenario and C B  is the marginal EUA cost of the marginal technology B. The (fixed) demand is indicated 

by the vertical dash line.



In  Figure  18,  when  there  is  no  change  in  the  merit  order,  the  change  in  the  electricity  price

 pe= pe
'− pe   is always equal to the marginal EUA cost of the marginal technology B CB . The 

resulting effective pass-through rate  (i.e.  the work-on rate,  equal  to  pe /C B )  is  always  100%. 

However, the situation becomes different when there is a change in the merit order. As displayed in 

Figure 19, in this case the change in the electricity price is smaller than the marginal EUA cost of  

the marginal technology A (i.e.  peC A ). Therefore, the effective pass-through rate (the work-on 

rate which is equal to  pe /C A ) is less than 100%, even if the add-on rate is still 100%.

Updating free allocations of allowances can also lead to pass-through rates less than 100%. 

Updating is an allocation method in which the historical basis of emissions for free allocations is 

updated periodically, according to verified emissions. This creates an incentive for power producers 

to increase their current emissions in order to get more free allocations in the future. Accordingly, 

power  producers  are  encouraged  to  keep  electricity  prices  relatively  low  in  order  to  increase 

demand for electricity and thus carbon emissions. Therefore, they may limit the percentage of the 
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Figure 19: Pass-through rate under changes in the merit order (based on Sijm et al. [2005] and Sijm et al. 

[2006]). pe  is the electricity price in the BAU scenario, pe
'  is the electricity price in the EU ETS scenario 

and  C A  is the marginal EUA cost of the marginal technology A.  The (fixed) demand is indicated by the 

vertical dash line.



carbon price that is passed through to the electricity price.

In  daily  practice,  power  production,  trading,  pricing  and  other  decisions  may  deviate 

significantly  from  optimal  outcomes  of  economic  models.  The  opportunity  cost  of  carrying 

allowances may not be fully or immediately passed on to electricity prices because of a variety of 

reasons such as uncertainties, lack of information or objectives other than profit maximization, etc. 

Therefore, the pass-through rate may also be less than 100% due to market imperfections and non-

optimal behaviors.

Evidence of pass-through has been found in several econometric papers.  Bunn and Fezzi 

[2007] (see also Bunn and Fezzi [2008] and Bunn and Fezzi [2009]) were the first to address the 

issue of interdependence between carbon, electricity and fuel prices in a dynamic framework using 

a VAR-VECM approach. They estimate a VECM with temperatures, carbon, gas, and electricity 

prices in the UK during Phase 1 of the EU ETS. Among their results, they report that the carbon 

price  drives  the  price  of  electricity  in  the  long-run  equilibrium  (i.e.  in  the  cointegrating 

relationship). For the short-run dynamic, they also show that the electricity price reacts to a shock 

on  the  carbon  price.  Using  another  VECM  for  relationships  between  weather  variables 

(temperatures and reservoir levels for hydroelectricity), carbon and energy prices, Fell [2008] finds 

evidence of pass-through in the Nordic electricity market during Phase 1. He identifies that  the 

Nordic electricity price reacts promptly and significantly to a shock on the carbon price. Zachmann 

and von Hirschhausen [2007] identify an asymmetric pass-through of the carbon price into the price 

of electricity, in the German electricity market during Phase 1. This means that a rising carbon price 

has a stronger impact on the electricity price than a falling carbon price. They use a VECM between 

carbon and electricity prices from the German markets, with the gas price taken as an  exogenous 

variable.  Chemarin et al. [2008] examine relationships between the carbon and energy markets in 

France during Phase 1.  They estimate a VAR model in which they find no short-run interactions, 

and  they  show  that  including  weather  variables  (temperatures  and  rainfall)  does  not  modify 

their  results.  However,  those  same  authors  report  that  the  carbon  and  electricity  prices  are 

cointegrated.29

29 Chemarin et al. [2008] also investigate the volatility transmission between the carbon and electricity markets in  
several bi-variate GARCH models. Their results show that the own volatility spillover effects are significant on both 
markets, indicating that the current volatility of one market (carbon or electricity) depends on the past volatility of 
that same market. They also report some evidence of cross volatility spillovers (i.e. the past volatility of one market 
affects  the current  volatility in  the other  market).  However,  the results about  cross  volatility spillovers  depend 
heavily on the GARCH specification which is used.
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Keppler  and  Mansanet-Bataller  [2010]  are  were  the  first  to  analyze  the  dynamic  of 

relationships between carbon and energy markets in Phase 2, and the only ones to examine the 

dynamic of interactions between carbon and electricity markets in Phase 2.30 They perform pairwise 

Granger causality tests (i.e. Granger causality tests in several bi-variate VARs involving different 

variables)  for  Phase  1  and  for  the  first  year  of  Phase  2.  However,  they  do  not  check  for 

cointegration between variables. Their results show a significant influence of the lagged-values of 

the carbon price on the electricity price during Phase 1, while this does not hold in Phase 2.

More recently, Solier and Jouvet [2011] have estimated the pass-through rate in different 

European countries during Phase 1 and Phase 2. Those authors ran a regression analysis, where the 

pass-through rate is defined as the coefficient measuring the influence of the carbon price on the 

“spread”,  i.e.  electricity price minus fuel price (where fuel can be coal,  gas or oil).31 Prices of 

electricity are spot and futures prices of peak and off-peak load from different European power 

exchanges.  Fuel  prices  are  spot  and  futures  prices  of  oil  (Brent),  natural  gas  (Zeebrugge  and 

National Balancing Point)32 and coal (ARA). The carbon price is the spot price of EUAs traded on 

Bluenext. The estimation results indicate that the impact of the carbon price on electricity spot  

prices is relatively strong in Phase 1, while it is globally less significant in Phase 2. However, using 

the futures electricity prices, it appears that the pass-through coefficient is much more significant in 

Phase 2, whatever the country. Furthermore, Solier and Jouvet [2011] find that the value of the R2  

increases when the off-peak electricity prices are used rather than those of peak. This suggests that 

the pass-through is more important in off-peak periods. This result is consistent with the idea of an 

increase in the  scarcity of  generation capacities during peak periods. Hence, during peak periods, 

electricity prices could reach very high levels which may be less connected with the carbon cost.

2.2. The short-run rent capture approach

As opposed to  the  pass-through approach,  the  short-term rent  capture  theory (Keppler  [2010]) 

implies an influence of the electricity price on the carbon price. This happens in the short-run, when 

30 Note here that an earlier contribution has analyzed the effects of including EUAs in a diversified portfolio during the 
first  year  of  Phase  2 (Mansanet-Bataller  and  Pardo  [2008b]).  Different  portfolio  compositions  are  considered, 
including  traditional assets (stocks and fixed income assets like bonds) and energy commodities (oil and natural 
gas).

31 The fuel can be coal, gas or oil depending on the country and on the load level (i.e. a single marginal fuel is assumed 
for each country and load level, peak or off-peak).

32 The National Balancing Point (NBP) gas hub in the UK.
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no carbon abatements can be performed, implying that power producers have to reduce their output 

to sell  more allowances (or, symmetrically,  use more allowances to increase their  output). As a 

consequence, power producers with market power have the ability to “monetize” on the carbon 

market their scarcity rents in the electricity market. In other words, the carbon price will be set by 

the difference between the electricity price and the marginal cost, i.e. what is abandoned by a power 

producer if it decides to sell allowances rather than to produce (see Keppler [2010]).

As an illustration, let us take the example given by Keppler [2010]. We assume an electricity 

market with scarce capacities (and thus market power). The price of electricity is 70 Euros per 

MWh while the marginal cost (including the carbon cost) is 50 Euros per MWh. As a simplification, 

we assume that precisely one allowance is needed to produce one MWh of electricity. Moreover, we 

also assume that the endowment of allowances of each producer matches its production.33 In this 

situation, if a firm wants to sell allowances in the short-run, it needs to reduce its output given that it 

cannot reduce its emissions otherwise. Because each producer makes a 20 Euros profit per MWh of 

electricity (and thus per allowance used to produce), it will abandon 20 Euros per allowance which 

is sold rather than used to produce. Therefore, the carbon price should be 20 Euros per allowance. 

Empirical evidence of the influence of the electricity price on the carbon price has been 

reported  in  some  econometric  studies.  It  has  been  found  in  single-equation  estimations  by 

Mansanet-Bataller et al. [2007], Alberola et al. [2008].  Evidence of dynamic interactions between 

those prices has also been reported in VAR models. Keppler and Mansanet-Bataller [2010] identify 

Granger causalities running from the spreads34 to the carbon price in Phases 1 and in the first year 

of Phase 2. This lends support to the short-term rent capture approach since the spreads indicate 

what  would  be  abandoned  by a  power  producer  if  it  stops  producing.  Moreover,  Keppler  and 

Mansanet-Bataller [2010] find that the electricity price directly impacts the carbon price in Phase 2, 

while they do not report this result for Phase 1. Finally, Nazifi and Milunovich [2010] identify a  

significant influence of the electricity price on the carbon price during Phase 1. They investigate 

relationships between temperatures, carbon, fuel, and electricity prices, with data from different 

regions of Europe (including France, the Nordic countries, ARA, and the UK). Using the Granger 

causality and impulse response functions in a VAR model, they detect some significant short-run 

33 The example also works if endowments are less than production. However, this does not work when endowments 
are larger than production since the carbon price drops to zero in this case.

34 The spreads are the Clean Dark Spread (CDS, the electricity price minus the costs of coal and carbon) and the Clean 
Spark Spread (CSS, the electricity price minus the costs of gas and carbon).
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relationships.35 Notably, they find Granger causality running from the electricity price to the carbon 

price. Here again, this lends support to the short-term rent capture theory. 

2.3. The fuel switching approach

The impact of fuel prices on the carbon price is explained by fuel switching. The basic idea of this  

approach is that fuel prices determine the demand for carbon allowances by setting the composition 

of power generation. Fuel prices determine which technology (i.e. coal plants or CCGTs, in our 

case) is brought online first. Therefore, since power producers are the main actors in the EU ETS, 

fuel prices strongly influence carbon emissions under the scheme. That is why fuel prices are often 

considered to be the most significant carbon price drivers. 

Kanen [2006] was among the first who gave a rigorous treatment of fuel switching under the 

EU  ETS.36 He  simulated  the  cost  of  switching  from coal  to  gas  (the  switching  price  or fuel  

switching price), expressed in Euros per tonne CO2, in the different countries of the EU. He used 

coal and gas prices for industrial consumers. Among countries where fuel switching can occur (i.e. 

countries with relatively high proportion of coal and gas in off-peak load), he reported particularly 

low switching prices in the Netherlands and in Spain (below the EU 25 average). The author also 

found a relatively low switching price in the UK (below the EU 25 average),37 but higher than in 

Spain and in the Netherlands. However, its results showed a high switching price for Germany, 

always quite above the EU 25 average. On the other hand, using the gas prices for big industrial 

consumers (more than 4 million GJ a year) – whose data are unavailable for other countries – he 

identified  that  the  German  switching  price  was  drastically  reduced  (far  lower  than  in  other 

countries) so that fuel switching could occur more easily. Nevertheless, as pointed out by the author, 

this switching price is not attainable for most industrials except for large gas companies such as the 

E.On-Ruhrgas  merger.  Moreover,  as  fuel  switching  entails  an  opportunity  cost  for  a  vertically 

integrated company such as E.On-Ruhrgas (i.e.  the opportunity cost of not selling its gas to its 

35 However, Nazifi and Milunovich [2010] find no significant cointegration relationship.
36 Sijm et al. [2005] also gave one of the first contributions for the EU ETS. They compared the cost of generating one 

MWh of electricity with coal-plants or CCGTs in several scenarios for carbon and fuel prices. The impact of fuel 
switching in an emission trading scheme was previously studied in  the US.  In  this  case,  fuel  switching is  the  
replacement of high-sulfur coal with low-sulfur coal (see Ellerman and Montero [1998]).  

37 The first half of 2006 is an exception here, because the switching price was much higher in the UK (above the EU 
25 average) due to a peak in the UK gas price (see Figure 4 in section 1.2).
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customers), this switching price may be not representative for Germany.38 

In the same spirit, Delarue and D'haeseleer [2007] and Delarue et al. [2007] showed how an 

efficient way of using a park of power plants under an emission trading regime leads to an indicator, 

the switching point (which corresponds to the switching price), expressing how advantageous fuel 

switching from coal to gas is at a certain point in time (see section 2.3 of this Chapter). Delarue and  

D'haeseleer [2008] and Delarue et al. [2008] use the E-Simulate model (developed at the University 

of Leuven)39 to simulate, for several European countries, how the dispatch of power plants (to meet 

hourly  demand)  is  modified  by introducing  a  carbon  price.  They report  particularly  high  fuel 

switching potential (from coal to gas) in the Netherlands, Germany, Spain, and the UK. 

Fehr  and  Hinz  [2006]  (see  also  Carmona  et  al.  [2009])  were  the  first  to  analyze  fuel 

switching in an equilibrium model (see Chapter 2 for a more detailed presentation). They build a 

dynamic equilibrium model with a stochastic cost function representing the expense generated by 

switching thermal power plants from coal plants to CCGTs. As a simplification,  they assume a 

single switching price in their cost function. With this approximation, the fuel switching process 

they describe corresponds to a situation where there is only one type of CCGTs (i.e. differences in 

energy efficiency are not taken into account).40 They find that the carbon price is an increasing 

function of the gas price, and a decreasing function of the coal price (i.e. an increasing function of 

the switching price). They also find that the carbon price depends on the difference between the 

required level of carbon abatements (which is defined as the difference between carbon emissions in 

the “business-as-usual” scenario and initial endowments of allowances) and the optimal level of 

fuel switching effort. In another equilibrium model on fuel switching, Bertrand [2010] has explicitly 

modeled differences in the energy efficiency of CCGTs used in the fuel switching process (whereas 

a single type coal plants is assumed).41 It is possible, then, to analyze how the fuel switching process 

can affect  interaction between gas and carbon prices in  a  context  where gas  plants  are not all  

equally efficient. The main result shows that the sensitivity of the carbon price with respect to the 

gas price depends on the level of uncontrolled carbon emissions (i.e. “business-as-usual” emissions) 

38 This  opportunity cost  that  comes with fuel  switching for  vertically integrated companies  may be an important  
question given that E.On is one of the biggest power producers in Germany, with RWE.

39 The E-Simulate model represents a European electricity generation system that includes most European countries. 
The model determines the composition of power generation, for each hour of the year, by minimizing the cost of 
dispatching plants. For more details, see Voorspools [2004]. 

40 They also assume one type of coal plant.
41 The same strategy as in Fehr and Hinz [2006] is followed with a cost function representing the expense generated by 

switching from coal to gas.
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due to differences in efficiency of gas plants.

Up to now, several econometric papers have shown in single-equation estimations that coal 

and gas prices were often the most significant carbon price drivers during the first Phase of the EU 

ETS (see  Kanen [2006],  Mansanet-Bataller  et  al.  [2007],  Rickels  et  al.  [2007],   Alberola et  al. 

[2008] and  Hintermann [2010]).  With regard to Phase 2,  Rickels et al. [2010] were the first who 

analyzed  relationships  between  the  carbon  price  and  its  drivers  in  single-equation  estimations. 

Those authors estimate regressions with the carbon price as dependent variable,  and fuel prices 

(coal,  gas,  oil,  and  switching  prices),  economic  activity  (stock  price  indexes)  and  weather 

(temperatures, wind and reservoir levels for hydroelectricity) as explanatory variables. Estimations 

are conducted with two switching prices,  i.e. one based on spot and one based on forward fuel 

prices. However, only the “forward switching price” has a significant positive coefficient, in line 

with fuel switching. Rickels et al.  [2010] conclude that their results indicate that fuel switching 

takes place, but not in the very short-run. When the absolute coal and gas prices are included (rather 

than  the  switching  price),  performances  of  estimations  (as  measured  by  R2 )  increase.  The 

coefficients of the spot and forward gas prices are highly significant and positive, in line with the 

fuel switching approach. However, the coal prices have positive coefficients, contrary to what is 

predicted by fuel switching (i.e. a negative influence on the carbon price). The authors note that this 

result does not necessarily imply that fuel switching does not take place, since fuel switching relies 

on relative fuel prices rather than on their levels alone.

Evidence of dynamic interactions between those prices have also been reported.  Bunn and 

Fezzi [2007] find that the carbon price depends heavily on the gas price, in the short-run dynamic. 

As they find that both the gas price and the carbon price drive the electricity price (in the short-run 

and in the equilibrium), they conclude that one indirect consequence of the EU ETS is to strengthen 

the link between gas and power,  due to fuel switching (see also Grubb and Newberry [2008]).  

Keppler and Mansanet-Bataller [2010] show that there is an indirect influence of coal and gas prices 

on the carbon price, through the spreads. That is, coal and gas prices influence the spreads which in  

turn influence the carbon price. They report this result for Phase 1 and for the first year of Phase 2. 

Moreover, in 2008, they identify that the carbon price directly impacts the gas price and the coal  

price. The relationship is bi-directional regarding carbon and coal prices. As pointed out by the 

authors, the influence of the carbon price on fuel prices is somewhat surprising. One would expect  
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the influence of fuel prices on the carbon price to be more important.42 They argue that this result 

should be explained by the economic crisis.43 Nevertheless, other studies have found a significant 

influence of the carbon price on fuel prices in Phase 1. Thus, Fell [2008] reports that coal and gas 

prices react to a shock on the carbon price. However, the reaction is slow and small in magnitude in 

each case. Finally, Nazifi and Milunovich [2010] find Granger causality running from the carbon 

price to the gas price. In another early contribution for Phase 2, Bonacina et al. [2009] examined the 

interdependence  between  carbon,  fuel  and  stock  prices  in  2008.  The  authors  conducted  a 

cointegration  analysis,  with  the  carbon  price  normalized  as  the  dependent  variable  of  the 

cointegrating  relationship.  The oil  price,  the switching price  and an equity price index are the 

explanatory variables. The results show that variables are cointegrated,  with significant positive 

coefficients  for  the  oil  price  and  the  switching  price.  However,  the  stock  price  index  is  not 

significant,  and the value of the switching price coefficient is  very low. In order to investigate 

consequences of the financial crisis, the dataset is divided in two sub-periods – before and after the 

financial crisis (i.e. before and after August 2008) – in which ECMs are estimated.44 The results on 

the full sample period show that the stock price index has a significant influence in the short-run, 

even though it is not significant in the cointegrating relationship. For the authors, this indicates that 

market  players consider  the carbon allowances as financial  assets  in the short-run,  whereas  the 

carbon market is governed by its fundamentals (i.e. energy prices) in the long-run. Indeed, in the 

absence of certainties concerning the future rules of the EU ETS,45 the market players may have 

traded allowances mostly for speculative purposes. Regarding the sub-periods, the results show that 

the fundamentals have slightly changed with the crisis. Before the financial crisis, energy prices 

were the main drivers of the carbon price, whereas the stock price index was not significant. By 

contrast, the carbon market has become sensitive to stock prices after the financial crisis, whereas 

the switching price was not significant. The authors interpret these results as the consequences of 

changing behaviors of market players because of the crisis and the credit crunch. With emission 

reductions  (consequences  of  production  cutbacks),  companies  were  able  to  sell  their  unused 

allowances to raise cash during the credit crunch. These financing strategies were the main reasons 

42 While the fuel switching theory is robust to explain the influence of fuel prices on the carbon price, it  is more 
questionable  for  the  opposite  relationships.  Indeed,  demand  for  fuels  triggered  by fuel  switching  represents  a  
relatively small share of the overall fuel consumption in Europe. Thus, variations in demand for fuels caused by 
variations in the carbon price should have a limited impact on European fuel markets.

43 Due to economic recession in Europe, the carbon price fell in 2008. At the same time, there was a “de-coupling” 
between the European and the world fuel  markets (i.e.  market participants had different expectations about the  
European and the world fuel markets, due to the continuing  economic growth in emerging countries). Therefore, 
once the “de-coupling” was effective, the downward pressure on the carbon market would have been transmitted to 
the European fuel markets. See Keppler and Mansanet-Bataller [2010].

44 Error Correction Model, see Chapter 3.
45 The precise rules for Phase 3 of the EU ETS were not known before the end of 2008.
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for the volumes of trade at the end of 2008. This may explain why the carbon price was less driven 

by energy prices in the short-run and especially by mid-2008. 

More recently, two papers have investigated the existence of equilibrium relationships (i.e. 

cointegration relationships) between the carbon price and several of its drivers over Phase 1 and 

Phase 2 (Bredin and Muckley [2011] and Creti et al. [2012]). Bredin and Muckley [2011] analyze 

the  development  of  cointegration  relationships  in  a  system containing  EUA futures  prices  and 

several fundamentals such as oil price,  spreads (CDS and CSS), equity price index, temperatures 

and index of industrial production  (interpolated to obtain daily data). They examine Phase 1 and 

Phase 2. Bredin and Muckley [2011] use conventional procedures for cointegration testing46 and a 

modified Johansen test allowing to take into account ARCH effects. In any case, the carbon price is 

normalized as the dependent variable of the relationship. The results reveal that a robust equilibrium 

relationship only holds in Phase 2. The authors conclude that a new “pricing regime” has emerged 

since the beginning of Phase 2, which is indicative of an increasing activity and a rising level of  

efficiency in the carbon market. Creti et al. [2012] extend Bredin and Muckley [2011] by running a 

cointegration  analysis  taking into  account  the  structural  break  that  occurred  in  Phase  1  during 

Spring 2006. Moreover, the authors run Granger causality tests and derive in-sample forecasts for 

the carbon price, based on estimated models for Phase 1 and Phase 2. This allows them to discuss 

the discrepancies between the predicted and observed carbon price.  The sample of data includes 

EUA futures prices, oil price (Brent), switching price and equity price index. However, no weather 

variables are considered.47 As in Bredin and Muckley [2011], Phase 1 and Phase 2 are examined. 

The cointegration analysis is conducted with the carbon price normalized as the dependent variable 

of the cointegrating relationship. The results indicate that the variables are cointegrated for the full 

sample and for the two sub-periods corresponding to Phase 1 and Phase 2. Regarding Phase 1, the 

results are different from those of Bredin and Muckley [2011]. Whereas Bredin and Muckley [2011] 

find no evidence of cointegration in Phase 1, Creti et al. [2012] show that a long-run relationship 

exists in Phase 1 when the structural break is taken into account. However, the results suggest an 

increasing role of fundamentals in Phase 2 compared to Phase 1. Notably, the switching price is 

significant in Phase 2 – with a positive coefficient in line with the fuel switching theory – whereas it 

was not in Phase 1. The results of the Granger causality tests show that the carbon price is impacted 

by the switching price and by stock prices in Phase 2, whereas it is not influenced by any of the 

46 See Chapter 3.
47 Creti et al. [2012] argue that weather variables should not necessarily be included in the analysis since their impact 

on carbon prices is indirect and captured in energy demand. 
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considered fundamentals in Phase 1. Interestingly, Creti et al. [2012] also report significant Granger 

causality running from the carbon price to the oil and stock prices.48 These results are interpreted as 

evidence of an increasing role of the EU ETS in the economy. Finally, the results of the in-sample  

forecasts show that the adjustment between observed and predicted carbon prices is globally better  

in Phase 2. Here again this suggests an increasing role of fundamentals during Phase 2. Moreover, 

the results show that the observed price is close to the predicted price and globally overvalued at the 

beginning of Phase 2, whereas there is an overall undervaluation (i.e.  predicted price  higher than 

observed price) and a worse adjustment since the end of 2009. For the authors, this can be partially 

explained by production cutbacks in non-energy sectors that caused a downward pressure on the 

carbon price. Before October 2009 the effect of production cutbacks was diminished by the stability 

of power demand. However, the power demand finally decreased in October 2009, which depressed 

the carbon price and created the observed undervaluation. Nevertheless, Creti et al. [2012] argue 

that  the  undervaluation  cannot  be  completely explained  by the  impact  of  the  economic  crisis. 

Uncertainties regarding the future of the international climate policy, the Copenhagen summit and 

the recent cases of VAT frauds and allowance thefts have also contributed to depressing the carbon 

market by reducing confidence in the EU ETS.49  

The question of the volatility transmission between carbon and fuel markets has also been 

investigated by Mansanet-Bataller and Soriano [2009]. They estimate a GARCH model for carbon, 

gas and oil prices during Phase 1 and the first year of Phase 2. They find that the carbon price 

volatility is affected by its own past volatility, and the oil and gas prices past volatility. Moreover, 

the gas price volatility is  affected  by the past  volatility on the oil  market  and by its  own past 

innovations, but it does not depend on the past volatility of the carbon price.

2.3.1. Merit order and fuel switching

The merit order is the ranking of all power plants of a given park by marginal cost of production. 

Technologies are stacked in order  of  increasing marginal  cost  of electricity production,  so that 

power producers bring ever more expensive plants into production as demand increases.50  

48 These last results can be compared with results of  Keppler and Mansanet-Bataller [2010] for Phase 2, which show 
that the carbon price impacts the gas price and the coal price.

49 Similar interpretations are given in Bonacina et al. [2009] and in Solier and Jouvet [2011].
50 For further details, see Unger [2002].
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Without any carbon price,  coal  plants are usually brought  on line first,  because of their 

cheaper fuel cost.  Gas plants are used next,  during shorter periods,  when demand for power is 

higher. However, with a price for carbon emissions, gas plants may be preferable to coal plants, due 

to their lower carbon intensity. That is, if the cost of increased carbon emissions with coal plants is 

higher than the additional fuel cost associated with the decision to produce with gas rather than with 

coal, it is cheaper to use gas plants first instead of coal plants. If such switching occurs, carbon 

emissions are reduced, because coal plants are brought on line for shorter periods (i.e. they are 

higher in the merit order). Therefore, all other things being equal, a relatively high gas price (and/or 

a relatively low coal price) encourages producers to use more coal, which drives up demand for 

allowances and the carbon price (and vice versa).

The fuel switching we describe happens in intermediate load – i.e. for intermediate levels of 

production that occur between 20% and 80% of the time (see Unger [2002]) – between coal plants 

and CCGTs.51 To illustrate this, let us assume a given park of power plants which is representative 

of countries where fuel switching can occur (i.e. with a high proportion of coal plants and CCGTs in 

intermediate load).52 This is given in Table 4.

Table 4: Composition of an illustrative power system.

Name Technology Number of plants
Unit power  

(GW)

Total installed 
capacity 

(GW)

T1 hydro 1 1 1

T2 nuclear 3 1 3

T3 hard-coal 3 1 3

T4 CCGT 3 1 3

T5 open cycle gas turbine 2 1 2

T6 oil 1 1 1

T7 diesel 1 1 1

51 As we have already mentioned, fuel switching can also occur with other plants for other levels of load (e.g. between  
oil plants and open cycle gas turbines, or between hard-coal and lignite).  However, as the quantities of carbon  
involved in switching between coal plants and CCGTs are much higher, we focus on this type of switching (as is  
usual in the literature about the EU ETS).

52 As  pointed out  by  Kanen  [2006],  a  single  European  merit  order  is  a  theoretical  concept  due  to  lack  of 
interconnection between national power grids. However, with progresses in interconnection, a single European merit 
order is expected to become a reality. It should be close to the one presented in this section.
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Applying the merit order principle to this power system, we obtain the merit order curve given in 

Figure 20 (values of marginal costs are arbitrary but consistent with reality, see Kanen [2006] and 

Delarue et al. [2008])53 : 

Unger [2002] defines as base-load the load levels that occur for more than 80% of all hours in a 

year. Power plants that run more than 80% of the time are referred to as base plants. Intermediate 

load corresponds to the load levels that occur between 20% and 80% of the time, and power plants 

associated with intermediate load are called intermediate plants. Finally, peak load corresponds to 

the load levels that occur for less than 20% of the year and the corresponding power plants are 

called peak plants. This is illustrated in Figure 21, which shows the annual load duration curve 

associated with the power system in Table 4 and the merit order in Figure 20.

53 Note that for thermal power plants the fuel cost makes up the great majority of the marginal cost. Other factors 
affecting the marginal cost of production are maintenance operations or unforeseen breakdowns (see Unger [2002]). 
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Figure 20: Merit order without carbon price (based on Voorspools [2004], Kanen [2006] and Delarue 

et al. [2008]).



As we have mentioned, the fuel switching we describe happens in intermediate load. More exactly, 

it happens in the lower part of intermediate load. For convenience we call this the switching zone 

(see Figure 21). As can be seen from Figure 21, the switching zone corresponds to longer time 

periods than the remaining part of intermediate load. Therefore, plants which are brought online 

first,  in  the  switching  zone,  run  for  longer  periods,  whereas  other  intermediate  plants  that  are 

brought online next, when demand increases further, run for shorter periods. If there is no carbon 

cost, in the business-as-usual (BAU) scenario, coal plants are usually used before CCGTs, in the 

switching zone, due to their lower fuel cost. This is illustrated in Figure 20 (the merit order curve 

which  ignores  the  carbon  price).  However,  if  power  producers  decide  to  use  CCGTs  in  the 

switching zone,  they reduce their  carbon  emissions  compared  with  the  BAU scenario.  If  such 

switching  occurs,  coal  plants  stand  higher  in  the  merit  order  than  gas  plants,  and  so  carbon 

emissions are reduced.
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Figure  21:  Annual load duration curve (based on Unger [2002]). It shows the cumulative frequency 

distribution  of  load  levels,  and  associated  plants.  T1,...,T7  are  the  technologies  available  in  the  

representative park of Table 4. 



If we introduce a carbon price, CCGTs may become preferable to coal plants, due to their 

lower carbon output. We define the marginal costs of producing one MWh of electricity (in Euros) 

with coal plants and with CCGTs, respectively,  as:  MC c
BAU=hc COALt  and  MC g

BAU=h g GAS t ,  in the 

BAU scenario, and  MC c
EU ETS=hc COALtec EUAt  and  MC g

EU ETS=hg GAS teg EUAt  under the EU ETS. 

Here ec  and  e g  are coefficients measuring the carbon emissions (in  tonnes of CO2 per MWh of 

electricity) from coal  plants  and  CCGTs,  respectively.  hc  and  hg  express  how much  fuel  is 

consumed to generate one MWh of electricity with the same plants (where  hc  is expressed in 

tonnes, and hg  in thermal MWh). COALt , GAS t  and EUAt  are the prices of coal (in Euros per 

tonne), gas (in Euros per thermal MWh) and CO2 (in Euros per tonne) at time t. 

Using these  notations,  the  decision  to  implement  CCGTs rather  than  coal  plants  in  the 

switching zone is made by comparing  MC c
EU ETS  with  MC g

EU ETS . Thus, it will be worth switching 

between the two technologies if MC c
EU ETS  is higher than MC g

EU ETS  (whereas MC c
BAU  could be lower 

than MC g
BAU ), as illustrated in Figure 22.
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Figure 22: Switching between CCGTs and coal plants (based on the merit order curve in Figure 20). 

For simplicity technologies other than T3 and T4 have not been included in the graphic.



After fuel switching, the merit order is modified as in Figure 23.

More specifically, if the cost of increased carbon emissions with coal plants ( EUAt ec−eg  , for each 

MWh of electricity) is higher than the additional fuel cost associated with the decision to produce 

with  CCGTs in  the  switching zone rather  than  with  coal  ( h g GASt−hc COALt ,  for  each MWh of 

electricity), it is cheaper to use CCGTs first instead of coal plants (and vice versa). Therefore, fuel 

switching  should  occur  if  and  only  if  EUAt ec−eg  h g GASt−hc COALt  (which  corresponds  to 

MC c
EU ETSMC g

EU ETS ). This last inequality allows us to derive the switching price, as defined in Fehr 

and Hinz [2006] (see also Kanen [2006] and Delarue and D’haeseleer [2007])54 : 

SW t=
h g GAS t−hc COALt

ec−eg
 .            (1.1)

SW t  represents the cost (in Euros per  tonne CO2 at  period  t)  of switching from coal plants  to 

CCGTs to abate one tonne of carbon. It can also be defined as the carbon price that makes CCGTs 

54 Following Delarue and D’haeseleer [2007], the switching price can be derived directly by equalizing MC c
EU ETS  and 

MC g
EU ETS . Kanen [2006] defines the switching price as the carbon price at which the gas and coal spreads (i.e. the 

clean dark spread and the clean spark spread) are equal.
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Figure 23: Change in the merit order after switching with one type of CCGTs. The parts 

above the areas reflecting fuel costs (the sames as in Figure 20) correspond to the costs of  

carbon emissions.



and coal plants equally attractive in terms of marginal cost. Thus, fuel switching will (will not,  

respectively) occur at a period t if and only if EUAtSW t  ( EUAtSW t , respectively).

2.3.2. Efficiency of plants

So far we have assumed that all plants involved in fuel switching are equally efficient. However, 

differences in the energy/environmental efficiency of plants matter. This has been pointed out in 

some previous studies. Notably, Sijm et al. [2005] estimate that the switching price declines by 22% 

when the efficiency rate of CCGTs involved in fuel switching is increased from 53% to 62%.55 They 

also point out that the switching price would be affected by differences in the efficiency rate of coal 

plants.  However,  this  is  of  lesser  importance  given  that  the  dispersion  in  the  distribution  of 

efficiency rates of coal plants involved in fuel switching with CCGTs is quite small in general.56 

Taking into account these differences in the efficiency rate of plants, we have one switching 

price for any given pair of coal and gas plants. Thus, as pointed out by Delarue et al. [2008] (see 

also  Ellerman and Feilhauer [2008]), for any given fuel prices, there are several switching prices 

associated  with  different  pairings  of  coal  and gas  plants.  There  is  in  fact  a  distribution  of  all 

switching prices,  that  can  be  called  the  “switching  band”  (Ellerman and Feilhauer  [2008]  and 

Delarue et al. [2008]), and, accordingly, it may be profitable to switch certain plants (for which 

EUAtSW t ) and not others.57

Switching band: illustration

The value of the switching price depends on efficiency of plants involved in fuel switching. Indeed, 

the value of emission rates ( ec  and e g ) and heating rates ( hc  and hg ) depends on the efficiency 

rate of plants. Therefore, the value of the switching price varies with the efficiency rate of plants 

(according with equation (1.1)).

55 An efficiency rate of 50% means that each thermal MWh of gas can be converted into 0.5 MWh of electricity.
56 According to the literature, in most cases, the efficiency rate of those coal plants is around 38% while it ranges from 

45% to 55% (and, sometimes,  and it can reach 60% or more) for CCGTs  (see  Sijm et al. [2005], Kanen [2006], 
Delarue et al. [2007] and Delarue et al. [2008]). 

57 See  Delarue et al. [2008] for simulations of the switching price with more or less efficient types of plants (with 
efficiency rates ranging from 36% to 38% for coal plants, and from 36% to 50% for CCGTs).
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As an illustration,  let  us take the power system in Table 4 again.  However,  contrary to 

Table 4, we assume that the three CCGTs are no longer equally efficient.58 Say that their rates of 

efficiency are 55, 50 and 45%, respectively. Accordingly, the values of the coefficients e g  and hg  

vary depending on the type of CCGT. Using the calculation formulas,  hg=
electric MWh
thermal MWh=

1
efficiency rate  

(where efficiency rate= thermal MWh
electric MWh ) and e g=

0.202
efficiency rate  (where 0.202 is the quantity of CO2 in tonnes 

per thermal MWh of natural gas, as provided by the Intergovernmental Panel on Climate Change),59 

the values of coefficients e g  and hg  can be calculated for each type of CCGT as in Table 5.

Table 5: Emission and heating rates ( eg  and h g ) with different types of CCGTs.

Efficiency rate
of CCGTs

hg e g

45% 2.222 0.449

50% 2.000 0.404

55% 1.820 0.367

As a consequence, assuming one type of coal plant with an efficiency rate of 38% (i.e. the three T3 

in Table 4 are equally efficient), we have three switching prices given by equation  (1.1):  SW t
45 , 

SW t
50  and SW t

55  (where SW t
i  is the switching price associated with a CCGT of i% efficiency). Thus, 

with  ec=0.9  and  hc=0.38  (corresponding  to  coal  plants  of  38%  efficiency),60 we  obtain  a 

“switching band” where we always have  SW t
45SW t

50SW t
55  for any coal and gas prices. This is 

illustrated in Figure 24.

58 For simplicity we continue to assume that there is only one type of coal plant. This assumption is justified because  
the dispersion in the distribution of efficiency rates of coal plants involved in fuel switching with CCGTs is very 
small. Of course, there are other coal plants which are very different of those used in fuel switching with CCGTs.  
They may be significantly more efficient (e.g. new coal plants) or less efficient (e.g. lignite plants), but they should 
not be used in intermediate load, and thus they are not involved in the fuel switching described here.

59 See Fehr and Hinz [2006].
60 ec=

0.341
efficiency rate ,  where  0.341  is  the  quantity  of  CO2 in  tonnes  per  thermal  MWh  of  coal  (as  provided  by  the 

Intergovernmental  Panel  on  Climate  Change,  see  Fehr  and  Hinz  [2006]).  h c=
electric MWh

tonne coal
=0.144× 1

efficiency rate ,  where 
0.144 represents one thermal MWh of coal expressed in tonne. Since one tonne of coal corresponds to 6.961 thermal 
MWh (as calculated by Fehr and Hinz [2006], based on values reported by  the McCloskey Group), one thermal 
MWh of coal corresponds to 0.144 tonne of coal. Therefore, assuming a coal plant with 38% efficiency, we find
ec=0.9  and hc=0.38  (see Table 10).
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The switching band shows which type of CCGT can be substituted for coal plants in the switching 

zone at any time. For example, if SW t
45EUAtSW t

50SW t
55 , it would be worth switching to 55 and 

50% efficiency CCGTs, but not to 45% ones. 

Static comparative analysis for switching price

The fuel switching cost represents the additional fuel cost associated with the decision to generate 

power with CCGTs where coal-fired plants were previously used (i.e. in the switching zone). Then, 

given that fuel switching consists in substituting gas plants for coal plants in power generation, its 

cost must increase with the gas price and decreases with the coal price. Therefore, the switching 

price (i.e. the switching cost expressed in Euros per tonne CO2) is an increasing function of the gas 

price and a decreasing function of the coal price.
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Figure  24:  “Switching band” and carbon price. Switching prices are calculated from equation  (1.1), 

using the Zeebrugge Hub daily gas price and the CIF ARA daily coal price. The carbon price is the  

Bluenext daily spot price for EUAs. Data are presented in Appendix B. 



Kanen [2006] ran a series of sensitivity analyses to check the impact of changing coal and 

gas prices on the switching price. He confirmed that rising gas price drives the switching price up, 

whereas rising coal price drives the switching price down. This can be easily verified by taking the  

first derivatives of equation (1.1) with respect to coal and gas prices: 

∂ SW t

∂COALt

=
−hc

ec−e g

0  and 
∂ SW t

∂GAS t

=
hg

ec−e g

0 ,             (1.2)

since  ec−eg 0  for  any pairings  of  coal  and CCGT plants.  Interestingly,  Kanen [2006] also 

observed that the impact of changing gas prices is bigger than the impact of changing coal prices. 

He estimated that the elasticity of the switching price to the gas price is +2, while the elasticity of  

the switching price to the coal price is -1.

Efficiency rate of plants and switching effort

The level of switching effort  has also to be taken into consideration,  because it  determines the 

efficiency of power plants involved in fuel switching. Indeed, a power producer owning several 

more or less efficient types of coal and CCGT plants will substitute less and less efficient CCGTs 

for more and more efficient coal plants, as the fuel switching effort increases. On the one hand, as 

the fuel switching effort increases, power producers tend to use ever less efficient CCGTs in the fuel 

switching process, because they want to produce first with units that are less costly to run (i.e. the  

most efficient). On the other hand, as the fuel switching effort increases, power producers tend to 

drop their less efficient coal plants first, because they want to shut down coal plants first that are 

more costly to run.

To illustrate this, we take the example of the power system in Table 4 again. As in our 

example for the switching band,  we assume that  we have three different  types of CCGTs with 

efficiency rates of 45, 50 and 55%, respectively. Moreover, we assume that we have only one type 

of coal plant, so that the three T3s in Table 4 are equally efficient. Let us define T4
55 , the CCGT of 

55% efficiency,  T4
50 ,  the CCGT of  50% efficiency,  and  T4

45 ,  the CCGT of 45% efficiency.  In 

addition, we assume three levels of switching effort: low (= one T4 in the switching zone), medium 

(= two T4s in  the switching zone)  and high (= three T4s in  the switching zone).  As we have 
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explained just before,  power producers substitute ever less efficient CCGTs for coal plants, as the 

fuel switching effort rises. Therefore, in our example, a power producer will switch only T4
55  for the 

low level of effort,  T4
55  and T4

50  for the medium level, and T4
55 , T4

50  and T4
45  for the high level. 

This is summarized in Table 6.

Table 6: Efficiency of CGGTs and level of switching effort.

Level 
of switching effort

Type 
of switching

Marginal switching

Low T4
55  for one T3 T4

55  for T3

Medium T4
55  and T4

50  for two T3s T4
50  for T3

High T4
55 , T4

50  and T4
45  for three T3s T4

45  for T3

According to the switching band, depending on fuel and carbon prices, it  may be profitable to 

switch certain plants (the ones associated with a switching price which is below the carbon price) 

and not others. For example, if SW t
45EUAtSW t

50SW t
55 , it would be worth switching to 55 and 50% 

efficiency CCGTs, but not to 45% ones. In such a situation, the merit order (after fuel switching) 

would be modified as in Figure 25, with the two most efficient CCGTs in the switching zone and 

the less efficient one outside. This corresponds to the medium level of effort, as defined before.
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Figure 25: Change in the merit order after a medium level of switching effort.



As we  can  deduce  from  Figure  25,  for  any level  of  electricity  production  where  switching  is 

possible (i.e. in intermediate load, when some CCGTs are available), the proportion of CCGTs in 

the switching zone may vary (depending on carbon,  coal  and gas  prices).  If  the proportion of 

CCGTs in the switching zone rises, carbon emissions decrease and, consequently, fewer allowances 

are used. Hence, for any level of electricity production where switching is possible, the proportion 

of  CCGTs  in  the  switching  zone  and  allowances  can  be  considered  as  inputs  for  electricity 

production, and they can be substituted for one another. So, defining  , the proportion of CCGTs 

in  the  switching  zone  (“switching  effort”),  and   ,  the  number  of  allowances  required  for 

production, we see that    and    are substitutes, and, for a given level of electricity production 

where switching is possible, their relative cost (which depends on carbon, coal and gas prices) sets 

the optimal combination * ,* .  

We saw that the efficiency of power plants involved in fuel switching depends on the level 

of switching effort. Power producers  substitute ever less efficient CCGTs for ever more efficient 

coal  plants,  as  the  fuel  switching  effort  increases.  Therefore,  the  marginal  fuel  switching  cost 

increases with the level of effort, due to a rising cost for gas consumption and a decreasing avoided 

cost for coal consumption. Moreover, the level of switching effort also influences the sensitivity of 

the marginal cost of switching to fuel prices. This is discussed in what follows.

The marginal cost of fuel switching: dependence on the gas price and level of switching  

effort

The marginal cost of switching becomes more sensitive to the gas price, as the fuel switching effort 

increases. Two reasons can explain this relationship61:

– Gas consumption per switched MWh increases (effect 1);

– Gas consumption per tonne of carbon abatement increases (effect 2).

As the switching effort increases, power producers use (in the fuel switching process) ever less 

efficient CCGTs that consume more and more gas to generate one MWh of electricity. Thus, the gas 

61 For convenience, we call switched MWh each MWh of electricity generated by switching fuels (i.e. by using T4s in 
place of T3s in the switching zone).
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consumption per switched MWh increases with the switching effort (effect 1). Moreover, the carbon 

emissions per MWh of electricity generated with CCGTs increase (because of decreasing efficiency 

of CCGTs), and thus the carbon abatements per switched MWh decrease. Therefore, more switched 

MWhs have to be generated to abate one tonne of CO2, so that the gas consumption needed to abate 

one tonne of CO2 increases (effect 2). Taking into account effect 1 and effect 2, we see that gas 

consumption increases when switching effort increases. As a consequence, the marginal cost of fuel 

switching becomes increasingly dependent on the gas price as the switching effort increases. 

In order to illustrate effects 1 and 2, let us take an example. We define  e g ,55 ,  e g ,50  and 

e g ,45 , the emission rates of CCGTs with 55, 50 and 45% efficiency, respectively. Using the same 

calculation  formulas  as  before,  we  get  e g ,55=0.37 ,  e g ,50=0.4  and  e g ,45=0.45  (see  Table  5). 

Moreover, assuming one type of coal plant with 38% efficiency, we have ec=0.9  (see Table 10). 

Thereafter, we can show that, when the switching effort increases, more switched MWhs have to be 

generated to abate one tonne of CO2. This is illustrated in Table 7.

Table 7: Switching effort – with different types of CCGTs – and volume of “switched MWh” needed to abate one tonne 

of CO2. 

Level 
of switching 

effort

Marginal switching 
(see Table 6)

Abatements (in 
tonnes of CO2) per 

switched MWh

Gas consumption 
hg  per switched 

MWh – see Table 5 – 
(effect 1)

Volume of switched 
MWh needed to abate 

one tonne of CO2
a

(effect 2)

Low T4
55  for T3 ec−e g ,55=0.53 1.820 1.890

Medium T4
50  for T3 ec−e g ,50=0.5 2.000 2.000

High T4
45  for T3 ec−e g ,45=0.45 2.222 2.222

a ec−eg  × Volume of switched MWh needed to abate one tonne of CO2  =  1 tonne CO2

Columns 3 and 4 in Table 7 indicate that, as the level of switching effort increases, each switched 

MWh comes with a higher gas consumption (effect 1) and less carbon abatement. Therefore, more 

switched MWhs have to be generated to abate one tonne of CO2 (column 5 in Table 7).62 As a 

consequence, the gas consumption needed to abate one tonne of CO2 increases (effect 2),  and the 

marginal cost of fuel switching becomes increasingly dependent on the gas price. 

62 Note that the switching potential – defined as the volume of carbon abatements (in tonnes CO2) that can be obtained 
by fuel switching – is higher with the more efficient CCGTs. Indeed, for example, the  volume of switched MWh 
needed to abate one tonne of CO2 is smaller with a T4

55  than with a T4
50  (see column 5 in Table 7). Therefore, one 

can get more carbon abatements with one installed GW of T4
55  than with one installed GW of T4

50 .
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The marginal cost of fuel switching: dependence on the coal price and level of switching  

effort

We have seen that when the switching effort rises the marginal cost of switching depends more on 

the gas price due to higher gas consumption.  With coal plants, the reasoning should be reversed. 

When the fuel switching effort increases, power producers tend to drop their  less efficient coal 

plants first. So, the greater the fuel switching effort, the more efficient the abandoned coal plants, 

and so the smaller the avoided cost for coal consumption. Therefore, one may conclude that the coal 

price should influence the marginal fuel switching cost less as the fuel switching effort increases. 

However,  as in the case of gas, two effects  have to be considered. On the one hand, when the 

switching effort increases, the avoided coal consumption per switched MWh decreases (effect 1) 

because more efficient coal plants are shut down. Therefore, each switched MWh depends less on 

the coal price as the switching effort rises.63 This contributes to reducing the influence of the coal 

price on the marginal cost of switching. On the other hand, the volume of switched MWh needed to 

abate one tonne of CO2 increases (see Table 8, which is analogous to Table 7). In other words, more 

MWhs generated with coal have to be replaced by MWhs generated with gas to abate one tonne of 

CO2.  Therefore,  neglecting effect 1, the avoided coal consumption per tonne of CO2 abatement 

increases (effect 2). This contributes to making the marginal cost of switching more (negatively) 

dependent on the avoided cost for coal consumption (which is increasing), and thus, on the coal 

price.

Table 8: Switching effort – with different types of coal plants – and volume of “switched MWh” needed to abate one 

tonne of CO2. Coal plants are T3
36 , 36% efficiency, T3

38 , 38% efficiency, and T3
40 , 40% efficiency.

One type of CCGTs Different types of CCGTs

Level 
of 

switching 
effort

Marginal 
switching

Abatement (in 
tonnes of CO2) per 

switched MWh

Volume of 
switched 

MWh 
needed to 
abate one 
tonne of 

CO2

Marginal 
switching

Abatement (in 
tonne of CO2) per 
switched MWh

Volume of 
switched 

MWh 
needed to 
abate one 
tonne of 

CO2

Low T4
50  for T3

36 ec ,36−e g ,50=0.55 1.82 T4
55  for T3

36 ec ,36−e g ,55=0.58 1.72

Medium T4
50  for T3

38 ec ,38−e g ,50=0.5 2 T4
50  for T3

38 ec ,38−e g ,50=0.5 2

High T4
50  for T3

40 ec ,40−e g ,50=0.45 2.22 T4
45  for T3

40 ec ,40−e g ,45=0.4 2.50

63 A switched MWh depends less on the avoided cost for coal consumption which is decreasing. Therefore, it depends 
less on the coal price.
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To summarize, the total effect can be decomposed into two effects, as for the gas price. However, 

unlike what happens with gas,  those two effects work in opposite directions.  Indeed,  when the 

switching effort increases:

– The avoided cost for coal consumption per switched MWh decreases (effect 1);

– The avoided cost for coal consumption per tonne of carbon abatement increases (effect 2).

Thus, it is difficult to conclude on the total effect of a rise in efficiency of coal plants. Nevertheless, 

it should be recalled that effect 1 has been neglected in effect 2. So, taking into account effect 1, we 

see that,  as the switching effort  rises,  more MWhs generated with coal have to be replaced by 

MWhs generated with gas to  abate one tonne of  CO2,  but,  at  the same time,  the avoided coal 

consumption per switched MWh decreases. Taking the example of Table 8 again, one can conclude 

that the net effect is that the avoided cost for coal consumption per tonne of carbon abatement 

increases (i.e. effect 2 dominates effect 1). This is illustrated in Table 9.

Table 9: Avoided cost for coal consumption per tonne of CO2 abatement and switching effort (based on  Table 8)

One type of CCGTs Different types of CCGTs

Level 
of 

switching 
effort

Coal 
consumption 
hc  per 

switched MWh 
– see Table 10 – 

(effect 1)

Volume of 
switched 

MWh needed 
to abate one 
tonne of CO2 

(effect 2)

Cost factora 

for coal 
consumption 
per tonne of 

CO2 

abatement 
(total effect)

Coal 
consumption 
hc  per 

switched MWh 
– see Table 10 – 

(effect 1)

Volume of 
switched 

MWh 
needed to 
abate one 

tonne of CO2 

(effect 2)

Cost factora 

for coal 
consumption 
per tonne of 

CO2 

abatement 
(total effect)

Low 0.400 1.82 0.728 0.400 1.72 0.688

Medium 0.379 2 0.758 0.379 2 0.758

High 0.360 2.22 0.799 0.360 2.50 0.900

a Avoided cost for coal per tonne of CO2 abatement = Cost factor ×  coal price (in Euro per tonne)

In Table 9, the increasing cost factor (columns 4 and 7) indicates that effect 2 seems to dominate 

effect 1 (i.e. the avoided cost for coal consumption increases).

Interestingly, looking at the first derivatives of equation (1.1) (as given in equations (1.2)) 

can give more insights that help us to understand the shape of the total effect. More exactly, looking 
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at the absolute value of the first derivative of equation (1.1) with respect to the coal price, we can 

see  how  the  influence  of  the  coal  price  on  the  switching  price  (i.e.  on  the  marginal  cost  of 

switching) is affected when the efficiency of coal plants varies. The absolute value of the first 

derivative of equation (1.1) with respect to the coal price is given by:

         ∣ ∂ SW t

∂COALt
∣=∣ −hc

ec−eg
∣= hc

ec−eg

.             (1.3)

When the efficiency of coal plants increases, the values of hc  and ec  decrease. So, we again find 

two opposite effects on (1.3) that make the total effect unpredictable: the decrease in hc  tends to 

decrease  the  value  of  (1.3) (which  corresponds  to  effect  1),  while  the  decrease  in  ec  (where 

ec−eg 0 , necessarily) tends to increase the value of (1.3) (which corresponds to effect 2). Once 

again  we cannot  conclude.  Nevertheless,  looking at  the  values  of hc  and  ec  associated  with 

different types of coal plants, we see that, when the efficiency of coal plants increases, the value of 

ec  decreases more and faster than the value of hc  (see Table 10 and Figures 26 and 27).  

Table 10: Emission and heating rates ( e c  and hc ) with different types of coal plants. Variations of e c  and hc  when 

efficiency  of  coal  plants  increases  are  also  included  in  the  table.  They  are  reported  as   ec , i=ec , i−e c , i−1  and 

hc , i=hc ,i−hc , i−1 , where e c , i  and hc , i  are emission and heating rates associated with coal plants of i% efficiency.

Efficiency rate
of coal plants

ec hc ec ,i hc ,i

36% 0.947 0.4 - -

37% 0.922 0.389 -0.025 -0.011

38% 0.897 0.379 -0.025 -0.01

39% 0.874 0.37 -0.023 -0.009

40% 0.8525 0.36 -0.0215 -0.01

Using the values for emission and heating rates in Table 10, the changes in hc  and ec  when the 

efficiency of coal plants increases can be represented as in Figures 26 and 27.

92



As can be seen in Table 10 and in Figures 26 and 27, effect 2 seems to dominate effect 1 (because 

the value of ec  decreases more and faster than the value of hc ) so that the net effect must be an 

increase of (1.3). This means that the total effect of a rise in efficiency of coal plants should be a 

rise in the influence of the coal price on the marginal cost of switching.  However, even if  (1.3) 

increases, the net effect should be small (contrary to the case of gas where the two effects work in 

the same direction). Moreover, as the dispersion in the distribution of the efficiency rates of coal 

plants is very small, the net effect should be still smaller.64 Accordingly, we think that the influence 

of differences in efficiency of coal plants can be ignored.

64 The distribution of efficiency rates we take in our example (from 36 to 40%) has been chosen for illustration only. It  
has not been chosen to fit reality where, in most cases, the efficiency rate of those coal plants (i.e. the ones involved 
in fuel switching with CCGTs) is around 38%.
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Figure 26: Evolutions of e c  when efficiency of coal plants increases.

Figure 27: Evolutions of hc  when efficiency of coal plants increases. 



With regard to the gas price, using the absolute value of the first derivative of equation (1.1) 

gives a result which is unambiguous: the switching price becomes increasingly dependent on the 

gas price when the efficiency of CCGTs decreases. The absolute value of the first derivative of 

equation (1.1) with respect to the gas price is given by:

           ∣ ∂ SW t

∂GAS t
∣=∣ hg

ec−eg
∣= hg

ec−eg

.             (1.4)

When the efficiency of CCGTs decreases,  the values of  hg  and  e g  increase.  So,  we find two 

effects on (1.4) that work in the same direction: the increase in hg  tends to increase the value of 

(1.4) (which corresponds to effect 1), and the increase in e g  contributes to increasing the value of 

(1.4) (which corresponds to effect 2). Therefore, we can conclude unambiguously that when the 

efficiency of CCGTs decreases, the marginal cost of switching becomes more dependent on the gas 

price.  Besides,  as the dispersion in the distribution of efficiency rates is  far  higher for CCGTs 

(compared with coal plants) the impact of differences in the efficiency of CCGTs must be much 

more  significant.  Accordingly,  we think  this  must  not  be  neglected.  This  will  be an  important 

question for the model presented in Chapter 2.  Interestingly, as we previously mentioned, Kanen 

[2006] identified that the impact of changing gas prices is bigger than the impact of changing coal 

prices regarding the switching price. Similarly, Sijm et al. [2005] have shown that differences in 

efficiency of CCGTs produce a significant effect on the switching price.65 One may consider these 

results as further evidence of the special relevance of the gas price to explain the fluctuations in the 

carbon price.   

2.3.3. Availability of CCGTs

For any given carbon price, the volume of CO2 abatements that can be obtained by fuel switching 

depends on the availability of CCGTs that can be substituted for coal plants. Thus, at any time, the 

fuel switching potential depends on load conditions and on the relative price of coal and gas.66 On 

the one hand, the availability of CCGTs in each hour of the year is heavily dependent on the hourly 

demand for electricity. On the other hand, a very low gas price – compared to the coal price – may 

cause all the CCGTs to be brought online before the coal plants, even neglecting the cost of CO2 

emissions (BAU scenario). In this case, power producers are unable to reduce CO2 emissions by 

65 In Sijm et al. [2005], the switching price is referred to as the “CO2 breakeven price”.
66 For a detailed analysis of those effects, see Delarue et al. [2008].
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fuel switching because no CCGT is available. These relationships are discussed in this sub-section. 

The load curve effect: daily, weekly and seasonal cycles

The volume of CO2 abatements that can be obtained from fuel switching is heavily dependent on 

the hourly load, which varies over daily, weekly, and seasonal cycles. In other words, there is a 

“topography of fuel switching” that indicates the hours in which fuel switching can occur (Delarue 

et al. [2008]).

To be able to continuously meet changing demand for power, generation systems are usually 

based on the merit order principle, meaning that power plants are sequentially loaded according to 

increasing marginal costs. This means that during peak hours (say between 8 am and 12 am, in the  

morning, and between 6 pm and 8 pm, in the evening)67 the system is running at its full capacity, 

while during off-peak hours, when load is relatively low, only the power plants with the lowest 

marginal costs are in service. Figure 28 provides an example. It depicts the load curve of a typical 

electric system during a single week-day, with the fields of action of different generation units.

67 Peak hours usually differ from one country to another since they depend on economic activity, weather conditions 
and other country-specific factors affecting power demand (e.g. load management measures or tariff with lower 
prices for off-peak consumption). For example, peak hours are 8:30-10:30 (morning) and 16:30-18:30 (evening) in 
Italy,  9:00-11:00  (morning)  and  18:00-20:00  (evening)  in  France  and  7:00-13:00  (morning)  and  19:00-21:00 
(evening) in Switzerland. See UIE [2009].
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Figure 28: Typical daily load curve. Based on Nag [2001] and UIE [2009].



During peak hours, when all the power plants are running, there is no fuel switching opportunity, 

whereas during off-peak hours, if some CCGTs are available, fuel switching can occur. In addition, 

fuel switching cannot happen in base load since, in this case, no coal plant is running (i.e. none of  

the hard-coal plants which are involved in fuel switching) and so no coal plants can be replaced by 

CCGTs. So based on a daily load curve like the one in Figure 28, we can highlight the hours of the 

day when fuel switching may occur. As an illustration we take the example of the load curve for a 

typical week-day in France (see Figure 29).68  

So, neglecting the effect of the relative price of coal and gas (this will be discussed further in this  

section) and assuming that only coal plants (T3) and CCGTs (T4) are in intermediate load,69 the 

hours of the day in which fuel switching is possible can be represented based on the load curve of  

Figure 29. This is illustrated in Figure 30.70

68 Although the fuel switching potential is very limited in France, due to the high proportion of nuclear in the French 
production mix (see Delarue and D'haeseleer [2008]), we use this country for our illustrative example since data is 
fully available on the RTE website (Réseau de Transport d'Électricité, www.rte-france.com). The exact load levels in 
countries where the fuel switching potential is high may be slightly different but the shape of the load curve is 
similar to the one in Figure 29 (see UIE [2009]). 

69 The example in Figure 30 is an illustrative case which does not reflect the French power generation where coal and 
gas are very marginal and absent from off-peak load. Moreover, the partition between base, intermediate and peak 
load levels  –  expressed as  a  percentage  of  the  power  system which  is  in  service (“percentage  of  system load  
capacity”) – has been chosen arbitrarily but is consistent with what can be observed in practice (see Nag [2001]).

70 The aim of Figure 30 is to give some intuitions about how the fuel switching potential can vary during a day with  
load fluctuations.  Thus, as  our objective is  not to give an exact representation of a  load profile,  the values of  
installed capacities of coal plants (T3) and CCGTs (T4) are left unspecified. Moreover, we assume that each group 
of CCGTs (there are three groups of CCGTs and three groups of coal plants in Figure 30) can be substituted for one 
group of coal plants (which corresponds to the previous examples developed in this chapter).
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Figure  29:  French  load  curve  for  a  typical  week-day  (20  October  2010). Data 

available at www.rte-france.com/lang/fr/visiteurs/vie/courbes.jsp.

http://www.rte-france.com/lang/fr/visiteurs/vie/courbes.jsp
http://www.rte-france.com/


As shown in Figure 30, fuel switching can occur when some coal plants (T3) are running and some 

CCGTs (T4) are available. Plainly, if CCGTs are to be substituted for coal plants, some coal plants  

have to be in service. On the other hand, fuel switching cannot occur when all the power plants are 

running.

In some cases,  the fuel  switching opportunities  in  Figure  30 may be theoretical  if  they 

correspond to situations where the time interval in which fuel switching can occur is so short that 

CCGTs would not  be able to  start  quickly enough (e.g.  around 10 pm, in  Figure 30).  In  such 

situations, power producers may not be able to switch because they would not have enough time to 

start CCGTs. In numerous cases the start-up time of CCGTs varies between one and three hours, for 

a hot start cycle, and up to 24 hours for a cold start cycle (PSIG [2001]). However, new generation  

CCGTs have much better performances with start-up times of only a few minutes, and intensive 

research is being pursued by manufacturers (e.g. Alstom, General Electric and Siemens) to increase 

the flexibility (and efficiency) of plants.

In addition to daily fluctuations, the load level varies over the course of the week. Typically, 

demand for electricity is higher on week-days than at weekends. Accordingly, load levels are lower 

on Saturdays and Sundays, and so more fuel switching opportunities are available at weekends. As 

an illustration let us take the example of a weekly load curve for a typical power system (see Nag 
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Figure 30: Hourly load, daily cycle and fuel switching potential (applied to Figure 29 and based 

on Nag [2001] and UIE [2009]).



[2001] and UIE [2009]). This is depicted in Figure 31.

Applying the same procedure to Figure 31 as was applied to Figure 29 to derive Figure 30, we can 

represent the fuel switching potential of each day of the week (see Figure 32).71

So, as explained before, we observe there are more fuel switching opportunities on weekend-days 

because of lower load levels.

Finally, to conclude on the influence of load levels on the fuel switching potential, we point 

71 As before, we ignore the effect of the relative price of coal and gas and we assume that only coal plants (T3) and 
CCGTs (T4) are in intermediate load. The values of installed capacities are left unspecified, and we assume that 
each group of CCGTs can be substituted for one group of coal plants.
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Figure  31: Weekly load curve for a typical power system. Based on Nag [2001] and UIE 

[2009].

Figure 32: Weekly cycle and fuel switching opportunities (applied to Figure 31).



out that fuel switching opportunities also vary with the seasons. Since load levels are far higher in 

winter than in summer – due to higher demand for electricity in winter (see Figure 33)72 – the 

intermediate load levels where fuel switching can occur are more frequent in summer.    

To summarize, fuel switching opportunities are much more numerous on a typical weekend during 

the summer than on a week-day during the winter (see Delarue et al. [2008]). 

The effect of the relative price of coal and gas

Another important question with regard to the availability of CCGTs is the relative price of coal and 

gas. This has to be taken into account when assessing whether fuel switching can occur. Indeed, at 

any time when load levels allow fuel switching, it can effectively occur only if the gas/coal price 

ratio lies within a certain range (Delarue et al. [2008]). Evidently, there are ratios which are high 

enough to make fuel switching economically unattractive. However, interestingly,  there are also 

ratios which are so low that fuel switching cannot happen. Indeed, a very low fuel price ratio would 

cause all the CCGTs to be brought online before coal plants even with a carbon price of zero. 73 In 

72 See section 1.1 of this chapter.
73 In this case, the use of CCGTs before coal plants cannot be considered as an abatement effort because this would be  
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Figure  33: French daily electricity consumption in 2010 (taken the first day of each week). Data available  at 

www.rte-france.com/lang/fr/visiteurs/vie/courbes.jsp.

http://www.rte-france.com/lang/fr/visiteurs/vie/courbes.jsp


such a situation, power producers cannot reduce their emissions by fuel switching – even if they 

need to – since no CCGT is available. Thus, for fuel switching to take place, the fuel price ratio  

needs to be high enough to ensure that some CCGTs are available. On the other hand, if the fuel  

price ratio is very high, fuel switching may not be a profitable option. Accordingly, as pointed out 

by  Delarue  et  al.  [2008],  fuel  switching  abatement  profiles  have  a  characteristic  shape:  “the 

emission reduction associated with any given carbon price rises, peaks, and then falls as the fuel  

price  ratio  increases.  This  characteristic  shape  reflects  the  interaction  between  the  switching  

opportunities  created  by  the  fuel  price  ratio  as  it  increases  and  the  exploitation  of  those  

opportunities that can be economically justified by the carbon price. Higher fuel price ratios cause  

less gas and more coal capacity to be in service thereby creating opportunities for switching and  

thus abatement with an appropriate CO2 price. In effect, higher fuel price ratios create switching or  

abatement opportunities until  the technical maximum […]  is reached.  […]  From that point on,  

abatement falls as the still higher fuel price ratios reduce the number of switching opportunities  

that can be economically justified at the assumed carbon price.”74

In  practice,  the  decision  to  use  CCGTs  before  coal  plants  is  based  on  the  comparison 

between the cost of producing one MWh of electricity with gas and the cost of producing one MWh 

of electricity with coal. So, a cost ratio may be a better indicator than the price ratio. To illustrate, 

let us define Cost coal
BAU  and Cost gas

BAU  as the cost of producing one MWh of electricity in the BAU 

scenario, with coal and gas, respectively. Moreover, we call Cost coal
EU ETS  and Cost gas

EU ETS  as the cost 

of producing one MWh of electricity under the EU ETS regime, with coal and gas, respectively. So, 

if  Cost gas
BAU  Costcoal

BAU  (and thus a fortiori  Cost gas
EU ETS Cost coal

EU ETS ), CCGTs are used first in the 

BAU  scenario.  As  a  consequence,  BAU emissions = EU ETS emissions ,  i.e.  carbon  emissions 

cannot be reduced under the EU ETS regime (despite Cost gas
EU ETS  Cost coal

EU ETS ) because no CCGT is 

available for switching.  By contrast,  if  Cost gas
BAU  Costcoal

BAU ,  CCGTs are available and thus  fuel 

switching can occur (i.e. BAU emissions EU ETS emissions ) if Cost gas
EU ETS  Cost coal

EU ETS . In other 

words,  at  any  time  where  load  levels  allow  fuel  switching,  CO2 emissions  can  be  effectively 

reduced if and only if Cost Ratio = Cost gas
BAU /Cost coal

BAU1 . 

done even in the BAU scenario (i.e. without regulation of carbon emissions). It becomes clear by defining carbon 
abatements as =EU ETS emissions – BAU emissions , where EU ETS emissions  are the carbon emissions (net of 
abatements) under the EU ETS regime. 

74 See Delarue et al. [2008] for simulations of the induced abatement potentials with different carbon prices.
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Chapter 2

Fuel switching process and efficiency of

power plants: a theoretical analysis

The strong influence of the power sector on the EU ETS gives major importance to carbon abatement 

decisions of European electricity producers. The fuel switching behavior of power producers – which 

consists in substituting CCGTs for coal plants – is thus an important issue. This chapter studies how 

differences in the efficiency of power plants involved in fuel switching can affect the allowance price. We 

build a tractable equilibrium model, which enables us to observe the impact of fuel switching, in a context 

where CCGTs are not all equally efficient. The main result shows that the allowance price becomes more 

sensitive to the gas price when the level of “uncontrolled” CO2 emissions (i.e. “business-as-usual” CO2 

emissions)  increases,  due  to  differences  in  efficiency of  CCGTs that  are  used  in  the  fuel  switching 

process.  This is because power producers substitute ever less efficient CCGTs for coal plants,  as the  

switching  effort  increases.  Then,  more  gas  must  be  consumed  to  abate  each  tonne  of  CO2,  and  the 

marginal cost of switching becomes more dependent on the gas price.  Therefore, a rise in uncontrolled 

CO2 emissions will affect the allowance price, not only because it makes the constraint on CO2 emissions 

more stringent, but also because it induces a rising gas cost for abatement purposes and a higher exposure 

to the gas price.

1. Introduction

Since the creation of the European Union Emission Trading Scheme (EU ETS) in January 2005, 

there has been a price for CO2 emissions in Europe, and regulated firms (which are firms that are 

part of the European carbon market) have had to cope with it. Firms have to be able to predict the  

carbon price accurately so as to adopt  efficient compliance strategies, which consist  of abating 

carbon physically or buying and selling permits on the market. Yet, these companies are not alone in 

being  interested  by  this  new  market.  As  the  European  Union  Allowances  (EUAs,  the  carbon 

certificates  from  the  European  market)  are  tradable  instruments,  they  have  become  de  facto 

financial assets (or even commodities, depending on one's point of view) that have created a great  

102



number of opportunities for the financial sector. What is now commonly called “carbon finance” is 

becoming an important  issue for financial  companies  that  provide trading facilities  (exchanges, 

clearing houses, etc) and financial services (analyses, brokerage,  portfolio and risk management, 

etc). Banks and investment funds are also interested in the carbon market because it provides new 

opportunities for making money and for portfolio diversification.

Up to now, many papers have shown that coal and gas prices are often the most significant  

carbon  price  drivers  (see  Chapter  1  for  references).  European  power  producers  have  a  major 

influence on the European carbon market, given that both their CO2 emissions and their allowance 

allocations account for more than half of the total volumes of the EU ETS. Accordingly, coal and 

gas  prices are  particularly relevant  in  explaining  EUA price  fluctuations  because  electricity  in 

Europe is mostly generated by burning coal and gas. The power sector is even more influential in 

Germany1 and in some other European countries, due to particularly high shares of fossil fuels in 

their electricity mixes, and the resulting massive carbon emissions.

If we look at the importance of the power sector in several European countries,2 it seems 

quite logical to consider that electricity producers' decisions in these countries will have a strong 

impact on the EU ETS. It is well known that the easiest way for European power producers to 

reduce their carbon emissions in the short-term lies in their ability to switch fuels from coal to gas  

in  electricity  generation.  This  is  particularly  true  for  the  aforementioned  countries.  These  fuel 

switching  behaviors  must  have  a  very  strong  influence  on  the  relationship  between  fuel  and 

allowance prices. Moreover, it could be of great importance that not all the power plants used in the 

fuel switching process are equally energy efficient.  Accordingly,  we focus on these compliance 

strategies  of  power  producers.  In  particular,  we  want  to  enhance  our  understanding  of  how 

differences in the energy efficiency of thermal power plants can rule interactions between fuel and 

carbon prices.

Relationships between EUA price and fuel prices have been of growing interest since the 

creation of the EU ETS. To date, there are many econometric studies on this topic (see Chapter 1 for 

references). On the contrary, theoretical models are very scarce. For example, Delarue et al. [2007] 

1 Germany is by far the biggest carbon emitter in Europe. For instance, carbon emissions in Germany are twice as 
high as in the United Kingdom, the second biggest carbon emitter in Europe. Unsurprisingly, Germany has also the 
most EUA allocations in the EU ETS.

2 The countries involved here are those emitting high levels of CO2 because they generate power mainly with fossil 
fuels such as coal and gas. These countries include notably Germany, the United Kingdom, Spain, Italy and Poland. 
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show how an efficient way of using a park of electricity generating plants leads to an indicator, the 

“switching point” (which corresponds to the switching price), expressing how advantageous fuel 

switching from coal to gas is at a certain moment. Hintermann [2010] uses the well-known result 

which  states  that  each  firm  equalizes  its  marginal  abatement  cost  to  the  price  of  permits  in 

equilibrium to develop an expression for the carbon price with coal and gas prices as explanatory 

variables. However, to the best of our knowledge, only Fehr and Hinz [2006] (see also Carmona et 

al.  [2009])  have  analyzed  these  relations  in  an  equilibrium  model.  They  build  a  dynamic 

equilibrium model with a stochastic cost function representing the expense generated by switching 

thermal power plants from coal plants to CCGTs. As a simplification, they assume a single type of 

CCGTs (i.e. differences in energy efficiency between CCGTs are not explicitly taken into account). 

They also assume one type of coal plant. As expected, their results demonstrate that the carbon price 

is  an  increasing function  of  the gas  price,  and a decreasing  function of  the  coal  price  (i.e.  an 

increasing function of the “fuel switching price”). They also find that the carbon price depends on 

the difference between the required level of carbon abatements (which is defined as the difference 

between  carbon  emissions  in  the  “business-as-usual”  scenario  and  initial  endowments  of 

allowances) and the optimal level of fuel switching effort.3

This  work  differs  from previous  theoretical  studies  on  the  subject,  because  it  explicitly 

considers the fact that power plants used in the fuel switching process do not all have the same 

energy  efficiency.  Our  aim  is  to  identify  the  implications  for  the  relation  between  fuel  and 

allowance prices in that context. To do so, we present a tractable equilibrium model along the lines 

of the equilibrium models for tradable permits developed since the pioneering work of Montgomery 

[1972]. Using a cost function that represents the expense engendered by switching power plants 

from coal plants to gas plants (throughout the paper, when we refer to gas plants, we mean CCGTs), 

we follow the same strategy as in Fehr and Hinz [2006]. Unlike them however, we will use a cost 

function in which the level of the fuel switching effort influences the sensitivity of the marginal 

switching cost with respect to fuel prices, whatever their  realized values (i.e.  in a deterministic 

setting). Accordingly, the relation between carbon and fuel prices will be dependent on the level of 

switching effort (where the level of switching effort is determined by “uncontrolled” emissions of 

CO2),4 due to the fact that power plants are not all equally efficient.

3 See section 2 of this Chapter for further details.
4 Uncontrolled carbon emissions are those which are given exogenously for power producers (determined by their 

level of production which is set by electricity demand), before any effort of abatement.
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As in  previous  papers,  we  find  that  the  carbon  price  increases  with  the  gas  price  and 

decreases  with  the  coal  price.  We  also  find  that  uncontrolled  carbon  emissions  influence  the 

allowance price and that the time of their occurrence in the Phase matter. But our real contribution 

to the literature is to show that the influence of the gas price on the price of allowances depends on 

the level of uncontrolled carbon emissions, due to differences in energy efficiency between gas 

plants that are used in the fuel switching process.

The  remainder  of  this  chapter  is  organized  as  follows.  In  section  2,  we  present  a  review  of  

theoretical papers dealing with the modeling of emission allowance markets. Section 3 introduces 

the cost function we will  use to model the cost of fuel switching. We also demonstrate in this 

section that  mutually beneficial trading opportunities may exist among power producers that own 

different types of CCGTs (i.e. CCGTs with different rates of efficiency). The theoretical model and 

the results are presented in section 4. To conclude, section 5 summarizes the main findings and their 

value for practical applications.
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2. Modeling of emission allowance markets: a literature review

Numerous theoretical studies on the modeling of emission allowance markets have developed since 

the  pioneering  work  of  Montgomery [1972].  Montgomery proves  that  in  a  competitive  permit 

market with perfect information and no transaction costs, an efficient market equilibrium exists. The 

efficient equilibrium achieves any emission reduction target at the lowest cost for society (i.e. at the 

least total cost over all firms) and is independent of initial allocation of allowances. This “least-

cost” solution implies equalization of the marginal cost of abatement among polluters. That is to say 

that  the  price  of  allowances  must  always  be  equal  to  marginal  abatement  costs  in  market 

equilibrium:  C i
' ai= p ,  ∀ i , where  C i

' ai  is the marginal abatement cost of firm  i  associated 

with abatement effort a i , and p  is the price of allowances. This statement underpins that emission 

trading induces firms to exploit any differences between the price of allowances and their marginal 

costs of abatement. On the one hand, firms with lower abatement costs can make profits by abating 

more  CO2 than  they  would  need  to  comply  with  a  command-and-control  regulation  (see 

Introduction of the thesis). This allows them to sell unused allowances at a higher price than their 

marginal abatement costs. On the other hand, firms with higher abatement costs can reduce their 

compliance costs by abating less CO2 than they would need to comply with a command-and-control 

regulation,  and  then  buying  the  lacking  allowances  on  the  market  at  a  lower  price  than  their 

marginal abatement costs.

 Montgomery  [1972]  also  investigates  the  case  of  ambient  permit  markets,  i.e.  permit 

markets for pollutants with non-uniform assimilation rates among different affected regions (see 

also Atkinson [1983] and Tietenberg [1985]). In this case the location of pollution sources is crucial 

because a same volume of emissions does not produce the same effect in all locations. Thus, a target 

has to be specified for each specific location in terms of a ceiling on concentration of the pollutant 

at this specific region. This is equivalent to say that there are as many permit markets as the number  

of different locations affected by pollution. So, an equilibrium on permit markets exists and leads to 

the least-cost solution5 which implies that each firm equates its marginal abatement cost with a 

weighted  sum –  where  the  weights  are  the  transfer  coefficients  associated  with  each  affected 

location – of prices of permits at each location: C i
' ai=∑ j h ij p j , ∀ i , where h ij  are the transfer 

coefficients6 and p j  is the price of allowances in location j.

5 In the least-cost solution, each firm equates its marginal abatement cost with a weighted sum of the marginal costs  
of concentration reductions at each location. The weights are the transfer coefficients associated with each affected 
location.

6 The coefficients hij  translate emission increases by firm i into changes in the concentration at location j.
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Based on static models similar to the one introduced by Montgomery [1972], many papers 

have investigated a number of factors that can affect the market equilibrium or even prevent permit 

market from achieving efficiency. Among the most important issues, the question of market power 

in the permit market has been addressed by Hahn [1984]. He shows that the market equilibrium can 

deviate from the first-best optimum (i.e. the least-cost solution obtained by Montgomery [1972] in a 

competitive market) in this case. Moreover, Hahn identifies that the degree of inefficiency observed 

in the market is related to the initial distribution of permits, whereas Montgomery [1972] found that 

first-best optimality is independent of initial  allocations in the perfect case.7 Stavins [1995] has 

investigated  the  presence  of  transaction  costs  in  the  permit  market.  The  author  shows  that 

significant transaction costs reduce the volume of tradings of permits. As a consequence, the market 

equilibrium can  deviate  from the  first-best  optimum and  is  sensitive  to  initial  distributions  of 

permits.8 Conrad and Kohn [1996] have provided a formal treatment of factors that explained the 

low price of SO2 permits in the early years of the US Acid Rain Program. They show that the price 

was lower than expected because of excess allowances. These surpluses were explained by the 

creation and distribution of more permits than were initially authorized – due to political pressures – 

and more stringent air quality standards in some areas (e.g. near national parks) preventing high 

cost abaters in those areas from buying more permits in order to increase their emissions.  Maeda 

[2004] (see also Maeda [2001]) was the first who formally includes random GHG emissions in a 

one-period  equilibrium  model.  He  pointed  out  that  GHG  emissions  –  and  especially  carbon 

emissions – are closely related to energy use which, in turn, is closely related to random factors 

such as economic activity and weather conditions. He assumed a single random variable reflecting 

macro-factors  that  affect  emissions.  Emissions  from various  firms  are  all  correlated  with  this 

random variable.  It  can  be the  GDP of  one  or  more  countries,  an  industrial  production  index, 

temperatures, rainfall, etc. In addition to this “single factor”, Maeda [2004] introduced firm-specific 

random variables reflecting uncertainties that are specific to each firm and that have no correlation 

to each other. Unsurprisingly, Maeda found that uncertainties about the price of allowances depends 

entirely on uncertainties about emissions. More importantly, he showed that uncertainties that are 

specific to each firm are diversified and disappear when there is a large number of firms in the 

7 Hahn [1984] shows that optimality can be restored by distributing to the firms with a dominant position a number of  
permits exactly equal to what they need to cover their emissions. Therefore, cost functions of those firms need to be  
known,  which may be very costly.  By contrast,  there is  no restriction about initial  allocations for  firms in the 
competitive fringe. 

8 Interestingly, this result is consistent with the Coase theorem which states that the first-best optimum is achieved 
regardless of who initially received the permits, if and only if there are no transaction costs (see Introduction of the 
thesis). 
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market. This indicates that for a large number of emission sources, the probabilistic nature of the 

price of allowances would only depend on a “single factor” to which emissions of all firms are 

correlated. Accordingly, random macro-factors such as economic activity and weather conditions 

should be of major importance to explain stochastic fluctuations of the permit price in a multi-

period setting.

In the wake of papers dealing with the modeling of permit markets in a static framework, 

several authors have developed multi-period models to  study the theoretical properties of inter-

temporal trading of permits. The first contributions on this topic are those of Tietenberg [1985] and 

Cronshaw and Kruse [1996]. Both consider a dynamic equilibrium model of permit markets –  in 

non-stochastic environments (i.e. without introducing uncertainty in emissions) – with banking and 

in discrete-time. Tietenberg [1985] characterizes the joint least-cost allocation of abatement efforts, 

given a single constraint on the total amount of emissions over time.9 He also states that a permit 

market (i.e. a decentralized solution) can yield this least-cost allocation. In this case, the permit 

price must rise at the rate of interest. Tietenberg assumes that all permits are issued at the beginning 

of first period, so that some permits will always be in the bank. By contrast, Cronshaw and Kruse 

[1996] consider  that  permits  are  allocated  to  firms  in  each  of  T  periods.  Additionally,  they 

investigate the effect of profit regulation on the firms' behavior. They show that the permit market 

achieves the least-cost solution if there is no profit regulation, but may not do so if firms are subject 

to  profit  regulation in  their  output  market.10 Cronshaw and Kruse also find that,  without  profit 

regulation, firms are willing to bank permits if the permit price rises over time with the rate of 

interest. However, firms do not desire to bank if the price rises by less than the rate of interest.

Rubin [1996] extends the work of  Tietenberg [1985] and  Cronshaw and Kruse [1996] by 

providing a more general treatment of inter-temporal trading in continuous time through the use of 

optimal-control theory.11 Instead of limiting inter-temporal trading to banking, Rubin allows both 

borrowing and banking. He analyzes the case of a regulator (i.e. a central planner) minimizing the 

inter-temporal  joint-cost  of  reducing  pollution  of  N  heterogeneous  firms  subject  to  emission 

constraints.  He considers  a  finite  time horizon with deterministic  emissions  (i.e.  non-stochastic 

9 In Tietenberg [1985], there is a single constraint on the total amount of emissions over the T time periods, and all 
permits are issued at  the beginning of the first  period. Therefore,  firms can freely transfer permits across time  
periods. In other words, both banking and borrowing are allowed. 

10 Cronshaw and Kruse [1996] consider the case of firms which are subject to two types of regulation: environmental 
and profit regulation in the market of their output.

11 For a review on optimal-control theory see Kappen [2007], Arrow and Intrilligator [1981] and Malliaris and Brock 
[1982].
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emissions).  As  a  special  case,  Rubin  also  investigates  the  consequences  of  restrictions  on 

borrowing.  While  the  constraint  on  borrowing  is  not  explicitly  taken  into  account  in  the 

optimization problem, some insight into the effect of the inability to borrow are derived.

Rubin  [1996] defines S i ,t ,  the  endowment  of  permits  received  by  a  firm  i –  so  that 

∑i=1
N S i , t=S t –, −C i e i , t , the abatement cost function of a firm i (where the marginal abatement 

cost,  −C i
' e i , t ,  is  increasing and convex with respect to abatement effort) associated with the 

chosen level of emissions e i , t ,12 and Bi ,t , the number of permits that are in the bank. Thus, e i , t  is 

a control variable, while  Bi ,t  is a state variable. Finally, defining  B=∑i=1
N Bi ,t  as the aggregate 

stock of banked permits, Ḃ  as the rate of change of B  (where dots denote time derivatives), and T 

as the terminal time period, the joint-cost problem of a central planner can be written as:

min     ∫
0

T

e−rt∑
i=1

N

C ie i ,tdt

                ei,t

          s.t   Ḃ=∑
i=1

N

S i , t−e i ,t   (A)

                  B0=0 , BT≥0 ,

                  e i , t≥0 , ∀ i ,

where r is a risk-free rate of interest. Solving the problem yields necessary conditions that indicate 

that  the  regulator  allocates  abatement  efforts  so  that  all  firms  have  equal  present  discounted 

marginal abatement costs, i.e. −e−rt C1
' e1, t=−e−rt C2

' e2, t=⋯=−e−rt C N
' eN ,t . Besides, all firms 

have present discounted marginal abatement costs equal to the marginal value of an additional unit 

of banked emissions, i.e. equal to the costate variable on the state equation  Ḃ=∑i=1
T S i , t−e i ,t   

(reflecting the shadow value of a unit of emissions in the bank). Thus, the abatement effort of each 

12 Following Montgomery [1972], Rubin defines C i ei , t  as the difference between unconstrained profits and profits 
under the cap-and-trade regime (this difference is equal to  C i ei , tP t yi , t  when trading is allowed, see problem 
(B) below). However,  he does not explicitly define abatements ( ai , t ) and “business-as-usual” emissions ( ui , t ), 
even though  they  are  implicitly  taken  into  account,  since  e i , t=u i , t−a i ,t  with  e i , t≤u i , t .  Accordingly,  the 
optimization problem is solved by minimizing  C i ei , t ,  i.e.  by lowering emissions  e i , t  so as to minimize the 
difference  between constrained and  unconstrained  profits,  with  C i

' ei , t0  and  C i
' ' ei , t0 .  Equivalently,  the 

problem could be solved by minimizing C i ai , t , where C i ai , t  is an abatement cost function. In this case, the 
action of minimizing the difference between constrained and unconstrained profits would be controlled by choosing  
an abatement effort,  ai , t , with  C i

' ai , t0  and  C i
' ' ai , t0 . As pointed out by Rubin, using the cost function 

C i ei , t , the abatement cost can be defined as −C i ei , t  , and therefore the marginal abatement cost is −C i
' ei , t  . 
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firm is increased as long as the cost of one more unit of abatement is lower than its value in the 

bank. Finally, results show that if, in total, permits are banked and borrowed over time, then the  

discounted marginal abatement cost is constant in time. In this case, the marginal abatement cost 

rises over time with the rate of interest. By contrast, if firms, in total, would like to borrow but are 

not allowed to do so, the discounted marginal abatement cost would decrease in time.13 In this case, 

the rate of growth in the marginal abatement cost must be less than the interest rate.

Next, Rubin [1996] explores the consequences of introducing emission trading in the model, 

with price taking firms. The author wants to look at how individual firms will make their decisions 

(abatements and trading), given that they take permit prices as exogenous. Formally, letting P t  be 

the instantaneous price of permits y i , t  purchased or sold by a firm i at period t (where y i , t0  if 

permits are bought, and y i , t0  if permits are sold), and Ai ,t  and Di ,t  be bounds on y i , t ,14 the 

problem of a firm i can be characterized. Thus, the joint-cost problem (A) is modified as follows: 

min     ∫
0

T

e−rt [C i ei ,t P t yi ,t ]dt

            yi,t , ei,t

          s.t   Ḃi=S i , t−ei ,t y i ,t

                  Bi ,0=0 , Bi ,T≥0      (B)

                  e i , t≥0 ,

                     −Ai , t≤ y i ,t≤Di ,t , Ai ,t0 , Di ,t0 .

The last constraint provides bounds ( Ai ,t  and Di ,t ) on the maximum number of permits that can 

be instantaneously bought and sold by a firm i. This is a necessary technical requirement to avoid 

corner solutions, since the objective function is linear in y i , t  (see also Cronshaw and Kruse [1996] 

and Kling and Rubin [1997]). As pointed out by  Rubin [1996], rather than explicitly taking into 

account this constraint in the resolution, an alternative approach is to consider price paths for which 

an  internal  solution  exists  (i.e.  a  non-bounded solution  over  the  entire  time horizon).15 This  is 

13 Here, the author assumes a central planner that would like to borrow but which is not allowed to do so. So, he looks 
at the impact of an “ex-post” constraint Bt≥0  (i.e. not explicitly taken into account in optimization) – meaning that 
borrowing is not allowed in any period – on necessary conditions.

14 A firm i cannot buy (sell, respectively) more than Di , t  ( Ai , t , respectively) permits at any period t. Assuming these 
bounds in a technical requirement, as explained below. 

15 The economic intuition of this assumption will be further discussed in the model of section 4 of this chapter.
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equivalent to assuming that the firm has an internal solution in each period. Therefore, in order to  

simplify the analysis, the author assumes that the firm has such a non-bounded solution. 

Solving problem  (B),  Rubin shows that an inter-temporal market equilibrium exists,  and 

that, in equilibrium,  each firm equates the marginal cost of pollution abatement with the price of 

permits,  i.e.  −C i
' e i , t=P t .  Thus,  when  allowed  to  trade  with  one  another,  firms  collectively 

behave like  a  central  planner  who efficiently allocates  emission  permits  to  each firm so as  to 

minimize the overall compliance cost (i.e. the total compliance cost over all firms). In other words, 

a decentralized equilibrium solution exists and it is efficient in the sense of achieving the least-cost 

solution attained by a central planner: equalization of marginal cost of abatement among polluters. 

Moreover, as for the joint-cost problem, all firms have present discounted marginal abatement costs 

equal to the marginal value of an additional permit in the bank.

As explained above, for firm i to have an internal solution over the entire time horizon, the 

permit price must follow along a singular path. Rubin shows that, on the one hand, for a particular 

firm to have a non-bounded solution, the permit prices must grow at the rate of interest (i.e. the  

price path of permits must follow a Hotelling’s rule) when each firm can bank and borrow permits. 

In this case the present-value price of permits must be constant in time. On the other hand, if firms 

face a binding constraint on the borrowing of permits ( Bi ,t≥0 ),16 the rate of growth in prices must 

be less than the interest rate. In this case, the present-value price of permits is decreasing through 

time.17 Note that this required price path has the same shape as in the case of a central planner,  

where the present-value marginal abatement cost was shown to be constant in time when each firm 

can bank and borrow permits, and decrease in time when borrowing is not allowed.

Using the same deterministic continuous time model as in Rubin [1996], Kling and Rubin 

[1997] have explored consequences of inter-temporal trading on social damages of pollution.18 They 

identify the socially optimal emission path and show that, in many cases, firms have an incentive to 

borrow more permits than needed at the social optimum. To restore the social optimality, Kling and 

Rubin propose a modified inter-temporal trading system, which provides firms with disincentives to 

16 Here  again,  as  in  the  case  of  a  central  planner,  constraint  Bi , t≥0  is  not  explicitly  taken  into  account  in 
optimization, but the author investigates the impact of this constraint on necessary conditions.

17 This last results on the required price path for an internal solution is close to the one obtained by Cronshaw and 
Kruse [1996] in a discrete-time model with banking. Cronshaw and Kruse show that the permit price can rise no  
faster than the rate of interest (regardless of whether banking is allowed or not) in a perfectly competitive market 
equilibrium with perfect foresight and full efficiency of information. Otherwise, there could be corner solutions.

18 Inter-temporal trading may increase damages from pollution by concentrating emissions in one time period. For 
example, if emissions are concentrated in one time period, interactions with other pollutants may be a concern. 
Moreover,  concentration  of  emissions  in  one  period  may  induce  unfavorable  effects  (e.g.  irreversibility  or 
acceleration of damages) creating more and more damages for subsequent time periods.
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borrow  to  much  permits  (i.e.  disincentives  to  borrow  more  permits  than  the  socially  optimal 

amount). Their solution consists in allowing borrowing but only at a discount rate. Thus, for one 

permit borrowed in the current period more than one permit must be surrendered in a subsequent 

time period. Therefore, if the permit discount rate is chosen so as to match the private decisions 

with the socially optimal emission path, the social optimum can be restored.   

Schennach [2000] explores  the consequences  of constraints  on borrowing.  She wants to 

take into account an important feature of the Title IV of the US Clean Air Act Amendments of 1990: 

borrowing  of  permit  is  not  allowed.  Using  an  approach  similar  to  the  one  of  Rubin  [1996], 

Schennach  considers  a  continuous  time  model  with  a  single  central  planner  (representing  all 

affected firms) who faces an infinite-horizon optimization problem. Moreover, the author explicitly 

takes into account a non-negativity constraint on banking (i.e.  Bt≥0 ) meaning that borrowing is 

not allowed. Her aim is to identify the consequences of this constraint on the path of the permit  

price and of emissions.  Solving the problem in the case of deterministic emissions,  Schennach 

[2000] shows that the evolution of emissions and permit prices can be divided into two periods. The 

first is a banking period where part of permits allocation (permits are allocated annually) are saved 

for future use and the permit prices must grow at the rate of interest. This is followed by a period 

where all  permits  allocated each year are used immediately  (banking stops) and emissions and 

permit  prices  are  set  by  electricity  demand.19 Finally,  more  importantly,  the  author  introduces 

uncertainty in the model, by considering stochastic emissions. Thus, she provides the first attempt 

to model the permit price dynamic in continuous time with stochastic emissions. Though Schennach 

does not provide an exact analytic solution for the problem with stochastic emissions, the dynamic 

behavior of the permit price is analyzed implicitly. First, she explains that the expected price path 

may rise with rates between zero and the interest rate. Second, she conjectures that  the paths of 

price and emissions need to be continuously updated as new information becomes available. This 

may generate discontinuity in the paths of price and emissions. 

Innes [2003] and  Maeda [2004] (see also  Maeda [2001]) are among the first studies that 

explicitly took into account the stochastic nature of emissions in a multi-period setting. Innes [2003] 

considers  the  impact  of  costly  government  enforcement  actions  in  a  two-period  model  with 

stochastic emissions. He shows that when pollution is stochastic and inter-temporal trading is not 

allowed,  emission  trading necessarily leads  to  some regulatory violations  (i.e.  some firms  will 

necessarily have higher emissions than their number of permits). In such a situation, regulatory 

fines  must  be  imposed  to  non-compliant  firms.  However,  inter-temporal  trading  can  avoid 

19 Schennach [2000] considers the case of power producers whose SO2 emissions are constrained under the US Title 
IV. Thus, here, the demand for electricity at time t stands for the SO2 emissions at time t (i.e. the SO2 emissions are 
emissions needed to satisfy the demand for electricity).
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regulatory fines  (by allowing non-compliant  firms to  borrow lacking permits  rather  than  being 

sanctioned) and costs of their imposition. Accordingly, Innes [2003] concludes that when emissions 

are  stochastic,  if  regulatory  sanctions  and  other  government  enforcement  actions  are  costly, 

environmental regulators can increase economic efficiency by allowing unrestricted inter-temporal 

trading of permits, despite possible higher damages of pollution if emissions are concentrated in one 

time period.20 In another two-period model with stochastic emissions,  Maeda [2004] analyzes the 

permit price behavior in a trading system with regulated firms (“emitters”) and speculators (“non-

emitters”).21 Moreover,  he  assumes  that  banking  is  allowed  while  borrowing  is  prohibited. 

Interestingly,  Maeda  shows  that  the  permit  price  is  increasing  with  respect  to  the  number  of 

regulated firms, and decreasing with respect to the number of speculators. He also finds that the 

permit price volatility depends on the ratio between regulated firms and speculators.

Based on literature about inter-temporal trading, some authors have developed equilibrium 

models for emission trading in continuous time, in order to investigate how various factors (e.g.  

stochastic  emissions,  stochastic  fuel  prices,  asymmetric  information,  etc)  can  affect  the  price 

dynamic of tradable allowances. 

Seifert et al. [2008] focus on the dynamic price behavior of EUAs based on a continuous-

time stochastic process for uncontrolled emissions.22 They develop a stochastic equilibrium model, 

in continuous time, reflecting the main features of the EU ETS.23 Rubin [1996] formally proved that 

the market equilibrium in an emission trading scheme is equivalent to the solution of a central 

planner minimizing total cost of reducing emissions over the relevant time horizon. Accordingly, in 

order to avoid complication, the authors assume that all market participants are aggregated into one 

representative agent.  Therefore,  Seifert et al. [2008] model a representative agent who choose the 

optimal abatement trajectory,  {ut }t∈[0, T ] , so as to minimize the overall expected compliance cost 

over  time  horizon  T.  The  representative  agent  has  an  initial  endowment  of  EUAs,  e0 ,  at  the 

beginning of the T periods, and continuously emits CO2, at a rate given by a continuous stochastic 

process  y t , over the whole “Phase”  [0,T ] .24 At every time period  t, the central planner decides 

20 This conclusion contrasts with previous literature that was built under assumptions of deterministic emissions and 
non-costly  government enforcement actions, and that proposed  modified inter-temporal trading systems allowing 
borrowing only at a discount rate to increase economic efficiency (Kling and Rubin [1997]).

21 Here “speculator” refers to unregulated firms which operate in the permit market only to make money (e.g. banks).
22 For an introduction to stochastic processes in continuous time, see Neftci [1996] and Hull [2005]. Notably,  Neftci 

[1996] describes behavior of several processes (e.g. standard Brownian motion – or Wiener process – , arithmetic 
Brownian motion, geometric Brownian motion, Ornstein-Uhlenbeck process, etc) with illustrative examples. 

23 These features are detailed in the model of section 4 of this Chapter.
24 Here “Phase” is used as an analogy with the EU ETS.
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whether to costly abate some of the CO2 emissions or not. At the end of the Phase [0,T ] , realized – 

net  of  abatements  –  accumulated  emissions,  xT ,  are  determined.  For  every tonne  of  CO2 not 

covered by an EUA from the initial endowment, a penalty has to be paid.  Formally, the central 

planner minimizes the overall compliance cost (the authors choose to maximize a negative cost, 

which is equivalent to minimizing a positive cost):

max    E0[∫
0

T

e−rt C t , u tdte−rT P xT ]
         {ut}t∈[0,T ]

where r  is a risk-free rate of interest,  E t [.]  denotes the expectation operator conditional on the 

information set F t  available at time t,  

C t , u t=−
1
2

c u t
2

describes the abatement costs per unit of time, where c is a constant cost coefficient;

P xT =min {0, pe0− xT }

stands for the potential penalty cost at the end of T.25 Besides, 

x t=−∫
0

t

us dsE t[∫
0

T

ys ds]
are the total expected emissions – net of abatements – over the whole Phase  [0,T ] ,  given the 

emission rate  y t  for “business-as-usual” or “uncontrolled” emissions. The uncontrolled emission 

evolves according to  a stochastic process of the general  form  dy t= dt dW t  (an arithmetic 

Brownian motion in this case), where   is a drift coefficient,    is the empirical variance of y t  

and dW t  is the stochastic increment of a standard Wiener process.

Given a stochastic process for y t , the authors apply the Itô's Lemma26 to the above equation 

of  x t .  They derive a stochastic  process for  x t  given by  dx t=−u t dtG t dW t ,  where  G  t   

25 When realized emissions are higher than initial endowments (i.e.  e0xT ), the penalty costs  p  per lacking EUA 
have to be paid.  This penalty cost coefficient  p does not represent  just the penalty payment itself. It describes  all 
costs a company faces when it fails to comply with the EU ETS, i.e. it includes  the potential cost of having to 
deliver lacking EUAs at a later point.

26 For more details on derivation of Itô's Lemma, see Neftci [1996] and Hull [2005]. 
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depends on the stochastic process chosen for the underlying emission rate y t .27 Next, applying the 

Hamilton-Jacobi-Bellman approach  of stochastic optimal control28 to their optimization problem, 

and  using  equation  obtained  for  dx t ,  the  authors  derive  a  partial  differential  equation  which 

describes the dynamic of chosen emission x t . The partial differential equation is:

V  t=−
1
2
G t 2 V xx −

1
2c
V x 2 ,

with  boundary  condition  V T , xT =e−rT P xT  ,  where  V  t , x t  is  the  expected  value  of  the 

optimal abatement trajectory {ut }t∈[0, T ]  expressed with x t  (i.e. the “optimal cost to go” from t to T). 

Moreover, V  t , V x  and V xx   denote the partial derivatives of V  t , x t . Seifert et al. [2008] also 

show that the optimal value of u t  is given by u t=−
1
c ertV x . Thus, they deduce the expression of 

the price of EUAs, S t , x t , using the marginal abatement cost: −∂C t , u t/∂u t=c ut=−ertV x . 

Hence,  the  optimal  dynamic  price  behavior  of  EUAs  can  be  obtained  by  solving  the  partial 

differential equation. The partial differential equation can be solved analytically only when  r  = 0 

and  G  t =  (which occurs when  y t  follows a white noise process). Numerical techniques are 

required for other stochastic processes (i.e. arithmetic Brownian motion and  Ornstein-Uhlenbeck 

process).29 

Unfortunately, there is no clear interpretation of the analytical solution. However, based on 

graphical representations for numerical and analytical solutions (where values of parameters are 

chosen so as to take into account  some stylized facts  in  the EU ETS),  the authors  get  several 

insights about the solution (see Figure 34). Notably, the price of EUAs,  S t , x t ,  at each instant 

t∈[0,T ]  is bounded in the interval  0 , p e−r T−t ]  (i.e.  0 , p ]  when r  =  0),  and depends on 

expected emissions  x t .  On the  one hand,  the  carbon price  may not  rise  above the discounted 

penalty cost because, when the carbon price reaches S t , x t=−∂C t , u t/∂ u t= p e−r T−t   (because 

x t  is very high), the representative agent would no longer increase efforts but would rather pay the 

cheaper penalty. On the other hand, the carbon price never reaches zero, because the probability that 

realized emissions,  xT ,  will  be above the initial  endowment of EUAs,  e0 ,  is  always positive. 

Indeed, because of stochastic nature of emissions, there is always a positive probability of having 

27 Seifert et al. [2008] consider three different processes for yt : white noise, arithmetic Brownian motion and (mean 
reverting) Ornstein-Uhlenbeck process. 

28 See Kappen [2007] and Malliaris and Brock [1982].
29 For  a  review on  partial  differential  equations,  see Garabedian  [1964],   Strauss  [1992],  Tyn Myint  [1987] and 

Zauderer [1989]. See also Neftci [1996] for a simpler presentation of analytical and numerical methods for solving 
partial differential equations. 
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fewer allowances than realized emissions at the end of  T, and thus having to pay penalty costs. 

Therefore, the firms are always willing to abate some emissions in order to mitigate some of these  

expected penalty costs, resulting in a positive carbon price.

Still  based  on  graphical  analysis,  Seifert  et  al.  [2008] detect  that  the  allowance  price 

becomes more sensitive to x t  when we move toward the end of the Phase [0,T ] . In other words, 

shocks that can affect uncontrolled carbon emissions have a stronger impact on the price of EUAs if 

they occur in a period t which is closer to the last period T. The logic arises from the fact that the 

ability  to  adapt  to  a  rise  in  uncontrolled  emissions  –  by smoothing  abatements  across  time  – 

is smaller in periods that are close to the end of the Phase.30 Graphically, it appears in the slopes of 

the  x-directional characteristic curves of the surface representing the solution for  S t , x t  (see 

Figure 34). 

Indeed, looking at Figure 34 we see that when we move along the t-axis, from t = 0 toward T, we 

observe, in the zone where x t  is around e0 , an increasing x-directional steepness. Finally, at time 

T, when any uncertainty is resolved, S t , x t  is either zero (if realized emissions are lower than the 

initial endowment) or p (if realized emissions are higher than the initial endowment).

30 See also Hintermann [2010].
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Figure 34: Surface representing the carbon price dynamic in Seifert et al. [2008]. Initial endowment e0=6000 , 

initial  total  expected  emissions  x0=6240 ,  and  expected  spot  price  level  S 0, x0=27.46  are  indicated  by 

dashed lines. The penalty cost coefficient is p=70  (reflecting the penalty payment in Phase 1 – Euros 40 per 

lacking EUA – plus the cost of delivering lacking allowances at a price of Euros 30), r = 0, y t  follows a white 

noise process and T = 3.



With regard to  price volatility,  Seifert  et  al.  [2008] show that  it  increases when coming 

closer to T, while, at the same time, it decreases when the price is close to its bounds.31 As pointed 

out by the authors, traders of EUAs should select an underlying spot price process reflecting this  

increasing  volatility  structure  in  order  to  give  a  good  valuation  of  option  contracts.32 Another 

interesting result is obtained using the partial differential equation. The authors show that the price 

S t , x t  follows  a martingale (i.e.  E t [d S t , x t]=0 ), and that this result is independent of the 

specification of the process chosen for y t . This indicates that the stochastic process followed by the 

carbon price is  not affected by any trend.33 In  summary,  Seifert  et  al.  [2008] conclude that  an 

adequate process for the price of EUAs does not have to follow any trend or seasonal patterns, and 

should exhibit a time- and price-dependent volatility structure.    

As  in  Seifert  et  al.  [2008],  Hintermann [2010] shows  that  the  equilibrium  price  of 

allowances  exhibits  time  dependency.  More  precisely,  Hintermann  identifies  that  shocks  on 

exogenous variables  that  influence “business-as-usual”  (BAU) emissions  increasingly affect  the 

permit price as we move towards the end of the Phase.34 Following the same strategy as in Maeda 

[2004] (see also Maeda [2001]), the author uses the fact that, in equilibrium, each firm equalizes its 

marginal  abatement  cost  to  the  price  of  permits,  to  derive  an  expression  for  the  carbon price. 

Moreover, Hintermann extends the model of Maeda by introducing dynamic in considering several 

time periods. 

 Hintermann [2010] considers a permit market with N participants and fixed time horizon T. 

The marginal abatement cost function of each firm i in each time t is given by:  

MAC it a it ,G t ,C t , BAU it =b a itd 1 Gtd 2C tg BAU it ,   (A)

where the time index t = 1 , , T  refers to days so that T corresponds to the end of a Phase in the 

EU ETS,  BAU it  are BAU emissions,  a it  denotes abatements (defined as  a it=BAU it−eit  where 

e it  is the chosen level of emissions), and  C t  and  Gt  are coal and gas prices. Moreover,  b0 , 

31 Dependence of the price volatility on the price level can be observed in the price surface of Figure 34. Indeed, we 
see that the slope of the x-directional characteristic curves approaches zero when departing from the region around 
e0 .  As noted by  Seifert et al. [2008], this is equivalent to saying that the price volatility decreases and finally 

reaches zero when the price moves toward either of its bounds.
32 For illustrative examples on how to select an appropriate spot price process in order to price option contracts, see 

Neftci [1996].
33 A martingale is a stochastic process without drift. It has the property that its expected value at any future time is 

equal  to  its  value  today.  Therefore,  the expected  change in  a  martingale  process  over  a  time interval  is  zero.  
Formally speaking, a stochastic process S t  is a martingale if E t [d S t]=0  (or E t [S ts−S t]=0  in discrete-time), 
see Neftci [1996]. 

34 Seifert et al. [2008] report the same result.
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d 10 , d 20  and g0  are parameters, and BAU it  is modeled as a stochastic variable which is a 

function of a stochastic risk factor t  shared by all firms:

BAU it t=E t−1 [BAU it t ]it  t−E t−1[t ]vit ,   (B)

where it=
Cov BAU it ,t

Var t 
, E [t⋅v it ]=E [ vit⋅v jt ]=0  with i≠ j  and E [v it ]=0 , ∀ i .35 

Finally, the environmental regulation requires that aggregate abatement has to equal the difference 

aggregate BAU emissions and the emission cap D: 

            ∑
k=1

T

∑
i=1

N

a ik=∑
k=1

T

∑
i=1

N

BAU ik−D .   (C)

Using the fact that, in equilibrium, each firm chooses a level of abatements such that its 

marginal abatement cost is equal to the permit price  p t ,  the optimal expression of  a it  can be 

derived as follows:

a it
*=MAC it

−1 pt , Gt , C t , BAU it t .    (D)

Combining (D) and (A) and aggregating gives:

∑
i=1

N

aik
* =

p t

b
−

d F tg∑
i=1

N

BAU it

b
,    (E)

where d F t≡d 1G td 2 C t .

Substituting (E) in (C) yields:

 
1
b
∑
k=1

T

pk −
d
b
∑
k=1

T

F k−
g
b
∑
k=1

T

∑
i=1

N

BAU ik = ∑
k=1

T

∑
i=1

N

BAU ik − D .   (F) 

Taking expectation of each variable at time t, subtracting them from  (F)36 and re-arranging gives:

35 v it  are  firm-specific  random variables  reflecting uncertainties  that  are  specific  to  each  firm and that  have no 
correlation to each other. See Maeda [2004].

36 In doing so, differences for period t cancel out because, in this case, expectations are taken ex-post and so expected 
values are the same as realizations. In the same way, the differences are equal to zero in each period for variable D, 
because, since D is a deterministic variable, D−E t D =0 , ∀ t .

118



    ∑
k=t1

T

 pk−E t [ pk ] = d ∑
k=t1

T

F k−E t [F k ]  gb∑
k=1

T

∑
i=1

N

BAU ik−E t [BAU ik ] .       (G)

Substituting (B) in (G), dividing by N and re-arranging yields:

 
1
N
∑

k=t1

T

 pk−E t [ pk ]=
d
N
∑

k=t1

T

F k−E t [F k ]
gb

N
∑
k=1

T

∑
i=1

N

it  k−Ek−1[k ]
gb

N
∑

k=t1

T

∑
i=1

N

vit .  (H)

As shown in Maeda [2004], the variance of v it  goes to zero when N goes to infinity. This indicates 

that for a large number of emission sources, the probabilistic nature of the price of allowances 

would only depend on  t .  The intuition behind this  is  that uncorrelated firms specific shocks 

cancel each other out in a large market. Accordingly, the term  gb
N ∑k=t1

T ∑i=1
N v it  is neglected in 

(H). Thus, (H) can be simplified as follows:

          ∑
k=t1

T

pk = ∑
k=t1

T

E t [ pk ] d ∑
k=t1

T

F k−E t [F k ] h∑
k=1

T

k−Ek−1 [ k ] ,                 (I) 

where h=N gb   with ≡t=
1
N ∑i=1

N it .

If markets are efficient with respect to information, current prices fully incorporate all information 

concerning  their  future  values,  implying  that E t [P t1]=1r  Pt≡ P t ,  where  =1r  is  a 

discount factor associated with the interest rate  r and  P t  refers to any price.37 Moreover, as this 

applies  only  to  prices,  Hintermann  partitions  t  into  prices,  denoted  by  t
P ,  and  non-price 

determinants (such as weather), denoted by t
NP  (i.e.  t=t

Pt
NP ). Applying this to   (I), and 

solving recursively for all t∈[1 , , T ] , the author derives an expression for the equilibrium price 

of permit in any time38 :

        p t =  pt−1 d F t−F t−1  ht
NP−E t−1[t

NP] h⋅
t

P−E t−1[t
P ]

∑
k=t1

T

T−k

.               (J)

Equation (J) shows that the allowance price is determined by its own lagged value, changes in fuel 

prices and shocks on the common risk factor t . More importantly, Hintermann [2010] identifies 

37 See Fama [1965] and Malkiel [2003].
38 We use the same procedure in the model of  section 4 of this Chapter to derive the expression of the equilibrium 

price in any period t∈[1 , , T ] . 
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that shocks on exogenous variables that influence BAU emissions (i.e. shocks on t ) increasingly 

affect  the permit  price as we move towards  T.39 As for Seifert  et  al.  [2008],  this  result  can be 

explained by the fact that the ability to adapt to a rise in uncontrolled emissions – by smoothing 

abatements across time – is smaller in periods that are close to the end of the Phase. Likewise, one 

can also argue that if a shock appears in a period which is close to T, the probability that it will be 

neutralized by an opposite shock in a later period is smaller, and so it has a stronger impact.  

More recently, a few papers have sought to extend the analysis of  Seifert et al. [2008] by 

taking into new features of the EU ETS, namely the fact that inter-phase banking is now allowed 

(i.e. it is now allowed to transfer allowances from Phase 2 to Phase 3). By contrast, inter-phase 

borrowing is still  forbidden. Thus,  Hitzemann and Uhrig-Homburg [2010], propose a stochastic 

equilibrium model  in  continuous  time  (similar  to  the  one of  Seifert  et  al.  [2008]),  taking into 

account  a  sequence  of  consecutive  finite  trading  periods  (or  Phases)  with  inter-phase  banking 

allowed  but  not  inter-phase  borrowing.40 The  authors  find  that  the  price  of  allowances  and its 

volatility depend on upcoming Phases, and identify that each additional Phase leads to an additional 

component in the current carbon price. Moreover, the relative share of each component depends on 

the relative share of expected emissions for that component.41  Hitzemann and Uhrig-Homburg also 

identify an analogy between emission permits and options, when several Phases are taking into 

account and inter-phase banking is allowed. They show that, in this case, an allowance is equivalent 

to “a strip of binary options” – each one reflecting a Phase, and thus a risk of non-compliance – 

written on net cumulative emissions over all the Phases. However, in contrast to classical financial 

options,  the  underlying  process  is  not  exogenous  since  it  is  derived  endogenously  through 

abatement measures.  

An alternative approach to Seifert et al. [2008] is taken by Fehr and Hinz [2006] (see also 

Carmona et  al.  [2009]),  who model  an equilibrium among  N market participants.  Although the 

setting is  more realistic (compared with the case of a  central planner),  the model only gives a 

characterization of the carbon price behavior but does not provide an explicit solution. The authors 

39 Note that this applies only to price determinants of BAU emissions, t
P . In (J), this appears in the summation term 

in the denominator of  t
P−E t−1[t

P] , which decreases as time progresses.
40 See Peluchon [2011] for a similar approach in a discrete-time setting.
41 Hitzemann and Uhrig-Homburg [2010] point out that this result can explain why the price of EUAs did not reach  

zero during the recession of 2008-2009. During this period, the market was globally long, and thus the carbon price  
could have been close to zero.  However, the carbon price stayed relatively high because it was mainly driven by 
expected emissions in the future Phases.
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focus on the cheapest short-term abatement measures in the power sector, i.e. the coal-to-gas fuel 

switching. They have produced the first contribution analyzing fuel switching in an equilibrium 

model. Fehr and Hinz consider N firms producing electricity from fossil fuels (i.e. from coal plants 

and CCGTs) and trading carbon allowances at times t∈[0,T ] . The entire time horizon corresponds 

to one compliance period (a “Phase”), that is, at maturity  T, all firms have to cover their carbon 

emissions by allowances or pay penalties. In order to comply with the regulation, each firm i can 

decides its abatement levels, t , i , at times t∈[0,T ] . This corresponds to the fuel switching effort. 

Firms can also trade permits,  t , i , at a price  At . Moreover,  the difference between allowances 

allocated at the beginning of the Phase and the expected uncontrolled carbon emissions over the 

whole Phase,  i , is modeled as a random variable.42 This corresponds to the required level of effort 

for  firm  i,  and   i  can  take  either  positive  or  negative  realizations  depending  on  realized 

uncontrolled  emissions.  Accordingly,  at  the  end  of  T,  each  firm  i  must  face  a  penalty  cost  if 

 i−t ,i−∑t=0
T t , i0 , where the penalty per tonne of CO2 which is not covered by an allowance is 

equal to  p. Finally, at time  t, the fuel switching effort of firm i,  t , i , yields an expense equal to 

t , it ,i ,  where  t , i  is the actualized value of the switching price,  as defined in Chapter 1 (see 

equation (1.1) of Chapter 1). Moreover, as a simplification, Fehr and Hinz assume a single type of 

CCGTs for each firm  i  (i.e. differences in energy efficiency between CCGTs are not  taken into 

account). They also assume that each firm i  owns only one type of coal plant. Thus, the marginal 

abatement cost, t , i , is stochastic – because it depends on coal and gas prices which are modeled as 

stochastic variables (see Chapter 1) – but it does not depend on the level of switching effort (i.e. on  

the value of  t , i ).43 Indeed,  heating and emission rates of  coal  and CCGT plants are constant 

whatever the level of switching effort, because differences in efficiency of power plants are not 

taken into account. Therefore, in a deterministic environment (i.e. when coal and gas are fixed), the 

marginal abatement cost is constant, equal to t , i , whatever the value of t , i .44

Based on all of these notations, the profit/loss of a firm i (from the trading scheme), over the 

whole Phase, can be expressed as follows:

42  i  is not modeled as a stochastic variable. It is a simple random variable whose realization is known at the end of 
T.

43 While  previous papers  considered marginal  abatement  cost  as  a  deterministic  function increasing in  abatement 
efforts, Fehr and Hinz [2006] introduce a stochastic cost function which do not depend on abatement efforts. In this  
chapter, we investigate consequences of considering a cost function for fuel switching which is dependent on the 
level of switching effort (see section 3 and 4 of this Chapter).

44 This is fully described in Chapter 1.
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 ii ,i=∑
t=0

T−1

t , i  At1−At −T ,i AT− p i−∑
t=0

T

t ,i−T , i
+

−∑
t=0

T

t ,it ,i ,  (K)

where  i=t , i t∈[0,T ]  and  i=t , i t∈[0,T ] .  Moreover,  i=t , i t∈[0,T−1 ]  is  defined  as  a  trading 

strategy on forward contracts, while T ,i  is the number of spot contracts which firm i purchases at 

time  T.  Interestingly,  the penalty cost does  not  depend on positions  held on forward contracts. 

Implicitly, this means that the strategy on forward contracts is a pure hedging strategy with financial 

settlement  on  each  contract  (i.e.  without  physical  delivery  of  the  underlying  EUAs).  Thus,  in 

equation  (K),  ∑t=0
T−1 t ,i  At1−At   gives the wealth of hedging strategy  i=t , i t∈[0,T−1 ] ,45 while 

T ,i  corresponds to the number of allowances bought or sold for compliance purposes. 

The individual optimization problem of a firm i is given by:

max  E t [ii ,i]
            i , i

where  E t [.]  denotes the expectation operator conditional on the information available at time  t. 

Accordingly,  an  equilibrium carbon  price  process  A*= At
*t∈[0, T ] ,  given  a  fuel  switching  price 

process  i=t ,i t∈[0, T ]  for each firm  i, can be defined as combinations of trading and switching 

strategies, i
* , i

*  for each firm i, so that:

E t [i i
* ,i

*]≥E t [ ii ,i] , ∀ i ,i  with i∈[1 , , N ] ,

and

∑
i=1

N

t ,i
* =0 , at any time t∈[0 , ,T ]  (the market-clearing condition).

Fehr and Hinz show that this equilibrium is connected to the solution obtained by a central planner. 

Finally, and more importantly, they characterize the shape of the equilibrium price as follows:

At
* = p⋅E t [ 1{−*≥0 } ] ,   (L)

where 1
{− *≥0}  is an indicator function, =∑i=1

N  i  and *=∑i=1
N ∑t=0

T t ,i
* . Thus, although they 

45 Note that holding position t , i  from t to t + 1 yields a payment equal to t , i At1−At  . Accordingly, at the end of 

T, the payment of i=t , it ∈[0,T−1 ]  is equal to ∑t=0
T−1 t , i A t1−A t .
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do not provide an explicit solution, the authors demonstrate that the equilibrium price of allowances 

depends  on  the  difference  between  the  aggregated  required  level  of  abatements,   ,  and  the 

aggregated optimal switching effort, * . Besides, since at each instant t, for each firm i, t , i  is an 

increasing function of the gas price and a decreasing function of the coal price, equation (L) shows 

that the probability of having a positive carbon price is an increasing function of the gas price and a 

decreasing function of the coal price.46 This  demonstrates  that,  in equilibrium, the carbon price 

should be an increasing function of the gas price and a decreasing function of the coal price.

All the papers we have reviewed so far identify abatement- and production-decisions as the 

key drivers of the carbon price behavior. Some of them give a special importance to inter-temporal 

trading of allowances. Other authors model trading and abatement strategies of firms that emit CO2 

according to a stochastic emission process (and which are subject to stochastic fuel prices, in the 

case of Fehr and Hinz [2006]). In all the cases an equilibrium price for allowances results from the 

strategies chosen by firms in equilibrium.  Chesney and Taschini [2008] belong to this literature. 

However, contrary to the papers mentioned above, the model of Chesney and Taschini accounts for 

the presence of asymmetric information in the market for permits. Another particularity arises from 

the fact that no abatement measures are considered in the model, and thus, carbon emissions are 

fully exogenous to firms. Solving their dynamic optimization problem, the authors show that an 

equilibrium  price  for  allowances  exists.  Moreover,  Chesney  and  Taschini  show  in  numerical 

simulations that the higher the probability of each firm being in shortage by the end of the Phase,  

the higher the permit price. This confirms previous studies.

To  conclude  with  this  literature  review,  one  can  also  mention  the  paper  of  Çetin  and 

Verschuere [2009]. Those authors derive an expression for the spot price of carbon allowances by 

exploiting an arbitrage relationship between prices of spot and forward contracts, given a forward 

price  process  which  is  exogenous to  the  model.  This  relation  holds  only when banking is  not  

allowed. The authors also demonstrate that the permit price is sensitive to information release.

46 Because, in each time t, for each firm i, t , i
*  is a decreasing function of t , i .
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3. Efficiency of  CCGTs and fuel  switching process:  abatement 

cost function and trading opportunities

We saw in Chapter 1 that when the switching effort rises the marginal cost of switching increases 

and becomes more dependent on the gas price, for any given fuel prices. This is due to differences 

in  efficiency  of  CCGTs  involved  in  fuel  switching.  However,  the  influence  of  differences  in 

efficiency of coal plants can be neglected.47 In this section we discuss how these characteristics can 

be modeled in a cost function for fuel switching. We also show that mutually beneficial trading 

opportunities may exist among firms which own different types of CCGTs. Once a proper cost 

function is derived, it will be used in the model we present in the following section of this chapter.

Cost function for fuel switching with stepwise constant and increasing marginal cost

Using the switching price as defined in Chapter 1, we can derive a first cost function for switching 

with the appropriate properties as mentioned above. However, in this case, the curve of the marginal 

cost of switching is stepwise constant. Each step corresponds to a constant marginal cost equal to a 

certain switching price. In other words, as long as a certain type of CCGTs is substituted for coal 

plants, each tonne of carbon abatement comes with a constant marginal cost which corresponds to 

the switching price associated with that type of CCGTs. Next, when dirtier CCGTs are involved, we 

move to a higher switching price, i.e. a higher step reflecting a higher constant marginal cost of 

switching.  To  illustrate,  let  us  take  a  switching  price  equation  close  to  the  one  introduced  in 

Chapter 1:

   SW i=
hg ,i G−hc C

ec−eg , i

 ,            (2.1)

where  SW i  is  the switching price (in  Euros per  tonne CO2)  associated with CCGTs of  i% of 

efficiency. Heating and emission rates associated with CCGTs of i% are hg , i  and e g ,i . Finally, C  

and G  are fixed coal and gas prices (i.e. we assume here a deterministic setting). Thus, assuming 

different types of CCGTs with efficiency rates ranging from 45 to 55%, and one type of coal plants  

47 We saw in Chapter 1 that the total effect of a variation in efficiency of coal plants is unpredictable and, in addition, it 
should be very small.
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(say coal plants of 38% of efficiency), we get a stepwise constant curve for the marginal cost of 

switching, as in Figure 35.

Figure 35 shows that, as the switching effort increases, we move to higher switching prices (i.e. 

switching  prices  associated  with  dirtier  CCGTs)  reflecting  higher  (constant)  marginal  costs  of 

switching.  Moreover,  since  heating  and  emission  rates  increase  when  efficiency  of  CCGTs 

decreases, the switching prices become more dependent on the gas price. In summary, when the 

efficiency rate of CCGTs involved in fuel switching moves from i% to i-s% – with s>0, meaning 

that efficiency of CCGTs decreases – we have:

– SW i−sSW i , the marginal cost of switching increases;

– ∣∂ SW i− s/∂G∣=hg , i−s/ ec−e g ,i−s  ∣∂ SW i/∂G∣=hg ,i/ ec−e g ,i ,  the  marginal  cost  of 

switching becomes more dependent on the gas price.

In  Figure  35,  we  implicitly  assumed  that  the  volume  of  switching  effort  (i.e.  the  “switching 

potential”,  defined  as  the  number  of  tonnes of  carbon  abatement  that  can  be  obtained  by 

fuel switching) is equivalent for all types of CCGTs, implying that installed capacities  are very 

similar for each type of CCGTs  (but not equivalent).48 This is a simplification. Indeed, in reality, 

48 For equivalent installed capacities, the switching potential is higher with more efficient CCGTs. Indeed, since the 
quantity of switched MWhs needed to abate one tonne of CO2 is smaller with more efficient CCGTs (see Chapter 1), 
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Figure 35: Stepwise constant curve for the marginal cost of switching. Switching prices 

are obtained from equation (2.1) with fixed coal and gas prices.



there may be significant  differences in  installed capacities  of each type of CCGTs,  so that  the 

switching potential  may differ  significantly  from one type  of  CCGTs to  another.  For  example, 

installed capacities may be significantly more important for T4
50  (the CCGTs of 50%, as defined in 

Chapter 1) than for T4
45 , implying a higher switching potential with T4

50  than with T4
45 .

Now, let us assume two power producers, A and B. Each one owns a park of power plants 

with CCGTs and coal plants, all dedicated to intermediate load production.49 Moreover, we assume 

that each producer has three different types of CCGTs and only one type of coal plants. Finally,  

CCGTs of A are globally more efficient than CCGTs of B. We say that A has a “profile” of CCGTs 

which is more efficient than that of B. By contrast, there is a unique profile of coal plants for both A 

and B in which units are all equally efficient (i.e. all the coal plants of A and B have the same 

efficiency rate, say 38%).  Table 11 presents profiles of CCGTs for A and B which are consistent 

with our example. 

Table 11: Profiles of CCGTs for firms A and B. T4
i  represents CCGTs of i% of efficiency.

Profile of A 
(more efficient)

Profile of B 
(less efficient)

T4
55 T4

52

T4
50 T4

44

T4
45 T4

40

Based on Table 11, we can deduce the shape of the marginal switching cost curves of A and B, in 

the case of stepwise constant marginal costs (see Figure 36).50

one can get more tonnes of carbon abatement with more efficient CCGTs (e.g. for one installed GW of CCGTs,one 
can get more abatements with CCGTs of 55% than with CCGTs of 45%). Accordingly, an equivalent switching 
potential between CCGTs of  i and i-s% (with s>0) does not mean that installed capacities are equivalent for both 
types. This means that installed capacities are very similar (but not equivalent), so that their switching potentials are 
equivalent.

49 For simplicity, we do not speak about other technologies dedicated to peak and base load production.
50 Here again we implicitly assume that all the CCGTs have the same switching potential. This appears in Figure 36 

because we have the same volume of carbon abatements, whatever the type of CCGTs.

126



Figure 36 shows that A is more efficient than B in abating CO2 emissions by fuel switching. Thus, 

for example, if  SW 50 pSW 44 , where p is an allowance price, A abates more emissions than B 

(see Figure 37). In fact, there are mutually beneficial trading opportunities between A and B due to 

differences in their profiles of CCGTs. This is illustrated in Figure 37.
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Figure 36: Stepwise constant marginal switching cost curves of firms A and B. Switching prices are obtained  

from equation (2.1) with fixed coal and gas prices.

Figure  37:  Mutually beneficial  trading opportunities  between firms A and B in the  case  of  stepwise 

constant marginal switching cost curves.



Let us define  , the overall switching effort (in tonnes of CO2) that A and B have to achieve in a 

policy to reduce CO2 emissions. So, =A
kB

k , where A
k  and B

k  are the switching efforts of A 

and B,  respectively,  with  k={Trade , NoTrade } .  If  emission  trading is  not  allowed,  half  of  the 

overall  effort  is  assigned  to  each  producer  by  authorities.  Therefore,  A
NoTrade=B

NoTrade=/2 .51 

However, when emission trading is allowed, if SW 50 pSW 44 , A can make profits by increasing 

its  switching  effort,  while  it  is  profitable  for  B  to  reduce  its  switching  effort.  Accordingly, 

A
NoTradeA

Trade  and B
NoTradeB

Trade  (see Figure 37). On the one hand, when SW 50 p , it is worth 

switching all the T4
50  units that are available. Thus, A increases its switching effort from A

NoTrade  to 

A
Trade , and unused allowances are sold to B with a profit per unit equal to p−SW 50 . On the other 

hand, when  SW 44p ,  switching the  T4
44  plants is not a profitable option. Thus, B reduces its 

switching effort from B
NoTrade  to B

Trade , and lacking allowances are bought from A with a discount 

per  tonne  of  CO2 equal  to  p−SW 44 .  In  other  words,  there  are  mutually  beneficial  trading 

opportunities between A and B because of differences in the efficiency of their CCGTs.

Cost function for fuel switching with continuous and increasing marginal cost

A cost function with a continuous marginal cost curve is more convenient for optimization. Thus, in 

order to model the cost of switching of a firm i, we assume that the following cost function can be 

retained:  

C ii=
1
2
i

2 a iG−ibC ,               (2.2)

where C  and G  are fixed coal and gas prices52 and i  is the switching effort of firm i  (i.e. the 

quantity of CO2 in tonnes, that is not emitted due to fuel switching). Finally, a i0  and b0  are 

parameters that show how fuel prices influence the fuel switching cost.

51 Alternatively, the overall switching effort may be assigned to A and B so that A
NoTradeB

NoTrade . This would lead to a 
better result for the collectivity, given that the total cost for   (over A and B) would be lower is this case. However, 
this solution implies that the switching cost functions of A and B are known by authorities, which is very unlikely. 
Indeed, in practice, such information is costly. At the same time, firms have incentives for hiding private information 
about their cost functions (like firm A, in our example,  who loses by revealing information about its true cost 
function). Thus, information about cost function should be very difficult to obtain for authorities and very costly. 

52 Here again we consider a deterministic setting (i.e. fixed fuel prices). 
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Cost function (2.2) satisfies the properties we want to model. Indeed, when the switching 

effort i  rises, for any given fuel prices, the marginal cost of switching ∂C i i/∂i  increases 

and becomes more dependent on the gas price. Here, the way we introduce convexity allows us to 

have a marginal cost of switching which becomes more dependent on the gas price as the switching 

effort increases. On the contrary, we have a constant influence of the coal price on the marginal cost 

of switching, whatever the value of i . This reflects our assumption that each firm owns only one 

type  of  coal  plants.  With  regard  to  parameters a i  and  b ,  we  see  that  a i  is  a  firm-specific 

parameter while b  has the same value for all the firms. Parameter a i  measures the efficiency of a 

given firm i to abate CO2 by fuel switching. The value of a i  depends on how efficient the CCGTs 

of firm i are. That is a firm with a profile of CCGTs which is globally weakly efficient (e.g. a profile 

where most of the CCGTs are around 45% of efficiency) has a high value for a i , so that this firm is 

weakly efficient to abate CO2. On the contrary, a firm with a profile of CCGTs which is globally 

strongly efficient (e.g. a profile where most of the CCGTs are around 55% of efficiency) has a low 

value for a i , so that this firm is strongly efficient to abate CO2. By contrast, parameter b  has the 

same value for each firm. This means that the profile of coal plants is the same for each firm. In  

other words, not only does each firm have a profile of coal plants in which all the units have the 

same efficiency rate (and thus C  has a constant influence on ∂C i i/∂i  whatever the value of 

i ), but, in addition, there is a unique profile of coal plants for all the firms. For example, one can 

assume that all the firms own only coal plants of 38% of efficiency.

Let us now take our example with power producers A and B again. As before we assume that 

A has a profile of CCGTs which is more efficient than that of B (i.e. CCGTs of A are globally more 

efficient than the CCGTs of B). Moreover,  there is a unique profile of coal plants for A and B in 

which units are all equally efficient: all the coal plants of A and B have the same efficiency rate of 

38%. So, using (2.2) for cost functions of A and B, we get:

– C AA=
1
2
A

2 aA G−A b C , for firm A,

– C BB=
1
2
B

2 aB G−B b C , for firm B,

where a Aa B , since A is more efficient than B to abate CO2 by fuel switching (because A owns 

CCGTs that  are globally more efficient).  Accordingly,  the slope of the marginal switching cost 

curve of B is steeper than that of A, and, therefore, A can abate more CO2 emissions for any given 
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price of allowances (see Figure 38). 

Figure  38  shows that  A is  more  efficient  than  B in  abating  CO2 emissions  by fuel  switching. 

Moreover, as in the case of a stepwise constant marginal switching cost, we can show that mutually 

beneficial  trading  opportunities  exist  between  A and  B,  due  to  differences  in  their  profiles  of 

CCGTs. This is illustrated in Figure 39.
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Figure 38: Continuous marginal switching cost curves of firms A and B. The curves are based 

on cost function (2.2) with fixed coal and gas prices.

Figure  39:  Mutually  beneficial  trading  opportunities  between  firms  A and  B  in  the  case  of 

continuous marginal switching cost curves (as given by cost function (2.2))



We assume that A and B receive the same initial allocation of allowances for a given compliance 

period. We call this  , and so the overall cap on CO2 emissions is equal to 2 . Moreover, we call 

e i  the level of CO2 emissions (net of abatements) chosen by a firm i, where e i  is the difference 

between “uncontrolled”53 emissions, u i , and the switching effort, i , with i = A, B. As illustrated 

in Figure 39, A is more efficient than B in abating CO2, and thus, for any given allowance price p, 

A  is higher than  B . On the one hand, it is advantageous for A to reduce its emissions,  e A , 

beyond the level prescribed by its  initial endowment of allowances  (i.e. A finds it beneficial to 

perform a higher level of switching effort), so as to sell unused allowances to B. This allows A to 

make profits by selling a volume of unused allowances equal to −eA  at a higher price than their 

switching costs. On the other hand, it is advantageous for B to increase its emissions, e B , beyond 

the level prescribed by its  initial endowment of allowances (i.e. B finds it beneficial to perform a 

lower level of switching effort), and buying to A the volume of lacking allowances equal to −eB . 

In  fact,  as  long as  the  allowance price  is  below its  marginal  switching cost,  B can  reduce its  

compliance cost by buying allowances from A in order to increase its emissions. Here again, as in 

the  case  of  a  stepwise  constant  marginal  switching  cost,  there  are  mutually  beneficial  trading 

opportunities between A and B because of differences in efficiency of their CCGTs.

53 “Uncontrolled”  emissions correspond to “business-as-usual” emissions,  i.e.  CO2 emissions before any effort  of 
abatement.
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4. The model

We consider  a  continuum of  power  producers  whose  carbon  emissions  are  constrained  by an 

emission trading scheme such as the EU ETS. Each firm, indexed by i∈[0 ,1] , is assumed to be a 

price taker on the carbon market (i.e. the carbon market is competitive). In addition, we assume that 

each firm owns a fixed park of electricity generation plants54 in which there are coal-fired plants, all 

of the same type, and different types of CCGTs (i.e. the CCGTs are not all equally energy efficient). 

On the European carbon market, there are several years in a Phase. Theoretically, firms build 

a compliance strategy for each year,  because at  the end of each year  they have to  surrender a 

number  of  allowances  equal  to  their  carbon  emissions  recorded  during  the  year  in  question. 

However, in practice, the EU ETS rule allowing permits to be borrowed from the following year for 

compliance  in  the  current  year,55 enables  firms  in  each  year,  to  postpone the  current  emission 

constraint to the following year  (for instance, it was possible at the end of 2008 to borrow from 

2009 the  number  of  permits  necessary to  cover  the  carbon emissions  recorded  in  2008).  As  a 

consequence, within a Phase, firms have the ability year by year to postpone the emission constraint 

of each year to the end of the last year of the Phase. So, carbon trading in a Phase works as if there  

were only one constraint per Phase.

We choose to set the time horizon considered by firms so that it corresponds to a Phase on 

the  EU ETS where  there  are  T  periods,  indexed  by  t∈[1 , ... , T ] ,  in  which  firms  make  their 

decisions, and only one compliance constraint. At the end of period T, the authorities check that the 

number of allowances held by each firm is equivalent to its carbon emissions recorded throughout 

the Phase (i.e. during all the  T periods). Therefore, at the end of period  T, each firm will have to 

satisfy the following compliance constraint:

∑
j=1

T

u j ,i−∑
j=1

T

 j , i=i∑
j=1

T

 j , i ,

where,  for  a  firm  i in  a  period  t,  u t ,i  stands  for  uncontrolled  carbon  emissions  (i.e.  carbon 

emissions before any abatement measures have been taken),  t , i  is the number of tonnes of CO2 

54 The number of power plants and the energy efficiency of each one cannot vary in the considered time interval.
55 Within a Phase, permits can be borrowed from the next year only. For example, in 2005, permits could be borrowed 

from 2006, but not from 2007.
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that have not been emitted thanks to fuel switching (the fuel switching effort) and t , i  represents 

the number of permits traded on the market (where  t , i0  if permits are bought, and t , i0  if 

permits are sold).  Finally, i  is the number of allowances allocated to a firm i for the whole Phase 

(known since the beginning of the first period). We assume that there is a single constraint on the 

total amount of emissions over the T time periods, and that all permits are issued at the beginning of 

first period. Therefore, firms can freely transfer permits across time periods, and thus, implicitly, 

banking and borrowing are allowed.56

In each period t, in order to comply with the policy at the end of the Phase, firms can trade 

allowances on the secondary market (which is competitive) at a price p t , or, alternatively, reduce 

their  carbon  emissions  physically  by  switching  from  coal-fired  plants  to  gas-fired  plants. 

Accordingly, the overall compliance cost of a firm i  in each period  t  is given by:

CT it ,i , t ,i= ptt ,iC it , i ,

where C it ,i=
1
2
t ,i

2 a i Gt−t , i bC t  is the cost generated by the abatement of t , i  tonnes of CO2 

by means of fuel switching. Besides, in each time t, C t  is the coal price and Gt  is the gas price. 

The cost  function  C it ,i  is  given by equation  (2.2).  Thus,  as  explained in  section  3 of  this 

chapter, this corresponds to a situation where there is only one type of coal plants and different 

types of CCGTs. This assumption is justified because differences in the energy efficiency of power 

plants are much more important for CCGTs than for coal plants.57 Accordingly, the coal price will 

have a constant influence on the marginal fuel switching cost,  whatever the level of effort.  By 

contrast, convexity in C it ,i  allows us to represent the rising dependence of the marginal cost of 

switching on the gas price, as the switching effort increases.  Hence, the higher t , i  is, the higher 

the impact of Gt  on the marginal cost of fuel switching is. Nevertheless, the influence of Gt  on the 

marginal cost of fuel switching does not increase any more when t , i  is fixed.

In  C it ,i ,  a i  is a firm-specific parameter measuring the efficiency of a given firm i to 

abate CO2. The value of a i  depends on how efficient the CCGT plants of a given firm i are. That is 

a firm with a profile of CCGTs which is globally weakly efficient (e.g. a profile where most of the 

CCGTs are around 40% of efficiency) has a high value for a i , so that this firm is weakly efficient 

to abate CO2. On the contrary, a firm with a profile of CCGTs which is globally strongly efficient 

56 For a similar treatment, see Tietenberg [1985] and Slechten [2010].
57 Note that Fehr and Hinz [2006] also assume one type of coal plants.
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(e.g. a profile where most of the CCGTs are around 55% of efficiency) has a low value for a i , so 

that this firm is strongly efficient to abate CO2. Therefore, we assume that a i  can take any value 

between a  and a  (i.e.  a i∈[a , a ]  where i∈[0 ,1]  so that a≡a0  and a≡a1 ) with aa . Note 

here that b has the same value in C it ,i , ∀ i . This means that in addition to assuming that all the 

coal plants of each firm are all of the same type, we also assume that all the firms own the same 

type of coal plants.

Finally, in C it ,i , fuel prices are assumed to be exogenous variables. As a consequence, 

demand for fuels triggered by fuel switching is supposed to have no influence on fuel prices. Of 

course this hypothesis does not fully fit reality, but we think that it should be supported in some 

respects. First of all, the volume of carbon abatements that can be obtained by fuel switching is 

limited since, in each period, available gas capacities are limited too. This implies that fuel markets 

should not be very strongly affected by changes in demands for fuels created by the EU ETS. 

Secondly, European fuel markets are highly integrated into world markets since more than half of 

fuels  consumed  in  European  countries  are  imported  from outside  of  Europe  (see  Hintermann 

[2010]).  At  the  same time,  demand  for  fuels  of  European  power  producers  is  relatively small 

compared  to  overall  quantities  consumed  throughout  the  world.  Therefore,  variations  in  fuel 

demands for switching purposes should not be of great importance for world fuel prices and then 

for European fuel prices.

In each period t, the problem of a firm i is to choose t , i  and t , i  to minimize the cost of 

compliance in such a way that the firm will comply with the compliance constraint at the end of 

period  T. At the beginning of each period  t, a firm observes  p t ,  C t ,  Gt ,  u t ,i ,  i  and  D, the 

overall number of allowances allocated to all firms for the Phase. In addition, p j , C j , G j ,  j , i , 

 j , i  and u j , i  are also known ∀ j∈{1,... , t−1} . However, p j ' , C j ' , G j ' ,  j' , i ,  j ' , i  and u j ' , i  are 

unknown ∀ j '∈{t1,... ,T } .  In  that  case,  these  are  stochastic  variables  whose  exact  values  are 

known only at the beginning of the period j '  in question. We will note them p j ' , C j ' , G j ' ,  j' , i , 

 j ' , i  and u j ' , i .58 

Firms solve an optimization problem in each period t, where their decisions depend on the 

realizations of stochastic  state variables that are uncontrolled carbon emissions and fuel  prices. 

Moreover, they have to take into account the optimal decisions from the future and from the past. 

Therefore, they have to deal with a dynamic optimization problem, and we choose to solve it by 

58 From a period t-s ∀ s0  we will note v t  any random variable v t  whose realization is known at the beginning 
of t. Moreover, we will note E t−s[v t]=vt  the expected value of v t  in t-s.
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backward induction.

4.1. Equilibrium strategies of firms

Given that the equilibrium solution will be obtained by backward induction, we have to begin the 

resolution with the last period of the Phase. In period T, each firm achieves its optimal strategy by 

solving the problem:

    min     CT iT ,i , T ,i=pT T ,iC iT ,i

                  θT,i  , ξT,i

               s.t    ∑
j=1

T

u j ,i−∑
j=1

T

 j , i=i∑
j=1

T

 j , i

where  C iT ,i=
1
2
T , i

2 ai GT−T , i bC T  is  the  cost  of  abatement  by  fuel  switching  and

CT iT ,i , T ,i  is the total cost of compliance.

Solving this problem, we get the least cost solution which yields the optimal effort condition,

      T ,i=
pTbCT

a iGT
.             (2.3)

According to (2.3) the optimal effort is an increasing function of coal and permit prices, while it is a 

decreasing function of the gas price. These relations can be readily understood by considering that 

the switching effort is a substitute for coal consumption and the purchasing of permits, whereas it 

entails an increase in gas consumption. Moreover, we see that the optimal switching effort is a 

decreasing function of a i . It means that firms with a higher efficiency to abate CO2 make a higher 

switching effort for any given prices pT , CT  and GT .

Combining (2.3) and the compliance constraint, we derive the expression for the optimal demand of 

allowances in the last period,

        T ,i=∑
j=1

T

u j , i−∑
j=1

T−1

 j , i−∑
j=1

T−1

 j ,i−i−
pTbC T

a iGT

 .             (2.4) 

Unsurprisingly, permit demand increases with the gas price and decreases with the coal price. The 

reason is that firms reduce their demand for coal when the coal price goes up relatively to the price 
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of  gas.  Therefore,  as  gas  consumption  increases,  carbon  emissions  decline  and  demand  for 

allowances falls off.

Now, we introduce the condition that the carbon market has to satisfy in order to be in equilibrium 

in each period. Such a market clearing condition states that at any period, a permit purchased by one 

firm has to be sold by another firm, so that the sum of all permits bought and sold will be equal to 

zero. So we have:

∫
0

1

t ,i di = 0 , ∀ t∈[1,... ,T ] .59

Integrating (2.4) on [0,1]  and applying the market clearing condition to each period, we get:

  pT=a GT[∑
j=1

T

u j−∑
j=1

T−1

 j−D]−bC T  ,            (2.5)

where D=∫
0

1

 i di , u t=∫
0

1

ut , i di ,  t=∫
0

1

t ,i di  and a=∫
0

1

ai di .

In (2.5), u j  stands for aggregate uncontrolled carbon emissions recorded during a period j, D is the 

sum of the allocations of allowances for all firms for all the T periods (this is the aggregate cap on 

CO2 emissions) and  j  represents the aggregate fuel switching effort by firms for a period  j.

We can now turn to period T-1. In this period, firms have to solve the following problem:

   min     CT iT−1, i , T−1, i= pT−1T−1, iC i T−1, i ET−1[pT
T ,iC iT ,i]

θT-1,i  , ξT-1,i

     s.t    ∑
j=1

T−1

u j , iuT ,i−∑
j=1

T−1

 j ,i−T , i=i∑
j=1

T−1

 j ,iT ,i

where C it ,i=
1
2
t ,i

2 a i Gt−t , i bC t  with t = T-1, T  and = 1
1r   is a discount factor (where r is 

a constant risk-less interest rate).

59 For proof of the existence of this intertemporal equilibrium, see Rubin [1996]. In addition, Rubin [1996] shows that  
this intertemporal equilibrium is efficient (i.e. it corresponds to the least cost solution).
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We consider arbitrary price changes for allowances which are exogenous for firms. Then we assume 

that  the  percentage  change  in  allowance  prices  per  unit  of  time  equals  the  interest  rate: 

 p t1− pt/ p t=r  so  that  p t= p t1  (and  so  p t= p t1  with  E t [ pt1]= p t1 ),  ∀ t ,  where 

=1 /1r   is a discount factor and r is a constant risk-less interest rate. As pointed out in Rubin 

[1996] (see also  Kling and Rubin [1997]), assuming this kind of changes for allowance prices is 

equivalent to assuming that the firm buys or sells an intermediate number of allowances in each 

period (i.e. this is equivalent to assuming a non-bounded solution over the entire time horizon).60 

Without this assumption, it would be optimal to buy as many permits as possible if p t p t1 , or 

buy zero permits (and sell as many permits as possible) if  p t p t1 . Thus, this assumption is a 

necessary technical requirement to avoid corner solutions.61 

Combining  (2.3) and  the  compliance  constraint  of  T-1,62 we get  the  expression  of  the  optimal 

value  of  T ,i  (the  demand  for  allowances  in  T seen  from  T-1).  Replacing  this  expression  in 

CT iT−1, i , T−1,i  we can write:  

          

CT iT−1,i , T−1, i=T−1, i pT−1− pT − pT T−1, iC iT−1, i

 pT ∑j=1

T−1

u j , i uT , i−∑
j=1

T−2

 j ,i j ,i− i− pT
pTb CT

ai
GT

C i  T , i
 .

Minimizing, we obtain the least cost solution: pT−1=C i
' T−1,i . Then we deduce the optimal effort 

in T-1:

T−1, i=
pT−1b CT−1

ai GT−1

.            (2.6)

Using (2.6) with the compliance constraint, we get the optimal demand for allowances in T-1: 

T−1, i=∑
j=1

T−1

u j ,iuT ,i−∑
j=1

T−2

 j ,i−T ,i− i−∑
j=1

T−2

 j , i−
pT−1bC T−1

a iGT −1

−
pTbC T

ai
GT

.

60 Without this assumption, it would be necessary to set bounds on the maximum number of permits that can be bought 
and sold in each time period, to avoid corner solutions (see section 2 of this Chapter). See Rubin [1996].

61 In a discrete-time setting, Tietenberg [1985] showed that the rate of increase in permit prices would be equal to the 
interest rate in order to achieve a competitive equilibrium which corresponds to the least-cost solution.

62 Note here that the compliance constraint is the same in each period, since we have only one compliance constraint 
for the Phase. The compliance constraint  of any period  tT  (T-1 in the current case) is nothing else than  the 
compliance constraint of T seen from t.
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Integrating on [0,1]  and applying the market clearing condition to each period, we obtain:

        
pT−1bC T−1

aGT−1

=∑
j=1

T−1

u juT−D−∑
j=1

T−2

 j−
pTbC T

aGT

 .            (2.7)

If we assume that the carbon, coal and gas markets are efficient with respect to information, current 

prices fully incorporate all information concerning their future values. Therefore, in that context, we 

have  the  following  three  conditions:  pT−1= ET−1[pT ]= pT ,  GT−1=ET−1[GT ]= GT  and 

CT−1= ET−1[CT ]= CT .63 Finally,  taking  the  expectation  of  (2.7) and  using  the  last  three 

conditions, we get64 :

   pT−1=
1
2
⋅a GT−1[∑

j=1

T−1

u j uT−∑
j=1

T−2

 j−D]−bCT−1  .            (2.8)

As expected, the permit price increases with the gas price and decreases with the coal price. This 

result is well documented in the literature and is explained by the fuel switching behavior of power 

producers. More interestingly, we see that the difference between uncontrolled carbon emissions 

(past, present and future) and the cap (D) influences the relation between the gas price and the price 

of allowances. Indeed in (2.8), the bracketted term (which determines the dependence of pT−1  on 

GT−1 ) increases when uncontrolled emissions increase with respect to  D.  This evolution in the 

relation between the gas price and the allowance price is explained by the fact that firms substitute 

ever less efficient gas plants for previously used coal plants, as the fuel switching effort rises. This 

mechanism will be described more precisely later in Proposition 2.

Still  in  the bracketted term, the presence of  ∑ j=1
T−2 j  shows that the higher the past switching 

efforts are, the smaller the impact of GT−1  on pT−1  is. The reason is that, all other things being 

equal, in order to attain the (expected) needed level of carbon abatement for the Phase (i.e. the level 

needed to comply with the cap-and-trade during the current Phase), efforts during present and future 

periods will be as low as efforts made in the past have been high. Consequently, if past efforts have 

been  quite  substantial,  subsequent  efforts  are  expected  to  be  relatively  small.  That  leads  to 

diminished influence of the gas price on the price of allowances, because gas plants that will be 

used will be more efficient if switching efforts are lower.

63 For more details on the efficiency of markets, see Fama [1965] and Malkiel [2003]. 
64 For simplicity, we assume that all the random variables C t , Gt , ut  and pt  are independent ∀ t .
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As  for  (2.8) in  period  T-1,  we  can  find  the  backward  induction  solution  of  any  period 

t∈[1, ... ,T−1] , given that we know the solutions of subsequent periods. Therefore, we decide to 

skip the chain of the solution and to consider directly the case of a period t that may be anywhere 

between the first period and T-1. In such a period, firms have to solve the problem: 

        min     CT it ,i , t ,i= ptt ,iC it , i∑
j=t1

T

 j−t E t [p j
 j ,iC i j , i ]

         θt,i  , ξt,i

 s.t    ∑
j=1

t

u j ,i∑
j=t1

T

u j ,i−∑
j=1

t

 j , i− ∑
j=t1

T

 j ,i=i∑
j=1

t

 j , i∑
j=t1

T

 j ,i

where  C it ,i=
1
2
t ,i

2 a i Gt−t , i bC t
 and  E t [C i j ,i]=

1
2
 j ,i

2a i
G j− j , ibC j

 with  j=t1, ... , T  

and = 1
1r  .

Following the same strategy as for the resolution in T-1, we get

   
ptb C t

aG t

=∑
j=1

t

u j∑
j=t1

T

u j−∑
j=1

t−1

 j−D−
∑

j= t1

T

p jb ∑
j=t1

T

C j

a ∑
j= t1

T

G j

 ,              (2.9)

which is analogous to (2.7) in T-1.

Again, we use the market efficiency argument by extending it to a context where there are more 

than  two  periods.  Then,  if  the  coal,  gas  and  carbon  markets  are  efficient  with  respect  to 

information, we have the following conditions: p t=
s E t [pts]=

s p t s , Gt=
s E t [Gts]=

s Gts  

and  C t=
s E t [C ts]=

s C ts ,  ∀ s0 . Hence, taking the expectation of  (2.9) and using the last 

three conditions, we obtain: 

p t=
1

T−t1
aGt[∑

j=1

t

u j ∑
j=t1

T

u j−D−∑
j=1

t−1

 j]−b C t ,          (2.10) 

which is the generalization of (2.8) for any period t such that t∈[1, ... , T−1] . As before, the impact 

of the gas price on the price of allowances depends on the situation of uncontrolled emissions (past,  

present and future) with respect to the emission cap. It also depends on the past switching efforts.
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Before going further in the resolution, let us present a first result which is reached by comparing 

(2.10) and (2.5). It is summarized in the following proposition:

PROPOSITION 1

Shocks that can affect the price of gas and uncontrolled carbon emissions have a stronger impact  

on the price of allowances if they occur in a period t which is closer to the last period (T).

Proof: the value of 1
T−t1  in (2.10) is an increasing function of t. □

Previous  studies  have  shown  that  the  allowance  price  becomes  more  sensitive  to  shocks  on 

uncontrolled carbon emissions when we move toward the last period of the Phase.65 The result of 

Proposition 1 shows that the same pattern holds for the gas price influence.

As briefly explained for (2.8), the allowance price becomes more dependent on the gas price when 

uncontrolled emissions increase (since the fuel switching effort rises, and so dirtier gas plants are 

used). Proposition 1 also states that a positive shock on uncontrolled emissions will lead to an even 

greater dependence of the allowance price on the gas price if this shock occurs in a period which is 

close to T. The logic arises from the fact that the ability to adapt to a rise in uncontrolled emissions 

is smaller in periods that are close to the end of the Phase. Indeed, efforts that might be necessary 

between  t and  T  are  more  difficult  to  postpone  until  later  in  the  Phase  when  t is  close  to  T. 

Therefore, the perspective of having to perform a major switching effort in this small time interval  

will make the abatement cost more sensitive to the gas price. 

Likewise, we can also argue that if a shock appears in a period which is close to T, the probability 

that it will be neutralized by an opposite shock in a later period is smaller (because of a small time  

interval between t and T), and so it has a stronger impact. Consequently, in order to deal with such a 

positive shock, many firms will be willing to buy allowances at a higher price (higher than if they 

were in a period located sooner in the Phase). As a result, the market value of the switching effort  

will increase, leading to a gas rush for firms that can perform carbon abatements by switching fuels. 

That is why the allowance price will be more dependent on the gas price in this situation.66

Note  here  that  the  gas  price  and  the  bracketted  term in  (2.10) have  a  weaker  impact  on  the 

allowance price when the value of T increases. This is interesting because it shows consequences for 

65 See Seifert et al. [2008], and Hintermann [2010].
66 Imagine that uncontrolled emissions increase suddenly and unexpectedly in the last period of the Phase. In such a 

situation, a lot of firms will want to buy permits before the end of the period. Therefore, the market value of the 
switching effort will rise, given that permits can be sold at a higher price. This will increase the attractiveness of gas 
and, finally, the dependence of the allowance price with respect to the gas price.
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the model of the transition from the regime of relationships between Phase 1 and Phase 2 to the  

regime of relationships between Phase 2 and Phase 3. Whereas banking and borrowing were not 

allowed between Phase 1 and Phase 2, it is possible to bank allowances in Phase 2 to use them in 

Phase 3. Borrowing permits between Phase 2 and Phase 3 is still forbidden. However, an “implicit” 

(one-year-) borrowing of allowances  may occur between two Phases (see  Mansanet-Bataller and 

Pardo [2008a]).67 Thus,  firms could implicitly borrow allowances between Phase 2 and Phase 3. 

Therefore, one can consider that both banking and borrowing are possible between Phase 2 and 

Phase 3. Hence, Phase 2 and Phase 3 would be regarded as a single Phase, which corresponds to a 

higher value for  T (i.e. single  T = T  for Phase 2 + T  for Phase 3). Therefore, the gas price and 

uncontrolled emissions have a weaker influence on the allowance price since carbon abatements can 

be smoothed on a larger time interval. 

4.2. Equilibrium solution

In (2.10) some values are endogenous to the model. Therefore, in order to get an expression that 

depends on exogenous variables alone, we run an iterative algorithm that uses  (2.10) by starting 

from the first period. 

Applying  (2.10) to the first two periods, we obtain two equations for  p1  and  p2 .  Afterwards, 

as  t=
ptb C t

a G t
, ∀ t∈[1,... ,T ] , we can substitute p1  in p2 . We then get the full expression for 

p2 :

p2=aG2[ 1
T

u1
1

T−1
u2−

1
T T−1

u2
1
T
∑
j=3

T

u j−
1
T

D]−bC 2
.

Continuing  the  same  process  for  the  following  periods,  we  get  a  chain  of  equations

{p1 , p2 ,... , pT−1}  that enables us to deduce the full solution for any period t in the interval.68 That 

67 According  to Mansanet-Bataller  and  Pardo  [2008a], the  EU  ETS  rules  (penalty with  restitution)  leads  to  the 
existence  of  implicit  borrowing  between  two  Phases.  The  “implicit  borrowing”  is  produced  if  there  is  non-
compliance at  the end of  the last  year  of  a Phase.  In  this case,  non-compliant  firms have to surrender lacking 
allowances in the following year  (in  addition to paying  penalties),  which is  in  the next Phase.  Thus,  the only 
possibility is that the restitution of lacking allowances is done with allowances from the next Phase. Therefore, there  
may exist an implicit (one-year-) borrowing between two Phases.

68 It is possible to show by recurrence that (2.11) stands for any period between t=1 and T-1. The proof is in Appendix 
A.
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is:

p t=aG t[∑j=1

t

 1
T− j1

u j−
j−1

T T− j1
u j 1

T
∑

j=t1

T

u j−
1
T

D]−bC t .            (2.11)

     

The remainder of this section will discuss the results that follow from (2.11). They are summarized 

in the next propositions.

PROPOSITION 2

In each period t, the influence of the price of gas on the price of allowances increases when the  

level of past, present and future uncontrolled emissions increases with respect to the cap on carbon  

emissions. 

Proof: the bracketted term in (2.11) is increasing with respect to u j , ∀ j∈[1,... , t ] , and u j ,

∀ j∈[ t1, ... , T ] , whereas it is a decreasing function of D. □

The result in Proposition 2 contributes to the literature on carbon markets by showing that prices of 

fuels and uncontrolled carbon emissions can exert a combined influence on the price of allowances. 

Until now, some authors have shown that the allowance price is an increasing function of the gas 

price and a decreasing function of the coal price.69 Others have found, in theoretical models, that the 

allowance price  depends on the  level  of  uncontrolled emissions.70 However,  to  the  best  of  our 

knowledge, no one has found that the gas price and uncontrolled carbon emissions can act together 

on the price of allowances, as in Proposition 2. This result is the consequence of the fuel switching 

behavior  of  power  producers,  in  a  context  where  gas  plants  do  not  all  have  the  same energy 

efficiency. Indeed, the fuel switching process that we describe implies that ever less efficient gas 

plants are substituted for coal plants when the switching effort increases. In such circumstances, 

when uncontrolled emissions increase, the increased switching effort required will entail increased 

gas  consumption  to  abate  each  tonne  of  CO2.  Accordingly,  the  cost  of  the  gas  consumption 

necessary  to  abate  one  tonne  of  CO2 will  increase  with  uncontrolled  emissions  (i.e.  with  the 

switching efforts made in response to rising uncontrolled emissions), leading to a greater sensitivity 

of the marginal cost of the switching effort with respect to the gas price. As a consequence, the price 

69 For theoretical models, see Fehr and Hinz [2006] and Delarue et al. [2007]. Mansanet-Bataller et al. [2007] and  
Alberola et al. [2008] verified these relations in econometric studies for the EU ETS. 

70 See Maeda [2004], Seifert et al. [2008], and Hintermann [2010].
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of allowances will depend more heavily on the gas price. In fact, Proposition 2 shows that the price 

of allowances increases with the level of uncontrolled emissions for two reasons: a reduced supply 

of permits (because the cap becomes more stringent) and a rising gas cost for switching efforts.

To illustrate Proposition 2, Figure 40 plots the carbon price, p t , as a function of the gas price, Gt , 

and the total uncontrolled emissions over the Phase, u . 

In Figure 40, we applied equation (2.11) in t = 1 in order to plot the solution.71 Thus, we obtained:

p1=a G1[ 1
T
u−D]−b C1 ,

where u=u1∑ j=2
T u j . Parameters were chosen so as to illustrate the position of the power sector 

71 Applying the solution in  t = 1 enables us to simplify the expression because, in this case, there are no ex post  
forecasting errors on uncontrolled carbon emissions. See Proposition 3 below. 
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Figure 40: Surface representing the influence of the gas price on the carbon price depending on the level of past,  

present and future uncontrolled emissions. The graph is based on equation (2.11) taken in  t = 1. 



in Phase 2 (see Table 12).

Table 12: Allocated allowances and verified emissions of the power sector in Phase 2 of the EU ETS. CITL 

data, available at http://dataservice.eea.europa.eu/PivotApp/pivot.aspx?pivotid=473.

Allocated allowancesa Verifed emissionsa,b

2008 1199 1439

2009 1207 1319

2010 1222 1347

2011 1200 1345

2012 1200 1345

Total D = 6028 u = 6795

     a We use verified emissions as a proxy for uncontrolled emissions.
     b Values for 2011 and 2012 are fixed arbitrarily so as to be approximately equal to values of 2010.

The value of T has been fixed at 5 to remind the five years in Phase 2.72 Moreover, we took 9.3 as 

value for the coal price.73 Finally, using price data for coal (in Euros per thermal MWh), gas (in 

Euros  per  thermal  MWh) and EUAs (in  Euros  per  tonne of  CO2),  from February 26,  2008 to 

October 30, 2009 (data are presented in Appendix B), with =u−D=767  (see Table 12) and T = 

5, we estimated parameters a and b (with the OLS and maximum likelihood methods). We obtained: 

a=0.002  and b=0.13 .  

In  Figure 40, the dependence of the carbon price on the gas price appears in the slope of the  G-

directional characteristic curves (i.e. straight lines, in this case). Moving along the  Δ-axis, when 

uncontrolled emissions increase, we observe an increasing G-directional steepness. In other words, 

the slope of the  G-directional characteristic curves increases when uncontrolled carbon emissions 

increase. This reflects the fact that the influence of the gas price on the carbon price increases when 

the level of past, present and future uncontrolled emissions increases with respect to the cap on 

emissions (i.e. when =u−D  increases).

72 This means that each time period t corresponds to one year. Alternatively, one can consider that each t corresponds 
to a quarter (T=15), a month (T=60), etc. However, as data in Table 12 are yearly data, we chose to consider that 
T=5. Note that running the solution with T=5 and parameters a and b estimated with T=5 yields the same result as 
running the solution with T=15 (or any other T) and parameters a and b estimated with T=15 (or any other T).

73 We took C=9.3 , which corresponds to the average coal price (in Euros per thermal MWh) between February 26, 
2008 and October 30, 2009. See Appendix B for presentation of data.
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Here, it is interesting to note that using another terminology, Proposition 2 can be seen as proof that 

we move higher in the switching band (i.e. we use dirtier gas plants with a higher switching price),74 

when uncontrolled carbon emissions increase. As a consequence, the allowance price becomes more 

dependent on the gas price.

Propositions 1 and 2 are of a great interest because together they show that in each period t, it is the 

intersection  between  the  volume of  uncontrolled  carbon  emissions  (from the  past,  present  and 

future) and the time of occurrence in the Phase of the current period (i.e. the temporal location 

of t in the Phase) that determines the sensitivity of the allowance price with respect to the gas price. 

We have just seen that uncontrolled carbon emissions are of great importance for the allowance 

price.  In  the following proposition  we go further  in  the  description of  the  influence of  carbon 

emissions.

PROPOSITION 3

In each period t, it is ex post forecasting errors concerning past and current uncontrolled carbon  

emissions that affect the allowance price, rather than their levels alone.

Proof: in (2.11), ∀ j∈[1,... , t ] , these are differences between u j  and u j  which determine 

the influence of past and current uncontrolled emissions on the value of the bracketted term, and not 

only the u j  alone.75 □

Proposition 3 completes Proposition 2 by showing that for past and current periods, it is ex post  

forecasting  errors  on  uncontrolled  carbon  emissions  (and  not  only  their  observed  values)  that 

determine the sensitivity of the allowance price with respect to the gas price. Some authors have 

already shown that errors of forecasting concerning carbon emissions can influence, ex post, the 

allowance price.76 We find, in addition, that this has an impact on the relation between the gas price 

and the price of allowances.

74 As there is a switching price for any given pair of plants, the collection of all switching prices creates a switching 
band. For more details, see Delarue et al [2008]. 

75 Let  A and B be the terms in factor of, respectively, u j  and u j , ∀ j∈[1,... , t ] . We see that AB , ∀ j∈[1,... ,t ] ,
so that if we have u j≥u j , then necessarily A u j−B u j0 .

76 See Maeda [2004] and  Hintermann [2010] for theoretical models. For econometric studies on data from the EU 
ETS, see Mansanet-Bataller et al. [2007], Alberola et al. [2008] and Hintermann [2010].

145



The timing of the current period within the Phase may be important. However, for past uncontrolled 

emissions, the timing of the periods in which they occurred may also matter. This is described in the 

following proposition.

PROPOSITION 4

In each period t, the more recent a given past period is, the stronger the impact of the forecasting  

error on uncontrolled emissions that occurred in this period is.

Proof: in (2.11), values of the terms in factor of u j  and u j , ∀ j∈[1, ... , t ] , increase when 

we consider a period  j which is closer to period t.77 □

Proposition 4 indicates that past uncontrolled carbon emissions have a weaker influence on the price 

of allowances of period t (and on the relation between allowance and gas prices in this period) when 

they come from a distant  past  with respect  to  the  current  period.  The reason is  that  when we 

consider a distant past period with respect to period  t, the time interval between  t and this past 

period is large enough to enable firms to smooth their carbon abatement efforts across periods. As a 

result,  the  proportion  of  the  whole  switching  effort (to  be  made  in  response  to  uncontrolled 

emissions of the past period in question) will be smaller in period t, given that this effort has been 

spread out over a large number of periods. In other words, when we consider a distant pas period 

firms have had a lot of time to adapt to uncontrolled emissions that occurred in that period. That is 

why these past uncontrolled emissions will not have a strong impact on the present.

The result of Proposition 4 can also be explained by the fact that the probability that a shock on a  

past  u j  should be neutralized by an opposite shock on a subsequent  u j'  (where  j j'≤t )  is 

smaller when we consider a period  j which is close to t (because of the small time interval between 

j and t). Accordingly, uncontrolled emissions of a recent past period will have a stronger impact on 

the present.

77 As before we call A and B the terms in factor of, respectively, u j  and u j ,  ∀ j∈[1,... , t ] . So, ∂ A/∂ j0 ,∀ j , 
and ∂ B/∂ j0 ,∀ j  when T≥1 .
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5. Conclusion

In this Chapter, we have studied the implication of the fuel switching behavior of power producers 

for the relation between gas and allowance prices in a context where gas plants are not all equally 

efficient.  In  section 2,  we have reviewed theoretical  papers dealing with modeling of emission 

allowance markets.  In  section  3,  we have introduced a cost  function  for  fuel  switching which 

exhibits the properties we discussed in Chapter 1 regarding the influence of efficiency of power 

plants. We have also demonstrated that mutually beneficial trading opportunities may exist among 

power producers that own different types of CCGTs. 

In section 4, we have built a tractable equilibrium model which has enabled us to observe 

the impact of fuel switching in a context where CCGTs are not all  equally efficient.  Our main 

finding is that the influence of the gas price on the price of allowances depends on the level of 

uncontrolled carbon emissions from the past,  the present and the future.  This is because power 

producers tend to substitute, in the fuel switching process, less and less efficient gas plants for coal 

plants that were previously used, as the fuel switching effort increases. As a consequence, when the 

switching  effort  intensifies,  more  gas  must  be  consumed  to  abate  one  tonne  of  CO2 by  fuel 

switching, which leads to having the gas price a greater influence on the marginal cost of fuel 

switching.

Other authors have already shown that uncontrolled carbon emissions and prices of fuels 

influence the price of allowances. However, our study goes further by showing that these variables 

can act together. Therefore, a rise in uncontrolled carbon emissions will affect the allowance price, 

not only because it makes the constraint on carbon emissions more stringent (since it reduces the 

number of allowances available on the market), but also because it induces a rising cost for the gas 

consumption needed to abate one tonne of CO2 by switching fuels from coal to gas.

Beyond  pure  theoretical  considerations,  the  results  of  this  paper  may  have  practical 

implications. Indeed, having ascertained that the correlation between fuel and carbon prices may 

vary over time depending on the level of uncontrolled carbon emissions, carbon market traders may 

want to take advantage of this either for hedging78 or for speculative purposes.

78 Power producers should want to hedge their businesses against the risk of a greater exposure of electricity and  
carbon markets with respect to the gas price in the event of an unexpected rise in carbon emissions. For a review on 
hedging in the power industry, see Unger [2002] and Reinaud [2007].
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Chapter 3

Interactions between carbon and energy

prices: theories and evidence in Phase 2 

of the EU ETS

This chapter examines the interplay between energy markets and the European Union Emission Trading 

Scheme (EU ETS) during the first two years of Phase 2. We use an empirical methodology that enables us 

to  study  relationships  between  carbon,  coal,  gas  and  electricity  prices. Estimating  a  Vector  Error 

Correction Model (VECM), we investigate short- and long-run relationships between these prices. The 

analysis also includes Granger causality tests and impulse response functions. The results show evidence 

of both short- and long-run interactions with, notably, a significant link between carbon and gas prices in 

the equilibrium.

1. Introduction

In ratifying the Kyoto Protocol, the European Union committed itself to reducing its greenhouse gas 

emissions by 8% relative to the 1990 level in the first Kyoto commitment period (2008-2012). In 

January 2005,  to  meet  this  target  in  a  cost-effective  way,  the  European  Union  established  the 

European Union Emission Trading Scheme (EU ETS), a cap-and-trade system for carbon emissions 

in the energy and industrial sectors.  The power sector's strong influence on the EU ETS means 

carbon abatement decisions by European electricity producers are of major importance. In countries 

where electricity is mostly generated by burning fossil fuels (e.g. Germany, Spain, the UK, etc), the 

power sector is particularly influential due to massive carbon emissions and resulting high levels of 

allowance allocations.
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Relationships between carbon, electricity and fuel markets have been investigated in several 

papers (see section 2 of Chapter 1 for an extensive literature review). Many of them have found 

empirical  evidence showing that  coal  and gas  prices  are particularly relevant  in  explaining the 

carbon  price  fluctuations  on  the  EU ETS (see  Kanen  [2006],  Mansanet-Bataller  et  al.  [2007], 

Alberola et al. [2008], Rickels et al. [2007], Hintermann [2010] and Rickels et al. [2010]). This is 

explained by power producers' ability to substitute (cleaner) gas-fired plants for (dirtier) coal-fired 

plants  in  power  generation,  thereby reducing carbon emissions  (see  Sijm et  al.  [2005],  Kanen 

[2006], Delarue and D'haeseleer [2007] and Delarue et al.  [2007]). This phenomenon is known as 

fuel switching. Econometric studies focusing on dynamic interactions between carbon, coal and gas 

prices have also been of growing interest in the last few years. Papers on this topic include Bunn 

and  Fezzi  [2007],  Fell  [2008],  Mansanet-Bataller  and  Soriano  [2009],  Bonacina  et  al.  [2009], 

Keppler and Mansanet-Bataller [2010], Nazifi and Milunovich [2010] and Creti et al. [2012].  By 

contrast,  theoretical  studies  analysing  these  relationships  are  very  scarce  (see  Delarue  and 

D'haeseleer [2007], Fehr and Hinz [2006] and Bertrand [2010]).  

Interactions between carbon and electricity prices have been one of the most investigated 

issues since the launching of the EU ETS. In particular, the impact of the carbon price on electricity 

prices has been a source of intense debates and controversy.  Despite the free allocation of carbon 

allowances, the carbon cost can be considered as an opportunity cost (since otherwise allowances 

would be sold), and this opportunity cost has been passed through to wholesale electricity prices, 

leading to  windfall  profits  for power producers  (see Sijm et  al.  [2005],  Sijm  et  al.  [2006] and 

Neuhoff et al. [2006]). This is known as the cost pass-through of carbon allowances. On the other 

hand, some authors argue that selling allowances on the carbon market also induces an opportunity 

cost for power producers with market power on the electricity market (see Keppler [2010]). In 

renouncing to produce in order to sell allowances, these producers have to abandon their rent in the 

electricity market.  Thus selling allowances  also entails  an opportunity cost  that  may be passed 

through to the carbon price. This is referred to as  short-term rent capture. The issue of dynamic 

interactions between carbon and electricity prices is thus very important, and it has been examined 

in several econometric studies. Papers on this topic include Bunn and Fezzi [2007], Zachmann and 

von Hirschhausen  [2007],  Chemarin  et  al.  [2008],  Fell  [2008],  Keppler  and  Mansanet-Bataller 

[2010] and Nazifi and Milunovich [2010]. 
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Links between electricity, fuel and carbon markets are obviously tenuous. Economic theory 

provides several ways to address these questions.  Basically, relationships between fuel, electricity 

and carbon markets are described by three theories: pass-through, short-term rent capture and fuel  

switching. The first two concern the interplay between electricity and carbon markets, while the 

third is relevant in explaining relationships between fuel (coal and gas) and carbon prices.1 The aim 

of this chapter is to explore these three theories, in examining their relevance through an empirical 

approach. We apply a Vector Error Correction Model (VECM) that enables us to analyze short-run 

and equilibrium relationships between carbon, coal, gas, and electricity prices. From this model, we 

investigate the dynamic of interactions between these prices through Granger causality tests and 

impulse response functions. 

To date, a few papers have studied Phase 2 of the EU ETS from an econometric point of  

view.  With  regard  to  dynamic  interactions  between carbon and energy markets  (using  a VAR-

VECM framework with Granger causality), Keppler and Mansanet-Bataller [2010] and Creti et al. 

[2012]  are  the  only contributions.  Like  them,  we rely on  Granger  causality  techniques.  As  in 

Keppler  and  Mansanet-Bataller  [2010],  we  focus  on  relationships  between  carbon  and  energy 

markets. Our work extends Keppler and Mansanet-Bataller [2010] by considering a single model 

involving  all  the  variables  on  which  we  implement  our  analysis.  In  doing  so,  we  look  at 

simultaneous interactions among all the variables.2 In addition, we test for cointegration and we 

compute  impulse  response  functions.  More  recently,  Creti  et  al.  [2012]  have  investigated 

relationships between the carbon price and some energy and non-energy variables  in  Phase 2.3 

Similarly  to  those  authors,  we  test  for  cointegration  and  we  estimate  a  VECM on  which  we 

implement our Granger causality tests. Unlike Creti et al. [2012], we include the electricity price in 

our analysis. Moreover, we include both the coal and gas prices, while Creti et al. [2012] use the 

1 For a detailed presentation of each one of these theories, see section 2 of Chapter 1.
2 Keppler and Mansanet-Bataller [2010] were the first to examine the interdependency between energy and carbon 

markets in Phase 2, using a VAR framework. However, they work on several bi-variate VARs (on which they run 
pairwise Granger causality tests) rather than looking at simultaneous interactions between all the variables in a  
single VAR.

3 This paper has been developed in parallel to our work. Like us, they investigate cointegration and Granger causality 
in Phase 2. A difference is that we focus on relationships between carbon and energy markets based on the three 
theories presented in Chapter 1. Thus,  Contrarily to Creti et  al. [2012], we do not use a stock price index. By 
contrast, we include the price of electricity while this variable is  not taken into account in Creti et  al.  [2012].  
Besides, we include both the coal and gas prices, while Creti et al. [2012] use the switching price. We adopt this  
strategy in  order  to  disentangle  the  effects  of  coal  and  gas  in  fuel  switching.  Finally,  Creti  et  al.  [2012] run 
estimations for  Phase 1 in order to extend previous cointegration analysis which did not take into account the 
structural break of Spring 2006. By contrast, we focus on Phase 2 (as in Bonacina et al. [2009] and Rickels et al. 
[2010])  for  sake  of  comparisons  with  previous  studies  analyzing  interactions  between  carbon,  coal,  gas  and 
electricity prices in Phase 1.
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switching price.4 Finally, a last difference is that we compute impulse response functions in addition 

to Granger causality.

In summary,  compared to the previous literature,  our contribution is  threefold.  First,  we 

present an extensive literature review on relationships between carbon and energy markets (see 

Chapter  1).  The aim is  to  identify the main issues  around this  topic and give  a  wide view of  

previous related work. Second, we apply a full VAR (Vector Autoregression)-VECM approach5 to 

study interdependency between carbon, coal, gas and electricity prices in Phase 2. We compare our 

results with those of similar papers for Phase 1. Thus, in addition to testing the relevance of the 

aforementioned theories, we ask which of the results for Phase 1 can be extended to Phase 2. Third, 

we run an impulse response analysis to complete Granger causality. This allows us to account for 

more complicated interactions than with Granger causality.

Among our main results, we find that there is a significant link between carbon and gas 

prices in the equilibrium. We also find that coal and gas prices appear to be sensitive to the carbon 

price in the short-run. This last result could be explained by the crisis.

The remainder of this chapter is organized as follows. In section 2 we present the econometric 

methods that will be used in our empirical analysis. Section 3 displays some preliminary statistics 

and introduces econometric specification that will be estimated. We also present, in this section, 

estimation  results,  diagnostics,  and  additional  investigations  based  on the  estimated  model.  To 

conclude, section 4 summarizes the main results.

4 We follow the same strategy as a literature developed in Phase 1 to analyze relationships between carbon, fuel and  
electricity prices in a VAR-VECM framework (using Granger causality and impulse response functions). Those 
papers include Bunn and Fezzi [2007], Zachmann and von Hirschhausen [2007], Fell [2008], Chemarin et al. [2008]  
and Nazifi  and Milunovich [2010].  Keppler  and Mansanet-Bataller  [2010]  can also be added in this literature. 
However, to the best of our knowledge, no previous work has proposed a VECM to analyze the interplay between  
carbon, coal, gas, and electricity prices in Phase 2.

5 VAR models are Vector Autoregressive models, while VECMs are Vector Error Correction Models. See section 2 of 
this chapter.
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2. Vector Autoregressive and Vector Error Correction Models

This  section  introduces  the  analysis  of  vector  autoregressive  models  (VARs)  and  vector  error 

correction  models  (VECMs).6 Granger  causality  tests  and  impulse  response  functions  are  also 

presented. Finally, we describe the methodologies for testing the presence of cointegration among 

several non-stationary variables. 

2.1. Vector autoregressive models

The VAR approach is commonly used for analyzing the dynamic of relationships among variables 

over time. In VAR modeling, every endogenous variable7 is a function of the lagged values of all 

the endogenous variables in the system. Hence, a VAR is a multivariate system of regression models 

(i.e.  there is  more than one dependent variable) where each endogenous variable in the system 

depends on a combination of the previous k values of these endogenous variables.

A basic VAR model with a set of g variables and k lags (VAR(k)) has the form

Y t = A0  A1Y t−1  A2Y t−2 ⋯ A k Y t− k  t ,            (3.1)

where Y t=
y1,t

y2,t

⋮
yg , t
 , A0=

a1

a2

⋮
ag
 , Ak=

a11,k a12, k ⋯ a1g , k

a21,k a22, k ⋯ a2g ,k

⋮ ⋮ ⋮
a g1 ,k a g2 , k ⋯ ag g , k

  and t=
1,t

2,t

⋮
g , t
 .  

Y t  is a g×1  vector with g endogenous variables, A0 , A1 , , A k  are matrices of coefficients to 

be estimated (the A1 , , Ak  are g×g  matrices while A0  is a g×1  matrix of constants), and 

t  is a g×1  vector of innovations with t ~ N 0,  – where   is the variance-covariance 

matrix – and  E t s =0, ∀ t≠s  (i.e. innovations may be contemporaneously correlated but are 

uncorrelated with their lagged values).8

6 For an extensive review about VARs and VECMs, see Bourbonnais [2005], Bourbonnais and Terraza [2008], Brooks 
[2008], Greene [2002], Lütkepohl and Krätzig [2004] and Lütkepohl [1991]. 

7 Endogenous variables are variables which impact the VAR and whose values are determined inside the VAR system. 
By contrast, exogenous variables are determined outside the VAR system, even though they impact the VAR (see  
below).

8 Note that simultaneity is not an issue for estimation of VARs, since only lagged values of the endogenous variables 
appear in the right-hand side of (3.1).

153



As usual in time-series modeling, data series used in a VAR model have to be stationary,  

since using non-stationary data can  lead  to  spurious  results.  Thus,  proper  econometric  analysis 

involves checking for non-stationarity in data through unit root tests.9 If series contain a unit root, 

they are first-difference stationary, while non-stationary in level. This means that they are affected 

by a linear stochastic trend.10 They are said to be I(1) or integrated of order 1 (while stationary 

series  are  said  to  be  I(0)).  Once series  have been  found to  be  I(1),  they need  to  be  rendered 

stationary by taking first differences (or second differences if they are I(2), etc).

A useful property of VAR models is the compactness which allows one to derive several 

notations for the same model. For an illustration, let us consider a simpler bi-variate version of (3.1) 

with two endogenous variables, y1,t  and y2,t . In this case, we can express (3.1) as follows:

 y1, t

y 2,t
 = a1

a2
 ∑i=1

k

a11, i a12, i

a21, i a22, i
 y1,t−i

y2,t−i
  1, t

2, t
 ,

or, less compactly, it could be written as two individual equations,

{y1, t= a1∑
i=1

k

a11, i y1, t−i ∑
i=1

k

a12, i y2, t−i 1, t

y2,t = a2∑
i=1

k

a21, i y1, t−i∑
i=1

k

a22, i y 2, t−i  2, t

  .

One may want to extend model (3.1) in order to capture exogenous effects that may affect 

endogenous variables. This can be done by including a vector,  X t , of exogenous variables. So, 

model (3.1) is modified as follows: 

    Y t = A0  A1Y t−1  A2Y t−2 ⋯ Ak Y t− k  B X t  t ,            (3.2)

where  B  is a matrix of coefficients. The components of  X t  are known as exogenous variables 

because their values are determined outside the VAR. In other words, no component of X t  appears 

9 For an extensive presentation of unit root tests, see Bourbonnais and Terraza [2008].
10 Non-stationary series can also be affected by non-linear stochastic trends. In that case, series contain more than one 

unit root. They are said to be integrated of order d (i.e. I(d)) with d1 . However, such series are very scarce in 
economics and finance, where the great majority of series contain a single unit root.
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in the left-hand side of (3.2), i.e. there is no equation in (3.2) with a variable of X t  as dependent 

variable. In model (3.2), the main purpose of the exogenous variables is to capture co-movements 

or interactions among endogenous variables that are caused by effects which are not determined in 

the  model.  In  the  case  of  interactions  between  carbon  and  energy markets,  exogenous  effects 

affecting  endogenous  variables  (carbon,  coal,  gas  and  electricity  prices  in  our  case)  can  be 

temperatures – which are an important determinant of electricity and energy demand – and dummy 

variables reflecting days with particularly high or low temperatures.

The interconnectivity of the equations and the multiplicity of parameters and lags in a VAR 

model could render it difficult to interpret. With lagged variables that can have coefficients which 

are significant for some lags and not for others, it might be difficult to see whether a given variable 

has a persistent significant effect on another variable in the system. Besides, variables may have 

coefficients that change sign across the lags, which can render it difficult to see what effect a shock 

in a given variable would have upon future values of the variables in the system. Two very popular 

ways  to  overcome some of  these  difficulties  are  Granger  causality  tests  and impulse  response 

functions.  Both  are  constructed  on  an  estimated  VAR  model.  These  two  methodologies  are 

described below. 

Granger causality tests  (Granger [1969]) allow us to test  the joint-significance of lagged 

value coefficients of a given variable – all other things being equal – in an individual equation of 

the VAR, with another variable as dependent variable. In doing so, Granger causality enables us to 

see whether a given variable has a persistent significant effect on another variable in the system (i.e. 

Granger causality enables us to investigate the dynamic significance of each variable in the system).

Granger causality tests seek to answer questions of the type: do past variations of a variable

y1, t  cause changes in subsequent values of another variable y2, t ? Or, equivalently, do past values 

of  y1,t  improve the forecast of  y2,t ? If the answer is yes, the Granger causality between these 

variables  is  “uni-directional”,  since  y1, t  “Granger-causes”  y2, t  while  y2, t  does  not  “Granger-

cause” y1,t .  Granger causality can also be “bi-directional” if y1,t  “Ganger-causes” y2,t  and vice 

versa (in this case there is a “feedback” effect between variables).

Formally speaking, it would be said that y1, t  “does not Ganger cause” y2, t  if and only if

y
2, th∣t

= y
2, th∣t∖{y1, s∣st } , for  h=1,2, , where  y

2, th∣t
 is the optimal  h-step forecast of 

y2,t  at time t based on the set of all relevant information t , and y
2, th∣t ∖{y1, s∣st }  is the same 
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value  but  based  on  t ∖{y1, s∣st } ,  the  set  of  all  elements  of  t  not  contained  in  the  set 

{y1, s∣st}  (see Lütkepohl and Krätzig [2004]).

To illustrate how Granger causality tests can be conducted, let us consider again a simple bi-

variate version of (3.1) with two endogenous variables, y1,t  and y2,t :

 y1, t

y 2,t
 = a1

a2
 ∑i=1

k

a11, i a12, i

a21, i a22, i
 y1,t−i

y2,t−i
  1, t

2, t
 ,

which could be written as two individual equations for causality tests,

{y1, t= a1∑
i=1

k

a11, i y1, t−i ∑
i=1

k

a12, i y2, t−i 1, t

y2,t = a2∑
i=1

k

a21, i y1, t−i∑
i=1

k

a22, i y 2, t−i  2, t

  .

Thereafter, testing for Granger causality running from y1, t  to y2, t  amounts to testing the following 

null hypothesis in the second equation: a21,1=a21,2=⋯=a21,k=0  (or a21, i=0 , ∀ i=1 , , k ). So, 

we can conclude that  y1, t  “Granger-causes”  y2, t  if  H 0  is  rejected.  We can also test  the null 

hypothesis  a12,1=a12,2=⋯=a12,k=0  (or a12, i=0 , ∀ i=1 , , k ), in the first equation, in order to 

check if y2, t  “Granger-causes” y1, t . In the case of a simple VAR model where all the variables are 

stationary, the joint-hypotheses can be tested within the standard F-test framework.11

Granger causality suggests which of the variables have a significant impact on subsequent 

values of the other variables in the model, all other things being equal. However, Granger causality 

is unable to explain the signs of the relationships, and it neglects interactions among variables in the 

system. To account for these complicated interactions, impulse response functions are constructed 

based on the moving average representation of the system.12 They summarize dynamic interactions 

between variables by showing how a shock to innovations  of one endogenous variable affects all 

11 Note here that the procedure for testing Granger causality is more complex in the case of a VECM. See section 3.2.2  
of this chapter.  

12 According to the Wold representation theorem, any VAR(k) can be represented as a VMA(∞) –  i.e. a vector moving 
average  process  with  ∞ lags –  (or,  in  the  uni-variate  case,  any  AR(k)  can  be  represented  as  a  MA(∞)).  See 
Bourbonnais and Terraza [2008], Lütkepohl [1991] and Lütkepohl and Krätzig [2004]. 
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endogenous variables in the system. 

A shock to one variable of the VAR not only directly affects this variable, but it is also 

transmitted to  all other endogenous variables through time. Impulse response analysis consists in 

tracing out the effect of a one-time exogenous shock to one variable of the VAR. It summarizes the 

dynamic impact on the current and future values of all the endogenous variable in the VAR. Thus,  

for each equation in the VAR (i.e. for each endogenous variable), a unit shock can be applied to the  

errors in order to observe the effects on the other endogenous variables over time.13 The shape of the 

response (i.e. positive or negative) of a variable y1  to a shock on a variable  y2  enables us to 

observe if the variable y1  is a positive or negative function of the variable y2 . This overcomes the 

difficulty of having coefficients that may change sign across the lags.

In  practice,  the  impulse  response  functions  are  computed  using  the  moving  average 

representation (VMA for vector moving average) of a VAR. To illustrate how impulse responses 

operate, we consider a simple VAR(1) as follows14

        Y t = A1 Y t−1  t             (3.3)

where  Y t ,  Y t−1  and  t  are  g×1  vectors and  A1  is a  g×g  matrix of coefficients. As a 

simplification, A1  can replaced by A  (i.e. A1≡A ) since it is the only matrix of coefficients in this 

case (VAR(1)). Expressing (3.3) as a VMA(∞) (i.e. a VMA with ∞ lags) yields

          Y t = ∑
j=0

∞

A j t− j ,               (3.4)

or, more generally, when there is more than one lag,  Y t = ∑
j=0

∞

 j t− j , where   j = ∑
i=1

j

 j−i Ai  

and  Ai  is  the  matrix  of  coefficients  for  Y t−i  (i.e.  for  the  ith lag).15 Besides,  lim
j∞

A j=0  (and 

lim
j∞
 j=0 ). 

13 Accordingly, if there are g  variables in the system, a total of g 2  impulse responses can be generated.
14 The purpose here is not to give an extensive presentation of impulse response analysis, but rather to illustrate the  

principle in simple example. For a full presentation of impulse response functions in more complicated settings, see 
Lütkepohl [1991] and Lütkepohl and Krätzig [2004].

15 The specification Y t = ∑ j=0
∞  jt− j  with  j = ∑i=1

j  j−i Ai  is useful only in the case of a VAR with more than 
one lag (VAR(k) with k1 ). In the case of a VAR(1), we can use the specification (3.4) (which is easier) because 
there is only one matrix of coefficients ( A1≡ A , whereas the matrices Ai  do not exist ∀ i1 ) and thus  j=A j , 
∀ j . See Lütkepohl [1991] and Lütkepohl and Krätzig [2004].
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Using (3.4) it can be shown that (see proof below):

        Y t j = t j  A Y t j−1 , or equivalently, Y t j = ∑
s=0

t j−1

As t j− s At j Y t .            (3.5)

Proof: applying (3.4) to t = 0, t = 1, t = 2 and t = 3 yields

Y 0=∑
j=0

∞

A j 0− j=0A−1A2−2A3−3⋯A∞−22−∞A∞−11−∞A∞0−∞ ,

Y 1=∑
j=0

∞

A j 1− j=1A0A2 −1A3−2⋯A∞−23−∞A∞−12−∞A∞ 1−∞ ,

Y 2=∑
j=0

∞

A j 2− j=2A1A20A3−1⋯A∞−2 4−∞A∞−13−∞A∞2−∞ ,

and Y 3=∑
j=0

∞

A j 3− j=3A2A21A30⋯A∞−25−∞A∞−14−∞A∞3−∞ .

Since  lim
j∞

A j=0 ,  the  previous  equations  can  be  combined  as  follows:  Y 1=1AY 0 , 

Y 2=2A Y 1=2A 1A2Y 0 ,  Y 3=3AY 2=3A2A21A3 Y 0 ,  and  so  on  for  higher 

value  of  t.  Thus  we  deduce  the  value  of  any  Y t j :  Y t j=t jAY t j−1 ,  or  equivalently 

Y t j=∑s=0
t j−1 As t j−sAt jY t , which correspond to (3.5). □

Impulse response functions trace out the effects (i.e. the impulse responses) of a unit shock in one 

variable of the VAR at time t on the Y t j , ∀ j0 . Assuming that Y t− j=0  and t j=0 , ∀ j0 , 

and Y t=t , we can compute the impulse responses based on the VMA representation of the VAR 

given in  (3.5). So, equations in  (3.5)16 show the reaction of the VAR system after  j periods (i.e.  j 

periods after a shock at time t). For example, the effects of a unit shock at time t = 0 are given by: 

Y 0=0  Y 1=AY 0 ,  Y 2=A Y 1=A2Y 0 ,  Y 3=A Y 2=A3Y 0 , etc. As an illustration, let us assume the 

following bi-variate VAR(1)

16 Under  the  assumption  t j=0 ,  ∀ j0 ,  the  Y t j= t j  A Y t j−1  and  Y t j=∑s=0
t j−1 As t j−sAt j Y t  

correspond to Y t j= A Y t j−1  and Y t j= At j Y t . 
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  y1, t

y 2, t
 =  0.08 −0.76

−0.23 0.4  y1, t−i

y 2,t−i
  1, t

2, t
 .              (3.6)

We consider a unit shock to  y2, t  at  time  t = 0. So, under assumptions  Y 0− j=0  and  0 j=0 , 

∀ j0 , and Y 0=0 , we have:

Y 0= y1,0

y2,0
 = 1,0

2,0
 = 01 ,17 

and, applying (3.5) to (3.6), 

Y 1=AY 0= 0.08 −0.76
−0.23 0.4 01 = −0.76

0.4  , 

Y 2 = AY 1 =  0.08 −0.76
−0.23 0.4 −0.76

0.4  = −0.36
0.33  = A2Y 0 =  0.18 −0.36

−0.11 0.33 01 = −0.36
0.33  ,

Y 3 = AY 2 =  0.08 −0.76
−0.23 0.4 −0.36

0.33  = −0.28
0.21  = A3 Y 0 =  0.09 −0.28

−0.08 0.21 01 = −0.28
0.21  ,

and so on.

Continuing  the  same  procedure  for  higher  values  of  j,  we  get  Y t j ,  ∀ j0 .  The  impulse 

responses are contained in the matrices A j  (which correspond to the matrices At j  of (3.5) in the 

case of a shock at time t = 0). In our example, we considered the impact of a shock to y2,t  at time 

t = 0. Thus, we are interested in responses of y1, t j  to y2,0  and of y2, t j  to y2,0 , ∀ j0 . The 

responses of  y1,t  to  y2,t  are given the coefficient  a12  of the matrix  A , while the responses of 

y2, t  to  y2, t  are  given  the  coefficient  a22  of  the  matrix  A .  So,  defining  a12 j   ( a22 j  , 

respectively) as the response of y1,t j  to y2,0  (of y2, t j  to y2,0 , respectively) after j periods,18 the 

impulse response functions are obtained as follows:

        a12 j ={a121 , a122 , a123 , , a12∞} ,             (3.7)

17 Moreover, 1,0  is assumed to be zero.
18 In other words, a12 j   and a 22 j   correspond to a12  and a 22  in the matrix A j .
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and,

        a22 j ={a221 , a222 , a223 , , a22∞} ,             (3.8)

where (3.7) is the impulse response function that shows the response of y1,t j  to y2,0 , and (3.8) is 

the impulse response function that shows the response of y2, t j  to y2,0 .

Applying (3.7) and (3.8) to our example yields:

a12 j = {−0.76 ,−0.36 ,−0.28 , , 0 }  and a22 j ={ 0.4 , 0.33 , 0.21 , , 0 } ,  

which can be represented graphically as in Figure 41.        

Looking at  Figure 41,  we see that the effects  are transitory as the responses vanish over  time. 

Indeed, according to (3.4) and (3.5), coefficients in the A j  decrease as j increases (and thus a12 j   
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Figure 41: Impulse response functions for a unit shock to y2, t  at time 

t = 0



and a22 j   decrease as  j increases), and lim j∞ A j=0  (or  lim j∞  j=0 ). This is explained by 

the fact that variables are all I(0) in a VAR system (i.e. they are not affected by any trend). Note  

here that in the case of a VECM, a shock in one variable of the system may have some permanent  

effects given that the  j  do not necessarily converge to zero as j tends to infinity.19

Figure 41 gives other important information: when y2,t  increases (because of the unit shock 

to  y2, t ),  the  responses  of  y1, t  are  negative.20 Therefore,  we deduce  that  y1, t  is  a  decreasing 

function of y2,t . This illustrates how impulse response functions can help to deduce the shape of 

the relationship between two variables.

The impulse response refers to a unit shock to the errors of one equation in the system, 

assuming  that  the  error  terms  of  all  other  equations  are  held  constant  (equal  to  zero).  This 

assumption might be unrealistic since the error terms might be instantaneously correlated across 

equations to some extent. Indeed, if the components of t  are correlated, a unit shock to 2,0  does 

not occur in isolation, and, accordingly, 1,0  cannot be held equal to zero. The components of t  

are correlated if the residual variance-covariance matrix   is not diagonal (i.e. if some or all of 

the covariances are non-zero). In order to overcome this problem, the standard procedure is to apply 

a transformation P  to the innovations t  so that   becomes diagonal, and thus the components 

of  t  are no longer correlated. Hence, the resulting errors,  v t , are “orthogonalized” (i.e. all the 

instantaneous  covariances  are  equal  to  zero):  v t=P t ~ N 0,v  ,  where  v  is  a  diagonal 

variance-covariance matrix. The choice of P  can be obtained through different orthogonalization 

procedures.21 Most  of  these  orthogonalization  procedures  require  us  to  specify  an  ordering  of 

variables (i.e. which variables follow or precede movements in others variables), and results are 

sensitive  to  this  ordering.  Interestingly,  the  generalized  impulse  response  function  procedure 

(Pesaran and Shin [1998]) does not depend on the ordering of variables.22 Accordingly, we will use 

this orthogonalization procedure to compute impulse response functions in the econometric analysis 

of section 3 of this chapter. 

19 This is explained by the fact there are I(1) variables in a VECM, and therefore, a shock in one variable may enter  
into some trends followed by the I(1) variables. See Lütkepohl [1991] and Lütkepohl and Krätzig [2004].

20 This can also be observed in a12 j ={−0.76 , −0.36 ,−0.28 ,  , 0 } .
21 The program we use in our econometric works, Eviews, provides two options for orthogonalization: the Choleski 

decomposition of the variance-covariance matrix (see Lütkepohl [1991] and Lütkepohl and Krätzig [2004]) and the 
generalized impulse responses (see Pesaran and Shin [1998]).

22 Note here that when the  residuals are almost uncorrelated, the results are not very sensitive to a change in the  
ordering of variables (see Lütkepohl [1991]). 
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2.2. Vector error correction models

Many economic time-series  have a common equilibrium relationship. Examples may be the spot 

and futures prices for a given commodity/asset, related commodities (e.g. wheat and rice, gold and 

platinum, crude oil and gasoline, etc) or equities, prices of a same commodity in different markets, 

etc. Those series can move together over time around a common long-run equilibrium, even though 

deviations from the equilibrium are possible in the short-run. If deviations occur at a certain time, 

the series would return in the equilibrium later. In this way, a long-run equilibrium may be seen as a 

cointegration  relationship,  since  cointegrated  variables  may  deviate  from  their  cointegration 

relationship in the short-run and gradually return in the long-run equilibrium during the subsequent 

time periods.

Formally speaking, two variables  y1, t  and  y2, t  are cointegrated of order  d ,b   if  two 

conditions are verified:

(1) y1,t  and y2,t  are I(d) ( y1,t ~ I d   and y2,t ~ I d  ),

(2) there is a linear combination of y1, t  and y2, t  which is I(d – b), i.e. there is a 2×1  vector 

of coefficients    so that  ' Y t ~ I d−b  (or  1 y1, t2 y2, t~ I d−b  if  '=1 ,2 ) 

where Y t  is a 2×1  vector whose y1, t  and y2, t  are the components and d≥b0 .  

The usual  notation to  describe that  the components  of  Y t  are cointegrated of order  d ,b   is 

Y t ~ CId , b .  In  practice,  most  economic  and financial  variables  are  I(1).  In  this  case,  it  is 

possible that there is a linear combination of those variables that is stationary, i.e. I(0). So, d=b=1  

and Y t ~ CI1,1 , so that the components of Y t  are cointegrated if a linear combination of them is 

stationary.  The  stationary  linear  combination  is  called  the  cointegrating  equation and  can  be 

interpreted as a long-run equilibrium relationship among the variables. Actually the CI 1,1  case is 

by far the most common in practice.23 In our case, since all our econometric investigations (see 

section 3 of this chapter and sections 3 and 4 of Chapter 4) have been conducted with I(1) series 

which have proved to be cointegrated of order 1,1 , we restrict presentation in this section to the 

CI 1,1  case. 

23 Many econometric textbooks restrict analysis to the CI 1,1   case. For a more general presentation, see Lütkepohl 
[1991]. 
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As  we  have  already  mentioned,  economic  time  series  often  exhibit  dynamic  behavior 

consistent with I(1) processes. Not accounting for the non-stationarity of series can lead to spurious 

regression  results  (i.e.  econometric  modeling  involving  the  levels  of  I(1)  series  can  produce 

misleading results, showing significant relationships between unrelated series). Before the seminal 

work of Engle and Granger [1987], a usual response to this problem was to take the first-difference 

of  each of  the I(1)  series  –  in  order  to  convert  them into  stationary series  –  and use the  first  

differenced  series  in  subsequent  econometric  modeling.  However,  if  series  are  cointegrated, 

removing non-stationarity by first differencing the I(1) series can delete the long-run (cointegrating) 

relationships. Engle and Granger [1987] have introduced a class of models that overcome these 

problems by using combinations of first differenced and lagged levels of I(1) cointegrated series. 

These models are known as Error Correction Models (ECMs).  Engle and Granger [1987] have 

shown that each set of cointegrated series can be represented as an ECM (Granger representation 

theorem). 

A common  way  of  estimating  an  ECM  is  the  Engle-Granger  two-step  method.  It  is 

conducted as follows.

– Step 1: Check that all the series are I(1) and then – if all the series are I(1) – estimate a 

cointegrating  relationship  using  OLS.  Once  the  relationship  has  been  estimated,  the 

residuals are tested (using unit root tests) to see if they are I(0). If they are I(0), an error-

correction representation can be estimated, which corresponds to step 2. So, assuming that 

two  I(1)  variables, y1, t  and  y2, t ,  are  cointegrated,  this  means  that  a  cointegrating 

relationship  exists:  y1, t=2 y2, tu t ,  where  u t  is  I(0)  –  i.e.  1 y1, t−2 y2, t~ I 0  with 

1=1  – and 2  is a cointegrating coefficient.

– Step 2: An ECM can be estimated with standard estimation methods such as OLS. The ECM 

is:   y1, t=ut−12 y2,t1, t  or   y1, t= y1, t−1−2 y 2,t−12 y2, t1,t ,24 where    

is an adjustment coefficient measuring the proportion of last period's equilibrium error that 

is corrected in time period t (it is sometimes referred to as the “speed of adjustment” toward 

the equilibrium), while 2  describes the short-run relationship between  y1,t  and  y2,t  

(i.e. between changes in  y1, t  and changes in  y2, t ). Note that  u t= y1, t−1−2 y2, t−1  is I(0), 

even though y1,t−1  and y2,t−1  are I(1). Thus, each part of the ECM is I(0) so that standard 

procedures for estimation and statistical inference can be applied.

24 It is possible to add an intercept to either the cointegrating equation or to the model or to both. 
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The notion of cointegration can be generalized for more than two variables. Assuming Y t , a 

g×1  vector of variables (with g≥2 ), the components of Y t  are cointegrated of order 1,1  if:

(1) All the components of Y t  are I(1),

(2) there is at least one linear combination of the components of Y t  which is I(0), i.e. there is a 

g×1  vector of coefficients,  , so that ' Y t ~ I 0 .  

The Engle-Granger two-step method can also be applied to estimate an ECM with more than two 

variables.  For  example,  assuming  a  set  of  three  I(1)  variables, y1, t ,  y2, t  and  y3, t ,  that  are 

cointegrated, the Engle-Granger two-step method would be:

– Step 1: Find a cointegrating relationship:  y1,t=2 y2,t3 y3, tut , where  u t  is I(0) – i.e. 

1 y1, t−2 y2, t−3 y3,t ~ I 0  with 1=1  – and 2  and 3  are cointegrating coefficients.

– Step 2: The ECM is   y1,t= y1,t−1−2 y 2,t−1−3 y3,t−12 y2,t3 y3,t1,t , where 

  is an adjustment coefficient, and 2  and 3  describe the short-run interactions among 

the variables.

A problem with the Engle-Granger two-step method is that it enables us to test for only one 

cointegrating equation, no matter how many variables there are in the system. In the case of two 

variables, there can be at most one cointegrating relationship between the variables. However, in the 

case of g variables, there may be up to r independent cointegrating relationships (i.e. up to r linear 

combinations of the variables that are stationary), where r≤g−1 . Hence, the Engle-Granger two-

step method can be unappropriated. A solution to this problem has been introduced by Johansen 

[1991],  who  proposed  a  VAR-based  cointegration  test  that  allows  to  test  for  r=0,1, , g−1  

cointegrating relationships. The Johansen's method consists in looking at the rank of the matrix of 

the long-run parameters in a VECM, where the rank of the matrix corresponds to the number of 

cointegrating relationships.25 If the rank of the matrix is significantly different from zero, the series 

are cointegrated with r cointegrating relationships (where r∈[1, , g−1] ).

25 The rank of a matrix is equal to the number of its characteristic roots (the eigenvalues) that are different from zero.  
For simple illustrations on how to derive the eigenvalues of a matrix, see Brooks [2008]. See also Hayek and Leca  
[2001]. 
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In order to apply the Johansen test, the VAR (3.1) needs to be turned into a VECM(k – 1)26 

of the form:

        Y t = Y t−1  1Y t−1  2Y t−2 ⋯ k−1Y t−k1  t ,            (3.9)

where  i=∑ j=1
i A j−I g  are g×g  matrices of short-run coefficients and =∑i=1

k Ai−I g=
'  

is a matrix of log-run coefficients, with  , a g×r   matrix of adjustment coefficients, and   is a 

g×r   matrix of cointegration coefficients.

The Johansen's method consists in estimating the unrestricted VECM  (3.9) ((3.9) is said 

unrestricted because it is estimated without specifying the value of r) using maximum likelihood.27 

Thereafter, the Johansen tests are derived by looking at the rank of the estimated   matrix, i.e. by 

identifying the number of its eigenvalues (characteristic roots) which are different from zero. Once 

the value of r is known, a restricted version of (3.9) can be estimated using maximum likelihood (or 

a VAR model such as (3.1) if r = 0).

After the unrestricted VECM (3.9) has been estimated, the variables are not cointegrated if 

we observe that the rank of   is not significantly different from zero. So, no eigenvalue of   is 

significantly different  from zero:  i≈0 ,  ∀ i=1 , , g ,  where  i  is  the  i-th  eigenvalue.  Each 

eigenvalue  is  associated  with  a  certain  cointegrating  vector.  Thus,  a  significantly  non-zero 

eigenvalue indicates a significant cointegrating vector.

 
Two statistics  are used to  test  for cointegration under  the Johansen approach:  the Trace 

statistic and the Maximum Eigenvalue statistic.28 They are formulated as follows:

trace r∖ g =−T ∑
i=r1

g

ln 1−i ,

max r , r1=−T ln 1−r1=trace r ∖ g −tracer1∖ g  ,

where  trace  is  the Trace statistic and  max  is the Maximum Eigenvalue statistic.29 In  trace  and 

max ,  r is the number of cointegrating vectors under the null hypothesis and  i  is the estimated 

value for the i-th eigenvalue from the   matrix (i.e. from the   matrix obtained by estimating 

the unrestricted VECM (3.9)). T is the number of observations.

26 For a detailed presentation on how to turn a VAR(k) in to a VECM(k – 1), see Bourbonnais [2005].
27 Intercepts can be included either in the cointegrating vectors or in the VAR part of the VECM or in both. Eviews  

allows to specify all of these situations.
28 See Brooks [2008] and Bourbonnais [2005]. Note that these statistics are calculated by Eviews.
29 Both  trace  and  max  incorporate  ln 1−i   rather than the  i  themselves. Actually, the two specifications are 

equivalent because when i=0 , ln 1−i =0 .
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The trace  tests the null hypothesis of a number of cointegrating vectors which less than or 

equal to r (“at most r”) against the alternative that there are more than r cointegrating vectors. The 

trace  starts  with  H 0 : r≤0  against  H 1 : r0 ;  If  H 0  is  rejected,  the  next  step  is  to  test 

H 0 : r≤1  against H 1 : r1 , and so on: 

H 0 : r≤0 against H 1 : r0
H 0 : r≤1 against H 1 : r1

H 0 : r≤2 against H 1 : r2
⋮ ⋮ ⋮

H 0 : r≤g against H 1 : rg

Thus, the value of r is continuously increased until the null hypothesis is no longer rejected. If H 0  

is accepted for an r ranging from r=1  to r=g−1 , we conclude that the variables are cointegrated 

with r independent cointegrating vectors.

The max  tests the null hypothesis of r cointegrating vectors against the alternative that there 

are r+1 or more cointegrating vectors. The max  starts with H 0 : r=0  against  H 1 : 0r≤g ; If 

H 0  is rejected, the next step is to test H 0 : r=1  against H 1 : 1r≤g , and so on: 

H 0 : r=0 against H 1 : 0r≤g
H 0 : r=1 against H 1 : 1r≤g
H 0 : r=2 against H 1 : 2r≤g

⋮ ⋮ ⋮
H 0 : r=g−1 against H 1 : r=g

As with the Trace statistic, the value of r is continuously increased until the null hypothesis is no 

longer rejected. If H 0  is accepted for an r ranging from r=1  to r=g−1 , we conclude that the 

variables are cointegrated with r independent cointegrating vectors.

Once the rank of the   matrix has been identified, the (restricted) VECM can be estimated 

using maximum likelihood. So, knowing the value of r, the   matrix is defined as the product of 

the two matrices,    and   ,  of dimension  g×r  .  For example, if  g=3  (i.e. there are three 

endogenous variables in the system), the   matrix can be written:
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='=11 12 13

21 22 23

31 32 33
 . 

So, if r=1 ,   and   are 3×1  matrices and: 

='=
11

21

31
×11 21 31=

11 12 13

21 22 23

31 32 33
 .

If r=2 ,   and   are 3×2  matrices and: 

='=
11 12

21 22

31 32
×11 21 31

12 22 32
=

11 12 13

21 22 23

31 32 33
 ,

and so on for higher values of r.

In many cases it is useful to normalize the cointegrating coefficients in   to set the value of 

one of them to unity. Such a normalization allows us to define one of the endogenous variables as  

the dependent variable in a cointegrating relationship, as would be the case in  the Engle-Granger 

two-step approach. As an illustration we take again the example of two I(1) variables, y1,t  and y2,t

, cointegrated with a cointegrating relationship given by y1, t=2 y2,tu t . In this case, as  y1, t  is 

defined  as  the  dependent  variable  of  the  cointegrating  equation,  the  cointegrating  vector 

=1 2  is normalized so that 1=1 . So, '× y1, t y2, t ~ I 0 , with =1 −2  .

As in the case of VAR models, it can be difficult to interpret a VECM due to the multiplicity 

of  parameters  and  lags.  Fortunately,  Granger  causality  and  impulse  responses  can  also  be 

investigated in the VECM framework.30 Thus, these two methods can be used to answer questions 

of the type: Does  a given variable have a persistent significant effect on another variable in the 

system? What is the effect of a shock to a given variable upon the future values of the variables in  

the system? What is the shape of the relationship between two variables? Positive or negative?

30 Granger causality and impulse responses in the VECM framework will be further discussed in section 3 of this 
chapter.
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3. Econometric analysis

The  objective  of  this  empirical  work  is  to  apply  a  full  VAR-VECM  approach  to  examine 

interdependency between carbon and energy prices in Phase 2 of the EU ETS. More precisely, we 

investigate the interactions between carbon, fuel and electricity prices during the first two years of 

Phase 2. In section 3.1, we first test for stationarity and cointegration. Based on the results, we 

choose which specification (VAR or VECM) is more appropriate for estimation. Next, in section 

3.2, estimation results, Granger causality tests and impulse responses are presented.   

3.1. Preliminary statistics

We use daily data for temperatures, fuel, carbon and electricity prices in Europe.31 Data series run 

from February 26, 2008 to October 30, 2009. This corresponds to the first two years of Phase 2 of  

the EU ETS. Our sample period begins on February 26, 2008 since data for the carbon spot price 

start on that day.

3.1.1. Stationarity tests

Proper econometric analysis involves checking for non-stationarity in data. In case all series contain 

a unit root (i.e. they are I(1) or integrated of order 1), it is necessary to test for cointegration. If a 

long-run  cointegrating  relationship  is  found,  analysis  needs  to  be  conducted  through  an  error-

correction model. However, when no cointegrating relationship is found whereas series are all I(1), 

all series have to be converted into stationary series by taking first order differences.

To test for stationarity we apply three unit root tests: the Augmented Dickey-Fuller (ADF) 

test, the Phillips-Peron (PP) test, and the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test. The 

ADF and the PP tests assume non-stationary series under the null hypothesis, while the KPSS tests 

the null hypothesis that the series are stationary.

31 Data are presented in Appendix B.
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Tables 13 and 14 present the results of the unit root tests. In each case tests are applied to log 

series in levels and in first differences. 

Table 13: Unit root tests on level series (*, ** and *** denote statistical rejection of the null at the 10, 5 and 1% levels,  

respectively) 

Varibles in (log) 
levels

ADF 
(t-Statistics)

PP 
(t-Statistics)

KPSS 
(LM-Statistics)

Carbon spot -1.04 -1.04 1.87***

Carbon futures -0.90 -1.01 1.92***

Coal -0.70 -0.73 2.12***

Electricity -0.93 -0.94 1.33***

Gas -0.77 -0.76 2.25***

Temperature EU -2.12 -1.94 0.34*

Temperature Ge -2.47 -2.45 0.31

Temperature Sp -2.40 -2.09 0.39*

Temperature UK -3.03** -3.35*** 0.38*

Table 14: Unit root tests on difference series (*, ** and *** denote statistical rejection of the null at the 10, 5 and 1% 

levels, respectively)

Varibles in (log) 
differences

ADF 
(t-Statistics)

PP 
(t-Statistics)

KPSS 
(LM-Statistics)

Carbon spot -11.32*** -18.51*** 0.15

Carbon futures -16.00*** -18.32*** 0.15

Coal -20.25*** -20.25*** 0.20

Electricity -19.66*** -19.62*** 0.32

Gas -25.84*** -26.29*** 0.17

Temperature EU -17.82*** -21.76*** 0.11

Temperature Ge -18.36*** -24.48*** 0.09

Temperature Sp -16.69*** -22.30*** 0.08

Temperature UK -19.04*** -37.31*** 0.08

No matter which test specification is retained, all price series are always I(1), i.e. non-stationary in 

levels, but stationary in first differences. Temperatures tend to be sometimes stationary in levels, in 

particular for the UK. However, in most cases temperatures are also I(1). 
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Before beginning our analysis of interactions between carbon and energy prices, we first 

want to know which EUA contract (spot or futures) better reflects information about the EU ETS. 

Accordingly we perform a first Granger causality test based on a bi-variate VAR between the EUA 

spot price and the EUA futures price.32 The results are presented in Table 15.

Table 15: Granger causality test results between spot and futures EUA prices, with three lags considered by the Schwarz 

information criterion (*, ** and *** denote statistical significance of Granger causalities at the 10, 5 and 1% levels,  

respectively)

Null Hypothesis p-value

Spot price does not Granger cause Futures price 4.E-52***

Futures price does not Granger cause Spot price 0.1731

The results clearly show that the Granger causality runs from spot to futures prices, indicating that 

the carbon spot price is better at explaining the EU ETS fluctuations. Previous studies for Phase 1 

found the opposite (see  Uhrig-Homburg and Wagner [2007] and Keppler and Mansanet-Bataller 

[2010]) or bi-directional Granger causalities (see Milunovich and Joyeux [2007]), but none found 

that the spot price has driven the spot-future relationship.33 

32 The same procedure is applied in Keppler and Mansanet-Bataller [2010].
33 Running the same tests for the sample period 1/02/2008-12/31/2008, Keppler and Mansanet-Bataller [2010] found 

that the spot-future relationship still runs from the futures price to the spot price as in Phase 1, but the results are less  
straightforward and the relationship is close to bi-directional.
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Figure 42: Share of the spot market in the total traded volumes – spot (Bluenext) 

and  futures  (ECX,  all  contracts)  –  in  2008  and  2009.  Data  available  on  the 

Bluenext and ECX websites.  



One possible explanation of this reversal in the spot-futures relationship is that the spot market for 

EUAs has gained in importance in Phase 2 due to the credit crunch that came with the financial  

crisis  (see  Figure  42).  Thanks  to  emission  reductions,  regulated  firms  were  able  to  sell  large 

amounts of unused allowances on the spot market in order to raise cash during the credit crunch.  

Moreover, to secure their future compliance with these financing strategies, some firms performed 

“time swaps” under which volumes of allowances that were sold on the spot market were offset by 

equal volumes of allowances bought for future delivery on the futures market.34 That may explain 

why the spot price became the driver in the spot-futures relationship, and so why it better reflected 

information about the EU ETS. Accordingly, we decide to use the EUA spot price in our model.35 

Therefore, for the remainder of the chapter, when we refer to the “carbon price” we mean the spot 

price of EUAs.

3.1.2. Cointegration testing

As unit root tests reveal that series are all I(1), we decide to test for cointegration between variables. 

To do this, the Johansen [1991] maximum likelihood estimation approach is used (see section 2 of 

this chapter). It consists in looking at the rank of the matrix of the long-run parameters in a VECM. 

If the rank of the matrix (which is equivalent to the number of cointegrating vectors) is significantly 

different from zero, the series are cointegrated. Thus, in order to test for cointegration we introduce 

a VECM(k) specification that can be written: 

        P t =   ' P t−1  ∑
i=1

k

 iP t−i  t  ,          (3.10)

where  P t  is a  4×1  vector of endogenous variables that contains log price series of EUAs, 

electricity,  coal  and  gas.  The  number  of  lags  in  the  VECM  is  k,    is  a  4×1  vector  of 

parameters, and  i  are 4×4  matrices of parameters. The adjustment coefficients (that determine 

how the endogenous variables respond to any disequilibrium in the long-run relationship) appear in 

the  4×r   vector denominated by  , and    is the  4×r   cointegrating vector, where  r is the 

number of cointegrating relationships. Finally,  t  is a  4×1  vector of un-modeled errors with 

t ~ N 0,  where   is the variance-covariance matrix.

34 See De Pertuis [2009], Sikorski [2009] and Charpin [2009].
35 We present in Appendix C the same econometric analysis as in Chapter 3, using the price of EUA futures contracts.
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The number of lags to include in the VECM is chosen according to the Akaike information 

criterion, the Hannan-Quinn information criterion and the Final prediction error. The matrix of the 

long-run parameters to test in the Johansen approach is  =' .  Tables 16 and 17 present the 

results of the tests.

Table 16: Trace test for cointegration (*, ** and *** denote statistical rejection of the null at the 10, 5 and 1% levels,  

respectively)

Null Hypothesis:
Number of 

cointegrating vectors
Trace Statistic Critical value

(10% level)
p-value

r≤0 47.51116* 44.49359 0.0538*

r≤1 20.82399 27.06695 0.3687

r≤2 7.822208 13.42878 0.4846

r≤3 0.126021 2.705545 0.7226

Table 17: Maximum-Eigenvalue test for cointegration (*, ** and *** denote statistical rejection of the null at the 10, 5 

and 1% levels, respectively)

Null Hypothesis:
Number of 

cointegrating vectors

Maximum-Eigenvalue 
Statistic

Critical value
(10% level)

p-value

r=0 26.68716* 25.12408 0.0648*

r=1 13.00179 18.89282 0.4521

r=2 7.696187 12.29652 0.4104

r=3 0.126021 2.705545 0.7226

The results indicate the existence of a single long-run relationship between prices (i.e. r = 1), at the 

10% level.36 This suggests that a VECM approach is more appropriate than a VAR model.  This 

confirms  previous  investigations  which  have  reported  significant  cointegrating  relationships 

between  carbon  and  energy  prices  in  Phase  1  (Bunn  and  Fezzi  [2007],  Zachmann  and  von 

Hirschhausen [2007], Fell [2008], Chemarin et al [2008] and Creti et al. [2012]) and in Phase 2 

(Bonacina et al. [2009], Bredin and Muckley [2011] and Creti et al. [2012]). 

36 Remember that  trace  tests  H 0 : r≤ j  against  H 1 : r j ,  ∀ j∈[0 , , g ] ,  and  max  tests  H 0 : r= j  against 
H 1 : jr≤g , ∀ j∈[0 , , g−1 ]  (see section 2 of this chapter). Accordingly, once H 0  has been accepted for a 

given  j, H 1  is rejected for the same  j and thus we deduce that r cannot be higher than  j. That is why Tables 4 and 
5 enable us to conclude that r = 1.
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Note that temperature variables (series and dummies) have not been included in the tests. We 

decided  to  do  so  since  we  found  no  significant  influence  of  these  variables  on  prices in  a 

preliminary regression analysis.37 The fact that the influence of temperatures is not significant in 

Phase 2 whereas it was in Phase 1 (see Alberola et al. [2008] and Mansanet-Bataller et al. [2007]) 

should be explained by the economic recession that occurred in 2008 and 2009. Because of the 

recession,  carbon  emissions  have  declined  and  so  the  compliance  constraints  have  been  less 

binding. As a consequence, temperature variations were of less importance for allowance prices.38 

3.2. Econometric model and results

The first aim of this section is to find a proper representation for price series (carbon, electricity, 

coal and gas) and to estimate a long-run relationship. Once a satisfactory model has been estimated, 

we use it to investigate Granger causality and impulse response.

3.2.1. Estimation and diagnostic

Given  the  results  we  found  for  stationarity  and  cointegration  tests,  we  have  chosen  a  VECM 

specification. Thus we retain the model  (3.10) for estimation. We estimate  (3.10) with different 

options for the normalization of parameters in the cointegrating vector: Carbon normalization (= 

normalized value of 1 for the carbon price coefficient), Gas normalization (= normalized value of 1 

for the gas price coefficient), Electricity normalization (= normalized value of 1 for the electricity 

price coefficient) and Coal normalization (= normalized value of 1 for the coal price coefficient).39 

For each specification, the lag order is chosen with the Akaike information criterion, the Hannan-

Quinn information criterion and the Final Prediction Error. Accordingly we estimate  (3.10) with 

three lags, using the maximum likelihood method. The estimation results for Carbon normalization 

are reported in Table 18.

37 Different combinations of temperature variables (temperatures in levels and dummy variables for hot and cold days,  
see Appendix B) of different countries (i.e. Germany, Spain, the UK, and the whole UE) have been tested. None has 
shown a significant influence on any of the prices (except for the electricity price which tends to be sensitive to cold  
temperatures).

38 The economic recession has an impact on three drivers of carbon emissions: the demand for electricity, the carbon 
price, and fuel prices (see Declercq et al. [2011]). Declercq et al. [2011] estimate an emission reduction of about 150 
Mtonnes in the European power sector over the years 2008 and 2009. Note, however, that emission data from the 
CITL (Community Independent Transaction Log, that records emissions and trades in the European carbon market)  
has shown that the power sector was globally short of allowances during this period (see Trotignon [2010]).

39 See section 2 of this chapter.
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Table  18:  VECM  (maximum  likelihood)  parameter  estimations  (*,  **  and  ***  denote  statistical  significance  of 

parameters at the 10, 5 and 1% levels, respectively). The t-statistics are given in square brackets.   

VECM (short-run parameters)

∆t Carbon ∆t Coal ∆t Electricity ∆t Gas

ECt-1  0.003849
[ 0.55646]

 0.011195*

[ 1.73579]
 0.038986***

[ 3.99867]
 0.041128***

[ 3.43285]

∆t-1 Carbon  0.135772***

[ 2.72143]
 0.235379***

[ 5.05930]
-0.015900
[-0.22607]

 0.051469
[ 0.59554]

∆t-2 Carbon -0.137811***

[-2.67382]
 0.021739
[ 0.45230]

-0.111515
[-1.53481]

-0.144024
[-1.61310]

∆t-3 Carbon  0.144545***

[ 2.86196]
-0.035942
[-0.76312]

-0.108538
[-1.52445]

-0.100300
[-1.14642]

∆t-1 Coal -0.111205**

[-2.08413]
 0.020350
[ 0.40898]

-0.034638
[-0.46049]

 0.163210*

[ 1.76575]

∆t-2 Coal  0.035301
[ 0.65991]

 0.019681
[ 0.39453]

 0.118179
[ 1.56717]

-0.076545
[-0.82604]

∆t-3 Coal  0.071639
[ 1.38504]

 0.011871
[ 0.24612]

-0.084245
[-1.15539]

-0.062547
[-0.69807]

∆t-1 Electricity  0.070516*

[ 1.94468]
 0.034350
[ 1.01582]

 0.019931
[ 0.38990]

 0.202668***

[ 3.22645]

∆t-2 Electricity  0.018677
[ 0.50858]

 0.054210
[ 1.58293]

-0.041336
[-0.79845]

-0.076263
[-1.19879]

∆t-3 Electricity  0.011599
[ 0.31723]

 0.027743
[ 0.81367]

-0.013701
[-0.26582]

-0.016851
[-0.26605]

∆t-1 Gas -0.081337***

[-2.75937]
 0.024071
[ 0.87568]

 0.024902
[ 0.59927]

-0.289846***

[-5.67635]

∆t-2 Gas -0.069319**

[-2.26419]
 0.037597
[ 1.31689]

 0.018270
[ 0.42332]

-0.087656*

[-1.65281]

∆t-3 Gas -0.072435**

[-2.45626]
 0.006915
[ 0.25144]

-0.047938
[-1.15314]

-0.014495
[-0.28374]

Constant -0.001086
[-0.84304]

-0.001121
[-0.93275]

 0.000262
[ 0.14450]

-0.002356
[-1.05557]

Cointegrating vector (long-run parameters)

Carbon Coal Electricity Gas Constant

1 -0.195509
[-0.96264]

 0.078154
[ 0.37629]

-0.522261**

[-2.39325]
-0.801713
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In order  to  evaluate how appropriate  the model  is,  we ran diagnostic  tests  to  check for 

autocorrelation  and  non-normality  in  the  residuals.40 The  Portmanteau  (multivariate  Box-

Pierce/Ljung-Box) and LM (multivariate Lagrange Multiplier) tests, revealed no autocorrelation in 

the residuals. The tests were performed for several lags with a maximum of 15 lags included. The 

null of no autocorrelation was always clearly accepted. Although there is no autocorrelation in the 

residuals, the multivariate Jarque-Bera residual normality test shows evidence of non-normality. 

However, as shown in Gonzalo [1994], the maximum likelihood method in error correction models 

ensures that estimators are consistent and that hypothesis tests can be performed (with standard chi-

squared tests), even when the errors are non-normal and/or heteroscedastic.

The estimation results, reported in Table 18, show that the gas price is the only variable 

which is significant in the cointegration equation. The sign is consistent with the fuel switching 

theory, with a positive relation between carbon and gas prices in the equilibrium.41 This is in line 

with the results of  Bonacina et al.  [2009] and Creti et al.  [2012] for Phase 2, which indicate a 

significant influence of the switching price on the carbon price in the equilibrium, with the expected 

positive  sign.  Moreover,  since  estimations  have  been  made  with  log-prices,  the  estimated 

coefficients  can  be  interpreted  as  elasticities  (Bunn and Fezzi  [2007]  make  the  same remark). 

Consequently, we can deduce that, in the long-run equilibrium, a gas price rise of 1% would be 

associated with a carbon price rise of about 0.5%.

As for short-run interactions, the main results show that the carbon price is influenced by the 

gas price lagged values and by its own lagged values. This confirms the results of Bunn and Fezzi 

[2007] about the influence of the gas price on the carbon price. Moreover, the gas price shows some 

evidence of dependence on its own lagged values and on those of the electricity price.

The results for the adjustment coefficients show that they are significant for all variables 

except  for  the  carbon  price.  Thus  the  carbon  price  is  weakly  exogenous  for  the  cointegrating  

parameters (i.e. the cointegration relation is not significant in the equation of this variable in the 

VECM, see Lütkepohl and Krätzig [2004]). This result was also found by Bunn and Fezzi [2007]. It 

40 For a presentation of standard diagnostic tests, see Bourbonnais [2005], Lütkepohl and Krätzig [2004] and Brooks 
[2008].

41 Whatever the normalization (Carbon, Gas, Electricity or Coal normalization) the results are identical for short-run  
parameters. For the long-run parameters, the carbon price becomes the only significant variable in the cointegration 
equation when we choose the Gas normalization, while both gas and carbon prices are significant for the Electricity  
normalization and for the Coal normalization. This indicates that the link between carbon and gas prices is robust in 
the equilibrium.  
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may be explained by the influence of exogenous political forces that are difficult to model.  For 

example, the carbon price could depend heavily on exogenous political decisions about the future of 

the EU ETS, the negotiations on a post-Kyoto agreement for climate policy or the future of the 

Kyoto mechanisms, etc.

3.2.2. Granger causality tests

Usually the Granger causality methodology applies to VAR models. However, Granger causality 

can also be investigated in the VECM framework (see  Lütkepohl [1991], Mosconi and Giannini 

[1992] and  Lütkepohl and Krätzig [2004]), as in the model  (3.10).  For an illustration, consider a 

simpler bi-variate version of (3.10) with two price variables p1, t  and p2, t :

 p1, t

 p2, t
 = 1

2
  1

2
1 2 p1,t−1

p2,t−1
 ∑i=1

k

11, i 12, i

21, i 22, i
 p1,t−i

 p2,t−i
  1,t

2,t
 ,

which could be written as two individual equations for causality tests,

{ p1, t =1 1 1 p1, t−12 p2, t−1 ∑
i=1

k

11, i p1, t−i∑
i=1

k

12, i p2, t−i  1, t

 p2, t = 2 2 1 p1, t−12 p2, t−1 ∑
i=1

k

21, i p1, t−i ∑
i=1

k

22,i p2, t−i 2, t

  .

Thereafter, testing for Granger causality running from p2, t  to p1,t  amounts to testing 12=0  and 

12, i=0  (with i=1 , , k ) in the first equation, i.e. the following null hypothesis: 12=12,i=0 , 

i=1, , k  (see Mosconi and Giannini [1992] and Lütkepohl and Krätzig [2004]).42 So, we can 

conclude that p2, t  “Granger-causes” p1, t  if  H 0  is rejected. We can also test the null hypothesis 

21=21, i=0 ,  i=1 , , k ,  in the second equation, in order to check if  p1,t  “Granger-causes” 

p2, t .  In each case,  tests  for  coefficient  restrictions  are based on Wald tests.  As pointed out in 

Lütkepohl and Krätzig [2004] the Wald test results may not be valid in the VECM framework due 

to the presence of I(1) variables. The cointegration may induce nonstandard asymptotic properties 

42 Note that Eviews does not directly provide consistent results for Granger causality in the VECM framework. The  
correct specification of the tests have to be specified using the “Wald coefficient tests” option.
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for the tests on the coefficients, leading to biased results. These difficulties can be removed by 

adding an extra lag in estimating parameters of the model. Then a VECM(k+1) has to be estimated 

in  place  of  a  VECM(k).  However,  the  tests  have  to  be  performed  on  the  first  k lags  of  the 

VECM(k+1) only.43

The results for Granger causality tests using the estimation of (3.10) with four (i.e. k+1) lags 

(with Carbon normalization, as in Table 18)44 are presented in Table 19.

Table  19: Granger causality test results with three lags considered (*, ** and *** denote statistical significance of  

Granger causalities at the 10, 5 and 1% levels, respectively).   

Dependent Variables

Carbon Coal Gas Electricity

Chi-Sq p-value Chi-Sq p-value Chi-Sq p-value Chi-Sq p-value

Carbon - - 20.05703 0.0005*** 18.61797 0.0009*** 8.553754 0.0733*

Coal 5.982611 0.2005 - - 14.91859 0.0049*** 10.25167 0.0364**

Gas 11.32722 0.0231** 2.521251 0.6408 - - 8.619850 0.0713*

Electricity 4.201620 0.3764 5.126332 0.2746 37.67949 0.0000*** - -

As  for  relationships  between  the  carbon  price  and  the  fuel  prices,  we  find  significant 

Granger causalities that lend support to the fuel-switching theory. Notably, we identify a significant 

feedback effect between the gas and the carbon prices. Moreover, we find a significant impact of the 

carbon price on the coal  price,  while  the reverse does  not  hold.  Thus,  our results  suggest  that 

interactions between the gas and the carbon prices exist in the short-run, as in the equilibrium. This 

confirms most of the previous investigations on this topic. The influence of the gas price on the 

carbon price was detected during Phase 1 through single-equation estimations (see Alberola et al. 

[2008] and Hintermann [2010])45 and impulse response analyses (see Bunn and Fezzi [2007] and 

Fell [2008]). A significant impact of the coal price on the carbon price is also reported for Phase 1  

by Mansanet-Bataller et al. [2007], Alberola et al. [2008] and Hintermann [2010] in single-equation 

estimations. Keppler and Mansanet-Bataller [2010] show that there is an indirect influence of coal 

and gas prices on the carbon price, through the spreads, during Phase 1 and during the first year of 

Phase 2. They also report a direct influence of the coal price on the carbon price in Phase 2. Finally,  

43 For more details see Lütkepohl and Krätzig [2004].
44 Granger causality tests have also been performed with the other normalizations in the cointegrating vector. Results 

are  unchanged. 
45 See also Rickels et al. [2010] for Phase 2.
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the results of Creti et al. [2012] indicate that the switching price Granger causes the carbon price in 

Phase 2.

As we have already mentioned, the influence of the fuel prices on the carbon price better  

reflects the fuel-switching theory. However, in addition to the influence of the fuel prices on the 

carbon price, we also find that the carbon price impacts both the gas and the coal prices. Keppler  

and Mansanet-Bataller [2010] report the same result for the beginning of Phase 2. They identify 

Granger causalities running from the carbon price to the coal and the gas prices.46 For Phase 1, 

Nazifi and Milunovich [2010] are the only ones who find such a result, with a significant Granger 

causality running from the carbon price to the gas price.47 As pointed out by Keppler and Mansanet-

Bataller [2010], the most likely explanation for the influence of the carbon price on the fuel prices  

in Phase 2, is that the carbon market has processed relevant information about expected economic 

activity faster  than fuel  markets.  As mentioned earlier,  the use of the EU ETS as a short-term 

financial tool during the crisis (“time swaps”) may have turned the carbon spot market into a major 

place for information disclosures about economic activity, which may explain this result.48 Note 

here that the influence of the carbon price is always significant for all the energy variables (see 

Table 19). Here again one may see these results as evidence of transmission of information from the 

carbon to the energy markets.

The results  involving the carbon and the electricity prices suggest  that  the pass-through 

theory is valid, while the short-term rent capture is not verified. Indeed, while we find a significant 

impact of the carbon price on the price of electricity, we identify no Granger causality running from 

electricity to carbon. This lends support to the pass-through theory. Our results confirm most of the 

previous investigations for Phase 1, which have reported evidence of the carbon price influence on 

electricity (see Bunn and Fezzi [2007], Fell [2008], Zachmann and von Hirschhausen [2007] and 

Keppler and Mansanet-Bataller [2010]).49 An exception here comes from Nazifi and Milunovich 

[2010] who do not validate this result for Phase 1, while they find a significant influence of the 

46 Here it is interesting to mention the results of Creti et al. [2012] which show that the carbon price Granger causes 
the oil and stock prices in Phase 2. For those authors, this reflects an increasing role of the EU ETS in the economy.

47 Note that Bunn and Fezzi [2007] have found that a shock on the carbon price impacts the gas price in their impulse 
response analysis  for  Phase 1.  However,  the response is small  in  magnitude,  and their  results  suggest  that  the 
opposite relationship is much more important.

48 Bonacina et al. [2009] have suggested an analogous interpretation to explain the lesser influence of the switching 
price after the crisis of 2008, while the carbon market was sensitive to stock prices.  The authors interpret these 
results as the consequences of changing behaviors of market players because of the crisis and the credit crunch. With 
emission reductions, companies have been able to sell their unused allowances to raise cash during the credit crunch. 
These financing strategies were the main reasons for the volumes of trade at the end of 2008. The market players 
may also have traded allowances for speculative purposes.

49 See also Solier and Jouvet [2011] in a regression analysis.
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electricity  price  on  the  carbon  price.  However,  regarding  Phase  2,  the  results  of  Keppler  and 

Mansanet-Bataller [2010] validate the influence of the electricity price on the carbon price, but not 

the influence of the carbon price on the electricity price. Thus, they argue that the short-term rent 

capture theory prevails in Phase 2. By contrast, we find that the pass-through theory is better in 

explaining relationships between carbon and electricity markets in Phase 2. This latter result should 

be compared with estimations of Solier and Jouvet [2011], which indicate that the pass-through 

theory is significant in Phase 2, although it is more obvious in Phase 1. Interestingly, those authors 

report  that  the  influence  of  the  carbon  price  is  stronger  when  the  futures  prices  of  off-peak 

electricity are used, as in our case. This suggests that the pass-through is more important in off-peak 

periods, due to a lesser scarcity of generation capacities.

3.2.3. Impulse response analysis

Granger causality suggests which of the variables have a significant impact on subsequent values of  

the other variables in the model, all other things being equal. However, Granger causality is unable 

to explain the signs of the relationships, and it neglects interactions among variables in the system. 

To account for these complicated interactions, impulse response functions are useful. As we saw in 

section 2 of this chapter, the impulse response functions are computed using the moving average 

representation (VMA) of a VAR. However, the Wold representation does not exist for VECMs. 

Hence, a VECM does not possess a VMA representation of the type discussed in section 2 of this 

chapter.  Nevertheless,  it  is  possible  to  derive  the  impulse  response  matrices   j  as  defined in 

section 2 of this chapter.50 In this case, the  j  may not converge to zero as j tends to infinity (see 

Lütkepohl [1991] and Lütkepohl and Krätzig [2004]), as is the case with a VAR (see section 2 of  

this chapter). Consequently, some shocks may have permanent effects.51 

As  we  saw  in  section  2  of  this  chapter,  among  the  orthogonalization  procedures,  the 

generalized impulse response function procedure (Pesaran and Shin [1998]) does not depend on the 

ordering of variables.52 Accordingly, we used this orthogonalization procedure to compute impulse 

50 Fortunately, Eviews directly provides the impulse response functions for VECMs. Therefore, we do not include an 
extensive  presentation  of  impulse  responses  in  this  case. For  more  details,  the  interested  reader  can  refer  to 
Lütkepohl [1991] and Lütkepohl and Krätzig [2004].

51 Graphically it appears in the impulse response functions because they do not revert back to zero, as opposed to  
examples of Figure 41 in section 2 of this chapter. For illustrative examples, see Lütkepohl [1991] and Lütkepohl 
and Krätzig [2004].

52 Note here that when the residuals are almost uncorrelated (as in our case), the results are not very sensitive to a  
change in the ordering of variables. See Lütkepohl [1991]. 
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responses in our model. As our main interest is to determine how the carbon price reacts to energy 

prices and vice versa, we compute the impulse response functions of the energy prices for a shock 

to the carbon price, and the impulse response functions of the carbon price for shocks to each of the 

energy prices. The results are presented in Figure 43.

Figure 43: Generalized impulse response functions.
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The signs of the impulse responses are consistent with the economic theories presented in 

section 2 of Chapter 1, except for the responses of carbon to gas and of coal to carbon. Under the 

fuel switching theory, the carbon price ought to increase when the gas price increases, and the coal 

price ought to decrease when the carbon price increases. In both cases Figure 43 shows reactions 

which are not consistent with fuel switching, except in the very first days after the shock.53 Note that 

the positive  response of  coal  to  carbon could  be  explained by the transmission of  information 

(relative to economic activity) from the carbon to the energy markets during the crisis. This may 

also explain the positive response of gas to carbon (in addition to fuel switching). 

Figure 43 also shows that the magnitudes of the responses are all very small, especially for 

the responses of the carbon price to each of the energy prices. However, regarding the carbon price 

influence on the energy markets, the shape of the impulse response functions shows that effects are 

permanent  (the  responses  do  not  revert  to  zero)54 and  that  the  responses  increase  over  time. 

Therefore, the responses of electricity, coal and gas to a shock on the carbon price are not only 

higher in magnitudes (with respect to the responses of carbon to the energy prices), but they are also 

increasing and they produce permanent effects. 

Several previous papers involving impulse response analysis found that the electricity price 

was sensitive to a shock on the carbon price in Phase 1 (see Bunn and Fezzi [2007], Fell [2008] and 

Zachmann  and  von  Hirschhausen  [2007]).  Our  results  corroborate  those  previous  analyses. 

However, only Bunn and Fezzi [2007] found that the gas price was affected by a shock on the 

carbon price.55 Nevertheless,  those  same authors  found a  much more  significant  impact  on the 

carbon price after a shock on the gas price, with a positive reaction according to the fuel-switching 

theory. This contrasts  with our results  which show that the response of the fuel markets to the 

carbon price is more significant than the reverse (i.e. the response of the carbon market to a shock 

on the gas price or on the coal price). These differences could be explained by our sample period. 

Whereas previous impulse response analyses were performed in Phase 1, we work in Phase 2. Thus, 

our result should be more fruitfully compared to Granger causality tests by Keppler and Mansanet-

53 According to the fuel switching theory, the coal price would have to decrease if the carbon price rose (negative 
response of  coal  to  carbon),  and the carbon price would have to  increase if  the gas  prices  increased (positive 
response of carbon to gas). However, as we can see in Figure 43, these reactions are observed only in the earliest  
days  after  the  shock.  Afterward,  reactions  are  in  contradiction  with  the  fuel  switching  theory,  with  a  positive 
response of coal to carbon and a negative response of carbon to gas.

54 As explained before, shocks may have permanent effects in an impulse response analysis based on a VECM. See 
Lütkepohl [1991] and Lütkepohl and Krätzig [2004].

55 Fell [2008] also reported that coal and gas prices react to a shock on the carbon price. However, he found that the  
reactions were slow and very small in magnitude.
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Bataller [2010] and Creti et al. [2012], which concern Phase 2. As we have already mentioned,  

Keppler and Mansanet-Bataller [2010] find Granger causality running from the carbon price to the 

gas and coal prices, while Creti et al. [2012] show that the carbon price influences the oil price (and 

stock prices). Our impulse response analysis corroborates the results of those authors. In addition, 

we find that these relationships have positive signs, which is consistent with the hypothesis of the 

transmission  of  information  – relative  to  economic  activity  –  from the  EU ETS to the  energy 

markets during the crisis. 
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4. Conclusion

In this chapter we have examined interactions between carbon and energy markets during the first 

two years of Phase 2 of the EU ETS. We have used a VECM approach, with Granger causality tests 

and impulse response functions to investigate the dynamic of relationships between carbon, coal,  

gas, and electricity prices. We have found evidence of both short-run and long-run interactions.

In  section  2,  we first  presented  econometric  tools  we use  in  our  empirical  works.  The 

econometric  investigations  and  results  are  included  in  section  3.  Our  work  extends  previous 

literature in two directions essentially. We first generalized a previous contribution that analyzed 

relationships  between  carbon  and  energy  markets  in  Phase  2  (Keppler  and  Mansanet-Battaler 

[2010]), by applying a full VAR-VECM approach to study interactions between carbon, coal, gas, 

and electricity prices in Phase 2. Our aim was to compare our results for Phase 2 with those of 

similar papers developed for Phase 1 (Bunn and Fezzi [2007], Zachmann and von Hirschhausen 

[2007],  Fell  [2008],  Chemarin  et  al.  [2008] and Nazifi  and Milunovich [2010]),  in  addition  to 

testing relevance of the theories presented in Chapter 1 (pass-through, short-term rent capture and 

fuel switching). Second, we computed impulse response functions to complete Granger causality. 

This allowed us to account for more complicated interactions than with Granger causality, and it 

extended the papers of Keppler and Mansanet-Battaler [2010] and Creti et al. [2012] for Phase 2.

The three most important results featured in this  chapter can be summarized as follows. 

First, we find a significant impact of the gas price on the carbon price. The cointegration analysis 

shows that the gas price is a significant driver of the carbon price in the equilibrium, with a positive 

coefficient in line with fuel-switching. The results about the impact of fuel prices on the carbon 

price  are  more  difficult  to  interpret  in  the  short-run,  with  very  small  impulse  responses  and 

ambiguous signs.  This  suggests  that  fuel-switching stands in  the equilibrium, while  this  is  less 

obvious in the short-run.56 One possible explanation may be that the fuel switching strategies are 

planned  over  time  horizons  which  are  beyond  the  very  short-run,  with  likely  wait-and-see 

behaviors. Second, our results indicate that the carbon price impacts the price of electricity, whereas 

the reverse effect is not significant. This can be seen as evidence of pass-through. Finally, for fuel 

prices, we obtained results which are more surprising and difficult to interpret at first glance. We 

find that the carbon price impacts the coal and gas prices (Granger causality and impulse response). 

56 See Rickels et al. [2010] for similar conclusions.
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Fuel markets are expected to be little affected, if at all, by changes in demand for fuel created by the 

EU ETS. On the one hand, fuel demand triggered by fuel switching is limited due to the scarcity of 

gas capacities available for switching in each period. On the other hand, European fuel markets are 

integrated into world markets,57 so that variations in fuel demand for switching purposes are very 

small with respect to world fuel markets. In that context, the most likely explanation of the short-

term influence of the carbon price on the fuel prices is that the EU ETS was a driver for information 

disclosure  about  economic  activity  in  Europe  during  the  crisis,  due  to  “time-swap”  strategies. 

Thereafter, information about economic activity would have been passed on to fuel markets through 

the EU ETS.58 This result must be a particular case caused by the crisis and the “de-coupling” of the 

European  fuel  markets  with  respect  to  the  world  fuel  markets  during  this  period,  due  to  the 

continuing economic growth in the emerging countries while Europe was in recession.59

57 Note here that the coal market is more global in essence than the gas market, since coal can easily be shipped all  
over the world whereas gas is largely distributed through pipelines as a regional commodity.  However,  the gas 
market is becoming increasingly global with progress in gas liquefaction creating more shipping opportunities. 

58 This explanation is consistent with the positive sign we found in the impulse response of coal to carbon.
59 See Keppler and Mansanet-Bataller [2010].
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Chapter 4

Cross-market price discovery in the

European gas and CO2 markets:

an empirical analysis

Since  the  creation  of  the  European  Union  Emission  Trading  Scheme  (EU  ETS),  European  power 

producers  have  monitored  carbon  emissions  resulting  from  the  composition  of  their  production. 

According to  fuel  switching theory,  gas  and EUAs (European Union Allowances)  can be considered 

substitutable  inputs  in  electricity  generation. They  are  thus  related  commodities,  with  cross-market 

dynamic of information running from the market which processes new information faster to the other. 

This chapter examines  the cross-market price discovery process between the European carbon and gas 

markets.  The  aim  is  to  evaluate  the  relative  contribution  of  each  market  to  the  cross-market  price 

discovery, in order to identity which one is the leader in this process. We use the Common Factor Weights 

approach introduced by Schwarz and Szakmary [1994]. We find that the carbon market is the leader.

1. Introduction

One indirect effect of the European Union Emission Trading Scheme (EU ETS) has been to change 

the value of using gas in electricity generation.1 European power producers have been made more 

mindful of the carbon emissions resulting from the composition of their production, now that a 

price  has  been  put  on  them.  Generating  power  with  natural  gas  produces  about  half  the  CO2 

emissions of generating power with coal. Accordingly, fuel switching, in this instance substituting 

gas-fired plants (CCGTs -  Combined Cycle Gas Turbines) for carbon-intensive coal-fired plants, 

has become a way to achieve carbon abatements. 

1 Many authors argue that the EU ETS has  strengthened the link between gas and power, with some unfavorable 
consequences such as gas price rises (Reinaud [2007]) or greater geopolitical risks (Bunn and Fezzi [2007] and 
Grubb and Newberry [2008]).  
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If the cost of carbon emissions is ignored, coal-fired plants are usually cheaper to run than 

gas-fired plants,  because of their  lower fuel cost.  However,  when a carbon price is introduced, 

generating electricity with gas-fired plants may become more attractive than using coal-fired plants. 

In fact, if the cost of increased carbon emissions with coal plants is higher than the additional fuel 

cost  of  gas  plants,  it  is  cheaper  to  produce  with  gas  plants  (and  vice  versa).  Based  on  the 

comparison of these two costs, power producers can decide, for a given level of production,2 either 

to increase the share of gas and thus reduce the number of EUAs (European Union Allowances, the 

carbon certificates  from the European market),  or,  alternatively,  to reduce the share of gas and 

increase the number of EUAs (because of increased emissions from burning more coal). Therefore, 

gas and EUAs can be considered substitutable inputs in electricity generation. Accordingly, they are 

related  commodities,3 with  cross-market  dynamic  of  information  running  from the  market  that 

better records incremental information to the other. The aim of this chapter is to investigate this 

process.

Price discovery is the process by which markets record new information affecting prices. 

Information  about  related  commodities/securities  crosses  linked  markets  with  the  result  that 

incremental information affecting one market will also affect other markets latter. The question is 

which market captures information first? This is a significant question since the price of a market 

which processes new information faster than others, may be used, in many cases, to anticipate the 

price evolutions on related markets. Thus, it is useful evaluating the relative contribution of each 

market to the price discovery process.  

Studying relationships between carbon and energy markets from a financial point of view 

has been of growing interest since the start of the EU ETS.  This has been investigated in several 

econometric papers. Many of them concentrate on identifying the determinants of the carbon price 

in regressions. They find that coal and gas prices are particularly relevant in explaining the carbon 

price fluctuations (Mansanet-Bataller et al. [2007], Alberola et al. [2008] and Hintermann [2010]. 

Econometric studies focusing on cointegration and dynamic interactions between carbon and energy 

2 We speak here of production levels in the “switching zone” of “intermediate load”, as defined in Chapter 1. This 
corresponds to off-peak load levels of production which are just higher than base load levels. On the one hand, fuel  
switching cannot occur in peak load, since, in this situation, all the power plants are already online and thus no 
CCGT is available. On the other hand, fuel switching is not a profitable option in base load, since base plants (i.e.  
power plants that run in base load) are cheaper to run than CCGTs and have near-zero carbon emissions (e.g. nuclear  
or hydroelectricty). 

3 Here, we refer to EUAs as commodities since we consider they are inputs in electricity generation. However, as  
storage  of EUAs (i.e. physical storage, neglecting the foregone interest) is costless or very cheap, they are often 
considered to be financial assets rather than pure commodities.

187



prices have also been of growing interest in the last few years. Papers on this topic include Bunn 

and  Fezzi  [2007],  Bonacina  et  al.  [2009],  Fell  [2008],  Mansanet-Bataller  and  Soriano  [2009], 

Keppler and Mansanet-Bataller [2010], Nazifi and Milunovich [2010], Bredin and Muckley [2011], 

Bertrand [2011a] and Creti et al. [2012].  

However, to the best of our knowledge, no paper has investigated the cross-market price 

discovery process between carbon and energy markets. We fill this gap in the literature by focusing 

on the carbon and gas markets. Price discovery has been examined in various types of economic 

linkages  among  markets  including  related  commodities/securities4 (e.g.  Cortazar  et  al.  [2008], 

Coppola [2008] and Chng [2010]), the spot-futures relationships (e.g. Garbade and Silber [1983], 

Schwarz and Szakmary [1994] and Theissen [2011]) and the different marketplaces for a same 

commodity/security (e.g. Goodwin [1991], Theissen [2002] and Thurlin [2009]). Where the EU 

ETS is concerned, price discovery has been examined in the spot-futures relationships for EUAs 

(Uhrig-Homburg and Wagner  [2007] and Rittler  [2009])  and for  the futures  prices  of  different 

exchanges (Benz and Klar [2008]). Focusing on the cross-market price discovery process between 

the carbon and gas markets, this paper aims to extend the aforementioned literature on relationships 

between carbon and energy markets.

To address the question of the cross-market price discovery process between carbon and gas 

markets, we use the common factor approach built on work by Schwarz and Szakmary [1994] and 

Gonzalo and Granger [1995].  The first step consists in estimating a vector error correction model 

(VECM) using the price series. Afterward, to quantify the relative contribution of each market to 

the cross-market price discovery, we compute the Common Factor Weights as defined by Schwarz 

and Szakmary [1994]. We find that the carbon market contributes more to the cross-market price 

discovery process.

The  remainder  of  this  chapter  is  organized  as  follows.  In  section  2  we  present  the  logic  of 

substitution between gas and EUAs. Section 3 describes the variables and sets out some preliminary 

statistics such as unit root tests and cointegration testing. Section 4 introduces the Common Factor  

Weights  methodology,  econometric  specifications  and  displays  estimation  results.  Section  5 

concludes.

4 Examples are exchanges, screen-floor markets or regional/international markets.
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2. Substitution between gas and carbon allowances

According to literature on the EU ETS, fuel prices are the most significant drivers of the carbon  

price in Europe, due to the ability of European power producers to reduce their carbon emissions by 

switching from coal to gas in electricity generation.5 This short-term abatement option is known as 

fuel switching. It happens in intermediate load (i.e. for intermediate levels of production that occur 

between 20% and 80% of the time, see Unger [2002]) between coal plants and CCGTs (Combined 

Cycle Gas Turbines).6 

Fuel switching refers to the ability of power producers to reduce their carbon emissions by 

generating electricity with CCGTs where they previously used coal plants. It takes place in the short 

run, because it happens in a context where electricity  generation facilities (the number of power 

plants) and their efficiencies (the energy efficiency of  each power plant) are fixed.  When power 

producers do not integrate the carbon cost into their decisions (“business-as-usual” scenario), they 

begin to produce with coal plants, whereas CCGTs are brought online for higher levels of load (i.e. 

when power demand increases), due to the lower fuel cost of coal. Alternatively, power producers 

may decide to use CCGTs first as substitutes for coal plants; this will allow them to reduce their  

CO2 emissions compared with the “business-as-usual” scenario,7 but it will increase the fuel cost.

Fuel switching entails an increasing cost for fuel consumption. However, when the carbon 

cost is integrated into the cost of generating electricity, the handicap of coal because of its high 

carbon emissions has also to be taken into account. Indeed, if the carbon price is high enough,  

CCGTs may be preferable to coal plants, due to their lower carbon intensity. Therefore, up to a 

certain level for the carbon price (i.e. so long as the carbon price is higher than the additional fuel  

cost associated with the decision to produce first with gas in order to abate one tonne of CO2), it is 

cheaper to use CCGTs first  instead of coal plants. Conversely,  if the carbon price is below the 

additional fuel cost associated with the decision to produce with gas, it is cheaper to use coal plants 

first and cover the increased carbon emissions with more permits. In other words, fuel switching 

5 See Chapter 1 for an extensive review of econometric and theoretical papers on the interplay between carbon and 
energy markets.

6 In Europe, fuel switching can also occur with other plants for other levels of load. For example, switching can occur 
between oil plants and open cycle gas turbines, or also between hard-coal and lignite. However, as the quantities of 
carbon involved in switching between coal plants and CCGTs are much higher, this type of switching has been the 
main focus of power producers and researchers.

7 In this case,  CCGTs run for longer periods because they are brought online first,  whereas coal plants, that  are 
brought online next (for higher levels of power demand), run for shorter periods. Therefore, as CCGTs generate a  
lower carbon output than coal plants, this switching enables power producers to reduce their carbon emissions. 
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occurs since with a high enough carbon price certain coal plants switch places with certain CCGTs 

in the merit order8 (see Sijm et al. [2005], Kanen [2006] and Delarue et al. [2008]). Consequently, at 

any time where fuel switching is possible (i.e. in intermediate load when some CCGTs are available 

for switching), power producers will have to choose between two options: increasing the proportion 

of  CCGTs  in  power  generation  (i.e.  physically  reducing  some  of  their  carbon  emissions  by 

switching fuels) or buying more permits on the market to produce with coal plants. Therefore,  gas 

and EUAs can be considered substitutable inputs in electricity generation, and they are subject to a 

trade-off which depends on the difference between the fuel switching cost (i.e. the additional fuel 

cost associated with the decision to produce first with CCGTs) and the cost of buying permits. 

A widely used indicator of the cost of switching is the switching price (see Kanen [2006], 

Fehr and Hinz [2006] and Delarue and D’haeseleer [2007]). Let us take a short example in order to  

introduce the switching price. We define the marginal costs of producing one MWh of electricity (in 

Euros) with coal plants and with CCGTs, respectively, as: MC c
BAU=hc COALt  and MC g

BAU=h g GAS t , in 

the BAU scenario, and MC c
EU ETS=hc COALtec EUAt  and MC g

EU ETS=hg GAS teg EUAt  under the EU ETS. 

Here ec  and  e g  are coefficients measuring the carbon emissions (in  tonnes of CO2 per MWh of 

electricity) from coal  plants  and  CCGTs,  respectively.  hc  and  hg  express  how much  fuel  is 

consumed to generate one MWh of electricity with the same plants (where  hc  is expressed in 

tonnes, and hg  in thermal MWh). COALt , GAS t  and EUAt  are the prices of coal (in Euros per 

tonne), gas (in Euros per thermal MWh) and CO2 (in Euros per tonne) at time t. 

Using these notations, the decision to switch fuels from coal to gas is made by comparing 

MC c
EU ETS  with MC g

EU ETS . Thus, it will be worth switching between the two technologies if MC c
EU ETS  

is higher than MC g
EU ETS  (whereas MC c

BAU  could be lower than MC g
BAU ). More specifically, if the cost 

of increased carbon emissions with coal plants ( EUAt ec−eg  , for each MWh of electricity) is higher 

than the additional fuel cost associated with the decision to produce first with CCGTs rather than 

with coal ( h g GASt−hc COALt , for each MWh of electricity), it is cheaper to use CCGTs first instead 

of  coal  plants  (and  vice  versa).  Therefore,  fuel  switching  should  occur  if  and  only  if 

EUAt ec−eg  h g GASt−hc COALt  (which  corresponds  to  MC c
EU ETSMC g

EU ETS ).  This  last  inequality 

allows us to derive the switching price, as define in Fehr and Hinz [2006] (see also  Delarue and 

D’haeseleer [2007]): 

8 The merit order is the ranking of all power plants of a given park by marginal cost of production. Technologies are  
stacked in order of increasing marginal cost of electricity production, so that power producers add more and more 
expensive plants to production as demand increases. For more details, see Unger [2002] and Kanen [2006].
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SW t=
h g GAS t−hc COALt

ec−eg
 ,            (4.1)

so that fuel switching would (would not, respectively) occur at a period t if EUAtSW t  ( EUAtSW t , 

respectively).9

In practice, there are numerous power plants with different rates of efficiency.10 So, taking 

into account these differences, we have one switching price for any given pair of coal and gas plants 

(see Chapter 1). Thus, for any given fuel prices, there are several switching prices associated with 

different  pairings  of  coal  and  gas  plants.  However,  as  a  simplification,  it  is  very  common to 

aggregate  all  the  switching  possibilities  into  one representative  switching  price.  Assuming one 

representative type of CCGTs (i.e. one representative efficiency rate) and one representative type of 

coal plants, we follow the same strategy.11 Thus, we have a representative switching price (given by 

equation (4.1)) which can be estimated and compared to the carbon price. 

Following  Tendances  Carbone  [2007]  we  assume  that  power  plants  have  an  efficiency 

rate of 40% for coal plants and 50% for CCGTs. So, using the calculation formulas introduced in 

Chapter  1  for  heating  and  emission  rates  we  get:  e g=0.4 ,  hg=2 ,  ec=0.85 ,  and  hc=0.36 . 

Thereafter,  the  representative  switching  price  can  be  computed  using  equation  (4.1),  and  it 

corresponds to SW t
50  of Chapter 1.12

9 Equation (4.1) is the same as equation (1.1) of Chapter 1.
10 These differences in the efficiency of plants may influence the cost of switching. See Chapter 2 for a theoretical 

justification. See also Sijm et al. [2005] and Delarue et al. [2008] for simulations of the switching cost with more or  
less efficient types of plant.

11 This assumption is clearly restrictive, even though it is quite common in the literature. In fact, to the best of our 
knowledge, all the econometric literature on fuel switching is built under the assumption of a single switching price.  
By contrast, some papers have investigated consequences of differences in efficiency of power plants in simulation 
analysis (e.g. Sijm et al. [2005] and Delarue et al. [2008])

12 In this chapter the switching prices are computed using the values of coefficients ec  and hc  associated with coal 
plants of 40% efficiency, whereas they were computed for coal plants of 38% efficiency in Chapter 1. Consequently, 
SW t

55 , SW t
50  and SW t

45  we use in this chapter are computed for coal plants of 40% efficiency. Note that we have 
also performed our estimations with switching prices ( SW t

55 ,  SW t
50  and  SW t

45 ) associated with coal plants of 
38% efficiency. We obtain identical results both regarding the cointegration analysis (section 3) and the estimated 
adjustment coefficients (magnitude and significance) in the VECMs (section 4). 
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3. Variables and preliminary statistics

In this section we first introduce variables that can be used to account for substitution between gas 

and carbon. Next, we test for stationarity and cointegration in the data.

3.1. Variables and data

As we saw in the previous section, the carbon price and the gas price should be compared to set the  

optimal composition of power generation due to substitution between gas and carbon allowances 

(see Chapter 1 for further details). Hence, there should be an arbitrage between the increased carbon 

cost  with  coal  plants  and the  increased  fuel  cost  with  CCGTs.  Different  variables  are  used  to 

account for this process.

According to the theory, the most natural way to study the arbitrage process is to compare 

the EUA price (i.e. the price of one tonne of carbon) with the switching price (i.e. the increased fuel  

cost to abate one tonne of carbon, as given by equation (4.1)). As explained in the previous section, 

following Tendances Carbone [2007] we assume a single representative switching price reflecting a 

situation where power plants have an efficiency rate of 40% for coal plants and 50% for CCGTs. 

Hence, we include SW t
50  as representative switching price used in our empirical investigations.13 

Accordingly, from now on, when we refer to SW t , we mean SW t
50 .

We also choose to include other variables for comparison with the carbon price. If the gas 

price rises relative to the coal price, the fuel switching cost rises. Therefore, the ratio between the 

gas price and the coal price can be used to represent the cost of switching. We call this variable 

Ratio, so that Ratiot=GASt /COALt . Finally, we also use the gas price for direct comparison with the 

carbon price. 

We use daily data for carbon, coal and gas prices in Europe.14 The data runs from February 

26, 2008 to October 30, 2009, and it corresponds to the first two years of Phase 2 of the EU ETS. 

The carbon price is  the daily closing price of EUA spot  contracts  of Bluenext.15 Bluenext was 

13 Note  that  running estimations  with different  switching prices  (i.e.  with  SW t
55  and  SW t

45 ,  reflecting different 
pairings of coal and gas plants) does not modify results. See sections 3 and 4.

14 Data are presented in Appendix B.
15 We present in Appendix D the same econometric analysis as in Chapter 4, using the price of EUA futures contracts.
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chosen  because  it  is  the  most  liquid  spot  market  for  EUAs  (see  Benz  and  Klar  [2008]  and 

Daskalakis et al. [2009]). The gas price, in Euros per thermal MWh, is the daily closing price of 

month ahead gas futures contracts negotiated on the Zeebrugge Hub. The coal price, in Euros per 

tonne, is the daily closing price of month ahead coal futures contracts, CIF ARA.

3.2. Preliminary statistics

For an error-correction representation to be valid, all series have to contain a unit root and have to 

be  cointegrated.  If  series  contain  a  unit  root,  they  are  first-difference  stationary,  while  non-

stationary in level. This means that they are affected by a linear stochastic trend. They are said to be 

I(1) or integrated of order 1. Once series have been found to be I(1), cointegration testing can be 

undertaken. If series are cointegrated, there exists a linear combination of series which is I(0), i.e.  

stationary. Thus, there is a co-movement of the I(1) series, which are stationary around a common 

stochastic trend.

3.2.1. Stationarity tests

To test for stationarity we apply three unit root tests: the Augmented Dickey-Fuller (ADF) test, the 

Phillips-Peron (PP) test, and the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test. The ADF 

and the PP assume non-stationary series under the null hypothesis, while the KPSS tests the null 

hypothesis that the series are stationary.

Tables 20 and 21 present the results of the unit root tests for series in level and in first  

difference. 

Table 20: Unit root tests on level series (*, ** and *** denote statistical rejection of the null hypothesis at the 10, 5 and 

1% levels, respectively) 

Data series ADF 
(t-Statistics)

PP 
(t-Statistics)

KPSS 
(LM-Statistics)

Carbon -0.88 -0.86 1.97***

Coal -1.15 -1.16 1.93***

Gas -0.91 -0.92 2.17***
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Table 21: Unit root tests on first difference series (*, ** and *** denote statistical rejection of the null hypothesis at the  

10, 5 and 1% levels, respectively)

Data series ADF 
(t-Statistics)

PP 
(t-Statistics)

KPSS 
(LM-Statistics)

Carbon -16.04*** -19.14*** 0.18

Coal -20.77*** -20.77*** 0.22

Gas -24.73*** -25.14*** 0.14

Results  show that  all  series  are non-stationary in  level  (see Table 20),  while  stationary in  first  

difference (see Table 21). Accordingly we can conclude that they are all I(1), and, consequently, 

error-correction representations may be appropriate, depending on the cointegration analysis results.

3.2.2. Cointegration analysis

We test for cointegration between the carbon price and the switching price, the carbon price and the 

gas price, and the carbon price and the ratio. To conduct our cointegration tests, we apply the Engle-

Granger [1987] two-step method, which can be used here since each of our tests  involves two 

variables only.16 

In the Engle-Granger two-step method, we estimate the cointegrating relationship (using 

OLS) to get the residuals of the cointegrating regression, and we test residuals to see if they are I(0). 

Next, if the residuals are I(0), an error-correction representation can be estimated. In our case, we 

consider the following cointegrating regressions (depending on the variable we use to represent the 

increased fuel cost of switching):

EUAt=12 SW tu t
SW ,          (4.2a)

EUAt=12 Ratiotu t
Ratio ,           (4.3a)

16 See Chapter 3.
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EUAt=12GAS tu t
GAS ,                                               (4.4a)

EUAt=2 SW tut
SW ,           (4.2b)

EUAt=2 Ratiotu t
Ratio ,           (4.3b)

EUAt=2 GAS tut
GAS ,                                                      (4.4b)

where u t
SW , u t

Ratio  and u t
GAS  are the residuals to test.17

In  order  to  consider  more  situtations,  we  apply  the  two-step  method  to  cointegrating 

equations with and without the constant 1 . Accordingly, we refer to (4.2a), (4.3a) and (4.4a) when 

we include the constant, and (4.2b),  (4.3b) and (4.4b) when we exclude the constant. Including a 

constant in our cointegrating equations enables us to account for factors other than fuel prices that 

affect  the marginal  cost  of switching.  They may be,  for example,  costs  related to maintenance 

operations or unforeseen breakdowns of plants.18 Results for unit root tests are given in Tables 22 

and 23. 

Table  22: Unit root tests for equilibrium errors of cointegrating regressions  (4.2a),  (4.3a) and  (4.4a) (*, ** and *** 

denote statistical rejection of the null hypothesis – non-stationarity – at the 10, 5 and 1% levels, respectively)

Residuals ADF 
(t-Statistics)

PP 
(t-Statistics)

u t
SW -1.09 -1.15

u t
Ratio -0.87 -0.85

u t
GAS -1.85* -1.83*

17 We also conducted tests with SW t
55  and SW t

45 , but the results are identical.  
18 Note that the influence of those factors is weak for fossil-fuel-based electricity, and especially for gas plants. In this 

case, the marginal cost depends mainly on fuel prices (Unger [2002]).
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Table  23: Unit root tests for equilibrium errors of cointegrating regressions  (4.2b),  (4.3b) and  (4.4b) (*, ** and *** 

denote statistical rejection of the null hypothesis – non-stationarity – at the 10, 5 and 1% levels, respectively)

Residuals ADF 
(t-Statistics)

PP 
(t-Statistics)

u t
SW -1.75* -1.74*

u t
Ratio -1.37 -1.41

u t
GAS -1.88* -1.75*

As theory suggests that the carbon price should equal the switching price in the equilibrium, we also 

conduct the cointegration tests by pre-specifying the coefficient of the switching price rather than 

estimating it.  We therefore continue the cointegration analysis (Engle-Granger two-step method) 

with the following cointegrating equation:

EUAt=1SW tu t
SW ,          (4.5a)

EUAt=SW tut
SW .                   (4.5b)

As before,  we refer  to  (4.5a) when we include the  constant,  and  (4.5b) when we exclude the 

constant (in this case, we apply the unit root tests to the difference EUAt−SW t=u t
SW ). Results for 

unit root tests for (4.5a) and (4.5b) are given in Table 24.19

Table 24: Unit root tests for equilibrium errors of cointegrating relationships (4.5a) and (4.5b) (*, ** and *** denote 

statistical rejection of the null hypothesis – non-stationarity – at the 10, 5 and 1% levels, respectively)

u t
SW ADF 

(t-Statistics)
PP 

(t-Statistics)

(5a) -2.14** -2.31**

(5b) -2.03** -2.15**

19 Here again, results are not modified by using SW t
55  or SW t

45  rather than SW t
50 . 
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Results  from  Tables 22 to 24 show that among tested cointegrating equations, equations 

(4.2b), (4.4a), (4.4b), (4.5a) and (4.5b) can be retained for the VECM estimations since they have 

stationary errors. However, we exclude equations involving the ratio variable (see Tables 22 and 

23). We will thus estimate, in the next section, several models involving the admissible equations.  

Our results confirm previous investigations which have reported significant cointegration between 

carbon and gas prices in Phase 1 (Bunn and Fezzi [2007] and Fell [2008]) and in Phase 2 (Bertrand 

[2011a]). Cointegration between the carbon price and the switching price has also been reported in 

Phase 2 (Bonacina et al. [2009] and Creti et al. [2012]).20

20 Bredin and Muckley [2011] also examine cointegration between carbon and fuel in Phases 1 and 2. They consider  
the clean dark spread (the electricity price minus the costs of coal and carbon) and the clean spark spread (the 
electricity price minus the costs of gas and carbon). Their results indicate significant cointegration in Phase 2. 
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4. Econometric analysis

In this section, we first present the methodology used for investigating the relative contribution of 

each  market  to  the  cross-market  price  discovery  process.  Then,  the  models  we  estimate  and 

estimation results are given.

4.1. Methodology

In case of related commodities (e.g. wheat and rice, gold and platinum, crude oil and gasoline, etc), 

information that  affects  one market also affects  other markets.  Since some markets incorporate 

relevant information faster than others, prices of these markets are supposed to be used to anticipate 

price fluctuations on related markets. Measuring the contribution of each market to a cross-market 

price discovery process is thus an important issue.

Schwarz and Szakmary [1994] propose to quantify the contributions to the price discovery 

process using the estimated adjustment coefficients of a VECM. The adjustment coefficient, for a 

given variable in the VECM, indicates how this variable responds to deviations from the long-run 

equilibrium. The adjustment coefficients measure the effect on the system created by a deviation 

from the long-run equilibrium in one time period. Schwarz and Szakmary [1994] argue that the 

relative magnitude of  each adjustment  coefficient  should be used to  assess the intensity of  the 

contribution of each market to the price discovery process. They call this measure the Common 

Factor Weights (CFWs), as an indicator of the weight of each variable in the common long-memory 

component.21

As an illustration, let us assume the following bi-variate VECM for EUA and gas prices: 

P t =   ' P t−1  ∑
i=1

k

 iP t−i  t            (4.6)

where P t  is a vector that contains price series for EUAs and gas ( EUAt  and GAS t ). The number 

of lags in the VECM is k,   is a vector of constants, and  i  are matrices of parameters.  t  is a 

21 Gonzalo  and  Granger  [1995]  show how to  decompose  a  system  of  cointegrated  variables  into  transitory  and 
common long-memory components. See Theissen [2002] for a simple presentation (see also Granger and Haldrup 
[1996] and Baillie et al. [2002]). 
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vector of errors with t ~ N 0,  where   is the variance-covariance matrix. The adjustment 

coefficients  appear  in  the  vector  denominated  by   .  They indicate  how  variables  respond  to 

deviations from the long-run equilibrium, in order to restore the equilibrium. Finally,    is  the 

cointegrating vector. 

Using the VECM  (4.6)  we can express the CFWs, as defined by Schwarz and Szakmary 

[1994], as below:22

CFW EUA=
∣GAS∣

∣EUA∣∣GAS∣
 and CFW GAS=

∣EUA∣

∣EUA∣∣GAS∣
           (4.7)

where EUA  and GAS  are the adjustment coefficients of EUA and gas prices, respectively. As the 

sum of the adjustment coefficients measures the total adjustment to a shock in one or both markets, 

the CFW of one market quantifies the share of the total effect which is recorded on this market.23 

Thus, if the cross-market price discovery occurs in the carbon market only, CFW EUA=1 , and if it 

occurs in the gas market only,  CFW EUA=0  (and then  CFW GAS=1 ). In between, combinations 

such  that  0CFW EUA1  and  0CFW GAS1  reflect  situations  where  the  cross-market  price 

discovery occurs in both markets. So, if CFW EUACFW GAS  the contribution of the carbon market 

is higher than the gas market contribution (and vice versa).24  

4.2. Specifications and estimation results

In order  to  account  for  a  wide spectrum of  possible  models,  we choose  to  consider  our  basic 

VECM with and without constants in the model. Accordingly, with constants, the VECM (4.6) can 

be written:

22 The Common Factor  Weight  measure  was  developed on  an  intuitive basis  by  Schwarz  and  Szakmary [1994]. 
Theissen [2002] demonstrated that the weights with which variables enter the common long-memory component, as 
defined by Gonzalo and Granger [1995], are equal to the Common Factor Weights. See also Thurlin [2009]. 

23 Another indicator measuring the contribution of each market to the price discovery process is the information share  
of Hasbrouck [1995]. As pointed out by Theissen [2002] the common factor weights and the information shares lead 
to  similar  conclusions.  Theissen  [2002]  conclude  that  the  common factor  weights  should  be  preferred  to  the  
information shares given that both measures lead to similar results and that the common factor weights are easy to  
calculate. Accordingly, we compute only the common factor weights in this work.

24 Note that the market which adjusts less to deviations (i.e. the market which has a lower adjustment coefficient) has a  
higher CFW, meaning that it is the leader in the price discovery process. The reason is that, because this market is 
the first to record new information, it reacts less to these information in subsequent periods. By contrast, the market  
which adjusts more can be considered as a follower in the cross-market price discovery process.
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{EUAt =
EUAEUAu t−1

GAS∑
i=1

k

11, iEUAt−i∑
i=1

k

12, iGASt−it
EUA

GASt = 
GASGAS u t−1

GAS∑
i=1

k

21, iEUAt−i∑
i=1

k

22, iGAS t−it
GAS

,           (4.8)

or, without constants,

{EUAt = 
EUAu t−1

GAS∑
i=1

k

11, iEUAt−i∑
i=1

k

12, iGAS t−it
EUA

GAS t = 
GAS ut−1

GAS∑
i=1

k

21,iEUAt−i∑
i=1

k

22, iGAS t−it
GAS

 .            (4.9)

u t−1
GAS  is the equilibrium error of the cointegrating equation at hand. In this case (bi-variate VECM 

between EUA and gas prices), cointegrating equations (4.4a) and (4.4b) can be applied to models 

(4.8) and  (4.9). Thus, we have four models to estimate:  (4.8.4a), (4.8.4b), (4.9.4a) and  (4.9.4b), 

where (4.8.4a) stands for model (4.8) with cointegrating equation (4.4a), and so on. 

As we saw in section 3, cointegrating equations (4.2b), (4.5a) and (4.5b) can also be used. 

Accordingly we also estimate models similar to  (4.8) and  (4.9) by substituting variable  SW t  for 

GAS t  (and so u t−1
SW  for u t−1

GAS ). Thus, we consider two more bi-variate versions of the VECM (4.6) 

– with and without constants in the VAR part of the model – between EUAt  and SW t : 

{EUAt =
EUAEUAu t−1

SW∑
i=1

k

11, iEUA t−i∑
i=1

k

12, i SW t−it
EUA

 SW t =
SWSW u t−1

SW∑
i=1

k

21, iEUAt−i∑
i=1

k

22, iSW t−it
SW

,           (4.10)

or, without constants,
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{EUAt = 
EUAu t−1

SW ∑
i=1

k

11, iEUAt−i∑
i=1

k

12, iSW t−it
EUA

 SW t= 
SW u t−1

SW∑
i=1

k

21, iEUAt−i∑
i=1

k

22, i SW t−it
SW

 .          (4.11)

As before,  u t−1
SW  is the equilibrium error of the cointegrating equation at hand. Therefore we have 

six more models to estimate (since cointegrating equations (4.2b), (4.5a) and (4.5b) can be applied 

to  models  (4.10) and  (4.11)):  (4.10.2b),  (4.10.5a), (4.10.5b),  (4.11.2b), (4.11.5a) and  (4.11.5b), 

where (4.10.2b) stands for model (4.10) with cointegrating equation (4.2b), and so on.25 

Before  making  the  estimation,  let  us  discuss  the  adjustment  coefficients  further.  As  we 

mentioned, they determine the adjustment of each price series toward the long-run equilibrium, 

after  a  deviation from the long-run equilibrium. In our case,  the adjustment  process  should be 

assured by substitution between carbon and gas. Accordingly, the signs of adjustment coefficients 

are expected to be negative, for the carbon price, and positive, for the other variable (reflecting 

the  fuel  cost  of  switching).  Indeed,  if  we  take  cointegrating  equation  (4.4a) as  an  example 

(i.e. EUAt=12GAS tut
GAS  and thus ut−1

GAS=EUAt−1−1−2GAS t−1 ), when EUAt−112GAS t−1  (where 

12 GAS t−1  is  an  approximation  of  the  cost  of  increasing  the  proportion  of  gas  plants  in  the 

switching zone, see Chapter 1), one would expect a subsequent negative price change on the carbon 

market and/or a positive price change on the gas market, in order to restore the equilibrium.26 Thus, 

this would result in a negative EUA  and a positive GAS . 

With regard to significance of adjustment coefficients, comparisons are also important for 

interpretation. Indeed, if one coefficient is significant while the other is not, one would expect one 

of the two markets (the one with a non-significant adjustment coefficient) to incorporate all the new 

information. For example, if the carbon market incorporated all the new information, EUA  should 

25 We also applied the Johansen [1991] maximum likelihood approach, to check the validity of our cointegrating 
equations (identified in section 3) with models (4.8), (4.9), (4.10) and (4.11). Results of the Engle-Granger method 
are confirmed, except for the model (4.11.2b) (note, however, that cointegration is very close to being significant at 
the 10% level in this case).

26 If the carbon price exceeds the cost of switching, demand for carbon would decrease and demand for gas increase.  
Thus, the carbon price would decrease and the gas price would increase, until the equilibrium is restored.  

201



be completely non-significant while  GAS  would be  significant.27 By contrast, if both adjustment 

coefficients are significant,  the CFWs are useful for assessing the relative contribution of each 

market to information discovery.

We  can  now  turn  to  the  estimation.  We  estimate  our  ten  models  using  the  maximum 

likelihood method.28 For each specification, we choose the lag order using the Final Prediction Error 

and the Akaike, Schwarz and Hannan-Quinn information criteria. Accordingly, we include three 

lags  for  models  (4.8.4a), (4.8.4b), (4.9.4a) and  (4.9.4b),  and  two  lags  for  models  (4.10.2b), 

(4.10.5a), (4.10.5b), (4.11.2b), (4.11.5a) and (4.11.5b).

Residual  analysis  is  conducted  to  evaluate  how  appropriate  the  models  are.  We  run 

diagnostic  tests  to  check  for  autocorrelation  and  non-normality  in  the  residuals.  Based  on  the 

Portmanteau test, tests for autocorrelation are performed with a maximum of 15 lags included in 

each model. Models (4.10.2b), (4.10.5a), (4.10.5b), (4.11.2b), (4.11.5a) and (4.11.5b) reject the null 

hypothesis of no autocorrelation, while results for  (4.8.4a),  (4.8.4b), (4.9.4a) and  (4.9.4b) clearly 

suggest  that  there is  no autocorrelation for these models.  The multivariate Jarque-Bera residual 

normality test shows evidence of non-normality for all models. However,  as shown in Gonzalo 

[1994],  the maximum likelihood method in  error  correction models  ensures  that  estimators  are 

consistent and that hypothesis tests can be performed (with standard chi-squared tests), even when 

the errors are non-normal.

Diagnostic tests clearly show that models (4.8.4a), (4.8.4b), (4.9.4a) and (4.9.4b) are more 

appropriate  since they reveal no autocorrelation in the residuals.  Accordingly,  these models are 

preferred,  and  we  will  focus  on  them for  interpretations.  Tables  25  and  26  present  estimated 

adjustment coefficients and CFWs for the VECMs.29

27 In other words, the leader (market) discovers all the new information and the follower adjusts.
28 In the case of error correction models, the maximum likelihood gives estimators with better properties than other  

estimation methods. See Gonzalo [1994].
29 Note that we have also performed estimations with  SW t

55  and  SW t
45 , in addition to  SW t

50≡SW t . Results are 
identical both regarding significance and magnitude of estimated adjustment coefficients.
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Table 25: Estimation results for adjustment coefficients (*, ** and *** denote statistical significance at the 10, 5 and 1% 

levels, respectively)

Dependent variable

EUA GAS SW

EUA t-Satistics GAS t-Satistics SW t-Satistics

(4.8.4a) 0.009842 1.562191 0.051899 3.793831*** - -

(4.9.4a) 0.010346 1.759048* 0.051431 4.846395*** - -

(4.8.4b) 0.008960 1.795965* 0.033068 2.553466** - -

(4.9.4b) 0.009231 2.017537** 0.033494 3.558777*** - -

(4.10.2b) 0.002684 1.930188* - - 0.037523 2.473012**

(4.11.2b) 0.002769 2.124021** - - 0.037041 2.815277***

(4.10.5a) 0.002299 1.958535* - - 0.030862 2.371446**

(4.11.5a) 0.002367 2.172996** - - 0.030350 2.728435***

(4.10.5b) 0.002299 1.998332** - - 0.030863 2.573043**

(4.11.5b) 0.002283 2.235497** - - 0.028238 2.726110***

Table 26: Estimated Common Factor Weights (in percentages) using equations CFW EUA= ∣ j∣

∣EUA∣∣ j∣ and CFW j= ∣EUA∣

∣EUA∣∣ j∣ , 

where j =GAS , SW .

CFW EUA CFW GAS CFW SW

(4.8.4a) 84.06 15.94 -

(4.9.4a) 83.25 16.75 -

(4.8.4b) 78.68 21.32 -

(4.9.4b) 78.40 21.60 -

(4.10.2b) 93.33 - 6.67

(4.11.2b) 93.05 - 6.95

(4.10.5a) 93.07 - 6.63

(4.11.5a) 92.77 - 7.23

(4.10.5b) 93.07 - 6.93

(4.11.5b) 92.52 - 7.48

Results suggest that the carbon market contributes more to the cross-market price discovery 

process. This is particularly obvious for model (4.8.4a), since EUA  is not significant while GAS  is 

highly significant. In this case we can conclude that the cross-market price discovery occurs only on 

the carbon market.30 This means that all the new information is discovered on the carbon market, 

30 Previous studies have found that the adjustment coefficient of the carbon price was not significant in error correction 
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while only the gas market adjusts to deviations (created by new information) from the long-run 

equilibrium. One possible explanation might be that the carbon market may be more focused – in 

our  sample  period  –  on  information  about  economic  activity  and  recession  or  about  some 

exogenous political decisions (e.g. decisions about the future of the EU ETS, the negotiations on a 

post-Kyoto agreement for climate policy or the future of the Kyoto mechanisms, etc.) rather than on 

the adjustment process towards the long-run equilibrium between carbon and gas prices.31

For other models, we still obtain two significant adjustment coefficients reflecting that both 

markets seem to contribute to the adjustment process. However, the EUA  do not have the expected 

sign. They are positive while,  according to the substitution theory,  they ought to be negative. 32 

Indeed,  as  mentioned  earlier,  when  the  EUA price  is  higher  than  the  cost  of  increasing  the 

proportion of gas in power generation, the EUA price needs to decline and/or the gas price needs to 

rise for the equilibrium to be restored. But, with two positive adjustment coefficients, this means 

that both prices increase. One possible explanation comes from values of adjustment coefficients for 

EUAs and gas. Because  GAS  always has a higher positive value than  EUA  (see Table 25), we 

deduce that the gas price rises more than the carbon price in order to adjust to deviations from the  

long-run equilibrium. Hence, the equilibrium can be restored because the gas price rises more than 

the EUA price. One could say that the carbon market moves in the wrong direction with respect to 

the substitution theory (it may be more focused on information about economic activity, exogenous 

political decisions, etc), but the gas market overcompensates for that.33 

With regard to the estimated CFWs, we clearly see that the carbon market contributes more 

to the adjustment process. As indicated in Table 26, the value of CFW EUA  is still around 80% (and 

so CFW GAS  is still around 20%), meaning that about 80% of information discovery occurs on the 

carbon market. Here again we conclude that the carbon market is the leader in the cross-market 

price discovery process.

models between carbon and energy prices (see Bunn and Fezzi [2007] and Bertrand [2011a]).
31 The carbon market may integrate some information about economic activity and transmit them to other energy 

markets. Interestingly, evidence of Granger causality running from carbon to coal and gas prices has been found in  
previous econometric papers for Phase 2 of the EU ETS (see Keppler and Mansanet-Bataller [2010] and Bertrand  
[2011a]), while the opposite was in general more significant for Phase 1 (see Chapters 1 and 3 for references). Still 
regarding Phase 2, Creti et al. [2012] have reported significant Granger causality running from the carbon price to 
oil and stock prices.

32 Note that the GAS  are still highly significant with positive signs as suggested by the substitution theory.
33 For an analogous explanation in the case of the EUA's spot-futures relationship, see Uhrig-Hombourg and Wagner 

[2007].
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5. Conclusion

The EU ETS has increased the interest for gas in electricity generation. Due to the lower carbon 

intensity of gas plants, fuel switching can be a profitable option, depending on carbon and fuel  

prices. In this chapter we examined the economic link between EUA and gas markets due to fuel 

switching in  electricity  generation.  We investigated  how these  markets  contribute  to the cross-

market price discovery process, driven by substitution between carbon and gas, by comparing their 

relative adjustments to deviations from their long-run equilibrium. The market which adjusts more 

is thus considered as a follower in the cross-market price discovery process, and the market which 

adjusts  less  is  considered  as  the  leader (i.e. because  this  market  is  the  first  to  record  new 

information,  it  adjusts  less to these information in subsequent periods),  meaning that it  records 

incremental information faster.

We estimated different VECM models involving EUA and gas prices, and we calculated the 

Common Factor Weights (Schwarz and Szakmary [1994]) to assess the relative contribution of each 

market to the cross-market price discovery process. The results indicate that the gas market adjusts 

more than the  carbon market  to  deviations  from the  equilibrium. Hence,  we conclude that  the 

carbon market is the leader in the cross-market price discovery process between gas and EUAs. 

This finding might be of practical importance for market participants, which are expected to use, in 

many cases, prices of the most efficient markets to anticipate the price evolutions on other related 

markets.

Our results suggest that the carbon market dominate the price discovery process. However, 

one may expect the opposite to be more consistent. Indeed, fuel markets are usually supposed to be 

little affected, if at all, by changes in demand for fuel created by the EU ETS, since fuel demand 

triggered by fuel switching is limited due to scarcity of gas capacities available for switching in 

each period. Moreover, European fuel markets are integrated into world markets, so that variations 

in  fuel  demands  for  switching  purposes  in  Europe  are  very  small  with  respect  to  world  fuel  

markets.34 In that context, our results may reflect a particular situation caused by the economic and 

financial  crisis  and  the  “de-coupling”  of  the  European  fuel  markets  with  respect  to  the  world 

markets during the period we analyzed.35 Because of emission reductions in the recession, firms 

34 See Chapters 1 and 2.
35 During the years 2008-2009, there was a period of “de-coupling” between the European and world fuel markets. 

Market  participants  had  different  expectations  about  the  European  and  world  markets,  due  to  the  continuing 
economic growth in emerging countries while Europe was in recession. Thus, once the “de-coupling” was effective, 
European fuel markets were more focused on the European situation, rather than on world markets (Keppler and 
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covered by the EU ETS were able to sell large amount of unused allowances in order to raise cash  

during the credit crunch.36 Therefore, due to these financing strategies, the carbon market may have 

processed relevant information about economic activity faster than other European markets.37 That 

might explain why the carbon market seems to have become a driver for information disclosure 

during this period.  Thus, the fact that  the carbon market is the leader in the cross-market price 

discovery process might be explained by our sample period.38 Consequently, our results should be 

considered carefully and it would be interesting to undertake the same analysis in a more “normal” 

sample  period  in  order  to  see  whether  results  are  modified.  This  may be  a  subject  for  future  

research.

Mansanet-Bataller [2010]). 
36 Note that a lower influence of the gas price in a context of recession (and thus lower uncontrolled carbon emissions)  

is in line with Proposition 2 of the theoretical model in Chapter 2.
37 See Chapter 3.
38 The gas  market also discovers  large amounts of information about  energy markets  and other  factor  that  might 

permanently affect the cost of fuel switching. For example, the gas market is expected to record first information 
about technological progresses in the extraction of non-conventional gases, gas liquefaction or pipeline projects such 
as Nabucco. Accordingly, outside of a recession period, the gas market should take a more important place in the 
process of information discovery in the carbon-gas relationship (more than the 15-20% we found in Table 26), and 
even probably dominate.
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Appendix A

Proof by recurrence of equation (2.11) of Chapter 2

We show that (2.11) is verified for all t. The demonstration is made by recurrence in three steps as 

follows.

Step 1: check that (2.11) is right in t = 1

Solving the intertemporal problem in the case of two periods (T = 2), we get

   p1=a G1[ 12 u1
1
2
u2−

1
2

D]−bC 1 .            (A.1)

Now, applying (2.11) in t = 1, we obtain

    p1=a G1[ 1
T

u1
1
T
∑
j=2

T

e j−
1
T

D]− bC1 ,

which is equivalent to (A.1) when T = 2. We conclude that (2.11) is right in t = 1. □

Step 2: recurrence hypothesis

We assume that (2.11) is right in t – 1. We then get: 

       p t−1=aG t−1[∑j=1

t−1

 1
T− j1

u j−
j−1

T T− j1
u j 1

T
∑
j=t

T

u j−
1
T

D]−bC t−1 .            (A.2)
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Step 3: show that (2.11) is verified in t using the recurrence hypothesis 

For any t and t – 1, when (2.11) is right in t – 1, we have:

p t=aG t[ p t−1bC t−1

aG t−1


1

T−t1
ut −

t−1
T T−t1

ut −
1
T
ut]− bC t .              (A.3)

 
Substituting (A.2) (the recurrence hypothesis) into (A.3), we get

p t=aG t[∑j=1

t

 1
T− j1

u j−
j−1

T T− j1
u j 1

T
∑

j=t1

T

u j−
1
T

D]−bC t ,

that is (2.11) in period t. So, (2.11) is verified for all t, by recurrence. □ 
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Appendix B

Data description

We use daily data for temperatures, coal, gas, carbon and electricity prices in Europe.1 Data series 

run from February 26, 2008 to October 30, 2009. This corresponds to the first two years of Phase 2 

of the EU ETS. Our sample period begins on February 26, 2008 since data for the carbon spot price 

start on that day.

Temperatures

Temperatures affect demand for power because they determine needs for heating (in winter periods) 

or cooling (in  summer periods).  As a consequence,  temperatures  influence uncontrolled carbon 

emissions. In particular, it is expected that uncontrolled carbon emissions will depend heavily on 

extreme temperatures (i.e. extremely hot and cold temperatures).2 

We consider the European temperature index of Tendances Carbone (published by the CDC 

Climat Research). This is a weighted average of temperatures for France, Spain, Germany and the 

UK, where weights are proportional to the size of countries' NAPs. We also use country specific 

temperatures for Germany, Spain and the UK. Here data are those of the BlueNext Weather index 

which is constructed as the average of regional temperatures within a country,  weighted by the 

populations of those regions.3 

The effect of temperature on energy demand (and thus on carbon emissions) is known to be 

non-linear since energy is used for both cooling and heating purposes. To take into account this non-

linearity, the usual way is to identify thresholds reflecting cold and hot temperatures. In order to 

identify  days  with  particularly  high  or  low  temperatures,  we  compute  the  quintiles  of  each 

temperature series. Thereafter, we define a day as extremely hot if the temperatures of this day are 

in  the  last  quintile.  If  temperatures  of  a  day are  in  the  first  quintile,  the  day is  considered  as 

extremely  cold.  Next,  quintile  series  are  used  to  construct  dummy  variables  accounting  for 

extremely hot and cold days (see Figures 44 and 45). 

1 We thank May Armstrong of the CDC Climat Research for making these data available to us.
2 Several papers have shown that extreme temperatures are the most important weather variables influencing the EU 

ETS (see Alberola et al. [2008] and Mansanet-Bataller et al. [2007]).
3 Note that the BlueNext Weather indices are used as values for national temperatures in calculating the  European 

temperature index of Tendances Carbone. 
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Carbon prices

The data collection for the carbon prices is made up of the daily closing prices of EUA (European 

Union Allowance, the carbon allowances from the EU ETS) spot and futures contracts. Prices for 

212

Figure 44: Dummy variables for hot temperatures.

Figure 45: Dummy variables for cold temperatures.



spot  and  futures  contracts  are  those  of  BlueNext  and  European  Climate  Exchange  (ECX), 

respectively, since BlueNext is the most liquid spot market and ECX is the most liquid market for 

futures contracts (see Benz and Klar [2008] and Daskalakis et al. [2009]). Futures prices are those 

of contracts with delivery in December 2009.

Energy prices

The gas price, in Euros per thermal MWh, is the daily closing price of month ahead gas futures 

contracts negociated on the Zeebrugge Hub (Belgium). The coal price, in Euros per tonne, is the 

daily closing price of month ahead coal futures contracts, CIF ARA.4

4 CIF ARA defines the price of coal inclusive of freight and insurance  (Cost, Insurance and Freight) delivered to 
Amsterdam, Rotterdam or Antwerp (ARA). 
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Figure 46: Spot and futures EUA prices.

Figure 47: Natural gas prices (Zeebrugge, Belgium).



For electricity prices, we include data from Powernext, the French power market. Prices are daily 

closing prices, in Euros per MWh of electricity, of month ahead futures contracts for base load.
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Figure 48: Coal prices (CIF ARA).

Figure 49: Electricity prices (Powernext, France).



Appendix C

Results of Chapter 3 using the futures prices of EUAs

In the econometric analysis of Chapter 3, we used the price of EUA spot contracts, according to the  

results of the Granger causality test between spot and futures EUA prices we performed in section 

3.1 of Chapter 3 (see Table 15). To complete this work, we present here the same analysis as in 

sections 3 of Chapter 4, using the price of EUA futures contracts. We obtain similar conclusions.

Cointegration testing

We  apply  Johansen  [1991]  maximum  likelihood  estimation  approach  to  test  for  cointegration 

between carbon, coal, gas and electricity prices. The results are given in Tables 27 and 28.

Table 27: Trace test for cointegration (*, ** and *** denote statistical rejection of the null at the 10, 5 and 1% levels,  
respectively) 

Null Hypothesis:
Number of 

cointegrating vectors
Trace Statistic Critical value

(5% level)
p-value

r≤0 47.87117** 47.85613 0.0498**

r≤1 21.12448 29.79707 0.3499

r≤2 8.587611 15.49471 0.4049

r≤3 0.097653 3.841466 0.7547

Table 28: Maximum-Eigenvalue test for cointegration (*, ** and *** denote statistical rejection of the null at the 10, 5 
and 1% levels, respectively) 

Null Hypothesis:
Number of 

cointegrating vectors

Maximum-Eigenvalue 
Statistic

Critical value
(10% level)

p-value

r=0 26.74669* 25.12408 0.0637*

r=1 12.53687 18.89282 0.4956

r=2 8.489958 12.29652 0.3311

r=3 0.097653 2.705545 0.7547
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As when we used the spot price of EUAs, the results indicate the existence of a single long-run 

relationship between prices. Therefore, we estimate a VECM. The results are in Table 29.

Table  29:  VECM  (maximum  likelihood)  parameter  estimations  (*,  **  and  ***  denote  statistical  significance  of 
parameters at the 10, 5 and 1% levels, respectively). The t-statistics are given in square brackets. 

VECM (short-run parameters)

∆t Carbon ∆t Coal ∆t Electricity ∆t Gas

ECt-1  0.005076
[ 0.73552]

 0.011198*

[ 1.70606]
 0.038826***

[ 3.97622]
 0.042306***

[ 3.53290]

∆t-1 Carbon  0.156684***

[3.16802]
 0.172894***

[3.67530]
-0.042720
[-0.61044]

 0.030144
[0.35123]

∆t-2 Carbon -0.133485***

[-2.65838]
 -0.044744
[0.93685]

-0.093016
[-1.30916]

-0.108833
[-1.24905]

∆t-3 Carbon  0.118527***

[2.39408]
-0.023267
[-0.49410]

-0.074417
[-1.06229]

-0.124322
[-1.44711]

∆t-1 Coal -0.122691***

[-2.36562]
 -0.006347
[0.12866]

-0.050910
[-0.69372]

 0.16323
[ 1.40360]

∆t-2 Coal  -0.024857
[-0.47878]

-0.00032
[-0.00649]

 0.116982
[ 1.59243]

-0.062715
[-0.69613]

∆t-3 Coal  0.039581
[ 0.77517]

 0.028211
[ 0.58085]

-0.060228
[-0.83359]

-0.027270
[-0.30777]

∆t-1 Electricity  0.039506
[1.09153]

 0.037723
[1.09578]

 0.019016
[0.37131]

 0.198020***

[3.15293]

∆t-2 Electricity  0.037021
[1.01213]

 0.063285*

[1.81902]
-0.041953
[-0.81059]

-0.075638
[-1.19167]

∆t-3 Electricity  0.019260
[0.52790]

 0.030418
[0.87654]

-0.014159
[-0.27428]

-0.018915
[-0.29878]

∆t-1 Gas -0.070635***

[-2.41637]
 0.036954
[1.32928]

 0.029912
[0.72326]

-0.284434***

[-5.60815]

∆t-2 Gas -0.058362*

[-1.91698]
 0.0424532
[1.46601]

 0.015086
[0.35019]

-0.090439*

[-1.71189]

∆t-3 Gas -0.052218*

[-1.77922]
 0.000202
[0.00723]

-0.053019
[-1.27670]

-0.013708
[-0.26917]

Constant -0.001277
[-0.99305]

-0.001240
[-1.01413]

 0.000271
[0.14902]

-0.002359
[-1.05708]

Cointegrating vector (long-run parameters)

Carbon Coal Electricity Gas Constant

1 -0.204385
[-1.00599]

 0.089518
[0.43248]

-0.558123**

[-2.55908]
-0.738613
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Based on this model, we investigate Granger causality and we compute impulse response functions. 

The results are given in Table 30 and in Figure 50.

Table  30: Granger causality test results with three lags considered (*, ** and *** denote statistical significance of  
Granger causalities at the 10, 5 and 1% levels, respectively).   

Dependent Variables

Carbon Coal Gas Electricity

Chi-Sq p-value Chi-Sq p-value Chi-Sq p-value Chi-Sq p-value

Carbon - - 10.00383 0.0404** 17.83800 0.0013*** 8.348203 0.0796*

Coal 5.856146 0.2102 - - 16.45800 0.0025*** 10.16313 0.0378**

Gas 8.200564 0.0845* 3.201275 0.5247 - - 9.340479 0.0531*

Electricity 3.419144 0.4903 4.875092 0.3004 36.63098 0.0000*** - -

Figure 50: Generalized impulse response functions.
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We obtain similar conclusions as when we used the EUA spot price.
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Appendix D

Results of Chapter 4 using the futures prices of EUAs

The econometric analysis of Chapter 4 is also based on the price of EUA spot contracts. Therefore, 

to complete this work, we present here the same analysis as in sections 3 and 4 of Chapter 4, using 

the price of EUA futures contracts. We obtain similar conclusions.

Cointegration analysis

We apply the Engle-Granger [1987] two-steps method to test for cointegration the carbon price and 

the switching price, the carbon price and the gas price, and the carbon price and the ratio.1 We use 

the same cointegrating regression as presented in section 3 of Chapter 4. The results for the unit root 

tests of those cointegrating regressions are given in Tables 31, 32 and 33.

Table  31: Unit root tests for equilibrium errors of cointegrating regressions  (4.2a),  (4.3a) and  (4.4a) (*, ** and *** 
denote statistical rejection of the null hypothesis – non-stationarity – at the 10, 5 and 1% levels, respectively)

Residuals ADF 
(t-Statistics)

PP 
(t-Statistics)

u t
SW -1.22 -1.21

u t
Ratio -0.79 -0.81

u t
GAS -2.04** -1.99**

Table  32: Unit root tests for equilibrium errors of cointegrating regressions  (4.2b),  (4.3b) and  (4.4b) (*, ** and *** 
denote statistical rejection of the null hypothesis – non-stationarity – at the 10, 5 and 1% levels, respectively)

Residuals ADF 
(t-Statistics)

PP 
(t-Statistics)

u t
SW -1.85* -1.81*

u t
Ratio -1.43 -1.44

u t
GAS -2.10** -1.84*

1 As in Chapter 4, we report only the results involving SW t
50  for estimations using the switching price. Estimations 

have also been performed using SW t
55  and SW t

45 . The results are the same as with SW t
50 . 
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Table 33: Unit root tests for equilibrium errors of cointegrating relationships (4.5a) and (4.5b) (*, ** and *** denote 
statistical rejection of the null hypothesis – non-stationarity – at the 10, 5 and 1% levels, respectively)

u t
SW ADF 

(t-Statistics)
PP 

(t-Statistics)

(5a) -2.20** -2.34**

(5b) -2.10** -2.22**

Results show that among tested cointegrating equations, equations (4.2b), (4.4a), (4.4b), (4.5a) and 

(4.5b) can be retained for the VECM estimations since they have stationary errors. However, we 

exclude equations involving the ratio variable. Therefore, as in section 4 of Chapter 4, we estimate  

several  models  involving  the  admissible  cointegrating  equations.  These  are  presented  in  what 

follows.

Estimation results

Tables 34 and 35 present estimated adjustment coefficients and CFWs for the VECMs.

Table 34: Estimation results for adjustment coefficients (*, ** and *** denote statistical significance at the 10, 5 and 1% 
levels, respectively)

Dependent variable

EUA GAS SW

EUA t-Satistics GAS t-Satistics SW t-Satistics

(4.8.4a) 0.008434 1.430363 0.051867 4.012605*** - -

(4.9.4a) 0.009069 1.640103 0.051283 4.881687*** - -

(4.8.4b) 0.008352 1.7255117* 0.034500 2.752008*** - -

(4.9.4b) 0.008658 1.928827* 0.034827 3.673800*** - -

(4.10.2b) 0.002373 1.866971* - - 0.009362 3.127210***

(4.11.2b) 0.002477 2.077137** - - 0.034637 2.921621***

(4.10.5a) 0.002116 1.894191* - - 0.030216 2.524245**

(4.11.5a) 0.002110 1.934189* - - 0.030197 2.710628***

(4.10.5b) 0.002116 1.894191* - - 0.030216 2.524252**

(4.11.5b) 0.002168 2.169440** - - 0.028015 2.821047***
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Table 35: Estimated Common Factor Weights (in percentages) using equations CFW EUA= ∣ j∣

∣EUA∣∣ j∣ and CFW j= ∣EUA∣

∣EUA∣∣ j∣ , 
where j =GAS , SW .

CFW EUA CFW GAS CFW SW

(4.8.4a) 86.01 13.99 -

(4.9.4a) 84.97 15.03 -

(4.8.4b) 80.51 19.49 -

(4.9.4b) 80.09 19.91 -

(4.10.2b) 79.78 - 20.22

(4.11.2b) 93.33 - 6.67

(4.10.5a) 93.46 - 6.54

(4.11.5a) 93.47 - 6.53

(4.10.5b) 93.46 - 6.54

(4.11.5b) 92.82 - 7.18

We obtain similar conclusions as when we used the EUA spot price.
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