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Abstract. Transforming text into executable code with a function such as Java-
Script’s eval endows programmers with the ability to extend applications, at any
time, and in almost any way they choose. But, this expressive power comes at
a price: reasoning about the dynamic behavior of programs that use this feature
becomes challenging. Any ahead-of-time analysis, to remain sound, is forced to
make pessimistic assumptions about the impact of dynamically created code. This
pessimism affects the optimizations that can be applied to programs and signifi-
cantly limits the kinds of errors that can be caught statically and the security guar-
antees that can be enforced. A better understanding of how eval is used could lead
to increased performance and security. This paper presents a large-scale study of
the use of eval in JavaScript-based web applications. We have recorded the be-
havior of 337 MB of strings given as arguments to 550,358 calls to the eval
function exercised in over 10,000 web sites. We provide statistics on the nature
and content of strings used in eval expressions, as well as their provenance and
data obtained by observing their dynamic behavior.

eval is evil. Avoid it.
eval has aliases. Don’t use them.

1 Introduction —Douglas Crockford

JavaScript, like many dynamic languages before it, makes it strikingly easy to turn text
into executable code at runtime. The language provides the eval function for this pur-
pose.! While eval and other dynamic features are a strength of JavaScript, as attested
to by their widespread use, their presence is a hindrance to anyone intent on providing
static guarantees about the behavior of JavaScript code. It may be argued that correct-
ness and efficiency are not primary concerns of web application developers, but security
has proven to be a harder concern to ignore. And, as web applications become central
in our daily computing experience, correctness and performance are likely to become
more important.

See no Eval, Hear no Eval. The actual use of eval is shrouded in myths and confusion.
A common Internet meme is that “eval is evil” and thus should be avoided.? This comes
with the frequent assertion that eval is the most misused feature of the language.® Al-
though eval is a significant feature of JavaScript, it is common for research on JavaScript

! While JavaScript provides a few other entry points to code injection, such as setinterval, setTime-
out and Function, we refer to this class of features as eval for much of our discussion.

2 http://javascript.crockford.com/code.html

" http://blogs.msdn.com/b/ericlippert/archive/2003/11/01/53329.aspx
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to simply ignore it [2,11,20,1], claim it is hardly used (only in 6% of 8,000 programs
in [8]), assume that usage is limited to a relatively innocuous subset of the language
such as JSON deserialization and occasional loading of library code [9], or produce a
simple warning while ignoring eval’s effects [13]. The security literature views eval as
a serious threat [19]. Although some systems have unique provisions for eval and in-
tegrate it into their analysis [7], most either forbid it completely [15], assume that its
inputs must be filtered [5] or wrapped [12], or pair a dynamic analysis of eval with an
otherwise static analysis [4].

True Eval. The goal of this study is to thoroughly characterize the real-world use of
eval in JavaScript. We wish to quantify the frequency of dynamic and static occurrences
of eval in web applications. To this end, we have built an infrastructure that automat-
ically loads over 10,000 web pages. For all web page executions, we have obtained
behavioral data with the aid of an instrumented JavaScript interpreter. We focus our at-
tention on program source, string inputs to eval and other dynamically created scripts,
provenance information for those strings, and the operations performed by the eval’d
code (such as the scopes of variable reads and writes). Though simply loading a web
page may execute non-trivial amounts of JavaScript, such non-interactive executions
are not representative of typical user interactions with web pages. In addition to page-
load program executions, we use a random testing approach to automatically generate
user input events to explore the state space of web applications. Lastly, we have also
interacted manually with approximately 100 web sites. Manual interaction is necessary
to generate meaningful interactions with the websites.

While we focus on JavaScript, eval is hardly unique to JavaScript. Java supports
reflection with the java.lang.Reflect package, and the class loading infrastructure allows
programs to generate and load bytecode at runtime. Dynamic languages such as Lisp,
Python, Ruby, Lua, and others invariably have facilities to turn text into executable code
at runtime. In all cases, the use of reflective features is a challenge to static analysis.
JavaScript may represent the worst case since eval’d code can do almost anything.

Our results reveal the current practice and use of reflective features in one of the
most widely-used dynamic programming languages. We hope our results will serve as
useful feedback for language implementers and designers. The contributions of this
paper are:

— We extend the tracing infrastructure of our previous work[18] to record the prove-
nance of string data and monitor the scope of variable accesses.

We add tools for automatically loading web sites and generating events.

We report on traces of a corpus of over 10,000 websites.

— We make available a database summarizing behavioral information, including all
input arguments to eval, and other execution statistics.

We provide the most thorough study of the usage of eval in real-world programs to
date.

We instrumented other means of creating a script at runtime and compare their
behavior to eval.

Our tools and data are freely available at:

http://sss.cs.purdue.edu/projects/dynjs
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2 The Nature of Eval

JavaScript, which is a variation of the language standardized as ECMAScript [6], is
supported by all major web browsers. It was designed in 1995 by Brendan Eich at
Netscape to allow non-programmers to extend web sites with client-side executable
code. JavaScript can be best described as an imperative, object-oriented language with
Java-like syntax and a prototype-based object system. An object is a set of properties
that behave like a mutable map from strings to values. Method calls are simulated by
applying arguments to a property that evaluates to a closure; this is bound to the callee.
The JavaScript object system is extremely flexible, making it difficult to constrain the
behavior of any given object. One of the most dynamic features of JavaScript is the eval
construct, which parses a string argument as source code and immediately executes it.
While there are other means of turning text into code, including the Function construc-
tor, setinterval, setTimeout, and indirect means such as adding <script> nodes to the
DOM with document.write, this paper focuses on eval as a representative of this class
of techniques for dynamically loading program source at runtime.

The Root of All Evals. Eval excels at enabling interactive development, and makes it
easy to extend programs at runtime. Eval can be traced back to the first days of Lisp [16]
where eval provided the first implementation of the language that, until then, was trans-
lated by hand to machine code. It has since been included in many programming lan-
guages, though often under other names or wrapped inside a structured interface.

The Face of Eval. In JavaScript, eval is a function defined in the global object. When
invoked with a single string argument, it parses and executes the argument. It returns
the result of the last evaluated expression, or propagates any thrown exception. eval can
be invoked in two ways: If it is called directly, the eval’d code has access to all variables
lexically in scope. When it is called indirectly through an alias, the eval’d code executes
in the global scope [6, sect. 10.4.2]. All other means to create scripts at runtime, as
discussed in Sec. 6, execute in the global scope.

The Power of Eval. JavaScript offers little in the way of encapsulation or access control.
Thus, code that is run within an eval has the ability to reach widely within the state
of the program and make arbitrary changes. An eval can install new libraries, add or
remove fields and methods from existing objects, change the prototype hierarchy, or
even redefine built-in objects such as Array. To illustrate the power of eval, consider the
following example, which implements objects using only functions and local variables.

Point = function() { var x=0; var y=0;
return function(o,f,v){ if (0=="r") return eval(f); else return eval(f+"="+v); }

}

Every invocation of the function bound to Point returns a new closure which has its own
local variables, x and y, that play the role of fields. Calling the closure with "r” causes
the eval to read the "field’ name passed as second argument; any other value updates
the ’field’. Calling eval exposes the local scope, thus breaking modularity. Exposing the
local scope can be avoided by aliasing eval, but the global scope is still exposed: any
assignment to an undeclared variable, such as eval("x=4"), will implicitly declare the
variable in the global scope and pollute the global namespace.



Necessary Eval? In modern web applications, the server and client rarely have a per-
sistent connection. Instead, the client makes independent, asynchronous requests every
time it needs data. This style of communication is often called Asynchronous JavaScript
and XML (AJAX). The data returned is frequently in an application-dependent format,
in a portable serialization format such as JSON, or in the form of JavaScript code. If
they are in the form of code, then eval is the typical means of evaluating this code. Al-
though the canonical means of making such requests is by using an XMLHttpRequest
(XHR) object, it has the drawback that it is subject to the same origin policy, which
prevents requests to a different domain. Many sites divide server functions between dif-
ferent hosts, and as such are forced to use other means which are not restricted by the
SOP. Most other means actually evaluate the server response as code regardless.

Until recently, JavaScript did not have its own built-in serialization facility, so eval
was (and is) often used to deserialize data and code. JSON* is syntax designed to pro-
vide a portable way for applications to serialize and deserialize data. JSON is also, by
no coincidence, a subset of JavaScript’s object, array, string and number literal syntax.
An example JSON string is:

{"Image”: {"Title”: "View from a Room”, "IDs”: [11,23,33], "Size”: {"Height”: 125} }}

JSON is restrictive; e.g. {"fo0”:0} is valid, but {foo’:0} or {foo:0} are not, though all
are semantically equivalent JavaScript expressions. Anecdotal evidence suggests that
JSON-like strings that don’t adhere precisely to the JSON standard are commonly used
by developers. JSON is also commonly eval’d along with an assignment to a variable,
e.g. x={"fo0”:0}. Performing the assignment within the eval is unnecessary, as eval re-
turns a result. The canonical way to parse JSON with eval and assign the result to a
variable is x=eval(y).

The use of eval is often unnecessary, and is could be replaced by uses of other (less
dynamic) features of JavaScript.> Consider the following misuse:

eval("Resource.message_” + validate(input))

The programmer presumably has some Resource object holding a number of messages.
To select the right message at runtime, a string such as “Resource.message_error” is
built out of some user input. To be on the safe side, the input is validated program-
matically. Validation is tricky and a large number of code injection attacks come from
faulty validators. The above code could be implemented straightforwardly without eval
as Resource[’message_"+ input]. Rather than invoking the full power of eval, the code
uses a constructed string to index Resources. This achieves the same effect with none
of the security risks associated with using eval.

The Eval Within. The eval function is a performance bottleneck because its mere pres-
ence affects how a JavaScript engine can optimize and execute surrounding code. Any
optimization performed by the virtual machine must account for the black-box behavior
of eval. The fact that eval can introduce new variables in the local scope means that flex-
ible, deoptimized bytecode must be generated for a function that contains eval within
its body. This version will always be slower than an equivalent function without eval,
even if no such variables are actually introduced (see Appendix B).

‘http://www.ietf.org/rfc/rfcd627
3 Recent versions of ECMAScript introduced JSON.parse as an alternative to eval.
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3 Methodology

We now describe the infrastructure and methodology used to collect our data.

3.1 Infrastructure

We quantify usage of eval by recording relevant information during JavaScript execu-
tion, and subsequently performing offline analyses. The data presented in this paper
was recorded using TracingSafari [18], an instrumented version of the open-source We-
bKit project,® the common web platform underlying Safari, Google Chrome, and other
applications. TracingSafari is able to record low-level, compact JavaScript execution
traces; we augmented it to also record properties specific to eval. In particular, we add
provenance tracking for strings, as these might eventually become arguments to eval.

TracingSafari records a trace containing most operations performed by the inter-
preter (reads, writes, deletes, calls, defines, etc.) as well as events for source file loads.
Invocations to eval save the string argument. Complete traces are compressed and stored
to disk. Traces are analyzed offline and the results are stored in a database which is then
mined for data. The offline trace analysis component performs relatively simple data
aggregation over the event stream. For more complex data, it is able to replay any trace,
creating an abstract representation of the heap state of the corresponding JavaScript
program. The trace analyzer maintains a rich history of the program’s behavior, such as
access history of each object, call sites, allocation sites, and so on.

3.2 Corpus

Gathering a large corpus of programs is difficult in most languages because accessibility
to source code and specific runtime configurations is often limited. On the web, this is
generally not the case: any interactive web site uses JavaScript, and JavaScript is only
transmitted in source form. Furthermore, most websites are designed to function in
many browsers.

JavaScript executes in two distinct phases: first, non-trivial amounts of JavaScript
are parsed and executed automatically as the result of loading a document in the br-
owser. Further program execution is event-driven: event handlers are triggered by timers
and user input events such as mouse movements, clicks, and the like. To capture a wide
range of behavior we have compiled a corpus composed of three data sets:

INTERACTIVE || Manual interaction with web sites.
PAGELOAD First 30 seconds of execution of a web page.
RANDOM PAGELOAD with randomly generated events.

All of our runs were based on the most popular web sites according to the alexa . com
list as of March 3, 2011. INTERACTIVE was generated by manually interacting with the
100 most popular web sites on the Alexa list. Each session was 1 to 5 minutes long and
approximated a “typical” interaction with the web site, including logging into accounts.
PAGELOAD and RANDOM were based on the 10,000 most popular web sites on the

® http://webkit.org Rev. 76456.
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Alexa list. PAGELOAD is intended to record the load-time behavior of pages. It simply
navigates the browser to each page and records execution for a total of 30 seconds
without any further interaction. As script execution can recur indefinitely, there is no
clear moment when a page has finished loading. In this case, a simple timeout is the
most reliable way to include load-time behavior without interaction. RANDOM behaves
similarly to PAGELOAD, but includes a script which will randomly trigger click events
on DOM elements with mouse event listeners registered, and click links. One click event
is generated per second, for at most 30 events. The final data was recorded between
March 3" and 13th, 2011. All recorded traces are available from our project’s site.

These three data sets each cover a useful subset of eval usage in the wild. INTER-
ACTIVE provides the best picture of complete interactions with a web application and
is thus the most representative of the usage of eval in JavaScript programs. PAGELOAD
and RANDOM give us breadth of coverage and allow us to study a much larger number
of web sites but with a caveat of reduced program behavior coverage. PAGELOAD will
not generate unrealistic behavior, although it may generate atypical behavior. RANDOM
can generate unrealistic behavior, but is the best way of obtaining a wide variety of
behaviors on a large corpus of sites.

3.3 Threats to validity

Program coverage. As with any tracing-based methodology it is difficult to obtain
exhaustive coverage. The problem is compounded by the interactive nature of web ap-
plications which are driven by the user interface. Furthermore, as programs are only fed
to the browser one page at a time, it is difficult to even assess which fraction of a web
site was exercised. Our results may thus fail to uncover some interesting behaviors. This
said, we believe that our corpus is representative of typical browsing behavior. Browser
versions are fairly easy to ascertain, so it is possible (and common) for JavaScript code
to exhibit behavior peculiar to WebKit. Although this does introduce a subtle bias, all
other JavaScript implementations introduce comparable bias.

Diversity of programs. Another threat comes from our focus on client-side web applica-
tions. It is likely that other categories of JavaScript applications would display different
characteristics. For instance, widgets appear to do so [8]. But the importance of web
applications and the quantity of JavaScript code on the web mean that this is a class of
applications worth studying.

4 Usage Metrics

This section presents a high-level picture of the usage of JavaScript and eval in a broad
selection of web pages, as summarized in Table 1. At the time of our study, all of the top
100 sites used some JavaScript. For the 10,000 most accessed web sites we found that
89% rely on JavaScript. Similarly, eval was used widely and frequently in our corpus.
We have recorded 550,358 calls to eval for a total of 337 MB of string data. Over 82%
of the top 100 pages use eval, and 50% of the remaining 10,000 pages do as well. It is
noteworthy that the difference in the use of eval between RANDOM and PAGELOAD is
only 2%, which suggests that sites relying on eval do so even without user interaction.
On the other hand, the number of calls to eval increases significantly in RANDOM.



Table 1. Eval usage statistics.

Data Set  |JavaScript|eval | Avg eval | Avg eval | total eval | total eval size | total JS size
used use | (bytes) calls calls (MB) (MB)
INTERACTIVE| 100% |[82%| 1,210 84 7,078 8.2 204
PAGELOAD 89% |50% 655 34 158,994 99.3 1,319
RANDOM 89% |52% 627 61 384,286 229.6 1,823

JavaScript code size. As in our previous study, we
found that most web sites have less than 512KB
of JavaScript code, with some significant outliers,
especially in the most popular sites. Fig. 1 dis-
plays the distribution of the total size of the Java-
Script code loaded during execution of each web-
site, including source loaded via eval. When the
same code is loaded multiple times we only took
it into account once. The mean sizes are 973KB
for INTERACTIVE, 187KB for PAGELOAD, and
270KB for RANDOM. The largest website was
yahoo.com with 5.09MB of JavaScript code. The o |
difference in code size between PAGELOAD and 844
RANDOM is explained by the fact that a mouse o
click (or any other event) may cause additional
code to be loaded.

3.5MB

2.5MB

Code size

1.5MB

T T T
Interactive PageLoad  Random

Number of eval call sites. We observed that the
average number of call sites is small, and interac-
tive behavior is correlated with a greater number
of call sites. Fig. 2 shows the distribution of the
number of direct call sites to the eval function that are reached per session, for sessions
where at least one call to eval was made. User interactions frequently uncovered new
call sites: while the mean number of call sites is only 1.7 in PAGELOAD, the mean of
RANDOM and INTERACTIVE is 4.0 and 13, respectively. The maximum number of call
sites in INTERACTIVE was 77, which is lower than both PAGELOAD and RANDOM
(127 and 1331 call sites, respectively).

Fig. 1. Code size. The distribution of
total size of code loaded during evalu-
ation of each website.

Number of calls to eval. Unsurprisingly, user interaction is correlated with the number
of calls to eval, and websites call eval in both phases of script execution. We observed
an average of 38 calls to eval in the INTERACTIVE data set, 28 in PAGELOAD, and 85 in
RANDOM. Fig. 3 gives the distribution of the number of invocations of eval per website.
The largest number of invocations occurs in RANDOM with a whopping 111,535 calls.

Amount of source loaded by eval. The size of source text passed to eval widely varies
depending on what is being evaluated. Fig. 4 shows the distribution of source text size.
Strings range in size from empty strings to large chunks of data or code. While for
INTERACTIVE about two thirds of the strings are less than 64 bytes long, the maxi-
mum observed size was 225KB. The PAGELOAD and RANDOM data sets tell similar
stories, 85% and 80%, respectively, of strings are less than 64 bytes, but they peak at
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Fig. 2. Eval call sites. The y-axis is the dis- Fig. 3. Eval calls. The y-axis is the dis-
tribution of the number of call sites to the tribution of the number of calls to the eval
eval function in websites that call the func- function in websites that call the function at
tion at least once. (Max value appear on top) least once.

460KB and 515KB respectively. The average source size is 1,210 bytes for the INTER-
ACTIVE, 655 bytes for the PAGELOAD, and 627 bytes for the RANDOM runs. JSON in
particular carries more data on average than other categories. The average size of JSON
strings was 3,091 bytes in INTERACTIVE, 2,494 bytes in PAGELOAD and 2,291 bytes
in RANDOM. However the medians were considerably lower (1,237, 31 and 54 bytes,
respectively), which is consistent with the distribution of sizes seen for other categories.
The maximum JSON size is 45KB for INTERACTIVE and 459KB for the other data sets.

Amount of computation via eval. With the exception of loading JavaScript libraries via
eval, most calls performed relatively few operations. Fig. 5 shows the distribution of
eval trace lengths. The trace length is a rough measure of the amount of computational
work performed by any given eval. The operations captured in a trace include object
access and update, calls as well as allocation. The median number is again low, 4,
with the third quartile reaching 10 operations. The spread beyond the third quartile is
extreme, with the RANDOM sessions recording traces of up to 1.4 million operations.
Given the maximum size of the source strings passed to eval reported in Fig. 4 this size
is not too surprising. In contrast, the maximum number for the INTERACTIVE sessions
is low compared to its maximum size of source strings.

In all datasets, the largest eval’d strings, both in terms of length and in terms of
event count, were those that loaded libraries. In JavaScript, loading a library is rarely
as simple as just installing a few functions; tasks such as browser and engine capability
checks, detection of other libraries and API’s, creation of major library objects and other
such initialization behavior constitutes a large amount of computation relative to other
eval calls.

Aliasing of eval. We observed that few programmers took advantage of the differing
behavior that results from calling an alias of eval. In INTERACTIVE, 10 of the top 100
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Fig. 4. Eval string sizes. The y-axis is the distri-  Fig.5. Events per eval. The y-axis is the
bution of the size of eval arguments in bytes. distribution of the number of events per-
formed in an eval.

sites aliased eval, but calls to such aliases accounted for only 0.9% of all eval invoca-
tions. In PAGELOAD and RANDOM, only 130 and 157 sites, respectively, used used an
alias of eval, accounting for 1.3% and 0.8% of eval strings respectively. Manual inspec-
tion revealed use cases where programmers used an alias of eval to define a function
in the global scope, without realizing that the same effect could be achieved by simply
assigning a closure to an undeclared variable. See Appendix C for an illustration.

Presence of JavaScript libraries. In our corpus, JavaScript libraries and frameworks
were present on over half of all sites. Table 4 gives the proportion of the sites using
common libraries. We found that jQuery, Prototype, and MooTools were used most
often. JQuery is by far the most widespread library, appearing in more than half of all
websites that use JavaScript. Other common libraries were detected in under 10% of
all sites. The Google Closure library used by many Google sites is usually obfuscated,
and thus not easily detectable. We do not report on it here. Libraries are sometimes
loaded on demand, as shown by the spread between the PAGELOAD and RANDOM (for
instance 53% and 60% for JQuery).

One might wonder if libraries are themselves a major contributing factor to the use
of eval. Manual code review reveals that eval and its equivalents (the Function con-
structor, etc) are not required for their operation. The only uses of eval we have dis-
covered are executing script tags from user-provided HTML strings, and as a fallback
for browsers lacking JSON.parse. Thus, libraries are not a significant contributor to the
behavior or use of eval.

Table 2. Common libraries. Percentage of

l Data Set [jQuery[Prototype[MooTools‘ website loading one of the following li-

INTERACTIVE| 54% 11% 7% braries: - .
raries: jquery.com, prototypejs.
PAGELOAD | 53% 6% 4%
org, mootools.net. We have no data
RANDOM 60% 7% 6%
for code.google.com/closure.
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5 A Taxonomy of Eval

The previous section gave a high-level view of the frequency of eval; we now focus
on categorizing the behavior of eval. We look at five important axes. Firstly, we study
the mix of operations performed by the code executed from an eval. Next, we look at
what scope is affected by operations inside eval’d code. Operations that mutate shared
data are more likely to invalidate assumptions or pose security risks than operations
that are limited in scope to data created within the eval. Thirdly, we try to identify pat-
terns of usage. A better classification of the patterns of eval usage can help language
designers provide limited, purpose-specific alternatives to eval, and also provide a bet-
ter understanding of the range of tasks done within evals. Fourthly, we investigate the
provenance of the string passed into eval. This comes directly from a desire to better
understand the problems linked to code injection attacks. Our last axis is consistence,
or how the arguments to a particular eval call site vary from invocation to invocation.
We focus on each axis independently, discussing the relationships between them when
relevant, then discuss the implications of each on analyses and other systems.

5.1 Operation Mix

The operations recorded in our traces are simplified, high-level versions of the We-
bKit interpreter’s bytecodes. We report on stores (STORE), reads (READ) and deletes
(DELETE) of object properties. These include indexed (x[3]) and hashmap style (x[*foo™])
access to object properties. We also report on function definitions (DEFINE), object cre-
ations (CREATE), and function calls (CALL). Fig. 6 gives the distribution of operations
performed by eval’d code for each of our three data sets. The distribution of operation
types across the PAGELOAD data set is consistent with earlier findings, and suggests
that eval’d code is not fundamentally different from general JavaScript code. In par-
ticular, eval is not solely used for JSON object deserialization, as some related work
assumes. That said, INTERACTIVE sessions do contain a greater proportion of STORE
and CREATE events, which we attribute to JSON-like constructs. We will consider the
proportion of JSON-like constructs in more detail in Sect. 5.3. The RANDOM sessions
had a greater proportion of CALL events, likely as part of handling the randomly gener-
ated mouse events.

100%

100%
80% 80% § § §
B STORE N B pure
60% M READ 60% Local
B DELETE 0 Reads
40% N DEFINE 40% global
B CREATE B writes
20% ECALL 20% global
0% 0%
Interactive PageLoad Random Interactive Pageload Random

Fig. 6. Operation mix. Proportion of stores,  Fig. 7. Scope. Distribution of locality of op-
reads, deletes, defines creates and calls per-  erations performed by eval.
formed by eval’d code.



5.2 Scope

As with any JavaScript code, the code executed via eval may access both local and
global variables. Code that does not access global state is self-contained and preferred.
Our instrumentation determines statically what eval strings have no unbound variables
and so are pure, and dynamically logs reads and writes to non-local variables. We cate-
gorize the locality of accesses within each call to eval into the following sets.

Pure Access newly created objects.

Local Access to local variables and objects.

Read Global || Same as Local + read properties of the global object.

Write Global || Same as Local + read/write/delete properties of the global object.

These categories help us understand the interplay between eval and encapsulation. The
Pure category captures code that is restricted to creating objects and reading/writing
their properties. All JSON code fits in this category. This is the safest category because
it neither relies on nor affects the environment of the eval. The Local category includes
cases where the eval’d code either reads, writes or deletes variables of the function that
called the eval (or one of its lexically enclosing functions). The Read Global category
extends the previous one with the ability to read properties of the global object. Po-
tentially most dangerous is the Write Global category, consisting of eval’d code that
also can add, modify or delete properties of the global object. For instance, writing to
an undeclared variable will add and/or modify this variable in the global namespace.
When the variable window is only defined in the global scope, then using this name for
property access renders the side-effect evident. Also, in cases when the global object is
aliased, resulting global read/writes may be underreported.

We found that evals in the Pure and Writes Global categories were scarce, while
the other two categories were much more common. Fig. 7 shows the scope of operations
performed by evals collected in each data set. While the number of Pure strings is quite
low, the vast majority of evals are actually quite local: only 7 to 8% of all evals modify
the global scope for all data sets. However, reads are more evenly split, 38 to 61% of all
evals read from the global scope. It is reasonable to assume that many eval strings even
in the Local and Reads Global categories have no side-effects outside the local scope,
but are not self-contained, as their behavior will nonetheless depend on the global scope
and if it were for using global functions only. Code passed to eval that is neither pure
nor global (and so must be designed to work with a particular scope and eval call site)
accounts for more than 41% of all eval strings in all data sets.

5.3 Patterns

There are many common patterns in the use of eval. Some are industry best practices,
such as JSON, and asynchronous content and library loading. Others result from poor
understanding of the language, repetition of old mistakes, or adapting to browser bugs.
While it is not possible to be exhaustive, we have nevertheless identified 9 frequently
occurring patterns of eval strings which can be detected by a simple syntactic check (a
more precise description of how strings are categorized appears in Appendix A):



JSON || A JSON string or variant.

JSONP || A padded JSON string.

Library || One or more function definitions.

Read Read access to an object’s property.

Assign || Assignment to a local variable or object property.
Typeof || Type test expression.

Try Trivial try/catch block.

Call Simple function/method call.

Empty || Empty or blank string.

Other || Uncategorized string.

JSON-like constructs. Deserializing JSON is often seen as an acceptable use of eval.
The JSON category covers strings that are in JSON syntax [6], as well as relaxed no-
tions that permit equivalent JavaScript literals. The JSONP (JSON with padding) cate-
gory covers strings which either assign a JSON expression to a variable or pass a JSON
expression as an argument to a function. This pattern is often used for load balancing
requests across domains. These other domain names violate the browser’s same origin
policy, precluding the use of XMLHttpRequest to load JSON from these servers. As a
workaround, many standard libraries dynamically create JSONP expressions, typically
a function call that takes a JSON argument. The function is a callback function that
assigns the JSON data to a variable and processes that data.

Library loading. Libraries can be loaded by <script> tags in the document, but down-
loading, parsing, and evaluating scripts is synchronous with layout and other events.
Blocking ensures deterministic page loading, since scripts can modify the DOM in-
place. Although HTMLS introduces new mechanisms for deferred loading, their use is
not widespread. A common workaround is to download the script asynchronously with
AJAX, then execute it with eval at some later time. This does not block page parsing
or rendering immediately, but leaves the programmer the burden of ensuring a known,
consistent execution state. The Library category attempts to capture this pattern of use.
A simple heuristic detects libraries: any eval string that is longer than 512 bytes and de-
fines at least one function. Manual inspection revealed this to be a reasonable heuristic.
Field access. Access to properties of an object and to local variables is covered by the
Read category. In the vast majority of situations, property reads can be replaced either
by using JavaScript’s hashmap access or by explicitly referencing the global scope. For
instance, eval("foo.”+x) can be replaced by foo[x]. Concatenations like these are usually
simple and repetitive. This pattern also often underlies a misunderstanding of arrays,
such as using eval("subPointArr_"+i) instead of making subPointArr an array. Another
common use of eval is variable access. One reason why evaling might be useful comes
from the scoping rules for eval. Using an aliased eval guarantees that accesses to vari-
ables will occur in the global scope. As mentioned before, this feature found little use.
The Assign category comprises all statements that assign a value to a variable. A few
sites have been found to use variable declarations within an eval. This actually modifies
the local scope, and can alter the binding of variables around the eval.

Strange patterns. A strange expression pattern is the category which we call Typeof
and which covers typeof expressions. For instance, typeof(x)!="undefined”. It in not nec-
essary to use eval for this expression. typeof is often used to check whether a variable



is defined and define it if not, if(typeof(x)==="undefined”) x={}. However, in most cases,
this too has clearer alternatives which use JavaScript’s hashmap style of field access.
For instance, checking for the existence of a global variable can be done more clearly
with if("x” in window). This misunderstanding can also be combined with a misunder-
standing of object access, such as eval('typeof(zflag_'+yOl[i]+")!="undefined”) instead of
making zflag a hashmap and using yO0[i] in zflags.

Another case for which we have no satisfying explanation, labeled Try, is to eval
try/catch blocks. For instance, bbc.co.uk evals try{throw v=4}catch(e){} which is se-
mantically equivalent to v=4 since the throw and the catch parts cancel each other out.
Since it’s hard to imagine any reason to do this, we can only assume that this code is a
strange corner-case of a code generator.

Function invocation. The Call category covers evals that invoke methods with pa-
rameters that are not padded JSON. A common case in this category is document
.getElementByld, the utility of which is particularly unclear since the parameter to
document.getElementByld is a string. If only the string parameter varies, then this
can be done without eval. If the function called varies, eval can usually be avoided
with hashmap syntax as described above. These are usually short and simple, such
as document.getElementByld("topadsblkO1menu”) and update(obj). The latter could be
done without eval using hashmap style access for the function name, for example
window[’update”](obj).

Other categories. The Empty category is made up of empty strings and strings contain-
ing only whitespaces. This pattern seems to be the default (empty) case for generated
eval strings. Finally, the Other category captures any eval’d string not falling into the
previous categories. In particular, it contains method calls interleaved with field access,
like foo.bar().zip, but also more complex pieces of code that we did not categorize as a
library. As an example consider the following code:

eval("img1.src="http://c.statcounter.com/t.php?ip_address=xx’;");

which encodes data into a URL and sends an HTTP GET request in order to circumvent
the same origin policy imposed by the DOM. It is also unclear why this example was
passed to eval; we speculate that the particular mechanism of circumventing the same-
origin policy is determined dynamically and the appropriate one used.

Distribution of categories. Almost all eval categories are present in each data set. Fig. 8
shows the number of web sites using each of the eval categories. The prevalence of
Other evals is high, with 53 sites in INTERACTIVE using uncategorizable evals, 1020
sites in PAGELOAD and 1215 in RANDOM. Manual inspection suggests that there is no
unifying category for these, and the actions performed are in fact quite diverse. Fig. 9
shows the number of eval strings in each category. Although uncategorizable evals are
used in many sites, we have been able to categorize most strings, with 82%, 71% and
67% of strings categorized for INTERACTIVE, PAGELOAD and RANDOM, respectively.
We see that loading libraries is common, and between 9% (for PAGELOAD) and 22%
(for INTERACTIVE) of sites were detected doing so. Fig. 9 indicates that our method of
categorizing libraries is accurate, as the number of actual evals in this category is quite
low, at 2% for all data sets. Since most sites load only a few libraries, we expect the
total number of eval strings in this category to be low.
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Both JSON and JSONP are quite common. In each data set, JSONP is at worst the
third most common category in both Fig. 8 and Fig. 9, and JSON and JSONP strings
accounted for between 22% (RANDOM) and 37% (INTERACTIVE) of all strings eval’d.
Since most call sites do not change categories (discussed later in Section 5.5) these
numbers indicate that analyses could make optimistic assumptions about the use of eval
for JSON, but will need to accomodate the common pattern of JSON being assigned to
a single, often easily-determinable, variable.

Most of the remaining evals are in the categories of simple accesses. Property and
variable accesses, both simple accesses which generally have no side-effects, are in all
data sets amongst the second to fifth most common categories for sites to use. They
account for 8%, 27% and 24% of eval calls in INTERACTIVE, PAGELOAD and RAN-
DOM, respectively. The most problematic categories’ appear in fewer sites, but seem to
be used frequently in those sites where they do appear. However, this does not include
uncategorized evals, which also have problematic and unpredictable behavior.

Impact on analysis. Most eval call sites in categories other than Library, Other and
Call are replaceable by less dynamic features such as JSON.parse, hashmap access,
and proper use of JavaScript arrays. On INTERACTIVE, these categories account for

" By problematic categories, we include evals with complex side effects such as assignments
and declarations, and those categories with unconstrained behavior such as calls.



76% of all eval’d strings; thus, a majority of eval uses are not necessary. Upon further
investigation into instances of these categories, we believe that they are sufficiently
simple to be replaced automatically. While we were able to confirm that best practices
of JSON and asynchronous library loading are common uses of eval, other uses cannot
be discounted: they are far from uncommon, and the sites that use them tend to use them
quite often, and to perform diverse actions.

5.4 Provenance

Cross-site scripting attacks (XSS) often make use of eval to run arbitrary JavaScript
code. To better understand where eval’d strings come from, we tagged all strings with
provenance (tainting) information and instrumented all built-in string operations to pre-
serve provenance information. The return values of certain HTML-specific operations
(see below) were also tagged with provenance. We group strings by provenance in the
following categories, where later categories may include all previous:

Constant || Strings that appear in the source code.
Composite || String constructed by concatenating constants and primitive values.
Synthetic || Strings that are constants in a nested eval.

DOM Strings obtained from DOM or native calls.

AJAX Strings that contain data retrieved from an AJAX call.
Cookies Strings retrieved from a cookie or other persistent storage.
Input Strings entered by a user into form elements.

For an example of Synthetic strings, consider x=eval(””+document.location.href+””); y=
eval(x). The argument to the first eval is from the DOM. However, because the first eval
string is in fact a string literal, x is a string. x has Synthetic provenance, to distinguish
it from string literals appearing in non-eval code (which have Constant provenance).
The Constant category includes string literals, and the Composite category includes
strings created by concatenating string literals. The DOM category includes the result
of DOM queries such as document.body.innerHTML) as well as native methods like
Date.toLocaleString().
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least once in an eval expression.



The INTERACTIVE data set had a much higher appearance rate for all provenance
types, which is not surprising. Fig. 10 shows the number of sites that pass strings of a
given provenance to eval for our 3 data sets. The percentages of the PAGELOAD and
RANDOM sets differ only slightly, and both had fewer strings of AJAX provenance.

Provenance data tells a more interesting story when aggregated by the provenance of
each call to eval; Fig. 11 presents this view. For the INTERACTIVE data set, the dominant
provenance of strings was Composite. More than 3,000 strings were constructed from
composites of only constants and around 600 strings were just a constant in the source.
The distribution of provenance is significantly different for the PAGELOAD and RAN-
DOM data sets. For these, DOM and Constant are used in equal proportion, while
AJAX is virtually nonexistent.

Provenance vs. Patterns The eval
pattern categories from Section 5.3  100%

help to explain some of the sur- 90%

prising provenance data. Fig. 12 re-  80% 22 Olinput
lates the patterns we found with 70% B Cookie
provenance information. We had 60:/" B AJAX
expected most JSON to originate 28‘2 DOM
from AJAX, as this is the standard 30% (M Synthetic
way of dynamically loading data g0, N Composite
from a server. However, the DOM 199 § B Constant
provenance outnumbers all others. 0%

The same holds for Empty and Li- Interactive PageLoad Random

brary patterns. Upon further inves-
tigation into the low proportion of
AJAX provenance, we found that,
for example, google.com retrieves most of its JSON as constant values by means of
a dynamically-created <script> tag. This script contains code of the form f('{"x":3}’),
where the parameter is a string containing a JSON object. However, instead of using
the JSON string directly as a parameter (f({"x”:3})), they parse the string in the func-
tion f using eval. Our provenance tracking will categorize this string as a compile time
constant, as it is a constant in the dynamically created script tag. Because google.com
stores its JavaScript on a separate subdomain, this convoluted pattern is necessary to
circumvent the same-origin policy (under which the straightforward AJAX approach
would be forbidden). Many major web sites have a similar separation of content.

In general, the simpler eval string patterns come from Constant and Composite
sources. Looking at Empty, Typeof, Read, Call, Assign and Try as a group, 85% of these
eval’d strings are constant or composite in RANDOM, with similar proportions in the
other data sets. Many of these are often misused as replacements for arrays or hashmap
syntax, so it is unsurprising that they are generated from constant strings.

Fig. 11. Provenance. Proportion of strings with given
provenance in eval’d strings for the three data sets.
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5.5 Consistency

Each eval call site is quite consistent with re-
spect to the pattern of the string argument, but
there are exceptions. Across all of our data sets,
we observed only 399 eval call sites (1.4% of all  gjg 13, Consistency. Number of differ-
call sites) with strings in multiple pattern cat-  ent patterns per call site.
egories, see Fig. 13. Many of these “polymor-
phic” cases were clearly a single centralized eval . .
used from many branches and for many pur- \éVII’]dOWJOC&tIOﬂ

. . . w_Inf.get(dw_Inf.ar)
poses. For instance, the following three strings dw_Inf.x0();
are all eval’d by the same call site, found at
www.netcarshow.com in RANDOM (although the library that this eval belongs to is
found at a few other sites as well). More perplexing call sites include ones that evals
the strings "4”, "5” and "a”, callsites that alternate between simple constants and bound
variables, and a call site that at times evaluated "(null)” (which happens be valid JSON)
and at other times evaluated "(undefined)” (which is not). Another call site evals JSON
strings in most cases, but sometimes evaluates JSON-like object literals which include
function literals, which neither JSON nor relaxed JSON accept. Of the 399 eval call
sites with strings in multiple patterns, the maximum number of categories was 5, at the
call site mentioned above.

Patterns 1 21 314|5
Callsites| 27553| 303| 92| 3| 1

6 Other Faces of Eval

Eval is only one of several entry points to generate executable JavaScript code dynami-
cally. This section reports on the use of the other methods of dynamic code generation
available to programmers. We identified the following eight mechanisms of dynamic
code generation provided to web programmers:

Eval Call to eval, executing in local scope.

GlobalEval || Call to an alias executing in global scope.

Function Create a new function from a pair of strings. (Global scope)

SetInterval || Execute a string periodically. (Global scope)

SetTimeout || Execute a string after a specified point in time. (Global scope)
ScriptCont || DOM operation that changes the contents of a script tag. (Global scope)
ScriptScr || DOM operation that changes the Src attribute of a script tag. (Global scope)
Write DOM operation that writes to the document in place. (Global scope)

The first three mechanisms are part of the JavaScript language. An example is the code
var y=Function("x”, "print(x)”) which creates a new function that takes the parameter x
and passes it to the print function. The following two mechanisms are not standard-
ized but commonly implemented as properties of the window object. A simple exam-
ple is setTimeout( "callback()’,1000) which invokes the callback function after 1 sec-
ond. The final three mechanisms are related to DOM® manipulation. ScriptCont cov-
ers changes to script tags such as setting the text or innerHTML property, or calling

8 The Document Object Model (DOM) represents an HTML page as a tree, where nested tags
are encoded as child nodes.
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Fig. 14. Dynamic Code Generation by websites. Number of web sites in each data set that are
dynamically creating scripts. The x-axis displays the mechanism to create the script, a single web
site can appear multiple times.

appendChild(createTextNode(src)), all of which change the source in the script tag. The
ScriptSrc covers modifications of the src attribute of a script tag, which downloads the
given resource and executes its code. The Write category covers uses of document.write
to manipulate the DOM in-place while executing JavaScript code. (Libraries that con-
tain document.write cannot be loaded asynchronously.) The use of write is discouraged.
Consider the the example below, where the first line outputs “<scr” to the document
which is concatenated in place with “ipt>" to create a script tag:

<script>document.write(’<scr”);</script>
ipt>alert("this is malicious”);</script>

The above code is typical of an attack that tries to fool malware filters.

The prevalence of the different mechanisms varies widely among the data sets, es-
pecially between the interactively and automatically-gathered data sets. Fig. 14 displays
how many sites use each mechanism at least once. In the INTERACTIVE data set, Eval
is predominant (present in 83% of sites), but in PAGELOAD and RANDOM this mech-
anism was only used in 23% and 31% of sites, respectively. The use of the global eval
variant (GlobalEval) is minor (10% of the pages in the INTERACTIVE data set) and
even less so in the other data sets (1.3% and 1.6% for PAGELOAD and RANDOM). The
Function constructor is frequently used by sites in the INTERACTIVE data set (49%),
while the other two data sets make only limited use of it (between 8.8% and 13%).

The remaining non-JavaScript mechanisms are used widely. SetTimeout is gener-
ally used by twice as many sites as SetInterval. SetTimeout appears in 39% of the
sites in INTERACTIVE data set, and for the other data sets between 13% and 18%. Set-
ting the content of a script tag is widespread in the INTERACTIVE data, where 67% of
the sites use it, compared to only 23% in the PAGELOAD and 32% in the RANDOM
data. Setting the src attribute of a script tag is only widespread in the INTERACTIVE (at
64%) data set, compared to 10-15% in the other data sets. This seems to be a result of
the most popular sites using this mechanism to load content from servers on a different
domain. Writing script tags to the DOM is popular for all data sets, with 64% of the
INTERACTIVE sites doing this, 32% of PAGELOAD and 40% of RANDOM.
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many more sites. Usage of SetTime-
out is also quite frequent, account-
ing for more invocations than Write, ScriptSrec, and ScriptCont combined, despite
appearing in fewer sites than those mechanisms. This pattern makes sense when one
considers that uses of SetTimeout frequently recur (in lieu of using SetInterval). For
the PAGELOAD data set it is interesting to note that SetTimeout is used most frequently,
SetInterval is rarely used, and 7% of scripts written directly to the DOM. This distribu-
tion corresponds well with initial setup of the web page, where some tasks are deferred
by SetTimeout. This is reinforced by the distribution of the RANDOM data. It creates
more scripts by means of Eval, and is the only data set where SetInterval plays a sig-
nificant role for script creation. We attribute this to the greater dynamism triggered by
our random clicking strategy.

Classifying the behavior of code created by each of the mechanisms according to
the patterns in Sect. 5.3 gives an even better picture of how these mechanisms are com-
monly used. This classification is depicted in Fig. 16. For all data sets, the local and
global Eval is used to load the most diverse code, with about 9 significant patterns
for these two mechanisms. All the other mechanisms are far less diverse, falling into
3-7 of our defined patterns. setinterval and setTimeout in particular are used almost
exclusively with simple function calls (bearing in mind that by JSONP’s definition, it is
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Fig. 16. Patterns by Dynamic Code Generation. Distribution of code patterns per mechanism
of dynamically creating scripts.



often also a simple function call). This consistency suggests that these functions could
be speculatively optimized or replaced by safer alternatives in the JavaScript runtime.
Even for the other less predictable mechanisms, there is a sufficient lack of diversity
that an optimizing compiler could provide faster or safer alternatives according to our
patterns.

7 Case Studies

We will now look at individual websites and give examples of their use of eval.

Heute.de: The German news site heute.de (from our RANDOM data set) has a repre-
sentative example of the naive use of eval found in many sites, in this case in a snippet
which is also found on several other sites. The website contains 49,174 bytes of Java-
Script code, with a paltry 136 bytes of eval in 9 calls from the same call site. The
eval-using code is summarized in the following snippet:

This example is enlightening in its utter
disregard for any consideration of style,
legibility and performance. The purpose
of the code is to set global variable
actualVersion to the version of Flash plugin

var flashVersion = parse();
flash2Installed = flashVersion == 2;
flash3Installed = flashVersion == 3;
...//same for 4 to 10

flash11Installed = flashVersion == 11;

for (var i = 2; i <= maxVersion; i++) available in the browser. This is achieved
if(eval(’flash”+i+’"Installed”)==true) ~ by, first, storing the version number in
actualVersion = i; the local variable flashVersion, then creat-

ing 10 new global variables flashzInstalled
(which pollute the namespace and are never used again). Then, to save space perhaps, a
loop iterates over an eval that reads a constructed variable name and sets actualVersion.
(As an aside, the loop guard, maxVersion, is 10, thus flash11Installed will never be
seen.) In this case there is no reason to use eval at all, the entire code snippet could be
replaced by the more direct one-liner: actualVersion = parse().

Trainenquiry.com: This Indian train schedule site (also from RANDOM) has 42,135
bytes of JavaScript code and 163 bytes of eval strings across three call sites, all in the
ValidatorHookupEvent function (irrelevant code elided):

function ValidatorHookupEvent(control, eventType, functionPrefix) {
var ev;
eval(’ev = control.” + eventType + ”}");
eval("control.” + eventType + ” = func;”);
if (typeof(val.evalfunction) == "string”)
eval("val.evalfunction ="’

"+ val.evalfunction + }");

The first two cases are simple misunderstanding of JavaScript which could be expressed
more efficiently and succinctly as hash map accesses:

ev = control[eventType];
control[eventType] = func;

The last one is worth explaining in a little bit more detail. The property val.evalfunction
may hold a string, in which case, it is taken to be the name of the function that should



be stored in that property. The conditional will use eval to replace the string with a
reference to a function object. This could also have been expressed as

if (typeof(val.evalfunction) == "string”)
val.evalfunction = window|[val.evalfunction];

where eval is again replaced with hash map access to a global property.

Ask.com: Because it loads functionality from several different sources, several of which
use eval-equivalent behavior, and it contains a wide variety of behaviors generated by
dynamic code, ask.com is an interesting case study. This site loads 2.22MB unique
code, 1.39MB of code passed to all variants of eval, and 3.77KB passed to 409 eval calls
originating from 48 callsites. The code passed to variants of eval consists of several large
libraries from different sources (through <script> tag generation), and two of them, as
well as the host, also dynamically generate code. We have excerpted several examples.
The site contains ads, and one ad agency’s scripts are loaded dynamically by adding
<script> tags to the document by means of document.write.

document.write("<scr’+”ipt type="text/javascript’
src="http://afe.specificclick.net/?1=12915&sz=300x250&wr=j&t=j&u="+u
+"&r="+r+"&rnd="+sm_random+"’

» o n

></scr’+7ipt>");

The behavior of the script added is to save some tracking data, then dynamically load
more scripts which themselves load more scripts. This is done by setting the src attribute
of a script tag and using document.write.

var _comscore = _comscore || [J; -comscore.push({ ¢1: 78", c2: "2101” ,... });
(function() { var s = document.createElement("script’), ...; s.async = true; ...;
document.write("<SCRI"+"PT src="http://ads....” ></SCRI"+"PT>");

As a search query is entered, ask.com attempts to auto-complete it. Because auto-
completion is performed by a server on a different domain, XMLHttpRequest is not
an option and instead a <script> tag is created with the request encoded into the URL.
The script loaded in response is a JSONP string. Given the limited portable options for
cross-domain communication, this is reasonable.

searchSuggestion(["who”,[’<span ...>who</span> is justin bieber”,...]]);

An initialization routine is deferred by means of setTimeout with a string argument,
presumably to assure that it does not interfere with the loading of the remaining source.

setTimeout("JASK.currentTime.init()”,JASK.currentTime.SECOND);

Since this string is a constant, it could be replaced with a function. We intercepted four
different ways to initialize a local variable coming from the same eval call site:

function(str){...; eval("var p="+str+";"); return p;}

This attempt at JSON deserialization suffers from the dual misconceptions that eval can
only evaluate statements and not expressions, and that eval is the only way to deserialize
JSON. The eval can be replaced portably by:

if("JSON” in window) return JSON.parse(str); else return eval(”("+str+")");



The reCAPTCHA library updates state in a way that is similar to JSONP, but performs
both an assignment and a call, and also uses a relaxed form of JSON. It is loaded
similarly to the auto-completion example above.

var RecaptchaState = {... timeout : 18000}; Recaptcha.challenge_callback();
The following line, which assigns a value to itself, intuitively makes no sense.
RichMediaCreative_1298 = RichMediaCreative_1298;

This odd behavior is clarified by the original code. A function is loaded with a name
containing a unique ID (a timestamp, in fact), and used from other loaded code under
that name. Presumably for fear of a miscommunication, eval is used to assure that the
created function is assigned to the name that the other code expects.

eval("RichMediaCreative_"+plcrinfo_1298.uniqueld+’=RichMediaCreative_1298;”);

Since the function exists in the global scope, this case is easily replaceable by hashmap
syntax over the window object.

8 Related Work

Empirical data on real-world usage of language features is generally missing or limited
to a small corpus. In previous work, we investigated the dynamic behavior of real-
world JavaScript applications [18]. That result, on a corpus of 103 web sites, confirmed
that eval is widely used for a variety of purposes, but in that effort we did not scale
up the analysis to a larger corpus or provide a detailed analysis of eval itself. Ratana-
worabhan et al. have performed a similar study of JavaScript behavior [17] focusing on
performance and memory behavior. There have been studies of JavaScript’s dynamic
behavior as it applies to security [21,7] including the role of eval, but the behaviors
studied were restricted to security properties. Holkner and Harland [10] conducted a
study of dynamic features in Python, which includes a discussion of eval. Their study
concluded that there is a clear phase distinction in Python programs. In their corpus
dynamic features occur mostly at initialization and less so during the main computa-
tion. Their study detected some uses of eval, but their corpus was relatively small so
they could not generalize their observations about uses of eval. Other languages have
facilities similar to eval. Livshits et al. did static analysis of Java reflection in [14],
and Christensen et al. [3] analyze the reflection behavior of Java programs to improve
analysis precision for their analysis of string expressions.

9 Conclusion

This paper has provided the first large-scale study of the runtime behavior of Java-
Script’s eval function. Our study, based on a corpus of the 10,000 most popular websites
on the Internet, captures common practices and patterns of web programming. We used
an instrumented web browser to gather execution traces, string provenance informa-
tion, and string inputs to eval. A number of lessons can be drawn from our study. First
and foremost, we confirm that eval usage is pervasive. We observed that between 50%



and 82% of the most popular websites used eval. Clearly, eval is not necessarily evil.
Loading scripts or data asynchronously is considered a best practice for backwards-
compatibility and browser performance, because there is no other way to do this. While
JSON is common, we found that eval is not used solely for JSON deserialization. Even
if we allowed relaxed JSON and JSONP notation, this accounts for at most 37% of
all calls. Thus, nearly two thirds of the calls do in fact use other language features. It
seems that eval is indeed an often misused feature. While many uses eval were legiti-
mate, many were unnecessary and could be replaced with equivalent and safer code.

We started this work with the hope that it would show that eval can be replaced
by other features. Unfortunately our data does not support this conclusion. Removing
eval from the language is not in and of itself a solution; eval is a convenient way of
providing a range of features that weren’t planned for by the language designers. For
example, JSON was created to support (de-)serialization of JavaScript objects. It was
straightforward to implement with eval, and it is now supported directly in ECMAScript
5. Standards for safer and more consistent library loading have been proposed, e.g. as
part of CommonJS. Most accepted uses of eval have been transformed into libraries
or new language features recently, and as such no best practices recommends usage of
eval. However it is still needed for some use cases such as code generation, which ei-
ther have not or can not be encapsulated into safer strategies. On the positive side, our
categorization was extremely simple, and yet covered the vast majority of eval strings.
The categories were chosen to be as restrictive as they are to assure that they are easily
replaced by other mechanisms. Restricting ourselves to eval’s in which all named varia-
bles refer to the global scope, many patterns can be replaced by more disciplined code.
The following table illustrates some simple replacements for our patterns

JSON || JSON.parse(str)

JSONP || window[id] = JSON.parse(str) or window[id](JSON.parse(str))
Read |/window([id] or windowl[id][propertyName]

Assign ||window([id] = window([id] or window([id][propertyName]=window(id]
Typeof || typeof(window([id]) or id in window

Try (Not trivially replaceable)

Call window([id](windowf[id], ...) or window[id].apply(window, [...])
Empty ||undefined or void 0

Furthermore, more than two thirds of the eval strings in these categories listed above
are of constant or composite provenance (66.3%, 81.9% and 75.1% in INTERACTIVE,
PAGELOAD and RANDOM, respectively) giving a limited number of possible names to
be referred to. All but one of these replacements depend on JavaScript’s hashmap syn-
tax, which can be used to access properties of objects by string name, but not variables
in scope. Since the global scope is also exposed as an object, window, this is sufficient
for accessing variables which happen to be in the global scope. However, at least a quar-
ter to a half of eval strings refer to local variables (locality “local”: 41.1%, 27.0% and
24.7% in INTERACTIVE, PAGELOAD and RANDOM, respectively; likely everything but
“pure”), possibly precluding the use of hashmap syntax. Many of these can be replaced
somewhat less trivially in existing code by putting variables which would be accessed
by a dynamic name into an object and using hashmap syntax, but for the general case an



extension to JavaScript which would allow to access local variables dynamically would
greatly reduce the need for eval.
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A Patterns

Patterns are determined in strings by a simple tool itself written in JavaScript, using JSON.parse
and various regular expressions. Its algorithm is as follows: With eval string str:

— If str starts and ends with a ( and ), remove them. This is a common workaround to force
certain engines to interpret the string as an expression instead of a statement.
Strip whitespace from the beginning and end, and comments from any location in the string.
If JSON.parse(str) does not throw an exception, return JSON.
— Relax str into str_relaxed (the relaxation procedure is explained below).
If JSON.parse(str_relaxed) does not throw an exception, return JSON.
Test str against regular expressions to determine other patterns.

The regular expressions (shown here in the order they are tested) are:

JSONP |[|/'[A—Za—2z0—9\$\. \t\[\I""T=[ \t\r\n]*(.*);*$/ and

matched substring 1 must be JSON or relaxed JSON

Empty [[/°$/

Library || /function x[A—Za—2z0—9_\$]* *(/ and

string must be greater than 512 bytes

Typeof [[/"typeof «\(? x[A—Za—z0—9-\$\. \t\[\I""1*\)?$/ or

I"typeof #\(? x[A—Za—z0—9\$\. \t\[\]""]*\)? *[!=<>]+/ or

/if «\(typeof \(? *[A—Za—z0—9_\$\. \t\[\]"1x\)? *[!=<>1+["\)Ix D"\ }1x\ }? ;2 x$/
Read ||/ TA—Za—z0—9_\$]+%/ or /'TA—Za—20—9_\S\\[\I"1+$/

Call TTA—Za—20—9\$\.x\([A—Za—20—9\$\ .\ [\ I, \(\r\n]*\);?$/

Assign [/ TA—Za—2z0—9_\$\.\[\]"1* *= x[A—Za—z0—9_\.\[\1""T*;?[ \t\r\n]*$/ or

I*var [A—Za—20—9_\$]* #(= x[A—Za—z0—9_\$\.\[\]""]%)2:2$/

Try Ity s\ {["\ }1\ } *catch «\(["\D]*\) *\{["\ }1*\} *;2$/

All other strings are categorized as Other.

The relaxation procedure is a simple process that replaces most JSON-like strings with strict
JSON strings. Single-quoted strings are replaced with double-quoted strings (e.g. {’fo0’:0} be-
comes {"f00":0}, unquoted names are quoted ({fo0:0} becomes {"f00”:0}) and a form of string
escapes not accepted by JSON (\x) are replaced by their JSON equivalent (\U).




B Performance impact of Eval

The WebKit JavaScript engine
will generate different bytecodes
for local variable access when a
function calls eval.

Consider the two functions
in Fig. 17. Because of the pres-
ence of eval, the translation of
function E() must do dynamic,
by-name lookup of X (opcodes
resolve_with_base, put_by.id,
resolve), whereas NOE() simply
refers to statically-known global
offsets (opcodes get_global_var,
put_global_var). This is a direct
example of the potential impact
of eval on performance as the
code on the left will run slower
in a WebKit.

C Local vs. Global Scope

The eval function provides two modi operandi. Called directly, it executes in the local scope and
only variables that are not declared in that scope will bind to the local scope. However, if called
through an alias, then eval executes in the global scopes and all variables, declared or undeclared
in the eval string, bind to the global scope. In the following program the first eval executes in the
local scope and thus assigns to the local variable X, while the call to the alias of eval assigns to

the global variable X.

1 (function() {
2 varx=eval(x =4");
3 vare =eval,;
4

x=e(x=4):1)0

function E() {
eval(evalstr); x++;
return x;

}

enter

init_lazy_reg r0
init_lazy_reg r2
init_lazy_reg r1
create_activation r0
resolve_with_base r4, r3,

eval(@id0)

resolve r5, evalstr(@id1)
call_eval r3, 2, 12
op_call_put_result r3

resolve_with_base r4, r3, x(@id2)

pre.inc r3

put_by_id r4, x(@id2), r3
resolve r3, x(@id2)
tear_off_activation r0, r2
retr3

function NoE() {
id(evalstr);
X++;
return x;

}

enter

get_global_var r0, —8
mov r1, undefined(@kO0)
get_global_var r2, —12
callr0, 2,9
get_global_var r0, —11
pre.inc r0

put_global_var —11, r0
get_global_var r0, —11
ret r0

Fig. 17. Bytecode generated by WebKit.

// the anonymous function creates its local scope
// assigns 4 to the local variable x twice
// alias eval to call it in the global scope

// first assigns 4 to the global variable x and then to the local variable
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