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Abstract. In this paper, we examine specifically the role of the evaluation map
in sigma-models and strings. We discuss the difference between sigma-models
and field theory, as far as anomaly cancellation is concerned. The introduction
of the Wess—Zumino terms in different sigma-models is considered. Anomalies
in string theory are discussed, with special attention to the conformal anomalies
and to the sigma-model anomalies for the imbedded (or immersed) world-sheet
of the string. Conformal anomalies in two dimensions are connected to
holomorphic and gravitational anomalies. In order to have the cancellation of
the sigma-model anomalies of the string, certain topological conditions must
be satisfied by the ambient manifold. The rdle of the evaluation map in the
calculations of global anomalies is also discussed, both for field theories and
for sigma-models. In particular global anomalies are connected with the
differential characters of Cheeger and Simons. We show that the absence of
global anomalies in sigma-models is guaranteed by the absence of torsion in
suitable homology groups of the target space.
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Introduction

In [1] we used the evaluation map to study local anomalies in field theory. In this
paper, we extend the analysis to sigma-models and to string theory. We study also
the problem of global anomalies, which appear to have a relevant réle in
sigma-models and string theories, more than in field theories.

Compared to field theory, the new fact about sigma-models is the modification
of the universality requirement, which is replaced by the weaker condition that
some counterterms be allowed by the specific topology of the target space (see
below). This renders sigma-models more flexible than field theory as far as anomaly
cancellation is concerned. As we will show in Sect. 1, under the condition that the
relevant invariant polynomial is in the kernel of the Weil homomorphism, it is
possible to exploit the mathematical properties of suitable loop spaces in order to
construct explicitly the counterterm which kills the anomaly in question. This
counterterm is a generalization of the Wess—Zumino term.

In sigma-models, anomaly cancellation translates into topological restrictions
on the target space. These new features of sigma-models (compared to gauge field
theories) arise naturally from the fact that a gauge theory can be regarded as a
limiting case of a sigma-model, when the target space approximates the classifying
space. This flexibility leads to important consequences when we reexamine the
problem of anomaly cancellation for theories derived from superstrings.

An effective field theory of a superstring theory can be studied by considering
the fields corresponding to the zero modes of the superstring as background fields
in the presence of the propagating superstring. This leads to sigma-model type
theories, in which conformal invariance is the origin for the dynamics of the
background fields. We can therefore study the problem of chiral anomaly
cancellation, already studied in Sect. 8 of [ 1], in the “category” of sigma-models.
This allows us to implement the Green—Schwarz mechanism in a different way
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than the one considered in [1], that is by means of generalized Wess—Zumino
terms. It is at this point that global anomalies, come into play. Indeed even
after securing the vanishing of all local anomalies, the fermion determinants and
generalized Wess—Zumino terms that define the theory may not constitute a
globally invariant object, due to the presence of global anomalies.

Our approach to global anomalies both in field theory and sigma-models
assumes as a starting point the results of perturbative calculations, which allow
us to define (for example in the case of fermions coupled to a gauge potential) a
functional integral in a neighborhood of a given connection. Hence we discuss the
conditions which allow us to extend it, in an invariant way, to the whole space of
connections.

There are two types of obstructions, namely local anomalies and global
anomalies. The latter can be represented by means of differential characters and
are related to the integral cohomology of the orbit space (for field theories) or of
the target space (for sigma-models). The absence of global anomalies is guaranteed
by suitable topological conditions. These conditions become very important for
sigma-models, in which case the absence of global (as well as local) anomalies
becomes a selective criterion for allowable target spaces.

The work is organized as follows:

Section 1 is dedicated to sigma-models and their anomalies. In this framework,
gauge theories can be seen as sigma-models with the classifying space as target.
The conditions for the cancellation of local anomalies in sigma-models are
connected with the structure of the Weil homomorphism of the target space.
Anomalies can be cancelled if the Weil homomorphism applied to the relevant
invariant polynomials gives zero. If this is the case, the cancellation is performed by
introducing a generalized Wess—Zumino term, which is a functional defined on
the space of the paths over the fields of the sigma model, i.e. over the space of
maps from the space-time to the target.

A gauge theory can be seen as the limit of sigma models when the Weil
homomorphism tends to an isomorphism, ie. when the target becomes the
classifying space of the structure group.

The Wess—Zumino term introduced by Witten [2] is also discussed briefly; it
is a special case of our generalized Wess—Zumino terms.

In Sect. 2 we consider the field-theory anomalies of the string. We interpret
the conformal anomalies as a special case of the holomorphic anomalies of the
bundle of complex frames. A similar interpretation is not possible for higher
dimensional (complex) manifolds. We show that in string theory, holomorphic and
gravitational anomalies have the same origin, i.e. the fourth cohomology group of
the classifying space BU(1).

In Sect. 3 we discuss the sigma-model anomalies of a string imbedded in a
non-flat higher dimensional “ambient” manifold. We have both gauge-sigma-model
anomalies and gravitational-sigma-model anomalies. For the cancellation of both
(including the Lorentz anomalies), a specific requirement on the structure of the
Weil homomorphism of the ambient manifold is made.

In Sect. 4 we discuss global anomalies both for field theory and for sigma-models
and their relation with local anomalies.
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We discuss consistency conditions for finite gauge transformations or diffeo-
morphisms, and their relation to the cohomology of the corresponding groups.
We then introduce the differential characters of Cheeger and Simons and their
relations to global anomalies and we study the conditions under which global
anomalies are absent. We discuss both global anomalies for field theory and for
sigma-models. In field theory, the source of global anomalies is the torsion part
of the cohomology group of the orbit space, with integer coefficients. In sigma-
models, the relevant object is the torsion part of H" " 2(T, Z) where n is the dimension
of the space-time manifold and T is the target space. We discuss also the effects
of global anomalies on the generalized Wess—Zumino terms, defined in Sect. 1. By
requiring the absence of global sigma-model anomalies, we introduce a further
topological constraint, which selects the admissible target spaces.

Section 5 and Appendix I are devoted respectively to a few comments and to
the discussion of the evaluation map for the diffefomorphisms of a compact manifold.
Short comments on covariant anomalies and on the cancellation of global
anomalies are added, respectively, as Appendix II and as Appendix IIIL.

For the basic definitions and notations, we refer to [ 1] and specifically to Sect. 1.

1. Sigma-Models, Generalized Wess—Zumino Terms and Path-Spaces

We have seen in paper [1] that non-trivial local anomalies in field theory are
obtained by pulling back cohomology classes of classifying spaces via suitably
defined “evaluation maps.” Here we want to consider the case of sigma-model
anomalies. Our goal is to show that (non-trivial) sigma-model anomalies are
obtained in a way which is completely analogous to the way field-theory-anomalies
are obtained, the main difference being the replacement of the classifying space
with a given “target space.”

To be more specific, we assume that the space-time M is a compact connected
oriented n-dimensional Riemannian manifold and that the target space T is a
connected Riemannian manifold. We denote by Map(M, T) the space of C®-maps
from M to T; this will be (a subset of) the space of fields (or dynamical variables)
for our theory. The space of fields contains moreover chiral fermions interacting
with a pulled-back connection.

We want specifically to consider the evaluation map:

ev:M x Map(M,T)->T. (L.1)

Generally we assume dim T' > dim M + 1. Let G be a compact Lie group and
let P(T,G) be a principal G-bundle over T, with connection £, whose curvature
will be denoted by F,. We have then the diagram [3]:

(1.2)

ev
ev¥P—— P

Lk

M x Map(M,T) —— T.
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Here ev* P is, as usual, the induced G-bundle over M x Map(M, T) and ev is the
relevant canonical bundle map.

For example, P can be the bundle of orthogonal (spin) frames and in this case
¢ can be its Levi—Civita connection or P can be the principal bundle associated
to an Hermitian vector bundle and in this case £ can be its Hermitian connection [4].

We want now to consider forms on T depending on £ given by expressions
such as Q(F,,..., F.), where Q is an ad-invariant polynomial on Lie G and F; is

the curvature of £. By pulling back the relevant Chern-transgressions via ev*, one
obtains forms on ev* P which generate the sigma-model anomalies.

To be more definite, let us consider a fixed map f,eMap(M, T), the induced
bundle f§ P and an ad-invariant polynomial Q with (n/2 + 1)-entries. Let moreover
%, denote the group Aut, f§ P, namely the group of vertical automorphisms of
SEP (see [1], Sect. 1), and let f,: /% P— P be the canonical bundle homomorphism
induced by f,.

Then the combination of maps:

o o

S&P P (1.3)

fEP X%,

gives the form:
(forevy,)* TQ(E) (1.4)

whose (n, 1)-component is by definition a local sigma-model anomaly. Here ev, is
the evaluation map for f¥ P defined as in [1, Eq. (2.1)] and TQ(¢) is given by

TQ(©) = <§ + 1) JdIQ(EFA)..... FL(0)

where F,(&) = tdé + (12/2)[&, &].
By using a background connection (see Sect. 3 of [1]), we can write instead of
(1.4), the (n + 1)-form on M x Aut, f§ P given by

WQ((.fOOero)*é’AO)a (1.5)

where the background connection A, is the extension to f& P x Aut, fP of a
fixed connection on f% P, while W, is defined as in Sect. 1 of [1]'; namely, for
any two connections A4, 4’ on any principal G-bundle and for any ad-invariant
polynomial Q on Lie G with k-entries, we sct

1
Wo(d, )=k [dtQ(A — A"\ F ..., 7 ),
0

where #, denotes the curvature of the connection (1 — )4’ + tA.
In order to understand better the geometrical meaning of (1.4), we recall that
any element of Aut,ev* P induces in a natural way an element of Aut, f*P,

1 We usually denote by the same symbol A, the given connection of f¥ P and its trivial extension
to fEP x Aut, f¥P or to any bundle f§P x X > M x X for any manifold X. Moreover we assume
from now on that A, is given by [*¢ and 7eH0m(f?§P, P), where [ is required to cover a map from
M to T which is homotopic to the given map f,
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Y feMap(M, T). So we can consider the following evaluation map:

0
ev* P x Aut,ev* P ——ev* P (1.6)
and the diagram:

o i}
€ €
ev¥ P x Aut,ev* P ———ev*P —Z - P

ln Jn (1.7)

M x Map(M, T) —— T.

The form on ev* P x Aut,ev* P given by

(eveev®)* TQ(é) (1.8)

is such that its restriction to (moev®) ™ (M x { f,}) is given by (1.4).
Hence, by taking into account Sect. 2,3,6 and 7 of [1], we can establish the
following correspondences?:

Gauge theory over M Sigma-model
over M
Target BG T
Principal G-bundle EG(BG,G) P(T,G)
over the target
Bundle induced by P,=f§EG f&P
a given map fy:
M —target
G 4 = Aut, P, p Aut, 1P
auge grou = Aut,
8¢ BIOTP (or % = Aut™ P,) Jo 0
Map(M, BG),,
Space of maps < o ) Map(M, T)
or —
g

2 In the following table, .« denotes the space of connections on P, and Map(M, BG),, denotes the
space of maps which induce a bundle equivalent to P,, Aut]'P, denotes the group of vertical
automorphisms which leave the fiber over meM fixed
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Gauge theory over M Sigma-model
over M

Py x Hom(P,, EG)

{4
ev* P

Bundle induced l l
from the principal M x Map(M, BG),, M x Map(M, T)
bundle over the tar-
get by the evalu- (or Poxﬂ_*ng>
ation map 4 g
The anomaly with Mx% Mx%,

the background
connection is the
(n, 1)-component of
an (n+ 1)-form
over:

So in many respects we can consider gauge theories as sigma-models with the
classifying spaces as targets.

As a remark on the above table, notice that, in gauge theories, all the maps in
Map(M, BG),, are by definition homotopic to the given map f,. Also, in
sigma-models, we have to consider (as we will do later on) only the space of maps
from M to the target which are homotopic to a given map f,. But all the above
considerations about sigma-model anomalies do not depend on the choice of f,,
as all the considerations about gauge anomalies made in [1] did not depend on
the isomorphism class of the principal bundie (for instance they did not depend
on the instanton number).

As is now clear, a crucial difference between sigma-models and gauge theories
is that in sigma-models the target space is not the classifying space. This difference
will allow us to cancel anomalies which are not cancelled in guage theories. The
basic fact in this respect is that the Weil homomorphism is an isomorphism for the
classifying bundle EG(BG, G} (remember that G is supposed to be a compact Lie
group), while it need not to be even a monomorphism for a generic bundle P(T, G).

In fact the most interesting situation in a sigma-model is precisely when the Weil
homomorphism of the target space, restricted to some ad-invariant polynomials,
is zero.

This is the situation we will examine after discussing some mathematical
preliminaries.

We consider first 2, (Map(M, T)), i.e. the space of paths of Map(M, T), based
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at f, and the relevant space of loops 2, (Map(M, T)),>*. We denote by J the
inclusion map of 2, ,(Map(M, T)) into 2, (Map(M, T)) and by n, the map which
associates to each element of 2, (Map(M, T)) the element of Map(M, T), given
by the endpoint. Here Map(M, T),, is the path connected component of f,e
Map(M, T).

We have then the principal fibration

Q,,(Map(M, T) =, 2, (Map(M, T))

J”l (L.9)
Map(M, T),,.

The space #, (Map(M, T)) is contractible and so (1.9) plays the réle of a “universal
bundle” for 2, (Map(M, T)), even though (1.9) is not a principal fibre bundle.

Next we consider any element pe?, (Map(M, T)). This can be regarded as a
map p:M x I - T and so we have the relevant induced bundle p*P over M x I.
If we denote by p, the restriction of p to M x {t}, then p¥ P is identical to f§P,
while p¥ P is equivalent (isomorphic) to f¥P [6].

The isomorphism between f¥ P and p* P is not a canonical one; it depends at
least on the path. We will in fact construct such an isomorphism z,(p) induced by
a connection ¢ on P as follows.

Consider on the bundle p* P, the connection p*¢&, where p is the canonical
covering of p. Next, VxeM take the (trivial) path in M x I given by t+(x,t) and
lift this path horizontally to a path with initial point uen ™! (x) = f & P. The endpoint
of this lifted path is an element of p¥ P and the horizontal lift gives us the required
isomorphism t.(p): f§ P — pTP.

We have thus defined a map (determined by &)

To:gfo(Map(M7 T))—»Hom(f’gP, P)
p B p1ote(p),

where p; denotes as usual the canonical bundle homomorphism induced by p,.
Obviously 7,4(p) is a homomorphism which covers the map =z, (p) =p;.

Now let A xp denote the space of connections on f&P. We are also able to
define the following maps:

71:2;,(Map(M, T)) > & pxp

(1.10)

] (1.11)
p Hfé(p)*pafé’

1,:Q,,(Map(M, T)) > Aut, f§ P (1.12)
i P 1, (0) = (),

3 We always assume our paths and loops to be smooth. For the differentiable structure on path- and
loop spaces, see [5]

4 In order to distinguish between the symbol £2 used for loop spaces and the same symbol used for
differential forms, we will always write explicitly the base point for loops at the lower right of the
symbol, as in £, and the order of forms at the upper right of the symbol, as in Q"
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where, in the above expression, any loop is considered as a path with initial point
equal to the endpoint. The image of the map 7, can be referred to as the space of
induced bundle homomorphisms, while the image of the map 7, is, by definition, the
space of connections induced from the principal bundle (with connection) P. It is
also easy to see that the image of the map 7, is a subgroup of Aut, f§P which
will be referred to as the group of induced gauge transformations. Moreover the
group Im(z,) acts freely on Im(z,) and we can consider the principal bundle

Im(z,)
Im(t,)

Im(t,) — ~Map(M, T),. (1.13)
Roughly speaking, one should expect Im(z,) to be bigger the “less reducible” the
connection €& is.

Let us now come back to sigma-models and let us consider an ad-invariant
(possibly irreducible) polynomial Q with (n/2 + 1)-entries. We assume specifically
that

Q(F,,...,F,)=dH, (1.14)

where F, is the curvature of ¢ and H is an (n + 1)-form on T.
Now let n; be used ambiguously also for id x 7;:M x 2, (Map(M, T))—
M x Map(M, T),,. The induced bundle

nfev* P—M x 2, (Map(M, T))

is isomorphic to f§P x 2, (Map(M, T)); an isomorphism in terms of ¢ is given by
sending (u,p)e f§P x #, Map(M, T) to the element of n¥ev* P represented by
(m(w), p, te(p)WeM x P, (Map(M, T)) x ev* P.

Henceforth we will identify these two bundles. Thus we have the diagram

SEP x 2, (Map(M, T) zn’fev*PL ev* P P
J J (1.15)
M x 2, (Map(M,T)) LM x Map(M, T),, AN X

where 7, is the combination of the canonical bundle homomorphism induced by
n, with the isomorphism f¥P x &, (Map(M, T))— nf ev* P.

On the bundle f§P x #, (Map(M,T)) we can consider two connections,
namely a background connection A, obtained by extending trivially a fixed
connection on the bundle f#P (e.g. f#¢) and the connection 7% ev* &.

The (n+ 1)-form Wy(afev* &, Ay) is basic, ie. it can be considered as a form
on M x 2, (Map(M, T)). Moreover we pull it back via the map J defined in (1.9)°,
thus obtaining a form J* Wy(z¥ev* &, 4,) on M x 2, (Map(M, T)).

5 Here again we use ambiguously the symbol J also to denote the map: M x 2, (Map(M, T))—
M x 2, (Map(M, T)) which more properly should be denoted by id x J
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Now from the map 7, (1.13), we obtain in turn the map:
id x 1,:M x Q, (Map(M, T))—» M x Aut, f§P, {1.10)
which yields a homomorphism:
(id x ©o)*:H*(M x Aut, f§P)— H*(M x 2, (Map(M, T))). (1.17)

The form J* W, (¥ ev*¢, Ap)eQ" 1 (M x Q,,(Map(M, T))) is the image under
the pullback of the map (1.16) of the form in 2"" (M x Aut, [ ¥ P) given by (1.5).
If H satisfies (1.14), then we have

d(Wy(Ttev* &, Ag) — n¥ev* H)=0, (1.18)

where d is the exterior derivative on M x 2, (Map(M, T)).
To prove (1.18), it is enough to notice that

dWy(atev*E Ag)=ntev¥ Q(F,,..., F,)

due to the fact that Q(F,,..., F ) is zero for dimensional reasons.
We have now:

Theorem (1.19). There exists a form feQ"(M x 2, (Map(M, T)) such that dff =
Wy Tt ev* &, Ay) — nf ev* H.
Proof. The space 2 (Map(M, T)) is contractible and so the theorem follows from
the Kiinneth theorem. In order to construct f, we can now consider the map
(fer):M x 2, (Map(M, T))» M x 2, (Map(M, T)) given by the combination of
the retraction (projection) r:M x Z, (Map(M, T'))—» M with the inclusion i:M —
M x 2, (Map(M, T)).

The map ior is homotopic to the identity, so there exists a homotopy operator
2 with®:

1* —(ior)* = 2d + d2.
Since i* gives zero when applied to (n + 1)-forms, we have W,(7§ ev¥ e, Ay) —
n¥ev* H =dff, where f§ is given by:
B=2(Wy(n¥ev* & Ay) — nfev* H).

In order to give a more explicit expression of f(p), for each pe#? (Map(M, T)),
we consider the path p' given by p'(s) = p(st). By assigning to each tel the element
7o(p")eHom(f ¢ P, P) we obtain a map t4:I x %P — P, and hence we have:

1 1
B(p) = g Wo(th €, A) — gp*H O (1.20)

1
6 More precisely 2 is given by [ #*, where # is the map defined as follows:
0

H M xIxP;, (Map(M,T))—»M x 2, (Map(M, T)),
(x.p.1) P (x,p")
where p'(x, s) = p(x, st), Vxe M. Namely the homotopy # “shrinks” the paths
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By restricting to M x £2; (Map(M, T)) the form considered in Theorem (1.19),
we obtain

dJ*B = J* Wo(T ev* &, d,).

Notice that J*n¥ ev* H is zero for dimensional reasons.

Theorem (1.19) tells us that the image under (1.17) of the cohomology class
represented by (1.5) is zero.

We now define the form B given by

B =(n,0) — component of f. (.21
The restriction J*B of B to M x £, (Map(M, T)) satisfies the following equation:
0J*B = (id x 1,)*(Anomaly) + exact, (1.22)

where J is the exterior derivative on £, (Map(M, T)), by “Anomaly” we denote
the (n, 1)-component of the form (1.5) and the last term is exact as a form on M.

Hence the local anomaly corresponding to an ad-invariant polynomial Q is
cancelled provided that the Weil homomorphism of the target space applied to Q
gives zero. The price we have to pay, is that we have to introduce in the effective
action an n-form B on M, depending on the space of paths over Map(M, T'),. The
term B will be referred to as a (generalized) Wess—Zumino term.

The situation may become considerably simpler when Q is a reducible
polynomial (with (n/2 + 1)-entries). Let us assume, for instance, that Q = Q, Q, and
that

Q.(F,...,F;)=dH, and Q,(F,,...,F.)=dH,.

In this case, the Weil homomorphism of the bundle f# P applied to @, and Q,
gives zero and so we have also Q,(F,,,...,F, )=dH,, for a suitable form H,.
Hence we can write (1.5) as:
WQ((f_ooero)*fa Ag)= ng((f_ooevfo)* ¢, Ag) A dH,
+ Wo,(fooev,,)¥ & Ag) Adf §Hy +exact,  (1.23)

so the anomaly is cancelled (see [1], Eq. (5.17)).

We would now like to make a few more comments on the relation between
gauge theories and sigma-models.

In the special case when the target space is given by BG, we can consider the
bundle P, = f¥EG and we know [7] that

Aut, Py« Hom(P,, EG)— Map(M, BG),, (1.24)
is a universal bundle for Aut, P,”. Hence there exists a weak homotopy equivalence
Aut, Py~ Q, (Map(M, BG)).

We can then say that when T approaches BG then (in homotopy theory)

7 More precisely if BG is an (n + h + 1)-classifying space, then it can be proved (by obstruction theory)
that Hom(P, EG) is h-classifying for Aut, P,
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Q,,Map(M,T)) and 2, (Map(M,T)) approach respectively Aut,P, and
Hom(P,, EG).

In this sense sigma-models can be considered as an approximation to a gauge
theory as the target approximates the classifying space.

Hence sigma-models are potentially more anomaly-free the more the Weil
homomorphism of the target is trivial. We can also say that a gauge theory is the
limit of sigma-models when the Weil homomorphism tends to an isomorphism.
More precisely, approximating the classifying space BG with a target T means
considering a sequence of maps as follows:

M x Map(M, T)— T — BG.

Since we are interested in taking the limit of the T’s when the kernel of the Weil
homomorphism tends to zero, we are only interested in considering the cohomology
classes of T which are obtained through pullback via the classifying map: T — BG.
This explains why the possible non-trivial cohomology classes of the target space
which do not belong to the image of the Weil homomorphism do not really matter
for sigma models: in the limit they will disappear. This is also consistent with the
index theorem approach to the computation of the coefficients of anomalies, since
only “universal” classes can be taken into account.

A final comment concerns the topology of M or the topology of the induced
bundle f}P— M. As in gauge theories, the above topologies do not play any role
in the cancellation of local anomalies. Let us assume, for instance, that we have
two ad-invariant irreducible polynomials Q, and Q, with k and k' entries
respectively. Furthermore we assume that k, + k, =n/2 + 1 and that both Q, and
0, are in the kernel of the Weil homomorphism of the induced bundle f§P - M.

Then we know from Sect. 5 of [1], that the anomaly relevant to the product
Q. Q, corresponds to the zero element of the first cohomology class of the
gauge group. But if both polynomials @, and Q, do not belong to the kernel
of the Weil homomorphism of the target space, then one can always find
another n-dimensional manifold M’ and a map f':M’— T, such that the anomaly
corresponding to the polynomial Q, Q, represents a non-trivial element of H* (%)
or of H'(22,(Map(M', T))).

In other words, in sigma-models as well as in gauge theories, universality plays
an essential role; that is, for any given target T, the results have to be reasonably
independent of a “choice” of the manifold M. Anomalies for both sigma-models and
field theory are “universal objects,” as far as the manifold M is concerned.

We have seen that, in order to cancel sigma-model anomalies, we have to
introduce in the effective action (generalized) Wess—Zumino terms, namely terms
depending on the paths over the space of maps from M to T. This procedure is
the only one which can exploit the characteristics of sigma-models and give an
extra possibility of cancelling anomalies, with respect to ordinary gauge theories.

It is also well known that Wess—Zumino terms have to be introduced in some
sigma-models, for purposes other than the cancellation of anomalies. For example,
in the two-dimensional non-abelian bosonization model studied by Witten [2, 8],
such a term is needed in order to reproduce the features of the original fermionic
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theory. We want now to show that also these Wess—Zumino terms can be obtained
as a particular case of our construction (see also [9, 10]).

By generalizing the sigma-model considered by Witten [2], we choose the target
itself to be a compact semisimple Lie group G with the trivial principal G-bundie
G x G— G. The connection on such a principal bundle will be chosen to be the
flat connection given by the pullback of the Maurer—Cartan form 6, via the product
G x G—G. At this point we are equipped to carry on the discussion of the
(generalized) Wess—Zumino term, along the lines discussed before.

In this respect, we notice that, if in Theorem (1.19) and formulae (1.10)—(1.12)
we choose the bundle P over the target T to be a trivial bundle with a connection
¢ with zero holonomy, then the image of the map 7, defined in (1.12) is just the
identity on Aut, f# P. Moreover we can choose the form H in (1.14) to be zero.
In this situation, the bundle ev* P (see diagram (1.15)) is isomorphic to the bundle
f&P x Map(M, T),, and the form Wy(nfev* ¢, Ay) is the pull-back, via ny, of a
form on M x Map(M, T),,. Accordingly its restriction to M x 2, (Map(M, T)) is
zero and also the restriction of the (generalized) Wess—Zumino term to M x
0, (Map(M, T)) is zero. This is exactly the situation for Witten’s sigma-model. In
this sigma-model the notation can be further simplified by pulling back to G the
non-trivial cohomology classes of G x G, via the inclusion on the first factor. By
doing so, we are led to consider the non-trivial cohomology class of G represented
by the form

2

TO®0) = <g+ 1)(})sz<0, t—z_—t[e, 9],...,‘22_ " 1o, 0]),

where Q is an ad-invariant irreducible polynomial on Lie G with (n/2 + 1)-entries
{see Sect. 5 of [17). Let us assume from now on that TQ(0) is in the image of the
canonical map i:H"*1(G,Z)— H"**(G,R) [11].

Let Map™(M, G) be the space of functions which map meM (i.e. the “point at
infinity”) into the identity eeG®, For any given f,eMap™(M,G) we denote by
Map™(M, G),, the space of maps in Map™(M, G) homotopic to f,. We can then
consider the evaluation map.

ev:M x Map™(M, G),,— G, (1.25)
and the space of paths 2 o Map™(M, G).
We have also a natural homeomorphism

2 ;,(Map™(M, G)) — Map™(M, 2,G),

where, as before, the symbol Map™ denotes the space of pointed maps. In fact, to
any path pe#, (Map™(M, G)) regarded as a map p:M x I -G, we can associate
the map :M — Map(l, G) given by p(x)(t) = (fo(x)) ™' p(x,?).

8 We find it convenient to consider the space of pointed maps in order to discuss better the
characteristics of the Wess—Zumino term
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So we have the following commutative diagram:

M x 2,,(Map™(M, G)) M x Map™(M, ?,G) —— 2,G

™ & (1.26)
~ -1
M x Map™(M, G),, T oMxG6 -5 g,
where f51:M x G- G is the function which assigns to (x,g) the group element
fo(x)g and €V is the combination of the identity map on M with the evaluation
map on M x Map™(M, G),.

It is now obvious that by pulling back TQ(f) via the combination of maps
given by f <&V we obtain an (n+ 1)-form on M x Map™(M, G);, whose (n, 1)-
component satisfies a consistency condition and plays the rdle of an anomaly.

Diagram (1.26) tells us that the relevant Wess—Zumino term, which is a form
on M x #, (Map™(M, G)), is obtained by considering the pull back, via ev* of
¥ TQ(0) which is an exact form on #,G. Namely there exists an n-form y on 2,G
such that n¥TQ(6)=dy. The (n,0)-component of ev*y is by definition our
(generalized) Wess—Zumino term and coincides with Witten’s Wess—Zumino term.

In order to give an explicit expression of ev*y (see (1.20)) we consider the
“double” evaluation map [12]:

Ev:M x I x Map™(M,2,G)— G; (1.27)
the Wess—Zumino term is then given by | Ev* TQ(0).

MxI
We want now to address the problem of the “admissibility” of the

Wess—Zumino term, namely we want to ask ourselves whether the functional

exp<2m’ | Bv*T Q(B)) descends to a functional on the space of the dynamical
MxI
variables of the theory, namely on the space Map™(M, G),. This is the same as

requiring that the Wess—Zumino term is an integer when restricted to the space
of loops; namely we want now to ascertain whether the functional on the loop
space, given by:

| Ev*TQ(0): Map™(M,02,G)—R (1.28)

Mxst

is an integer or not. Here Ev is regarded as a map,
Ev:M x St x Map™(M, Q2,G)—G.

If Map™(M, £2,G) is connected, i.e., if all its elements are homotopic to the map
which assigns to each xeM the “zero”-loop in G, then for all leMap™(M, £2,G)
we see that [*TQ(0) is exact on M x S*, and so (1.28) is zero. If, on the contrary,
Map™(M, £2,G) is not connected, then (1.28) needs not to be zero.

Now 7,(Map™(M, 2,G)) is isomorphic to [M A S, G],., where M A S* denotes
the smash product of M and S* and [M A S, G], denotes the homotopy classes
of pointed maps from M A S* to G°.

9 Notice that ny(Map*(M, 2,G)) is equal to =, (Map™(M, G)) and so it is always an abelian group,
since Map™(M, G) is a group
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Hence, if ¢ denotes the fundamental cycle of M x S* and p denotes the projection
p:M x St > M A §!, then we have a group homomorphism [13, Proposition 7.38]:
To(Map™(M,2,G)) ~[M A S',G], > H,,(G,Z)

V] B [ (ps 0]

In conclusion, when the form TQ(6) has been properly normalized, f FTQe)

Mxs?
is an integer for any loop leMap™(M, 2,G)'°, namely the functional

(1.29)

exp<27ri | Ev* TQ(O)): 2, (Map™(M, G))->U(1) ~ R/Z,

MxI
depends only on the end-points of paths; i.e. it descends to a functional defined
on Map™(M, G) with values in R/Z. It follows that the normalized coupling constant
of the Wess—Zumino term can only be an integer.

The corresponding conditions one should require for a generic sigma-model
have to do with the requirement that the form J* B considered in (1.21) be such
that exp(2zniJ* B) descends to a functional on the group of the induced gauge
transformations. In other words we want to be able to interpret, modulo integers,
the cancellation condition (1.22) as an equation on the group of the (induced) gauge
transformations. and not simply as an equation on the loop space £2, (Map(M, T')).
Moreover we have to make sure that the final effective action is a functional over
the true degrees of freedom of the theory. We will discuss this problem in Sect. 4.

A final remark concerns gravitational anomalics. These anomalies also admit
a “sigma-model” interpretation in the following sense.

Consider M itself as the target space, with the frame bundle LM over it, and
consider Diff M instead of Map(M, T) in (1.2). The diagram (1.2) would then
become:

eV LM -2 LM

Jn Jn (1.30)

M x Diff M —=— M.

Since Diff M lifts to Aut LM, then ev* LM is canonically isomorphic to
LM x Diff M and we can identify these two bundles. If Q is an ad-invariant
polynomial over GL(n,R) with (n/2 + 1)-entries'’, and if 4 is a Levi-Civita
connection for a metric ge.#, then ev* TQ(A) can be considered as a form over
LM x Diff M whose (n, 1)-component is the gravitational anomaly.

We can also choose a fixed linear connection A, on LM and consider the

10 If M =5" (as in [8]), then [S' A M,G], ~[S"*!,G],. In this case (1.29) is in fact the Hurewicz
homomorphism
s 1(G) > H,11(G, Z)

11 We assume that n = 2(mod4) so the gravitational anomaly is not necessarily trivial
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{n + 1)-form over M x Diff M, given by:
Wolev* 4, A). (1.31)

The (n, 1)-component of (1.31) is the expression of the gravitational anomaly with
the background connection.

2. Strings and Conformal Anomalies

Let S be a two-dimensional compact orientable manifold imbedded in an
n-dimensional Riemannian manifold M with metric I"; S is to be identified with
the world-sheet of the string.

We consider two metrics on S:
a) an “intrinsic” metric g,
b) the induced metric y.

If h:S— M is the given imbedding, then the induced metric is defined in the
following way:

7:(X 1, X)) = Fh(x)(h*Xlsh*XZ) xe§ X,,X,eT,S. 2.1
The action functional of the bosonic Polyakov string is defined as:
S={dvol,Y g*v,, where ¢ =(g)5". (2.2)
N a,b

To give a coordinate free description of the action functional, we proceed as
follows.

First we recall that for any imbedding 4, the map h,: TS — TM can be thought
of as a section of the bundle T*S® h* TM. So we can apply to h, the *-operator
with respect to the intrinsic metric g, yielding a new section of T*S® h* T M which
is again a map *(h,): TS TM with =(h,)(n™'(x)) = =~ (h(x)) VxeS. Here n
denotes both the projection TM — M and the projection TS — S.

Let Imb(S, M) denote the space of all imbeddings'2. We can now consider a
2-form Z(h, g) on S, depending on heImb(S, M) and on the intrinsic metric g, given

12 Imb(S, M) can be given the structure of a manifold compatible with the Whitney C*-topology [5].
The tangent space at helmb(S, M) is given by the sections of the bundle h* T M, or equivalently, by
the elements f,eMap(S, TM) which satisfy the following condition

Tu(x)em ™ (A(x)).
Consider now
S FioX) =T (L), (%) xeS f,,[ieT, Imb(S, M),
and define

(Sl f)=<fh fiy dvolep
S

(Sl Sy = < S £ dvol,.
N

It is clear that both (f,] f3) and (f,| f3) are (weak) Riemannian metrics on Imb(S, M)
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by:
L o(h,g)(X 1, X3) = T (hy (X 1), #(hy ) (X))
— Dy (hy (X5), % (h )(X 1)) xe€8,X,,X,eT.S.  (23)

We have also the corresponding action functional:

Fh,g)= £ Z(h,g). (2.4)

Formula (2.4) gives the coordinate-free expression of (2.2).
So the Polyakov action is invariant under:

1) Diff M;
in fact Vi e Diff M, the imbedding # is transformed into Yo h, but also the metric
I is transformed into ¥ ~'*I". Hence the induced metric y is Diff M-invariant.

2} Diffs;
Vi eDiff S, the imbedding % is transformed into hoy and the metric g is
transformed into ¥*g. But the imbedding hoy induces the metric y*y so (2.2)
is Diff S-invariant.

3) Conformal (Weyl) rescalings of g;
let ¢:S—R and let g be transformed into e’g. Then dvol, g* is invariant, or,
equivalently the =-operator in (2.3} is conformally invariant since it is applied
to I-forms on a 2-dimensional manifold.

4) Aut,CS;
this is the group of transformations leaving the complex structure of S unchanged
(see below). They are a combination of conformal rescalings and Lorentz
transformations.

Corresponding to these “classical” invariances, there are possible anomalies of
the string. In this section we first consider conformal and holomorphic anomalies,
which correspond to the last two invariance groups described above.

The world-sheet of the string, being an orientable 2-dimensional manifold, can
be given a complex structure, .. we can define Vxe S a linear mapping J .: T, S+ T, S
with J2= — 1. Obviously J, is assumed to depend smoothly on x. A complex
structure defines, in a natural way, an orientation [4]. If J, is the matrix (_9}),
then a complex frame [4, Chap. IX] is defined as a frame u_:R?+ T, S which satisfies
the following condition

uxOJOZJxOux’ (25)

ie. a complex frame at x is given by (x; X, J, X) for any XeT, M. The principal
bundle CS of complex frames is a reduced bundle (with structure group C*) of the
frame bundle LS.

A metric g is said to be compatible with the complex structure J if the following
condition is satisfied:

g(JxX17JxX2):g(X1=X2) VXDXZETxS' (26)

Hence if (x; X, JX) is a complex frame at xe8, then g(X, JX) = 0; that is a bundle of
complex frames is in reality the bundle of oriented frames which are orthogonal
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and of fixed length at each point. If ¢’ is another metric compatible with the complex
structure J, then g and ¢’ are conformally related (i.e. g’ = ¢’g with ¢:S+— R) and
vice versa. The bundie 0,8 is a subbundle of CS with structure group SO(2) = U(1).

Let us now consider the space /2" of connections on CS which are reducible
to a connection on 0, S for some compatible g. The group of gauge transformations
of CS acts on /%, Since C* is an abelian group, Aut, CS is the group Map(S, C*),
which is the direct product of Map(S,R ) and Map(S, U(1)) = Map(S, SO(2)). So
YyeMap(S, SO(2)) transforms the space of connections reducible to 0,S into itself,
while e?eMap(S, R ") transforms the space of connections reducible to connections
on 0,S into the space of connections reducible to connections on O, S.

In order to prove this, it is enough to note that, if 4 is a connection reducible
to a connection on 0,S and A’ is the gauge transform of A by e’eMap(S,R™),
then we have:

V4g=0=Ve’g=0,

where V4 is the covariant derivative on S TM induced by the connection 4 on LM.
If we identify C* with the group of constant maps from S to C*, then Aut, CS/C*
acts freely on the space of connections on CS and in particular on &3¢,
Let ¢ denote any subgroup of Aut, CS/C*. We can then consider the following
diagram (analogous to diagrams (7.5) and (7.14) of [1]):

CS x a2, EC* = EU(1) x R*

ok

CS (Mmetric y
X - cs E EC* (2.7)

Jn JvTC
metric
‘QIC{; -2,  BC*=BU(l).

Diagram (2.7) shows that, in two dimensions, the holomorphic anomalies,
defined as the gauge anomalies of the complex frame bundle, are generated by the
cohomology classes of BU (1). In turn the cohomology algebra of BU (1) is generated
by F. (the curvature of a universal connection ¢ for EU(1))!2.

Since we are in two dimensions, we are interested in the 4-form F. A F, whose
(Chern) transgression is given by £ A F..

If 4 is in particular the group isomorphic to % = (Map(S,R*)/R") and if
f:CS— EC* is a bundle homomorphism, then the connection 4 = f*¢ is a metric
connection (in particular it can be a Levi Civita connection). If X e(aut, CS/C) is
the vector field on CS, corresponding to ce(Map(S, R)/R) = Lie(Map(S,R*)/R "),
then the relevant anomaly is given by the following map:

EoisAANF, =0F, (2.8)

S x

13 In the following, ¢ will be considered either as a connection on EU(1) or as a connection on EC*,
reducible to a connection on EU(1)
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If we observe that under the isomorphism U(1) - SO(2), the curvature F , becomes,
up to a factor ./— 1, the Euler density, then we see that the right-hand side of

(2.8) coincides, up to a factor ./~ 1, with the expression of the local conformal
anomaly in two dimensions as defined according to [14].

So we can interpret the conformal anomaly in two dimensions as the
holomorphic anomaly restricted to vector fields ¥ defined as above.

Notice that we could not consider in (2.7) only Levi—Civita connections instead
of metric connections since, if 4, is the Levi Civita connection of g, then the gauge
transform of A, by e is not the Levi Civita connection of ¢’g. For instance, in
holomorphic coordinates, where d = & + 9, the gauge transform of A, is A, + do,
while the Levi-Civita connection of e’g is A, + do. The above observation has some
implications concerning the possibility of cancelling conformal anomalies as it
will be shown in the following.

As A is a C*-valued connection form, we can write A =Re 4 +iIlm A. But Re 4
is an exact form since Ae/T'™. Now iz;A =izRe A and so we could mistakenly
conclude that the conformal anomaly (2.8) is always trivial, since we have:

isANF =isdBAF)=Ls(BAF)—dizfAF,), 2.9)

provided that dff = Re A. Here L is the Lie derivative along X.

The impossibility of considering the conformal anomaly as a trivial one arises
from the fact that we cannot identify L 5 as the “true” variation of f along X. In
fact, when A is a Levi—Civita connection then f is a function of the metric g [4]
and its “variation along X should really be the variation obtained by conformally
rescaling the metric g [11,15]4.

14 We would have similar problems for a possible “gauge” interpretation of some conformal anomalies
in the case of a manifold M of any even dimension n.

One could consider the bundle Orth M of oriented frames which are orthogonal and of fixed length
at each point. This is a principal bundle with structure group R* x SO(n).

Obviously one could also consider the gauge transformations defined by the elements of Map(M,R™")
and construct a diagram like (2.7), by replacing S, CS, C* and U(1) respectively with M, Orth M,R* x
SO(rn) and SO(n). In n-dimensions a class of conformal anomalies is given by [14,16]:

(*) o oP(F,..., F),

where F is the curvature of a metric or Levi Civita connection and P is an ad-invariant polynomial
of SO(n) with n/2-entries. Other conformal anomalies are constructed with the Weyl tensor.
Interpreting the above anomaly (*) as a gauge anomaly would mean considering the form

TrA A P(F,...,F)

which is certainly exact,

So the conformal anomaly would be “trivial” and we would have the same situation as in two
dimensions. The difference between two and any other even dimension is the following. If n = dim M # 2,
then there exists no universal (n + 1)-form y (depending on the space of connections on Orth M which
are reducible to connection on 0, M) which satisfies the following requirements:

(a) y is closed and it is not the differential of any other universal form;

(b) The anomaly (*) can be represented as the map X—izy, where X, in turn, is a vector field
corresponding to ceMap(M, R).

Hence it seems that, if n +# 2, then the coefficient of the anomalies (*) cannot be computed with the
family’s index theorem
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We have also to point out that, since the group Map(S,R™*) is a contractible
space, it does not make any sense to look for the topological significance of
conformal anomalies, namely it does not make sense to search for anomalies
representing non-trivial 1-cohomology classes of Map(S, R ™), since such non-trivial
classes do not exist. Also it does not make any sense to look for topological
arguments which could justify the use of the index theorem in the computation of
conformal anomalies for any dimension of the space time. The possibility of such
a usec in two dimensions seems to be purely “coincidental” (at least in the present
framework), due to the relation between conformal and holomorphic anomalies.
But the locality requirement applies perfectly well to conformal anomalies. Locality
here means that anomalies may not be cancelled by adding counterterms which
are not forms depending on the fields of the theory. But obviously they can be
cancelled if the coefficient in front of them is zero. This is what happens to conformal
anomalies in the critical dimension [17].

Gravitational anomalies can be considered by pulling back cohomology classes
of BU(1) via the map Evin the following diagram:

(OS D( %metrlc Ev

EU(1
Diff™1 § vl
J J (2.10)
T T
S X EJZ{metric Ev
Diff™ 1§ BU),

where (g x /™' denotes the bundle of orthonormal frames of S paired with the
corresponding metric connections for metrics on S.

When the world-sheet of the string is imbedded in a flat background, then the
coeffcients of both the gravitational and the holomorphic anomaly have been
computed [17]. In the Polyakov string, the contributions from the left and the
right sectors to the gravitational anomaly annihilate each other. In contrast, the
coefficient of the conformal anomaly vanishes only in the critical dimension. In
the heterotic string and in the superstring case, both the conformal and the
gravitational anomaly vanish only in the critical dimension [17].

Finally, let us point out that two complex structures J and J' are said to be
equivalent if the relevant complex frame bundles C,S and C,.S are such that

CpS=1() 1 (C;S), 2.11)

where  is a diffeomorphism and [(y) is its lift in LS.
If the genus g of S is = 2, then there are only a finite number of diffeomorphisms
¥ (no more than 84 (g — 1) [18]) such that

C,S=10))"1C,S (2.12)

for any complex structure J.

So for g = 2, the action of Diff S on the space of complex structures is essentially
free and the quotient space is called the moduli space. From now on we will assume
g22.
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For any complex structure, C,S there is a unique Levi Civita connection (for
a compatible metric) A7 | such that its scalar curvatureis — 1. If C;. S = [(}) ~1(C,S),
then A" | =I()* A" . We can consider the space ./ ' of all connections A’ |,
for any complex structure J. Moreover we can define, analogously to definitions
(7.18)~(7.21) in [1], the bundle € x o/ ~! of all complex frames paired with the
corresponding connection in o7 ~!. We have then the following diagram:

(gs X :Qfgl Ev
s 5

_ EC*
Diff S ¢
Jn Jn (2.13)
;S)(Jf*1 Ev
2l B, BCr = BU).
Diff S ¢ M

Here (S x .« ~1)/Diff § is a fiber bundle over the moduli space (or the Teichmiiller
space if we limit ourselves to considering only diffeomorphisms which are connected
to the identity)!®. Diagram (2.13) allows us to consider the anomaly over the moduli
(Teichmiiller) space. Such an anomaly is generated by the two form on .« ~ */Diff §
obtained by fiber integrating the pull back of F, A F.eQ*(BU(1)).

Notice that since we are interested in local anomalies, the fact that the
Teichmiiller space is contractible does not imply automatically the cancellation
of the relevant anomaly. The anomaly determined by diagram (2.13) can be thought
of as obstructions to the definition of a local diff-invariant expression for “det 8"
(see also [19]).

It is clear, by comparing diagrams (2.7), (2.10) and (2.13), that the cancellation®®
of the conformal anomaly implies the cancellation of the local anomaly over the
moduli (Teichmiiller) spaces [20], since both anomalies are generated by the same
form F, A F, on BU(1). In conclusion, all the anomalies of the string (except the
sigma-model ones) are generated by the same form on BU(1).

As a final remark, we recall that the homomorphism (2.13) can be defined only
when we are given a connection ' on (%5 x o7 ~')/Diff S. This connection #' is in
turn determined by a connection @ on the bundle o7 1 —(of ~}/Diff S) (see [1],
Sect. 7). Now on /! there is a natural Diff S-invariant metric, namely the
Weil-Petersson metric [21,22,23], so we can choose for o the connection such
that the “horizontal” vectors in T/ "' are, by definition, the ones which are
orthogonal to the vertical ones with respect to this metric.

3. Sigma-Model Anomalies of the String

In this section the world-sheet S of the string is supposed to be a compact connected
Riemann surface imbedded or immersed in an n-dimensional compact Riemannian

15 One could also consider an analogous diagram for % x o/™'"°, where metric connections (for
compatible metrics) are paired with the corresponding complex frame bundles

16 Here by cancellation we mean obviously that the coefficient of the anomaly is zero and not that the
anomaly is cancelled by adding local counterterms
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manifold M, which will be generally assumed to be connected, compact and without
boundary. The space of all the imbeddings of S in M is denoted by the symbol(S, M),
while the space of all immersions will be denoted by the symbol Imm(S, M)'7.
Obviously we have Imm(S, M) > Imb(S, M).

We want to discuss the sigma-model anomalies of the string’5.

A few preliminary remarks concerning the mathematical structure of the
imbedded or immersed world-sheet of the string are in order:

1} In sigma-models, the relevant space of maps is the space of all maps from the
manifold to the target space, while, for the string, we want to consider only the
imbeddings or the immersions. One of our aims is in fact to “compare” the
“action” of the two difffeomorphism groups: Diff M and Diff S.

In the following we will discuss first the imbedded world-sheet of the string
and later we will consider briefly the immersed one. We have to recall, anyway
that if the dimension of M is large enough (e.g. dim M = 5), then any map from
S to M is homotopic to an imbedding, see [24,25].

2) For any hyelmb(S, M) and for any ¥ eDiff M, the composite yoh, is also an
element of Imb(S, M) not necessarily distinct from h,. Moreover if we are given
hoeImb(S, M), then we can define ¥, ' eDiff M to be equivalent when yechy =
W'ohy. We denote by Diff M/(hy) the space of such equivalence classes, and
by Diffy, M/(h,) the space of equivalence classes of elements of Diff, M, which
is by definition the connected component of the identity. In the following i,
will be an arbitrary, fixed imbedding.

3) We have to consider, at least in principle, three different symmetry groups for
the imbedded world-sheet of the string: Diff S, Diff M and Diff(M, hy(S)). The
last group is defined as the subgroup of Diff M which maps hy(S) into itself.

Any element in Diff(M, h,(S)) induces a diffeomorphism of S, so there is a
group homomorphism:

Pro: DIfI(M, h(S)) — Df S, 3.1)

where e Diff (M, ho(S)) = ohy = hyo p,, (). The map p, is surjective on Diff,, S,
i.e. on the connected component of the identity of Diff S.

For reasons that will be discussed later, we consider also the space
Diff(M, ho(S))' of equivalence classes of elements of Diff(M, h(S)), where two
such elements ¥,y are said to be equivalent if

Pho(‘ﬁ) = Pho(l//,) and (Y)],- 1(ho(S)) — W) - 1(ho(S))

here n: LM — M is the projection and [ is the natural lift for Diff M.
Notice that Diff(M, hy(S)) is a group when the product of two equivalence
classes [Y] and ['] is defined as the equivalence class [y’ ]. Indeed it is the

17 We recall that an immersion h,:S— M is, by definition, a C* map such that k, : T, S— T, M is
injective VxeS. The immersion h; is, by definition, an imbedding if it is injective

18 All the results of this section are valid also for the case of a k-dimensional manifold S imbedded in
an n-dimensional manifold M, with #n > k, provided that the condition dim M = 5 considered below is
replaced by the condition dim M = 2k + 1
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quotient of Diff(M, hy(S)) by the normal subgroup of those ¥ such that
I(Y)hy = hy, where hy:hE LM — LM is canonically induced by h,. The group
Diff(M, ho(S))’ can also be identified with the subgroup of Aut h¥ LM, given by:

{YyeAuth§ LM such that there exists @eDiff M,
with  hooty = (@) ho }

where [ is the natural lift in LM.

We can also consider the group Diff,(M, hy(S)), that is the connected
component of the identity of Diff(M, h(S)) and the group Diffy(M, hy(S))' which
is given by the equivalence classes of elements of Diff, (M, hy(S)).

4) If helmb(S, M)is homotopic to h,, then there exists a difftomorphism s e Diff, M
such that yroh, = h [24,25]'°. So any helmb(S, M) which is homotopic to h,
can be identified with an element of Diff, M/(h,). In other words, we can consider
the imbedding-degrees-of-freedom of the string as equivalence classes of
diffeomorphisms of the target space M.

We denote by Imb(S, M), the set of all imbeddings homotopic to h,.

Notice that the above arguments do not depend on the choice of 4, in a given
homotopy class of imbeddings. Obviously it can also happen, that there is only
one homotopy class in Imb(S, M). This is the case, for instance, when 7, (M) =
7, (M) =0.

In order to discuss the anomalies of a (closed super) string propagating in a
background corresponding to its zero mass sector [26,27], we consider a Lagrangian
which includes, besides the density of Eq. (2.2), also a term A B, where hyelmb(S, M)
and B is a 2-form on M (e.g. the fundamental 2-form, if M is a complex manifold).
The relevant fermionic part of the string action will contain typically two terms
{, ﬁ;3A¢> and {4, J5e,4 >, where w and A are respectively connections on Spin M
and P, a (gauge) principal bundle. Moreover, 2 is assumed to be a section of the
bundle S* ® h¥ TM (corresponding to the Ramond, Neveu, Schwarz formulation),
where S* is the spinor bundle over S with positive (negative) chirality and ¢ is
supposed to be a section of a bundle S* ® h# V, where V is a vector bundle associated
to P. The fields ¢ and A have opposite chirality.

In this section, we will concentrate on the chiral anomalies which have not
already been discussed in the previous section. We refer to them generically as
sigma-model anomalies. Let us discuss first the sigma-model anomalies of the
string, which are analogous to the sigma-model anomalies considered in Sect. 1.

If P is a principal bundle over M, then we can consider the diagram:

WP x 2, Imb(S, M)~ nFev* P 5  ev*p S, p
l J (3.2)
S x 2,, Imb(S, M) ~L 5 S x Imb(S, M) —s M.

19 This statement is true, provided that n=dim M =5
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Here the formalism is the same as in Sect. 1 (see in particular diagram (1.15)).
The anomaly is generated by Wy(nfev* 4,4,) (in the formalism with the
background connection) (see also [28,29,30]) where K is the (normalized)
ad-invariant polynomial with 2-entries on the Lie algebra of the structure
group, A is a connection on P (recall expressions (1.4), (1.5)) and A, is a background
connection on A% P. One can consider also the bundie O M (or Spin M), where
I is a metric on M, and study the “Lorentz” sigma-model anomaly generated by
Wi rfev* w,w,), where w is a Lorentz connection on M and «, is a connection
on h{ O M. When both gauge and Lorentz anomalies are present, we must refer
to the bundle O M + P and the relevant anomaly is generated by the form

Wy(m¥ev* A, Ay) — We(T¥ev* o, mg).
We have essential three cases for the sigma-model anomalies of the string.

(1) In the first case, we denote by F, the curvature of A and we assume that the
Weil homomorphism applied to K gives zero. That is, we assume that there
exists a basic 3-form H , such that K(F ,F,)=dH,.

In this case the sigma-model anomaly can be cancelled by the (generalized)
Wess—Zumino term B which is an clement of 2*(S x 2, (Imb(S, M))).
In particular | B will be a function defined on the path space 2, Imb(S, M).
5

Analogously to the guage anomaly, the Lorentz anomaly also will be cancelled
provided the first Pontrjagin class of M is zero.

(2) As a second case, we assume that K(F 4, F ,) and K(F,, F,,) are not necessarily
exact but that the following condition is satisfied:

K(FA!FA)_ K(Fw’Fw)z dHA,m' (33)

That is we assume that the cohomology class of K(F ,, F ) coincides with the
first Pontrjagin class.

In this situation we can consider the bundle P+ O M over M and the
diagram (see Sect. 1 for the notation):

h¥(P + O M) x 2, (Imb(S, M))

Amntevi(P+ O M) —s eV (P40, M) —SP+0M
J J (3.4)
S x 2, (Imb(S, M) S X Imb(S, M), —2~ M

Now the form

Wi(@Tev* A, Ay) — W (T ev* o, w,) —nfevi H, , 3.5)

is closed (due to (3.3)) and hence exact, since it is a 3-form on a space which
admits as a deformation retract the two dimensional space S. Hence we have
a generalized Wess—Zumino term which cancels the anomaly. Notice that the
minus sign is due to the opposite chiralities.
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(3) In the third case we assume that no equation like (3.3) is satisfied. In this case,
there is no anomaly cancellation.

We are now in position to make a further comment on the Green—Schwarz
mechanism.

We recall that anomaly cancellation for a ten-dimensional field theory can
occur only when we require the imbedding of the orthonormal frame bundle into
the gauge bundle, as was explained in [1], Sect. 8. Hence, in field theory, it is the
imbedding itself which guarantees the validity of an equation analogous to Eq. (3.3).

On the contrary, if we consider the sigma-model anomalies of the string, then
Eq. (3.3) permits anomaly cancellation and no imbedding is required.

In other words, the Green—Schwarz mechanism, without imbedding, should
be interpreted as a mechanism for the cancellation of sigma-model anomalies of
the string, and not for the canceilation of anomalies in a ten-dimensional field
theory. In this case, under suitable geometrical conditions, a cancellation scheme
is also possible, which is realized through a Chapline—Manton ansatz (see [31]).

Other sigma-model anomalies of the string need to be considered.

We will now consider new sigma-model anomalies which have not been studied
before in the literature. We will call them diffeomorphism-sigma-model anomalies.
The first question we have to ask ourselves is whether it makes sense at all to look
for Diff M-anomalies.

In order to understand better the situation, notice that, if we assume that
a diffeomorphism eDiff M transforms the imbedding h,elmb(S, M) into ok,
and the Lorentz (spin) connection o into I(y)” '*w, then not only the string
Lagrangian is invariant under Diff M, but all of its terms are completely insensitive
to the difffomorphisms of M. This action of Diff M is the only one which leaves
the string Lagrangian invariant. The Dirac operator @5, does not transform
covariantly under Diff M, it is simply left unchanged. So it does not make sense to
speak of Diff M-sigma-model anomalies of the string, when the full group Diff M
is considered.

The situation is different if, on the contrary, only the group Diff(M, h,(S)) is
taken into account. In this case we can assume that, under the action of the above
group, the imbedding is kept fixed, while M is transformed. Thus, if we identify S
with ho(S), this group is “perceived” by the imbedded string as the group of
diffeomorphisms of the string itself.

The action of Diff(M, hy(S)) differs from the action of Diff S, only when we
include fields like the 4’s considered before, i.c. when we consider sections of bundles
associated to h LM (or h¥ LM *)?°. In this case two elements of Diff (M, h,(S)) will
have the same effect on the above fields / if and only if they belong to the same
class in Diff (M, ho(S))", i.e. if they coincide on hy(S) and their natural lifts coincide
for all the points of LM |, ().

In this respect, an invariance group we have to consider is Diff(M, hy(S).

20 In dealing with spinor fields one should be careful about the possible change of the spin structure
of § [32] (see also [33]). If we want to avoid such a change, then we can limit ourselves to considering
the group p,, ! (Diff, S)
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As opposed to the case of Diff M, the action of Diff(M, hy(S)) on the fields A and
on the Dirac operator is not trivial. Hence, in principle, if the string action contains
the fermionic part described before, then one has to consider also the sigma-model
anomalies of the string which come from the action of Diff(M, h,(S)). These
anomalies differ from the ordinary sigma-model anomalies since for any chosen
hoelmb(S, M) they are 1-forms on Diff(M, hy(S))' = Aut hf LM, while the ordinary
sigma-model anomalies are 1-forms on Aut, hf P, for a given principal bundle P.

More generally we will consider the action (and the relevant anomalies) of the
full group Auth} LM under whose action, the Dirac operator @ng transforms
covariantly. Obviously our main interest concerns the possibility of anomaly
cancellation. From this point of view there is nothing “special” in the bundle LM,
hence we will study the anomalies of the full group of automorphisms of a bundle
induced through h, from a generic bundle P over M with connection A.

First we notice that Diff, S acts freely on Imb(S, M),, as follows

Tmb(S, M),, x Diff, S —»Imb(S, M),,

3.6
i) ehey, (6
yielding a principal fibre bundle [5]. Then we can consider the fibration:
3,(Imb (S, M)y, 5 < 2, (Imb(S, M)
lm 3.7
(Imb(S, M),
Diff,S

where 2, (Imb(S, M))pir, s is the space of paths on Imb(S, M) with starting point
h, and endpoints given by hqoy, with yeDiffy 21, If 7 (p) is the endpoint of
pe?,,(Imb(S, M))Diffo s then we set

pip =y il m(p)=hooy.

Let now P be a principal G-bundle on M with connection A and let hf P be
the bundle on S induced via h,. To any Y eDiff, S we can associate the canonical
homomorphism

Yyt hEP —hEP.
We are now in a position to define a map
73: P, (Imb(S, M))Diffos —>Authg P. (3.8)

Namely for any pe2, (Imb(S, M))pir,s We set 13(p)= ;;@orA(p) where the
homomorphism 1 ,(p):h¥ P — (hgoy)* P is defined as in Sect. 1 (see Eq. (1.10)—(1.12)).

21 In order to prove that the map %, gives a fibration, it is enough to notice that #, is the combination
of the projection map 7, of the fibration 2, (Imb(S, M)) » Imp(S, M), with the projection map of the
principal bundle Imb(S, M),, - (Imb(S, M)),,/Diff, S
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The map 1, is an extension of the map 7,(1.12), but while the image of 7, is a
subgroup of Authf P, the same is not necessarily true for the image of 7.
The evaluation map

ev:S x Imb(S, M), —»T (3.9)
descends to a map

, S x Tmb(S, M),

. 1
Diff,s (3.10

So we can consider the closed 2 form on
(Imb(Ss M))ho
Diff, S

given by
[eV*K(F 4, F ), (3.11)
S

where F, is the curvature of the connection A. The form (3.11) can be lifted to a
2-form on #, (Imb(S, M)) where it becomes exact since 2, (Imb(S,M)) is a
contractible space. Namely we have

#F [ev*K(F 4, F ) =dC (3.12)
S

and, taking into account the fibration (3.7), we can set??

THC = [ T*Wy(7Fev* A4, A,). (3.13)
N

The above expression is the pullback under the map 75 of the full Aut 4f P anomaly.
Analogously to Sect. 1 we can easily prove that the exactness of the form K(F 4, F ;)
implies the exactness of J*C as a 1-form on P, Amb(S, M))pyee, s- More precisely
the equation

K(F,,F,)=dH, (3.14)

implies
Wg(n¥ev* A, Ay)=ntev* H+d2(Wy(nfev* 4, Ay) —nfevi H), (3.15)

where the homotopy operator 2 is defined as in Theorem (1.19).
From (3.15) we obtain in turn

[T*Wi(rtev* A, 4,) = dgf*,@(WK(ﬁ;"ﬁ*A,Ao) —a¥ev*H),  (3.16)
S

where the last d is the exterior derivative on 2, (Imb(S, M))pirys-
This is a way in which sigma-model anomalies relevant to the full group of
automorphisms of an induced principal bundle can be cancelled. As we said before,

22 In order to avoid a cumbersome notation we use ambiguously the symbol J to denote also the
map S x 2, (Imb(S, M))p,¢r,s = S % Py, (Imb(S, M)) which should more properly be denoted by the

symbol id x J
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the case which is specially relevant for string theory is when the bundle P is the
frame bundle over the target M.

In conclusion we can say that the cancellation of (local) gravitational-sigma-
model anomalies for the string, is guaranteed by the vanishing of the first Pontrjagin
class of the ambient manifold M.

Alternatively, it is enough to a require a condition like (3.3), if we want
to consider simultaneously the gravitational sigma-model anomalies and the
anomalies of the full automorphism group of the “gauge” bundle A P.

Finally, we want to comment briefly on .a more general situation than the
imbedded string. Namely we want to consider a string whose world-sheet S is
immersed into the ambient manifold M as opposed to being imbedded.

We denote by N, the subset of § defined as follows:

N,,={xeS|3x'eS with x' #x and hy(x)=ho(x)}.

The subsets N, = S and ho(N,,) = M are closed. In general both N, and hy(N,,)
will be the union of closed submanifolds (possibly with boundary) respectively of S
and M. We are especially interested here in the case when hy (N, ) and hence [34]
also N, are given by a discrete set of points. In this situation we can take into
account the following groups:

Diff(M, ho (S); ho (N,,) = {yeDiflf M, such that (ko (S)) = ho(S)

and  Y(ho(Ny,)) = ho(Ny,)} (3.17)
Diff(S; N,,) = {¢€Diff S, such that Vyeh,(N, ) we have:
X, X560 L) X, # X, = hoW(x1) = ho(x,)}. (3.18)

We can discuss the sigma-model anomalies of the immersed string exactly in the
same way as we did for the imbedded string, provided that we replace the groups
Diff(M, hy(S)) and Diff S with the groups (3.17) and (3.18) respectively, and that
we take “special care” of the elements of (3.17) and (3.18) which “exchange” the
multiple points.

4. Evaluation Map, Differential Characters and Global Anomalies

A) Consistency Conditions, Group Cohomology and Line Bundles
Over the Orbit Space

In order to introduce global anomalies ([35-41]), it is convenient to reformulate
the comnsistency conditions by including also transformations which are not
connected with the identity. Let 4 be a symmetry group of the theory (e.g. the
group of gauge transformations or the group of difftomorphisms). Perturbative
calculations try to produce an effective procedure to calculate a fermion deter-
minant. The latter will be denoted by Z'(4); it is supposed to be a non-vanishing
complex function, defined locally on the space of connections, .«Z. Then aim is to
construct a globally defined @-invariant functional on ..
Let us represent the action of % on Z(A) as follows:

UW)Z (A) = p(A4;9) Z (A). (4.1)
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If the (complex) factor p(A;y) is non-trivial, then Z°(A4) 1s not invariant and the
effective procedure fails; we have an anomaly. The consistency condition for p(A4;¥)
is found [42] by requiring i — % () to be a representation of %, namely by requiring
the following equality: % (W, Y% (,) = U (Y1, ). This implies the cocycle condition:

p(AY Y ) p(Asy ) p( Ay ga) ™ = L (4.2)
If moreover we suppose that p(A4; ) has the form
p(A;h) = exp[2mio(A; )] (4.3)
for a real function «, then Eq. (4.2) becomes:
a(AY ) + alAs Y — a4 ;) =0 modZ. 4.4)

In field theory we always have to require that p(A4;y) has the form (4.3). The
anomaly corresponding to p(A; ) is trivial if there exists a function ¢ defined on
the space of connections .o/, such that:

pA ) = o(AP)a ™ (A). (4.5)

In this case, by setting Z(A) =6~ (4)Z(A) we obtain a %-invariant functional.
When p(4;y) is represented by (4.3), the anomaly is trivial if there exists a real
function 8 defined on .27, with:

a(A; ) = 0(Ap) — 0(A) mod Z. (4.6)

The above formulae are the basis of our analysis of global (as well as local) anomlies.
Conditions (4.4) and (4.6) are, respectively the cocycle and coboundary conditions
for the group cohomology of % with coefficients in the reduction mod Z of C* ()
(see [43]).

The usual consistency conditions for local anomalies are easily obtained from
Eq. (4.4) by considering ¥, and y, infinitesimally close to the identity; we are then
involved with the Lie algebra cohomology. As pointed out before, we look for a
%-invariant fermion determinant. Hence the problem is to see whether one can
re-define the functional Z'(A) first to be infinitesimally invariant, and further to
be @-invariant (and globally defined on the whole space .&7). While trying to
implement this latter extension, we will come across global anomalies.

In order to understand, from a general point of view, the problem of global
anomalies we will discuss briefly the connection between group cohomology and
complex line bundles.

If we have a cocycle p(A4;y) satisfying (4.2), then we can construct a (locally
trivial) line bundle %, over «//%, defined by the following equivalence relation in
o x C:

(A, ¢) ~(AY, p(A, )" 1e) yeb, Acst,ceC.

It is easy to verify that the above equivalence relation is well defined only if Eq. (4.2)
is satisfied.

If p(A; ) is trivial, namely if it satisfies Eq. (4.5), then we can construct a global
non-vanishing section of % ,, which associates to [A]e.«//% the equivalence class
in o/ xC/~ given by [(A4,0(4)"')]. Vice versa, if £, is trivial, then there
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exists a global section s which we write as s([4])=[(4, f(4)], where [ is
a function: &/ — C*. Since (Ay, f(AY)) ~ (4, p(4, ) f(Ay)), it follows that f(Ay) =
p(A4, )"t f(A4). Hence the group cocycle (4.2) defines a line bundle over «//% which
is trivial if and only if the cocycle itself is trivial.

At this point the problem of global anomalies can be generally stated as follows.
Suppose we have a group theoretical 1-cocycle p(4;y), which is defined only for
¥ belonging to the identity connected component %, of 4. If p(A; ) is trivial, then,
by definition, there exists a function a:.eZ — C* such that p(4;y) = a(AY)o(4)~",
for Aeod, ye%,. Hence, we can extend trivially the cocycle p(4;y) to the whole
group %, by setting p(4; ) = a(Ay)o ™' (A) for Aeo/ and Ye¥. The problem of
global anomalies can be now formulated as follows: are there also non-trivial
extensions of the cocycle p(4;y) to the whole group 4? In other words: are there
non-trivial group theoretical 1-cocycles of 4, which become trivial when restricted
to %,?

We will enter the details of global anomalies after devoting the next subsection
to the illustration of some important technical tools. But before, let us remark that
the approach outlined is aimed at emphasizing the connection of global anomalies
with perturbative field theory and locality.

B) Differential Characters [44]

From the above discussion it is evident that we are looking for objects which
satisfy certain equations modulo integers.

Let us now denote the reduction R — R/Z by a tilde; namely for any real number
r and for any real cochain (cohomology class) o, their reduction mod Z will be
denoted by 7 and & Hence the consistency condition (4.4) and the triviality
condition (4.6) can be written as

G(AY )+ a(Asyry) — (A9 y,) = 0. 4.4y
8(A; ) = 0(Ay) — B(4). 4.6y

Corresponding to the above reduction, we have the Bockstein exact sequence
of cohomology groups [11,13]:

—H'M,Z) - H'(M,R) = H'(M,R/Z) 5 H'* ' (M, Z) -, 4.7)

where i is the canonical map between integral and real cohomology, the tilde
denotes the reduction mod Z and f is the Bockstein operator.

Let us now denote by Z, the group of normalized smooth singular /-cycles and
by ¢ and J respectively the boundary and coboundary operators. An [-differential
character u is a homomorphism u:Z, - R/Z subject to the following condition:

uo0 is the reduction mod Z of an (! + 1)-differential form. (4.8)

We denote by H(M,R/Z) the space of I-differential characters. The relevance of
differential characters for some physical applications, has been pointed out first
by Cocqueraux [45].
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One can always find a real cochain b such that [447]23
bh=u. (4.9)
Moreover if both b, and b, satisfy Eq. (4.9) for the same differential character u,
then b, and b, are cohomologous or, equivalently,
by, =b, + g+ exact, (4.10)

where g is an integral [-cochain.
From (4.8) and (4.9) we obtain [44]

ob=w-—s, 4.11)

where w is an (I + 1)-differential form and s is an integral (I + 1)-cochain. One can
show that w is closed with integral periods, that s is a cocycle and moreover that

i[s]=[w],
where i is the natural map H'*'(M,Z)— H'"1(M,R).
We define now
Si(w=w, 6,(u)=T[s], (4.12)

where w and s are defined as in (4.11). The definitions (4.12) are valid since they
do not depend on the choice of the real cochain b satisfying (4.9).

Cheeger and Simons [44] show also that, denoting by Q% (M) the space of closed
differential forms with integer periods, we have the following exact sequences:

0— H'(M,R/Z) - A'(M,R/Z) "> QL (M) -0

oM
T

0— AYM,R/Z) 22 H' (M, Z) - 0. (4.13)

Moreover by defining
R (M, Z) = {{w, h)eQ{(M) x H(M, Z)|i(h) = [w]},
we obtain from (4.13) the exact sequence
H'(M,R)
Nl ek el AN
i(H'(M,Z))
which shows that whenever we have H/(M, R) = 0, then ue H(M, R/Z) is determined
uniquely by its image in R'™" 1 (M, Z). Moreover we know [44] that if ue H'(M,R/Z),

then d,u = — pu and that &, restricted to Q'(M)/2%,(M) is equal to the exterior
derivative.

- A(M,R/Z) -2 R (M, Z) -0, (4.14)

23 A better notation for Eq. (4.9) would be
EIZI =u,

but we understand, here and in the future, that any real cochain (or any differential form) reduced
mod Z, gives a differential character only when it is restricted to cycles
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If H,(M, Z) has no torsion, then the map i: H'* (M, Z)—» H'* ' (M, R) is injective
and for (w,h)eR'"1 (M, Z), the class h is completely determined by [], hence
RN M, Z)~ QY (M). Tf, on the contrary, H,(M,Z) has torsion, then there is
indeterminacy in choosing & given w. We consider now a G-universal bundle
EG — BG with universal connection ¢ (whose curvature is F;) and an ad-invariant
polynomial Q with k-entries, such that Q(F.,..., F.)eQ5"(BG).

We know that H**~'(BG,R) = 0; hence given any integral class te H**(BG, Z.),
with i(z) = [Q(F,,..., F.)] there exists a unique differential character u,(r)e H* 1
(BG,R/Z) such that 6, (uy(t)) = O(F,,..., F:) and J,(uy(1)) = 1.

If Hy;, 1 (BG, Z) has no torsion, then t and hence u,(t) is completely determined
by Q, but torsion would require a choice of 7 (see also the next point E on
cobordism).

Differential characters can be pulled back via smooth maps even though, in
the general case, homotopic maps do not yield the same differential character. We
now associated to any bundie P(M, G) with connection A a bundle morphism

r L EG
Jn Jn (4.15)

M - BG,

inducing A4 from the universal connection & [46].
It can be proved [44] that the differential character given by f*u,(7) is the
unique one which satisfies the following conditions:

1) 6, (f*uplr)) = f*Q(F, ... Fo),
2) 0,(f*ug(r)) = f*z,

3) f*uy(t) is functorial with respect to bundle morphisms.

If we consider on P(M, G) two connections A;,i = 1,2 and correspondingly two
classifying morphisms (7}, f;),i = 1,2, then we have the following equalities [44]:

T fFug(t) = TQ(A Nz im (4.16)
f?‘uQ(T) wf},k”Q(T) = WQ(A1:A2)|ZZk,1(M>: (4.17)

where on the right-hand side of the above equations we consider only the restriction
to cycles. We are now equipped to construct, for any n-dimensional compact
manifold M and for any ad-invariant polynomial with (n/2 4 1)-entries, an object
which satisfies the consistency condition (4.4).

As a matter of notation, we denote by the symbol u[«¢] the evaluation of the
differential character u (or the singular cochain u) on the cycle a.

C) Consistency Conditions and Local Anomalies

Let P(M,G) be, as usual, a principal G-bundle over an n-dimensional compact
manifold M and let .o/ be the relevant space of connections.
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On the principal G-bundle P x .o/ -+ M x </, we consider the connection #2*
defined in [1], Eq. (7.11), which descends to a connection #' on the bundle
(P x )9 — (M x .5£)/%. Consider also a background connection 4, and define, for
any path p:I — .o/ with A = p(0) and A’ = p(1), the functional

Wgt )= Woln, Ao).
M p(I)
Here, and in the following, we assume that Q is an ad-invariant polynomial with
(n/2 + 1)-entries, such that Q(F, ..., F;)e Q¢*(BG), where ¢ is, as before, a universal
connection with curvature F,.

Let 4, denote the connected component of the identity of 4, let Ae.</, ye%,
and let p be a path lying in the %,-orbit through A, with starting point 4 and
endpoint Ay.

We have the following

Theorem (4.18). Under the above assumptions, the reduction mod Z of the functional
W{QA’A’”(p) is independent OJ: the choice of the path p if p lies in a 4-orbit. Hence it
can be simply denoted by W 5.

Proof. The restriction of the connection 5 to the %,-orbit through A4 is simply
given by ev* 4, where ev:P x 4 — P is the evaluation map (see [1], Sect. 2,3
and7). Choose a class te H"t2(BG,Z) and consider the differential character
ug(7). Let (f, f1) and ([, fo) be the classifying morphisms relevant to the two
connections A and 4,. Obviously we have, for dimensional reasons, f¥u,(t) = 0,
i=0,1. Given two paths p;,p,:I > .« between A and Ay, we combine them to
obtain a loop I:S*—.«/. The difference of the forms W{QA’A'/’}(p,-) is then given
by j Wy(n, Ay). Due to (4.17) and to the functoriality of the differential

Mxi(Sh
character f*u,(r) we have:

Wolev¥ 4, 4o)[M x I(S')] = (ev* fFug(x) — fFug(0))[M x I(S*)] =0,

where ev:M x ¥ -9 is the map induced by the evaluation map ev:P x 4 — P.
Hence Wj5"*!(l)=0 and so Wi"** = W§"*¥)(p) depends only on the connection
Aes/ and on the group element . [

Corollary (4.19). W A satisfies the consistency condition (4.4), namely satisfies the
[

24 Recall that # is defined as follows:
Hp,a(X 1, X2) = AXy) + Ao(X ),

where X,eT,P,X,eT,«/ and w is a connection for the bundle &/ — <//%.

If ¢ is the group of diffeomorphisms (strongly fixing a point), then the space of all connections </ is
to be replaced by the space of all metric connections .«/™""* or by the space of all Levi—Civita connections
2/ as it has been explained in [1], Sect. 7. If ¢, denotes the %-orbit passing through Ae/, then 5
restricted to P x &, is simply given by ev* 4, where ev: P x 4, ~ P x 4 — P is the evaluation map (see
[1], Sect. 2).

In the string case we can consider the identity component of the diffeomorphism group acting on the
space of all complex structures. In this case w will be determined by the Weil-Petersson metric (see Sect. 2)
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following equation:
WgLAlh} + ﬁ/g'//sa/*‘//ﬂh} _ ﬁ/g,A'Ih%} =0.

In other words WEZA’A'” is a group theoretical 1-cocycle on %,.

Remarks.

1) While Wg"""’} does not depend on the chosen path lying in the %,-orbit
connecting A and Ay, the object W{Q‘"A"’}(p), which is not reduced modZ,
depends, in general, on p.

2) If p is the infinitesimal path in 4 represented by the vector field XeT,%, then,
with a slight abuse of notation, we can consider W§"**"**(X)** and show
that it is equal to | jx Wy(ev* 4, Ay), namely equal to the integrated local

M

anomaly. Here jy is defined as in [1], Sect. 3. In other words, by performing
the “infinitesimal variation” in the %,-orbit of W{QA’A‘” (p) we obtain the
integrated local anomaly.

3) We recall that an (integrated) local anomaly is said to be of topological origin
if it represents a non-trivial real 1-cohomology class of % and of non-topological
origin if it represents 0e H!(%,R) (see Sects. 5,6 of [1]). From the discussion
above we can conclude that, if the anomaly corresponding to the ad-invariant
polynomial @ is of non-topological origin, then also W{QA’A"’} (p) does depend
only on the Ae.s/ and Yye¥, and not on the choice of the path p lying in the
9 ,-orbit.

4) Summarizing the above remarks, we can say that, since the polynomial Q is
such that wps(Q) is the real image of an integral class of BG (here wy, denotes
the Weil homomorphism for the classifying space), then the integrated local
anomaly | j, W,(ev* 4, A,) represents a real 1-cohomology class of %, which

M

is the image of an element of H!(%, Z). In fact the class [j JxWolev* A, AO)J
M

is obtained by antitransgressing (suspending) a class in H?(<//%,R), which is
in turn obtained by fiber integrating the pull-back of a class in H**%(BG,R)
(see [1], Sect. 7). Since the latter class is the real image of an integral class, then
also the result of the antitransgression is the real image of an integral class.

We would like now to discuss in more detail the relation between local
anomalies, on one side, and the consistency {4.4) and triviality (4.6) conditions, on
the other side. Here, and in the next two subsections, we will be concerned with
field theory, but, in order to prepare the discussion on sigma models, we will put
temporarily aside the locality (universality) requirement.

First we remark that we are looking for obstructions to defining a non-vanishing
gauge invariant functional. More precisely, in perturbative field theory one tries
to define in a neighborhood of Ae.</, an effective action, i.e. the logarithm of the

25 A better notation would be given by choosing paths p,, such that p(t)=A +etLyA and by
considering lim, . o(1/e) W4+ x4} (p,)
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functional Z(A4) considered at the beginning of the section. The obstructions to
extending the functionals log #(A4) and Z(A) to the whole %,-orbit, in such a way
that (4.3) is satisfied, are given by the non-trivial 1-cohomology classes of %,. In
fact, if 2°(A) transforms under the action of % as in (4.1) and «(A4; ) is given by
W 54} (p), then we have:

O, Z (A)ly -
Z(A)

= 271i8 o A3 )]y = o(X) = 2710 | jx Wio(ev¥ A, Ao)lyzes  (4.20)
M

dglog Z(A)]y-(X) = (X)

where §, is the exterior derivative on ¢ and XeT,9. If the anomaly { j,W,
M

(ev* A; Ao) is of topological origin, namely if it represents a non-trivial element of
H'(%,R), then one can never find a function o(4;y)eC*(%,) satisfying (4.20).
On the contrary, if the anomaly | ji., Wy(ev* A; A,) is of non-topological origin,
M

then there exists a real functional vy (1), defined on the ¥,-orbit through 4, such
that

W5 (p) =74 () — y.4(e). 4.21)

We recall now that integrated anomalies are obtained by considering
cohomology classes in H?(.«7 /%, R) and the relevant antitransgression (suspension)

map:
o
H2<g,R>_)Hl(g,R)

(see [1], Sect. 7)%S.

When o//% is simply connected, then the antitransgression is an isomorphism.
On the contrary if 7, (o7 /%) # 0, then the kernel of the antitransgression is not zero
and includes H'(<//9,R) A H'(o//%,R). In this latter case, when we are given
an anomaly representing the trivial element of H' (%, R), then we may ask ourselves
whether it “comes from the kernel of the antitransgression” or not. Here the
antitransgression itself must be considered as a correspondence from closed 2-forms
on /% to closed 1-forms on ¥, as opposed to being considered as a map between
cohomology groups. We have now the following:

Theorem (4.22). Let the anomaly f]()WQ ev¥* A, A,) represent the trivial element

of H'(%,R) and let a(A;y) be given by Wi*¥}(p), for any path p joining A and
AYs. Then there exists a function 0 defined on o/, satisfying the equation a(A;y) =
O(AY) — O(A) if and only if the above anomaly is obtained by antitransgressing an
exact 2-form on /9.

26 Here we are considering the principal bundle 7:.o/ — .o//%, where ¥ is either the group of gauge
transformations leaving a point fixed or the group of diffeomorphisms strongly fixing a point. In the
latter case the symbol .o/ should be properly replaced by /™" ie. the space of all metric linear
connections (for any metric on M)
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Proof. The antitransgression associates to the closed 2-form a, representing a class
in H*(«//%,R), the restriction to the orbit of beQ'(.«/) which satisfies n*a = db.
In our case b= | W,(1, 4,).

M

If [a] =0, then a=dc on &//% and d(n*c —b)=0 in .«7. Hence b — n*c = db
for a suitable element 0eC* (/). Let 6, denote the restriction of 0 to the orbit
and J, denote the exterior derivative in 4. The l-form J,0, is obviously equal
to the restriction of b to the orbit and hence 8 satisfies the conditions of the
theorem. Conversely if there exists a functional 0 satisfying the equation 0(Ay) —
0(A) = (A, ), then the anomaly is given by 6,0, Let the closed 2-form a on .«//%
generate the anomaly by antitransgression; as before we can set n*a = db. Consider
now 1 =df — beQ'(of); we can show that it is a basic form. In fact the restriction
to @ of 7 is zero and so is the restriction to ¢ of its derivative dt = n*a. Hence
there exists e (//%) with n*7' = r and moreover we have di' =a. [

The above theorem tells us that if the anomaly | j, Wy(ev* 4, 4,) represents

M

0eH'(%4,R)?’, then we must check whether the class in H?(.s//%,R) represented
by the fiber integration (over M) of Q(F,,..., F,), is exact or not, where #' is the
connection on (P x /)/% considered before?®, If the latter form is exact, then our
polynomial Q does not give an obstruction to finding a solution of Eq. (4.6) for
the cocycle W{QA’A“'}(p) defined on %,,.

We are now able to understand better the relation between local anomalies
and group cohomology with coefficients in R/Z. If a local anomaly, corresponding
to an ad-invariant polynomial Q, represents a real cohomology class of 4 which
is in the image of H'(%,Z), then we are able to construct the relevant group
1-cocycle W5 on %,,.

We now assume crucially that % is connected. In this case, if the given anomaly
represents 0 H!(%, R), then, thanks to the above theorem and to the fact that
7, (o7 /%) = 0, there exists a real function 6 on .o/, whose reduction mod Z trivializes
the group 1-cocycle VV{QA’A‘”. In conclusion local anomalies allow us to define
1-cocycles in the group cohomology; when these anomalies are of non-topological
origin, then the relevant 1-cocycles are coboundaries.

The above arguments are valid only when % is connected. When this is not

the case, the situation is completely different. To start with, VV{QA*A‘/’} is a group

27 In order for this condition to be satisficd, Q must be the product of two polynomials @, and Q,
and moreover we must have w(Q,) = w(Q,) = 0. Here w denotes the Weil-homomorphism for the bundle
P(M, G) (see [1], Sect. 5)

28 As an important remark, notice that the triviality of the above class in H*(+//4,R) is not
automatically guaranteed by the requirement that the corresponding local anomaly represents
0eH!(%,R). In addition to the conditions which guarantee that the local anomaly is of non-topological
origin, some extra topological constraints have to be met: for instance, if we are in gauge theories and
if Q is the product of two polynomials Q, and Q, with k-, ,, entries (k; +k, =(n/2+ 1)), then sufficient

conditions which imply | {(Q(F,,...,F,)) | =0 are w(Q,) = w(Q,) = 0 (see the previous footnotc) and
M
H?~1(M,R) = 0 for at least one of the two indices k;
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1-cocycle only on the component connected to the identity of ¥ and not on the
whole group ¥. The case when % is not connected will be dealt with in the next
subsection. Before, let us recall that in this paragraph we have provisionally put
aside the “locality” (universality) problem. We have been stressing only the
“topological significance” of anomalies in order to see the connection between
elements of H'(%,R) and 1-cocycles of the group cohomology. But we have to
remind that locality plays an essential r6le in field theory, hence we will come back
to it.

D) Differential Characters on oZ/% and Global Anomalies in Field Theory

Now we start considering the case when % is not necessarily connected. In
this subsection we continue putting aside the locality problem; morcover we

assume that, for a given ad-invariant polynomial Q, we have | | Q(F,,...,F;) |=
M

OcH?*(//%,R), namely we assume that the given anomaly is obtained by
antitransgressing an exact 2-form on «//4. So, if there are no obstructions
represented by other anomalies, then, taking into account Theorem (4.22), one can
define a %-invariant functional given by:

F(A)=e N F(A) (4.23)

To be more precise one can define a non-vanishing functional locally in .«//%. The
problem is then to extend this non-vanishing functional to the whole space .«7/%,
or equivalently to the whole space .« in a %-invariant way.

We can now consider Z(A) as a local non-vanishing section of a complex line
bundle over 7/%. If we require Z(A) to be the local expression of a global
non-vanishing section, then this means that we are dealing with a trivial line bundie
(see subsection 4). C*-line bundles over //% are classified by their Chern class,
which is an element of H?(<//%,Z). We identify the class represented by

o
Zo Eﬂj{Q(F”/,...,Fﬂ,)eQZ<g>

with the real Chern class of the line bundle which admits Z(A4) as a local section
[371, [47]1?°. Hence, (if there are no other obstructions represented by other
anomalies) our assumptionAon the vanishing of the class {# 4] implies that the
line bundle, which admits #(A) as a local section, has zero real Chern class. But
the torsion information is still missing; namely we are not yet sure that the integral
Chern class of our line bundle is zero.

This Chern class is an element of H?*(«//%,Z), and will be constructed
as follows. We will define in a natural (functorial) way a 1-differential character
%Qeﬁl(ﬂ/g, R/Z) such that 6,%,= % 4. Then the integral 2-class on «//% we
are looking for, will be identified with the image of %, under the map J,.

29 We make the simplifying assumption that there are no other anomalies to worry about
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Since we have assumed that & ,eQ%(//9) is exact, then in «//% we have:
Fo=dA, 4.24)

and so 6,%, coincides (up to a sign) with p(%, — A'), where § is the Bockstein
operator B:H*(#4/9,R/Z)— H*(s//%,1). Now we pass to the definition of
1-differential characters on .«//%.

Consider the diagram (bundle homomorphism) ([1], Eq. (7.12)):

P x of Ev
R —

EG
l J (4.25)
M x of Ev
—— BG,

where ¢ is the symmetry group.

As has been discussed in [17, Sect. 7, diagram (4.25) holds, strictly speaking,
only when we consider the N-skeletons of (M x of)/¥4; the map Ev itself is then
determined by requiring Ev* & =, where ¢ is a universal connection on EG and
#' is defined as before. Moreover when 4 is given by Diff™! M then, as usual, &/
is to be replaced by /™",

Choose the differential character uy(r)e"**(BG,R/Z) and consider
@"‘ug(‘c)elfl”+ L ((M x 5#)/%,R/Z). For any loop | on .«//% consider the fiber bundle
defined by the diagram

—

l*<M><&¢> P Mxst

% Z
Jn jn (4.26)
o
st L2
-

where [is the canonical covering of I. The 1-differential character %erﬁ 14 /%, R/Z)
is then define for any loop ! as follows:

o [I(SY)] = * Ev* uQ(r)I:l*<M;&{>j|, 4.27)

namely it is given by the evaluation of the differential character Ev* uy(z)

on the restriction of the bundle (M x .)/% to the image of [. The defini-

tion (4.27) is independent of the choice of the homomorphism (4.25) which

induces the connection #' on (P x «#)/% [44]. In particular, if 4 is the group

of gauge transformations (fixing a point), then we can consider the map
idx!

MxS'——Mxo//% In this case oll(S')] is simply given by
(id x )* Ev*uy(r)[M x S'].



Evaluation Map in Field Theory, Sigma-Models and Strings—II 419

If we assume that (4.24) is satisfied, then we call the expression

By, —A)=— 52%&€H2<§, z) (4.28)
a global anomaly (in field theory). Here § is the Bockstein operator.

It is evident that, a priori, one cannot consider the left-hand side of (4.28)
without assuming that the local anomaly is of non-topological origin, while the
right-hand side of (4.28) makes sense in any case. In physics, one is interested in
discussing global anomalies only when one has already taken care of local
anomalies. Namely it is the left-hand side of (4.28) which is relavant for field theory:
it represents the integral Chern class of the line bundle over the orbit space which
admits #(4) as a local section, when we know that the corresponding real Chern
class is zero.

Generally speaking, the global anomaly defined above will depend on the class
7, but from the physical point of view we are only interested in finding conditions
which guarantee the vanishing of the global anomaly for any choice of 7.

Such a condition is given by requiring that*°

Tor H? <§, Z) =0. 4.29)

If we assume, as we always do, that both H,(<//9,Z) and H,{(<//%9,Z) are finitely
generated, then we have Tor H*(+//%,Z) ~ Tor H,(s//%,Z). The last term is in
turn equal to the torsion part of 7, (o//%).

We noticed above that the definition (4.27) of the 1-differential character %j
depends on the choice of te H"*?(BG, Z). From the previous discussion we can
argue that we are only interested in the indeterminacy contained in the expression:
8, UyeH* (A9, Z). If either Tor H*(o//%,Z)=0 or Tor H"**(BG,Z) =0, then
8, Uy =,y for any choice of 1,7’e H***(BG, Z) and there is no indeterminacy.
On the contrary if both Tor H?(+//¥4,Z) and Tor H**2(BG, Z) are different from
zero, then the expression

. R4
52%5—52%§26H2<§,Z> (4.30)

represents a possibly non-zero integral class which is mapped into zero by the
canonical map i:H?(<//%,Z)— H?*(s4/%,R).

The expression (4.30) represents, in general, a different type of global anomaly,
which may be relevant in a chiral field theory, where the local anomaly
corresponding to the polynomial Q has vanishing coefficient, and (4.24) does not
necessarily hold.

On the contrary, if (4.24) holds, then (4.30) is given by: (%3, — A)— By — H).
Hence if (4.28) is zero for any te H"*?(BG, Z) with i(t) = [Q(F,,..., F,)], then also
(4.30) is zero.

30 We denote as usual, by the symbol Tor the torsion part of an abelian group
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From the above discussion, we can conclude that there are no field-theory-global
anomalies if the abelianization of 7, (/%)= — n,(%) is torsionless.

In order to be able to compute explicitly the 1-differential characters on .«//%
we need a further discussion.

First we define Vi €%, the space Map,, (I, &) which is given by all C* maps ¢
from I =[0,1] to &, satisfying the following condition:

p(0y=A4 and o@(l)=y*A. 4.31)
It is obvious that:
oL
peMap, (I, d)=>nogoeﬂ<§>, (4.32)

where 7:.o/ —».o//% is the projection map and £2(//%) is the loop space of «//%
(the dependence on the “base point” is always implicitly assumed).
Moreover we have:

Theorem (4.33). Let @eMapy(l, /), ¢’eMap, (I, /) and let us assume that
@(0) = ¢'(0). Then nop and e @' are homotopic (relative to the endpoints) if and only
if Y and ' belong to the same connected component of 9.

(The proof is standard.)

It is also obvious that VieQ(«//%), 3ye¥% and peMap(l, o) with [=nop.
Namely, one can choose any connection on the bundle &7 — o//% and consider
the relevant horizontal lift of I. Now for any y €%, we denote £2,(.<//%) the subset
of Q(o//%) given by all the loops which come from elements of Map, (I, .«/). The
above discussion tells us that Q(+7/%) = | ] Q,(//%). Moreover if  and ¥’ belong

to the same connected component of %lfj then Q, (/%) = 2,(//%). Hence if we
choose arbitrarily an element ; in each connected component %; of ¢, then the
loop space 2(«//%) is decomposed into the disjoint union of £, (+7/%).

Let us first comment on the gauge case. For any €%, we consider the manifold
(P x S'), constructed from the manifold P x I, by identifying (p, 0) with ( =1 (p), 1),
VpeP [48].

We can then consider the diagram (bundle homomorphism) given by

v, PXod m
(P x §1), x Map, (I, ) —* ; L, EG
j J j (4.34)

T
M x §* x Map,(I,. ) — > M x ?E;>BG,

where ev,, is obtained by combining the identity map on M and the following map:

Kaxn d ev
S x Map,(1, /) LN Q‘,,(?) %g

Here n:o/ - o//% is, as usual, the projection. The map ev,, is in turn defined as
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follows:

evy (p, 1, 1) = (p, @4(1)), (4.35)

where peP,tel and p,eMapy(l, o/) with nog, =1l and #:P x of > P x o/ /% is the
projection. Notice that the above definition of the map ev,, is valid, since we have:

evnj/(pa 07 q)l) = evn//(lp~ 1(p)> 1: q)l)

Obviously (evy,ev,) is a G-bundle homomorphism. For each ¢,eMap, (1, «7), we
will use the same symbol ¢, to denote the induced map: (P x '), = (P x o/)/%.

We consider now the case when P=LM™ (the bundle of oriented frames),
% = Diff?>! M (the group of orientation preserving diffeomorphisms strongly fixing
a point) and o/ is replaced by /™' In this case we can define Viye%, the
(n + 1)-manifold (M x S"), constructed from the manifold M x I, by identifying
(x,0) with (y "'(x),1), VxeM. In a similar way we can define the manifold
(LM* x S'),.

Analogously to the gauge case we can consider the diagram:

evy LM+ % E,%metric Ev
Diff™ ! M

LM™* x SY), x Map, (I, o/™ic) EGL(n,R)*
v 1

(4.36)

ey, M x Mmetric Ey
BGL(#n,R)*,
Diff™' M . R)

(M x §'), x Map, (I, o/™)

where ev,, is defined as in (4.35) and ev,, is defined accordingly. Again for each
¢,eMap, (I, /), we will use the same symbol ¢, to denote the induced map:
(M x SY), —>((M x o/™')/Diff™! M). Notice that in the gauge case we are naturally
led to considering the bundle:

(P xS,
Jn (4.37)
M x St
while in the gravitational case we are led to considering the bundle:
(LM™ x §'),
| (4.38)
(M x S),.
The bundle (4.38) is a reduced bundle of the bundle of linear frames of (M x S*),.
Both bundles (4.37) and (4.38) are principal G-bundles which need not be trivial
evenif P and LM ™ are. More precisely the bundles (4.37) and (4.38) are isomorphic
respectively to the bundles P xS’ >M x S* and LM™* x S' > M x S! if and only if
 is in the connected component of the identity of 4.

Notice that when M = §" and e Diff §” is not homotopic to the identity, then
(8" x 8'), is the connected sum of $" x §' with an exotic sphere [49].
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After the above discussion, we can make the following remarks:

a) In the gauge case, the differential character % is completely determined by
the differential characters (id x I)* Ev* uy(t 1)eH ”“(M x §*) for leQ(o4/%). In
the gravitational case, the differential character Uy is determined by the
differential characters @} Ev* uQ(r)eH"“((M x Sh), )for (p,eMapw(I ,szi) But
whenever no@,=mo ] =1, we have also of Ev*uy(t)[(M x SH, =" Ev*
up([(M x §Y),] (see (4.27)). Moreover if ¢ :(M x S )y, (M x &ime“w)/leT’“
and @,:(M x §*),, > (M x o/™")/Diff}»! are such that Im(p,)=1Im(p,), then
e¥Ev¥uy(t) [(M x 8Y),, 1= 03 Ev*uy())[(M x $'),,]. So, in order to deter-
mine completely the differential characters on .&/™"*/Diff™' M, it is enough to
choose one ; in each connected component of %, and consider, on the manifolds
(M x §Y),,, the differential characters @* Ev*uy(t), for peMap, (I, o).

b) Let us consider the special case when ¢ is connected. In this case we can choose,
for any loop ! on &//%, a map ¢,eMap,(I, of), where e is the identity of 4. The
previous analysis tells us that the differential character %}, is given by

olI(S") 1= WolwFn', 4o)[M x I(S*)] (4.39)

To prove (4.39), consider a classifying map for the bundle P(M,G) with
connection A,, and the projection p: M x S' — M. From (4.17) we learn that:

Wol@Fn', Ao)IM x S'1 = (@ Ev¥ up(1) — (foo p)* ug(x)[M x S*].

But {fyop)*uy(t) is zero for dimensional reasons, and so (4.39) is proved.
Equation (4.39) tells us that (% — ') is the reduction of a real cocycle and so
Bluy— A')=0. Namely we have recovered the fact that, for connected 4, we
do not have global anomalies.

c) Further comments on the relation between global anomalies in field theory and
group cohomology are in order. For Ae.«/, €% we consider a path p 4 ,: - .o/
joining 4 and Ay. For any ue H*(<//%,R/Z) we can define a group theoretical
1-cocycle, with coefficients in the reduction mod Z of C* (<¢) (see (4.4)) as follows:

(A 9) =ulmeopy, (D], (4.40)

where 7 is the projection: o/ —».o//% and meop, ,(I) is the loop in o//%9
corresponding to the path p.

It is immediate to verify that the definition (4.40) is a valid one, since it is
independent of the choice of the path p joining A and Ay, due to the
contractibility of <.

Let us assume now that fu =0, where f is the Bockstein operator; then
there exists we H!(«/ /%, R), with W = u. So we can consider the group theoretical
1-cocycle, with coefficients in C*(./) (not reduced mod Z), given by

n(A;¢) = wlmop (D], (4.41)

where the notation is as in (4.40). Moreover we have 7(4; ) = {(A4; ). When u or
w are zero, then the corresponding group theoretical cocycles are obviously zero.

We consider now the elements of H'(«//%,R/Z) represented by %y — A
and %% — U} (see (4.28) and (4.30)). They define group theoretical 1-cocycles
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which are reductions mod Z of 1-cocycles with coefficients in C* (/) if and
only if the relevant global anomalies (4.28) and (4.30) vanish. Moreover if
By — A) =0, then, due to the Bockstein exact sequence, there exists a closed
I-form " on //% such that % —(# + 4')=0. Obviously also A" + A~
satisfies (4.24); hence the vanishing of the global anomaly (4.28) allows the
“redefinition” of the group cocycle determined by %}2—.%7 , SO as to have a
trivial (in fact zero) cocycle.

d) All the above considerations were motivated by the interpretation of the
regularized fermion determinant as a section of a complex line bundle.
If we are instead looking for the square root of a real non-vanishing
determinant (for Hermitian operators), then we are interested in considering
real line bundles over the orbit space. These are classified by H (+//%,Z,) =
Hom(n,(«//%),Z,). In this case the differential characters, which assign a phase
factor to each cycle, do not matter any more. Also there is nothing here which
plays the role of local anomalies. The sufficient condition which guarantees
the absence of global anomalies in this situation, is Hom(n,(//9),Z,)=0,
which is the case when 7y(%)=Z, with p odd. Witten’s SU(2)-anomaly
[35] arises in this framework. In fact, let us consider a gauge theory with
M=58% and G=SU(2). Then we have Z,=n,(SUQ))=n,(¥%) =n(A/%)=
Hom(n, (4 /%), Z,).

E) Cobordism and Indeterminacy

Let us assume that we are given a G-principal bundle P(M"*!,G) over an
(n + 1)-dimensional compact manifold M"*!, a connection 4 on P(M"*!,G) and
an ad-invariant polynomial Q with (n/2 + 1)-entries. Let f be any map which
induces the bundle P(M"*!, G) with connection 4 from a G-universal bundle with
connection ¢. The problem we want to discuss is the following: knowing only the
connection A, are we able to detect the differential character f*uy(t)? Here, f is
an unspecified map which is supposed to induce the G-bundle P(M""!, G) with
connection A.
From (4.16) we learn that

n*f*uQ(f) = T\Q(A)'zM (P (442)

namely we are able to determine f*uy(r) up to ker n*, where n* is considered as
a map from H"*}(M"* 1, R/Z) to H"*'(P,R/Z).

If ker n* is zero, then f*u,(t) is completely determined by (4.42). If ker n* =
H"*Y{(M"*! R/Z) ~ R/Z, then Eq. (4.42) tells us only that TQ(A)is the image of an
integral class of P and f*u,(7) is not completely determined by (4.42).

Finally if ker n* is a proper subgroup of H**1(M"*1,R/Z) = R/Z different from
zero, then it must be finite [11]. Notice that the finite subgroups of R/Z~ U(1)
are represented by the p-th roots of the identity in the unit circle. In this last case
Eq (4.42) leaves a rational indeterminacy.

Another way of seeing the uncertainty in the determination of the differential
characters involves cobordism [44]. Assume that there exists a compact manifold
N such that N = M"** and assume moreover that there exists a G-bundle P over
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N with connection A such that P restricted to dN gives the bundle P with connection
A. Under this hypothesis we can write

f*uQ(r)[M"“]=<1{]Q(Fg,...,F/;)> , 4.43)

where ()~ denotes the reduction mod Z. Equation (4.43) allows us to determine
uniquely the value of the differential character f*u,(t) over the fundamental cycle
M + 1‘

We can have also that N is given by k-copies of M™* 131 and in this case again
a rational indeterminacy arises. In fact we have, due to the definition of differential
characters

kf*uQ(r)[M”“]=<£Q(Fj,...,F/;)> . (4.44)

Let us assume again that Eq. (4.43) holds. We know moreover that, if N is connected,
then Q(F;, ..., F;) is exact on N, namely we have Q(F,...,F;)=dH, and due to
Stokes theorem:

frup@ M 1] :( Jﬂ ﬁ) , (4.45)
that is N
fHug(r)=H. (4.46)

More generally given a principal G-bundle P(M"*?, G) with connection A, we
can consider a situation in which:

i) we are given a Lie group G such that G is a subgroup of G;
ii) there exists a compact connected manifold N, with 0N = M"*! and a G-bundle
P over N with connection A;
ili) P(M"*1!,G) is a reduced bundle of the restriction of P to dN; moreover the
connection A4, restricted to P|,, is reducible to 4;
iv) there exists a polynomial Q on Lie G, which, when evaluated on the elements
of Lie G, is equal to Q;

Under the above hypothesis, taking into account the functoriality of f*uy(t),
we can conclude that (4.45) and (4.46) still hold, when H is replaced by a form H
such that dH = Q(F,..., F;).

Now we come back to global anomalies in field theory. Let us choose an
element i, in each connected component of ¢ and consider the relevant bundles
(4.37) or (4.38) over M x S* and (M x S'),, respectively. If the conditions i)-iv) are
satisfied for M"*!1 = M x §! and for each bundle (4.37) determined by the chosen
Y’s, and for each manifold M"*! = (M x §'),, with the relevant bundle (4.38), then
the differential character %7, (4.27) is completely determined by (4.46).

Notice that if an equation like (4.43) is satisfied or M"** =M x S' or for

31 If these k-copies are identified, we speak of Z/k-manifolds [50]
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M"*' =(M x §'),, then we can draw the conclusion that p(#% — %3) = 0 for any
choice of 7, 7' e H" " *(BG, Z), with i(1) = i(t') = [Q(F,...., F;)], and so there can be
no global anomalies of the form (4.30).

a)

b)

A few final remarks:

In all the discussion above we have admittedly kept aside any consideration
concerning universality. What we had in mind to do was simply to exploit the
fact that a given anomaly was of “non-topological origin.” But field theory
requires locality (that is universality) and anomaly cancellation in field theory
is permitted only if we do not introduce new fields. The expression (4.30) fits
the universality criterion, while the expression (4.28) represents a universal object
only when the given polynomial Q is such that Q(F,,..., F;) =0 as a form and
not simply as a cohomology class.

In the next subsection we will discuss global anomalies in sigma-models
where, as we know from Sect. 1, local anomaly cancellation is possible if the
relevant Weil homomorphism of the target space gives zero when applied to
the given ad-invariant polynomial Q. Our analysis of global anomalies in
sigma-models, will benefit greatly from our analysis of global anomalies in field
theory.

Our discussion has been simplified by the fact that we were dealing with one
polynomial Q at a time. In reality one has a combination of ad-invariant
polynomials with rational coefficients given by characteristic classes related to
the index of some elliptic operator, like the Dirac operator (in which case the
A-class is to be considered) or the Hirzebruch signature (in which case the class
constructed with Hirzebruch polynomials is to be considered). But the arguments
above concerning the réle of torsion need not to be essentially modified.
While talking about cobordism, we meant cobordism of manifolds with principal
bundles over them. In the gravitational case, the problem can be reduced to a
problem of cobordism defined in terms of manifolds endowed with structures
on the tangent bundle. We start by noticing that the bundle (TM x S*),,
associated to (LM™ x §'),, is stably equivalent to T(M x S'),, which is
associated to L(M x S*)1. So, as far as characteristic classes (or numbers) are
concerned, we can work as well with L(M x S*);. If M is a compact Riemannian
spin-manifold (as in our case), so is (M x S'),. If N is such that 0N = (M x §'),,
then we know that the differential characters in which we are interested are
associated to polynomials which give rise to Pontrjagin classes of N. In this
way we are led to study oriented cobordism. Some technical details are needed
here (for instance we have to ask that the metric on the collar of ON is the
product metric), but we will not discuss these problems now.

Spin-cobordism is eventually needed since we are really working with
spin-bundles and spin-connections (see [1], Sect. 7). Moreover spin-cobordism
allows us to establish a connection between differential characters and the
n-invariant of the Dirac operator on the (1 + 2)-dimensional manifold N [51].

F) Global Anomalies in Sigma-Models and Generalized Wess—Zumino Term

Let T be a compact target space, without boundary, endowed with a principal
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bundle P with connection £. We consider the usual evaluation map:
eviM x Map(M, T)-> T, (4.47)

choose an ad-invariant polynomial Q with (n/2 + 1)-entries and assume that there
exists an (n + 1)-form H on T, such that

O(F.,...,F,)=dH. (4.48)

All other notations will be the same as in Sect. 1. By analogy with the previous
analysis of global anomalies in field theory, we could immediately argue that the
presence of global anomalies is connected with the possibility that the real class
[Q(F,,...,F,)] is the image of a non-zero integral class. And we know that in
order to avoid this, we have to require that Tor H"*2(T, Z) = 0. Recall, by the way,
that Tor H***(T,Z) ~ Tor H,, (T, Z).

We rather prefer to arrive at the same conclusion starting from our generalized
Wess—Zumino terms. Consider again diagram (1.15) and consider the relevant
generalized Wess—Zumino term B ((1.20) and Theorem (1.19)). We want the final
effective action (with the inclusion of the (generalized) Wess—Zumino term) to be
a functional on the true degrees of freedom of the theory (namely the space of
maps Map(M, T)). The anomaly which is supposed to be cancelled by the
Wess—Zumino term is a form on the group of the (induced) guage transformations.
So one of the basic requirements we have to ask, in order not to introduce extra
degrees of freedom, is that the functional exp(2zi | B), once restricted to the loop

M

space £2, (Map(M, T)), be in fact a functional over the group of (induced) gauge
transformations.

This is completely equivalent to requiring that for any loop le 2, (Map(M, T))
which induces the identity over Aut, f¥ P, namely such that 7,(l) = identity (see

(1.12)), we have that (j J *B>(l) is an integer. The isomorphism induced by ¢
M

between &P x #, (Map(M, T)) and nf ev* P tells us that, if 7,(/) = identity, then
I* P is isomorphic to /¥ P x S'. We denote by I the canonical covering of the map
! in the following diagram

fipxst - p
ln Pr (4.49)
MxS' — T
Requiring that <§4J*B>(l) is an integer is the same as requiring that

f 1 W, (& Ao) — I*H

MxS
is an integer. Equivalently we want to ask that, for any loop [ such that
7,(l) = identity,

Wo(l*&, Ag)— 1*H (4.50)
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is exact as a cocycle in H*"*'(M x S',R/Z). But, due to (4.17), the cohomology
class of (4.50) is in turn the same as the cohomology class represented by

I (ug (&) — 1), (4.51)

where u,() is one of the differential characters in H"*Y(T,R/Z) such that
01up(&) = Q(Fs,..., F).

A sufficient condition which guarantees that (4.51) is exact for any loop ! with
7,(l) = identity is~the exactness of uy(S) — H. Assume now that Tor H"* (T, Z) = 0.
Then f(uy(E) — H) =0 and due to the Bockstein exact sequence (4.7), up(¢) — H
must be the reduction of a real class AcH"*!(T,R) represented by a closed
differential form H,. Since dH, =0, we have also that d(H + H,) = Q(F,,..., F;),
and so by redefining [37]

H=H+H,, (4.52)

we obtain that
j WQ(Z_*é,AO)— I*H'

Mx st
is an integer for any loop lef2, (Map(M, T)) with
7, () = identity.

Hence, if we require that the torsion part of H" " ?(T, Z) is zero, then the exponential
of 2mi times the integral of the generalized Wess—Zumino term B, restricted to
each gauge orbit, descends to a functional on the group of induced gauge
transformations.

More generally we can prove, under the above assumption on Tor H** (T, Z),

that the functional exp<2nijB> descends to a functional over the space
M

of induced bundie homomorphisms, namely on the image of the map t, (1.10)
(see also (1.19)). In order to verify this, it is enough to notice that, if two paths
P1,P2€Z%;,(Map(M, T')) are such that 14(p,) = 74(p,), then their endpoints must
be equal and so, by combining them, one obtains a loop which induces the identity
in Aut, h} P.

Hence, if the restriction of exp<2ni ] B) to the loop space 2, (Map(M, T))
M
descends to a functional on the group of induced gauge transformations, then the
term exp<2ni f B> descends to a function on the image of the map t,. Notice
M

that the Dirac operator (coupled to the induced connection) is parametrized by
the space Im(t,) c Hom(f§P, P) and transforms covariantly under the group
Im(7,); hence the relevant determinant will be represented by a section of a line
bundle over Map(M, T),, .

In analogy to (4.27), we can define differential characters on Map(M, T). In
fact, any loop e, (Map(M, T)) can be seen both as a map I:S* >Map(M, T)
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and as a map I:M x §' - T. So a 1-differential character %, on Map(M, T) can
be defined as follows:

U H[US")] = Fuy(E)[M x S']. (4.53)

The global anomaly in the given sigma-model is then defined as the class 6,%,,.
It is determined by

Blug(&) — H) = — d,up(&)eH" (T, Z), (4.54)

where f is the Bockstein operator and H satisfies (4.48). The class (4.54) depends
obviously on the choice of u,(£), but, differently from the global anomaly in field
theory, it does not depend on the space-time manifold M. In other words it is a
“universal object” in the sense of Sect. 1. Again, if we require Tor H"*?(T,Z) =0,
then (4.54) is zero.

Summarizing, in calculating sigma-model anomalies we consider a class w in
H"*2(T,Z) whose image i(w) in H""*(T,R) is given by [Q(F,,...,F,)]. From our
discussion of Sect. 1 we can conclude that in order to have the cancellation of the
corresponding local anomaly, we have to require that i(w)=0eH"*2(T,R). The
cancellation of both the global and the local anomaly follows when o itself is zero.
Obviously if Tor H**2(T,Z) = 0, then the local anomaly cancellation implies that
there is also no global anomaly. Notice that this condition is automatically satisfied
when the world-sheet of a string is imbedded in a four dimensional ambient
manifold T.

In this connection we notice that we can pullback any class we H"*%(T,Z) via
the evaluation map, yielding a class in H"*2(M x Map(M, T), Z)). If we denote by
Z¥T a “singular 2-cycle” in Map(M, T), we can obtain, by evaluating ev* @ on
cycles of the form M x Z¥'T an element of H>(Map(M, T), Z)). If we identify the
latter class with the Chern class of a complex line bundle over Map(M, T), then,
in analogy with our previous discussion of global anomalies in field theory, we
can conclude that the cancellation of all local and global anomalies in sigma models
allows us to define a complex non-vanishing section of this line bundle, ie. a
complex non-vanishing functional on Map(M, T), representing an invariant
fermion functional integral obtained by correcting the original fermion determinant
by means of the Wess—Zumino term. By requiring Tor H"**(T,Z)=0 and
[Q(F,,...,F:)]=0eH""*(T,R), we guarantee that the ad-invariant polynomial Q
does not provide any obstruction to the definition of such a functional on
Map(M, T), for any n-dimensional compact manifold M.

It is also worthwhile noticing that in the case of the imbedded string (see Sect.
3), the above topological constraints on the target space (i.e. on the ambient
manifold) guarantee also that the polynomial @ does not provide any obstruction
to the trivialization of the determinant line bundle, defined on the space of the
imbeddings, modulo the diffeomorphisms of the world-sheet of the string. So we
can conclude that the vanishing of the first Pontrjagin class of the ambient manifold
plus the requirement that its third homology group is torsionless, allows the
cancellation of the difffomorphism-sigma-model anomalies of the string and the
absence of the relevant global anomalies.
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G) Sigma-Models with Target T such that TorH,. (T,Z) #0

Let us assume, for the moment that the free part of H,, (T, Z) is zero. In this case
H . (TLL)=Z, ®Z, ® - ®Z,. If pis the L.cm. of the p;, then we have:

*(ug($) — H)[M x Sljeg, (4.55)

where as usual Q(F,,...,F;)=dH on T?? Obviously homotopic loops in
Q2,,Map(M, T)) yield the same number in Z/p. In this case there is no global
anomaly if Q(Fy,..., F,) has periods which are multiples of p. Roughly speaking,
this means that if the “normalized” polynomial Q is further multiplied by p, then
(4.55) is zero. Now the coefficient in front of the polynomial Q depends on the
matter fields we are considering (i.e. on their respective representations of the group
G).

If Free H,. ((T) # 0, then the situation does not change substantially. We are
in fact allowed to add to H any closed differential form. Hence, if Q(F,..., F;)
has periods which are multiples of p, then we have B(uy(f) — H) =0, where f is
the Bockgtein~operator. So there exists a closed differential form H’, such that
ug(l) —(H + H')=0.

Hence, as happens for local anomalies also global anomalies can be cancelled
accordingly to the matter fields which are present in the theory (see e.g. [40,417).

When Tor H, ., (T) is not necessarily zero, then we may be interested in looking
for sufficient conditions which could guarantee the absence of global sigma-model
anomalies, for a specific space-time manifold M. For instance, let f, be a given
map: M — T and let us assume that for any loop lef2, (Map(M, T)) there exist:

a) a compact connected manifold N, with 6N, = M x S%,
b) a map h;:N,— T which, when restricted to 0N, =M x S, is equal to I.

The above maps h, induce principal G-bundles over N, which satisfy the
condition wy,(Q) = 0, where wy, is the relevant Weil homomorphism. Hence, taking
into account definition (4.53) we have

Uo(I(S)) = *ug(O)LON,] = ug() [0m(N1)] =< [ ev* H> ;
($7)

M xl

where ev:M x Map(M, T)— T is the usual evaluation map. So %, is the reduction
of a real cochain and there is no global sigma-model anomaly. In conclusion,

32 More specifically we can denote by 2, (Map(M, T)),, the space
{llle,; Map(M,T)) and Imt)=fo(m) foragiven meM and foreach reS*}.

Each loop lef2, (Map(M, T)), can be seen as a map M A S§* — T, where M A S! is the suspension of
M. Then there exists a group homomorphism [13]

HO(Qfo(Map(M’ T))*)"’Hn+ 1(T>Z)

given by [+ [I, n,(c)], where c is the fundamental cyclein M x S',7:M x S* - M A Sis the projection
and I, n, denote the induced maps in homology
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bordism [52] can be relevant in determining the absence of sigma-model global
anomalies, for a given space time manifold M.

5. Comments

We have seen that anomalies in field theory are naturally connected with
the cohomology induced by suitable evaluation maps. Anomalies can have a
“topological” significance only when the evaluation map has a topological
significance, i.e. only when the evaluation map allows us to compute some of the
true (De Rham) cohomology of the spaces of maps we are considering.

But also if this is the case, as in gauge theories, there are true anomalies which
do not correspond to any non-trivial cohomology class of our space of maps.
Nevertheless we have shown that, independently of the topological significance of
anomalies, the evaluation map methods developed in this and the previous paper
can give us the correct framework for computing the coefficients according to the
family’s index theorem, even when the objects we are considering represent
trivial cohomology classes. This is specially relevant for gravitational anomalies.

Another bonus we gained, by considering the evaluation map, is the possibility
of showing similarities between gauge theories, sigma-models and strings. The
cohomology induced by the evaluation map is the relevant object for anomaly
calculations in all these cases.

Conformal anomalies in string theory can be thought of as special cases of
holomorphic anomalies, but this gauge interpretation of conformal anomalies
cannot be extended to the case of higher dimensional manifolds. Moreover,
requiring the cancellation of the holomorphic anomalies for strings is equivalent
to requiring the cancellation over the moduli (Teichmiiller) space.

From the point of view of anomalies, sigma-models are very similar to gauge
theories; in fact, gauge theories can be envisaged as limiting cases of sigma-models
when the target space approaches the classifying space. This similarity however
leaves room for important differences, which render sigma-models much more
flexible from the point of view of chiral anomaly cancellation. Indeed we have
shown that, under suitable geometrical constraints on the target space, we can add
local counterterms to the quantum action which cancel the corresponding
anomalies. These terms have been called “generalized Wess—Zumino terms.”
They are functionals in the path space of the maps into the target space.
They are particularly important in sigma-models which represent a (super) string
propagating in the background provided by the zero modes of the string itself.

The mechanism proposed in the literature in order to cancel chiral anomalies
in these models is essentially the same mechanism & la Green—Schwarz as in the
effective field theories, a mechanism which is based on the properties of the 2-form
field B. We have scen that it is possible to cancel the same anomalies by means
of generalized Wess—Zumino terms, which come up very naturally in the context
of sigma-models and represents complicated interactions of the bosonic part of
the superstring with the background geometry. They allow us to avoid postulating
problematic properties for the background field B. Of course this means also that
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the effective action of the relevant sigma-model is incomplete without the addition
of such Wess—Zumino terms.

The price we have to pay in order to be allowed to add such Wess—Zumino
terms consists in constraints on the background geometry. This feature is far from
negative and has to be interpreted as a selective criterion for the background
geometry. As is suggested in the literature, conformal invariance should provide
the equations of motion for the background fields. However explicit information
concerning the geometry and topology of the space-time do not seem to be within
reach of this method. The constraints necessary for the existence of a generalized
Wess—Zumino term are a way to obtain such information. Additional information
comes from the requirement that the quantum action obtained after adding the
generalized Wess—Zumino term be really a functional defined on the true degrees
of freedom of the theory. In this way, we come across the problem of global
anomalies. We have analyzed this problem in terms of differential characters and
found sufficient conditions for the absence of global anomalies in field theories
and sigma-models of the string. In the latter case, they translate into additional
constraints on the topology of the space-time.

We have extended the previous analysis to the diffecomorphism type sigma-
model anomalies of the string, which we have described in Sect. 3.

Finally we should try to compare the results we have found with still another
method of calculating chiral anomalies in string theory in terms of the background
fields: the direct string loop calculations of amplitudes with external legs repre-
senting the zero modes of the string itself [53-56]. These calculations, which
are limited to one-loop and to a flat background, do not reveal the presence
of any anomaly. Although a close comparison with our results is far from
straightforward, we can interpret this as a support to our attitude of adding
generalized Wess—-Zumino terms, which represent properties of the string rather
than properties of the background field B. On the other hand, since our results
are independent of the genus of the surface, they add support to the conjecture
that anomalies are absent to any string loop order in the sense of references [ 53—56].

Appendix I. On the Evaluation Map for Diff M

Let M be an n-dimensional, compact, Riemannian oriented manifold, let 27(M)
be the space of p-forms on M and let Z, (M) be the space of smooth k-cycles in M.
We consider the evaluation map:

eviM x Diff M —» M. (AL1)
We know already tha.

ev 1 QP(M) — Q7(M x Diff M) (A1.2)

is a monomorphism in cohomology. We can establish a more stringent result by
considering for all y?eQ?(M), the following maps:

1P Z,— (M) — Q(Diff M)

¢ ad LR SVAE
¢ N—\—

1 terms

(AL3)
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Here the notation is as in (2.2)' of [1], that is Y eDiff M, i, is the map X — iy for
Xediff M, and vectors YeT,, Diff M are pulled back to the origin (i.c. we consider
Y5 YeT, Diff M ~ diff M).

Let us define now, ¥y, the map:

3P Z,_ (M) — Q' L (Diff M),
¢ = d(xf (¢))-

Here 6(y¥{(c)) means the exterior derivative, in Diff M, of the I-form y{(c).
We can now state:

(AL4)

Theorem ALS. The following conditions are satisfied ( for 1 <1< p):
(@) oxf =(— D'y, Vi,
(b) xf =n? for some |=>y? =y?.
Here d is the exterior derivative in Q*(M), and the index p + 1 in (a) only reminds

us that dy is a (p + 1)-form.

Proof. A direct calculation proves (a)*3. In order to prove (b), we have to prove
first the following:

Lemma AL6. Let yeQP(M) and let 1 £1=< p, then:
dliyiy---iz0)=0 VX.Y,...,ZeDiff M=y =0.
N

! terms
Proof [57]. It is enough to consider /=1 and to work in local coordinates
{x(,...,x,}. Let X = x,(0/0x;), and let the following equality hold:

0 =dixy = dx; A iy, 3 + %, i35, 2)-
But we can choose at ueM, x,(u) =0, so we have
O=dxi Aige 2 VX4,
and hence
lojoe X = A dxy A dXy Ao AdX,.
Since iy, x 1s a (p — 1)-form, the parameter 4 must be zero and so we have:
diy=0 VZediff M=y=0.

Coming back to the proof of Theorem AlLS5 we have:

P=py? for some I=d|i , i Yy¥@P—n?)|=0=y"—n?=0,
xf = nf Ol 77)) K —n
tI+1) terms

and so the proof is completed. [

33 That is (a) follows from the following equality:
Bigy g W af =d iy--ipy WP (=1 iy dyFy?

—— —— ——
Iterms (I+1) terms {({+1) terms
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As a corollary to Theorem ALS5 we have:

oy =0 for some [=dy’=0, (AL7)

W =0pr-! forsome I=y?=dp? . (ALS)

Appendix II. Covariant Anomalies

Let P(M, G) be a principal G-bundle, let 4 = Aut, P and let ev:P x % - P be the
evaluation map.

Here the notation will be the same as in Sect. 2 and 5 of [1]. In particular we
set n=dim M, with n even.

Consider on P a universal k-form y given by an ad-invariant polynomial Q on
Lie G, whose entries are filled with 4, F,[A, A1,[F, A],[ 4,[F, A]], etc.. According
to Sect. 2 of [1], we have:

evE g =yF g i g — i Y4 e+ (= DO gty (ATLD)
kterms

Now A is a pseudotensorial form (in the sense of [4]) while F is a tensorial form.
But VXeLieG,iy4 is a tensorial form while iy F = 0. Hence if y is not basic, there
exists a unique h, with 1 £h <k, such that:

RRENTLD (AIL2)
fierms

is a basic non-zero (k — h)-form on P. Such a number h is simply given by the
“number of 4’s” which appear in y (i.e. in the entries of Q).

We are specially interested in finding all different forms (AIL2) in the case
k=n+1, h=1. In this case Q can have cither (n/2 4 1)-entries, i.¢:

x=0Q(AF,....F), (AIL3)
or Q can have n/2-entrigs, i.e.
1=0Q([F.ALF,....F). (AIL.4)

But [F, A]=dF, due to the Bianchi identity, and so (AIl.4) is identically zero.
Hence the unique solution to our problem is

i U*x =i W QA F,..., F), (AIL5)

which is called “the covariant anomaly” [58-59].

The covariant anomaly (AIL5) is a basic n-form on P, and so it is closed, e.g.
diyy=0VXeLieG.

A direct calculation shows that, if ¥’ is any universal form (of the same kind
as y) then the form i, \y* y given by (AILS5) cannot be written as di,y’.

In order to understand how the covariant anomaly enters the calculations
concerning chiral anomalies, consider the expression of the anomaly with a
background connection (see Sect. 3 of [17):

JoyWoly* A4, Ay). (ATL6)
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If in (AIL6) we set A = 4, and y = identity, then we obtain the covariant anomaly.
It is easy to see that the covariant anomaly, despite Eq. (3.5) in [1], does not satisfy
the consistency condition.

This is not a contradiction. In fact when we put in (AIL6) 4, = A4, then we
obtain a form on M x % which contains both y*A4 and A. That is, we obtain a
form on M x & which is not the pullback, via the evaluation map of a (universal)
form on P.

Appendix III. A Remark on the Absence of Global Gauge Anomalies for Spin(32)
and E; Gauge Theories and on the Classification of E;-Bundles

Let P be a G-bundle over M such that Aut? P is weakly homotopic to Map™(M, G).
In order to understand better the conditions for the absence of global anomalies,
we recall that for a topological space X with n;(X)=mn,(X)=0 one can find a
family of approximating spaces X,,n = 3 (Postnikov approximation, see e.g. [13])
such that:

K(ns,5)— X5 —K(ng,7)

ll’zz
K(n,,4) -5 X, <5 K(ns,6) (AIIL1)
1 Ps
K(TE3,3): X3 —’K(TC455)’
where K(r,, k) are Eilenberg-Mac Lane spaces and z, = 7, (X);
K(m,m - X,
by (AII1.2)
X, K+ )
is a fibration, with projection p, _, and fiber K(=,, n), where i, is the inclusion map
and k,_, the inducing map. If M is any CW complex of dimension #n, then
(M, X], =[M,X,]1,,

where [ X, Y], represents the homotopy classes of maps from the pointed space
X to the pointed space Y. In this sense X, represents an approximation to X.
For a ten-dimensional space M satisfying the above requirements, we have
therefore the following set of exact sequences (obtained from the above fibrations):
(M, X1,
l
HIO(M,MO)—’[Man]*‘* M, Xo 14 - H' (M, 7,,),
HQ(MJTQ) - [MsXQ:]* - [MsXSJ* - HIO(M:TEQ),
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H4(M,7T4) - [M5X4]* “’H3(M,TC3)—> HS(M,N4),

since [M, K (n,n)],, = H"(M,n). In the case of X = Eg, we haven, =n, =0, 1, = Z,
7y =+ =7y, = 0. Therefore

[M, X1, =M. X 0], =H*M,Z).

In the case of X =Spin(32), we have n;,=n,=0,13=Z,1, =15 =71,=0 and
n,=2Z,ng=m9=17Z, and 7w, =0. We can conclude that there are no global
anomalies for Eg-gauge theories if H>(M,Z) is torsionless. If we are concerned
with E; x Eg-bundle over M, then sufficient conditions for the absence of global
anomalies can be found, by noticing that

[M,Eg X Eg],=H*(M,Z@®Z)= H3(M,Z)® H*(M, Z).

In the case of Spin(32) the requirements are more stringent since sufficient
conditions which imply the absence of global anomalies are met if H*(M,Z)=
H'(M,Z)=H%M,Z)=H%M,Z,1=H°(M,Z,] = H°*(M,Z,) = 0.

By setting X = BE, in the above diagram and using n,(BEg)=m;_,(Eg), one
easily finds that the principal bundles over M (dim M < 14) with fiber E4 are
classified by H*(M, Z).
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