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A compound option (the mother option) gives the holder the right, but not the obli-
gation, to buy (long) or sell (short) the underlying option (the daughter option). In
this paper, we consider the problem of pricing American-type compound options
when the underlying dynamics follow Heston’s stochastic volatility and with
stochastic interest rate driven by Cox–Ingersoll–Ross processes. We use a partial
differential equation (PDE) approach to obtain a numerical solution. The problem
is formulated as the solution to a two-pass free-boundary PDE problem, which
is solved via a sparse grid approach and is found to be accurate and efficient
compared with the results from a benchmark solution based on a least-squares
Monte Carlo simulation combined with the projected successive over-relaxation
method.

1 INTRODUCTION

The compound option goes back to the seminal paper of Black and Scholes (1973).
As well as their famous pricing formulas for vanilla European call and put options,
they also considered how to evaluate the equity of a company that has coupon bonds
outstanding. They argued that the equity can be viewed as a “compound option”
because the equity “is an option on an option on … an option on the firm”. Geske
(1979) developed the first closed-form solution for the price of a vanilla European
call on a European call. It turns out that a wide variety of important problems are
closely related to the valuation of compound options. Some examples include pricing
American puts in Geske and Johnson (1984) and hedging volatility risk by trading
options on straddles in Brenner et al (2006).
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A compound option (called the mother option) gives the holder the right, but not
the obligation, to buy (long) or sell (short) the underlying option (called the daugh-
ter option). For simplicity, we describe the European-type compound option as an
example. Suppose that a compound option expires at some date TM with the strike
price KM and the daughter option, on which it is contingent, expires at a later time
TD .> TM/with the strike priceKD. Under geometric Brownian motion dynamics, the
price of a European put on a European put (or a put on put for short),M.S; t/, may be
written as a conditional expectation under the risk-neutral measure of the discounted
payoff at the maturity of the mother option where the payoff is the positive part of
the differences between the price of the daughter option at that time and the strike of
the mother option. Similarly, we can define put on call, call on put and call on call.

Compound options are common in many multiphase projects, such as product
and drug development, where the initiation of one phase of the project depends on
the successful completion of the preceding phase. For example, launching a product
that involves a new technology requires successful testing of the technology; drug
approval is dependent on successful Phase II trials, which can be conducted only
after successful Phase I tests. With compound options, at the end of each phase, we
have the option to continue to the next phase, abandon the project or defer it to a
later time. Each phase becomes an option that is contingent upon the exercise of
earlier options. For phased projects, two or more phases may occur at the same time
(parallel options) or in sequence (staged or sequential options). These options are
mostly American with the right to buy (call) or sell (put) on or before the expiry of
each option. We refer the reader to Kodukula and Papudesu (2006) for more examples
of compound options in real option applications.

Derivative securities are commonly written on underlying assets with return dynam-
ics that are not sufficiently well described by the geometric Brownian motion (GBM)
process proposed by Black and Scholes (1973). There have been numerous efforts
to develop alternative asset return models that are capable of capturing the leptokur-
tic features found in financial market data, and subsequently to use these models to
develop option prices that better reflect the volatility smiles and skews found in mar-
ket traded options. One of the classical ways to develop option pricing models that
are capable of generating such behavior is to allow the volatility to evolve stochasti-
cally, for instance according to the square-root process introduced by Heston (1993).
Since we consider the pricing of American-type options, the early exercise premium
of the option depends on the cost of carry determined by interest rates. Consequently,
the volatility of interest rates does affect the decision to exercise this option at any
given point in time. Hence the compound options of the type that we consider in
this paper are very sensitive not only to the volatility of the underlying but also to
the risk-free interest rate, and this is the motivation for considering American-type
compound options under stochastic volatility and stochastic interest rates.
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Han (2003) and Fouque and Han (2005) introduce a fast, efficient and robust approx-
imation to compute the prices of compound options such as call-on-call options within
the context of multiscale stochastic volatility models. However, they only consider
the case of a European option on a European option. Furthermore, their method relies
on certain expansions, so its range of validity is not entirely clear.

To the best of our knowledge, there is no literature studying the compound option
pricing problem under both stochastic volatility and stochastic interest rates, but
some authors do discuss the American option pricing problem under these dynam-
ics. Boyarchenko and Levendorski (2007) formulate the option pricing problem by
a partial differential equation (PDE) approach and they calculate the option prices
with the help of an iteration method based on Wiener–Hopf factorization. Medvedev
and Scaillet (2010) introduce a new analytical approach. After using an explicit and
intuitive proxy for the exercise rule, they derive tractable pricing formulas using a
short-maturity asymptotic expansion. Depending on model parameters, this method
can accurately price options with time-to-maturity up to several years.

In the case of European options on European options under GBM dynamics, there
exist “almost” explicit integral-form solutions. However, in situations involving more
general dynamics (such as stochastic volatility), either explicit solutions do not exist
or the integrals become difficult to evaluate. In contrast it turns out that the PDE
approach provides a very efficient and flexible way to compute prices of compound
options. The use of this approach is not restricted to European-type options, and can
also include American-type, Asian-type or other exotic types of options.

In this paper, we demonstrate the PDE approach to the problem of pricingAmerican-
type compound options. We assume that both the mother and the daughter options
may be American-type. The American meaning of the mother option is the same as
the conventional American option, namely the holder of the compound option can
exercise the mother option at any time before the maturity TM. Upon exercising the
mother option, the holder will hold a daughter option from the early exercise time and
we assume that the holder can exercise the daughter option any time from then until
the maturity TD. In principle, the method we develop is able to price all four kinds of
compound options, but here we only give details of the case of an American put on
an American put.

The remainder of the paper is structured as follows. Section 2 outlines the problem
of an American-type compound option, where the underlying asset follows stochastic
volatility and stochastic interest rate dynamics. In Section 3 we outline the basic idea
of the sparse grid approach and implement a combination technique on a sparse grid
to find the price profile of a daughter option and apply the same technique to find
the price profile of the mother option based on the results from the previous step.
A number of numerical examples that demonstrate the computational advantages of
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the sparse grid approach are provided in Section 4. We draw some conclusions in
Section 5.

2 PROBLEM STATEMENT-COMPOUND OPTION WITH STOCHASTIC
VOLATILITY AND STOCHASTIC INTEREST RATES

Let D.S; v; r; t/ denote the price of an American put option (the daughter option)
written on a stock of price S at time t with maturity time TD and strike priceKD, and
let M.S; v; r; t/ denote the price of an American put option written on the daughter
option of price D.S; v; r; t/ with maturity time TM .< TD/ and strike price KM. The
variables v and r denote the variance of the stock price return and the risk-free rate
at time t , respectively.

Analogously to the setting in Heston (1993) with in addition a stochastic interest
rate of the Cox–Ingersoll–Ross (CIR) type, the dynamics for the share price S under
the risk-neutral measure are governed by the stochastic differential equation (SDE)
system1

dS D .r � q/S dt C
p
vS dZ1; (2.1)

dv D �v.�v � v/ dt C �v
p
v dZ2; (2.2)

dr D �r.�r � r/ dt C �r
p
r dZ3; (2.3)

where Z1, Z2 and Z3 are standard Wiener processes and E.dZi dZj / D �ij dt ,
i D 1; 2, j D i C 1; : : : ; 3, with E being the expectation operator under the risk-
neutral measure. In (2.1), r is the risk-free rate of interest and q is the continuously
compounded dividend yield. In (2.2) the parameter �v is the so called vol-of-vol (in
fact, �2v v is the variance of the variance process v). The parameters �v and �v are
respectively the rate of mean reversion and long run variance of the process for the
variance v. In (2.3) the parameter �r is the volatility of the interest rate process (in
fact, �2r r is the variance of the interest rate process r). The parameters �r and �r are
respectively the rate of mean reversion and long run interest rate of the process for
the interest rate r .

These parameters are under the risk-neutral measure and are related to the corre-
sponding quantities under the physical measure (that we denote as �P

v , �P

v , �P

r and �P

r )

1 Of course, since we are using a numerical technique we could in fact use more general processes
for S and v. The choice of the Heston processes is driven partly by the fact that this has become
a very traditional stochastic volatility model and partly because the transform methods (which are
used to derive the benchmark prices by the Fourier cosine expansion method) do not easily handle
the more general variance processes.
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by two parameters that appear in the market prices of both volatility risk and interest
rate risk.2

We are also able to write down the above system (2.1)–(2.3) using independent
Wiener processes W1; W2 and W3 so that

0
B@dZ1

dZ2
dZ3

1
CA D

0
BBBBB@

1 0 0

�12
p
1 � �212 0

�13
�23 � �13�12
p
1 � �212

s
1 � �213 �

�
�23 � �13�12
p
1 � �212

�2

1
CCCCCA
0
B@dW1

dW2
dW3

1
CA :

The price of an American compound option under stochastic volatility at time t ,
M.S; v; r; t/, can be formulated as the solution to a two-pass free-boundary PDE
problem. We first solve the PDE for the value of the daughter option D.S; v; r; t/
given by

KD � rD C
@D

@t
D 0; (2.4)

on the interval 0 6 t 6 TD and subject to the terminal condition

D.S; v; r; TD/ D .KD � S/
C; (2.5)

free (early exercise) boundary condition

D.d.v; r; t/; v; r; t/ D KD � d.v; r; t/; (2.6)

and the smooth-pasting conditions

lim
S!d.v;r;t/

@D

@S
D �1; lim

S!d.v;r;t/

@D

@v
D 0; lim

S!d.v;r;t/

@D

@r
D 0; (2.7)

where S D d.v; r; t/ is the early exercise boundary for the daughter option at time t ,
variance v and interest rate r .

2 In fact, if it is assumed that the market prices of risk associated with the uncertainty driving the
variance process and the interest rate process have the form �v

p
v and �r

p
r , respectively, where

�v is a constant (this was the assumption in Heston (1993)) and �r is a constant, then

�v D �
P
v C �v�v ; �v D

�P
v �

P
v

�P
v C �v�v

;

�r D �
P
r C �r�r ; �r D

�P
r �

P
r

�P
r C �r�r

;

where �P
v ; �

P
v and �P

r ; �
P
r are the corresponding parameters under the physical measure.
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In (2.4) the Kolmogorov operator K is given by

K D
vS2

2

@2

@S2
C
�2v v

2

@2

@v2
C
�2r r

2

@2

@r2

C �12�vvS
@2

@S@v
C �13�r

p
rS

@2

@S@r
C �23�v�r

p
vr

@2

@v@r

C .�r.�r � r/ � �rr/
@

@r
C .r � q/S

@

@S
C .�v.�v � v/ � �vv/

@

@v
; (2.8)

where �v and �r are the constants appearing in the equation for the market prices of
volatility risk and interest rate risk, which as stated in footnote 2 are assumed to be
of the form �v

p
v and �r

p
r , respectively.

Given the values for the daughter option, we can then solve the PDE for the mother
option M.S; v; r; t/ that satisfies

KM � rM C
@M

@t
D 0; (2.9)

on the interval 0 6 t 6 TM and subject to the terminal condition

M.S; v; r; TM/ D .KM �D.S; v; r; TM//
C; (2.10)

the free (early exercise) boundary condition

M.m.v; r; t/; v; r; t/ D KM �D.m.v; r; t/; v; r; t/; (2.11)

and the smooth-pasting conditions

lim
S!m.v;r;t/

@M

@S
D �

@D

@S
; lim

S!m.v;r;t/

@M

@v
D �

@D

@v
; lim

S!m.v;r;t/

@M

@r
D �

@D

@r
;

(2.12)
where m.v; r; t/ is the early exercise boundary for the mother option at variance v,
interest rate r and time t .

3 SPARSE GRID IMPLEMENTATION

In order to tackle the computationally demanding task of solving the two nested PDEs
(2.4)–(2.6) and (2.9)–(2.11) we apply the sparse grid approach, which turns out to be
quite fast and accurate. The sparse grid combination technique for solving PDEs was
first introduced by Griebel et al (1992), after which Reisinger (2004), Reisinger and
Wittum (2007) and Leentvaar and Oosterlee (2008a,b) discussed the application of
this approach to various option pricing problems. The combination technique requires
the solution of the original equation only on a set of conventional subspaces defined
on Cartesian grids specified in a certain way and a subsequent extrapolation step, but
still retains a certain order convergence.
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In fact we can identify three desirable properties of the combined solution. First,
in comparison with the standard full grid approach the number of grid points can
be reduced significantly from O.2n�d / to O.2n � nd�1/ at refinement level n in the
d -dimensional case, whereas the point-wise accuracy of the approximation to the
solution of the PDE is O.nd�1 � 2�n�p/, which is only slightly worse than O.2�n�p/.
Here, p includes the order of the underlying discretization scheme, as well as the
influence of singularities. Furthermore, each of the Cartesian grids setting up the
sparse grid only consists of O.2n/ nodes. Thus, the efficient usage of sparse grids
for the computational solution of the PDE greatly reduces storage requirements and
computing time at a moderate cost of accuracy.

Second, we have to point out the simplicity of the combination concept: we have
seen that the sparse grid combined solution represents a linear combination of numer-
ical solutions on Cartesian grids corresponding to the components of a sparse grid at
the same refinement level. Thus, the combination technique allows for the integra-
tion of existing solvers for partial differential equations on traditional full grids. In
contrast to the discretization on a real sparse grid, which requires hierarchical data
structures and thus specially designed solvers, the combined solution is built on sim-
ple data structures and can be based on any “black box solver”. Only the final linear
combination of these simple solutions has to be newly implemented.

From the combined solution as a linear combination of traditional full grid dis-
cretizations we can also deduce a further advantage of the combination technique.
Since the O.nd�1/ problems solved on the Cartesian grids ˝l that set up the sparse
grids are independent from one another, these problems can be solved in parallel on
different workstations. Communication has to take place only at the end, when the
summation and the extrapolation by linear combination of the different solutions is
performed.

3.1 The sparse grid combination technique

We incorporate the techniques and algorithms used in Chiarella et al (2010) and
the sparse grid approach to solve the linked PDEs (2.4)–(2.6) and (2.9)–(2.11) with
suitable initial and boundary conditions.

In a general d -dimensional unit cube and the family of grids with grid sizes hj D
2�lj in direction j , lj 2 N0. We write the vector of grid sizes as h D 2�l with
l D .l1; : : : ; ld / 2 N

d
0 and denote the solution of the PDE on those grids by ph. The

sparse grid solution at level l is then defined as

pl D

lCd�1X
kDl

al�k
X

l1C���CldDk

ph; (3.1)

Research Paper www.risk.net/journal



78 C. Chiarella and B. Kang

FIGURE 1 A sparse grid hierarchy of level 3 with respect to each combination.
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with

ak D .�1/
d�1�k

 
d � 1

k

!
; 0 6 k 6 d � 1: (3.2)

In our case d D 3. Hence, we consider a truncated three-dimensional cube ˝ WD
Œ0; Smax�� Œ0; vmax�� Œ0; rmax� and a Cartesian grid with mesh size hj D 2�lj (corre-
sponding to a level lj 2 N0) in the directions j D 1; 2; 3. The indices j D 1, j D 2
and j D 3 represent the directions of the stock price S , the variance v and the interest
rate r , respectively.

For a vector h D .h1; h2; h3/ we denote by ph the representation of a function on
such a grid with points

xh D .i1 � h1; i2 � h2; i3 � h3/; 1 6 ij 6 Nj ; Nj D 1=hj D 2lj ; for j D 1; 2; 3:
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FIGURE 2 A sparse grid hierarchy of level 2 with respect to each combination.
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For a given level l , the above grid consists of all possible combinations of .l1; l2; l3/
with 0 6 l1; l2; l3 6 l . Hence, in total, there are .2l C 1/3 points in the grid. The
number of total points in the full grid increases significantly with the increase of the
level l . It will be quite expensive to solve the two-pass PDE system on the above full
grid.

However, with the same level l , the sparse grid will consist of the following points:

xh D .i1 � h1; i2 � h2; i3 � h3/; 1 6 ij 6 Nj ; Nj D 1=hj D cj 2lj ; for j D 1; 2; 3:

satisfying l1C l2C l3 D l and where cj are some positive constants with the help of
which it is possible to construct a nonequidistant grid.

It is not hard to see that there are
�
lCd�1
d�1

�
choices of such combinations of .l1; l2; l3/

such that l1C l2C l3 D l . Figure 1 on the facing page, Figure 2 and Figure 3 on the
next page provide an example of a standard sparse grid hierarchy with level l D 3,
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FIGURE 3 A sparse grid hierarchy of level 1 with respect to each combination.
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l D 2 and l D 1 with respect to 10, 6 and 3 different combinations corresponding to
each level, respectively.

Obviously, the above grids share the common property that they are dense in one
direction but sparse in the other directions. If we put all of the above grids together,
we will obtain the standard sparse grid shown in Figure 4 on the facing page.

Let ph be the discrete vector of function values at the grid points of the standard
sparse grid. In general, ph is the finite difference solution to the PDE of interest on
the corresponding grid h. The solution can be extended to˝ by a suitable multilinear
interpolation operator I3 in the point wise sense according to

ph.S; v; r; �/ D Iph; 8.S; v; r/ 2 ˝:

3 A thorough error analysis of the multilinear interpolation operator can be found in Reisinger
(2008), who gives a generic derivation for linear difference schemes through an error correction
technique employing semidiscretizations and obtains error formulas as well.
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FIGURE 4 A combined sparse grid solution.
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Next, we define the family P of solutions corresponding to the different sparse
grids (as in Figure 1 on page 78 for instance) by P D .P.i //i2N3 with

P.i / WD p2�i ;

that is the family of numerical approximations (after proper interpolation) ph on
tensor product grids with hk D 2�ik . For example, the solution on the first grid in
Figure 1 on page 78 would beP.0; 0; 3/, etc. The combination technique in Reisinger
and Wittum (2007) tells us that the solution pl (l is the level of the sparse grid) of the
corresponding PDE is

pl D
X

l1Cl2Cl3Dl

P.l1; l2; l3/ � 2
X

l1Cl2Cl3DlC1

P.l1; l2; l3/

C
X

l1Cl2Cl3DlC2

P.l1; l2; l3/: (3.3)

The above is a special case of (3.1) and (3.2) when d D 3.
The procedure involves solving the PDE in parallel on each of the sparse grids of

level l , lC1 and level lC2, respectively. See Figure 1 on page 78, Figure 2 on page 79
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and Figure 3 on page 80 for l D 1 and d D 3 as an example. Thus, we have

lC2X
kDl

 
k C d � 1

d � 1

!
D

3X
kD1

 
k C 2

2

!
D 3C 6C 10 D 19;

which means that there will be 19 PDE solvers running simultaneously when l D 1.
The theory developed by Reisinger and Wittum (2007) shows that (3.3) combines all
solutions together to yield a more accurate solution to the PDE.

The essential principle of the extrapolation is that all lower order error terms cancel
out in the combination formula (3.3) and only the highest order terms

h21 � h
2
2 � h

2
3 D .2

�l1 � 2�l2 � 2�l3/2 D 4�l

remain. Taking advantage of this cancelation mechanism, (3.3) is able to produce
quite accurate results fairly quickly. The details of the error analysis can be found in
Reisinger (2004) and Reisinger and Wittum (2007).4

We implement the above sparse grid combination technique to solve the PDE (2.4)
in order to obtain the desired daughter option prices. We thus have the terminal and
boundary conditions for the PDE governing the price of the mother option. Next, we
apply the technique again to solve the PDE (2.9) to obtain the prices of the mother
option. We solve the PDEs (2.4)–(2.6) and (2.9)–(2.11) in each of the subspaces on a
parallel cluster, which makes the process very efficient.

3.2 Finite difference method with PSOR

In the implementation, a standard Crank–Nicolson finite difference method with the
projected successive over-relaxation (PSOR) method has been applied to each of the
sparse grids in Figure 1 on page 78, Figure 2 on page 79 and Figure 3 on page 80 to
work out the solution of both PDEs (2.4)–(2.6) and (2.9)–(2.11) on the grid points;
solutions at other nongrid points are obtained by the same multilinear interpolation
as in Reisinger (2008). The implementation of PSOR is detailed in this section. As
an example, we show the detail of solving the PDE followed by the daughter option
prices. We apply the same approach to the PDE followed by prices of the mother
option with different terminal and boundary conditions. The boundary conditions for
the mother option are quite similar to those for daughter options, hence for brevity,
we only mention boundary conditions for the daughter option.

4 The combination method requires, theoretically, smoothness of mixed derivatives of the solution.
This is obviously not the case here due to the nonsmooth payoff. However, if the payoff is aligned with
the grid, which is the case in our problem, then good results have been observed for the combination
method (see Leentvaar and Oosterlee 2008b). This is probably due to the rapid smoothing of the
payoff in the first few time steps.
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It is convenient to consider the time-to-maturity � D T � t instead of time t . The
three space variables S , v, r and time-to-maturity � are discretized according to

Si D .i � 1/ �	S; i D 1; : : : ; N1 C 1;

vj D .j � 1/ �	v; j D 1; : : : ; N2 C 1;

rk D .k � 1/ �	r; k D 1; : : : ; N3 C 1;

�l D T � l	t; l D 1; : : : ; N� ;

where N1, N2, N3 and N� are the number of grid points in the directions S , v, r and
� , respectively.

The option prices at the discrete points are thus

Dl
i;j;k D D.Si ; vj ; rk; �l/:

Similar to the discussions in Ekstrom et al (2009), we use central differences to
approximate most of the first and second derivatives in the PDE but use the forward
and backward finite difference approximations on the boundaries other than the time
derivative in (2.4). Thus, we set

@D

@S
D
Dl
iC1;j;k

�Dl
i�1;j;k

2	S
;

@2D
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D
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� 2Dl
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i�1;j;k

	S2
;

@D

@v
D
Dl
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�Dl
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2	v
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@2D

@v2
D
Dl
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;
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D
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2	r
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@2D
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D
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i;j;k�1

	r2
;

and

@D

@S

ˇ̌̌
ˇ
SDS1

D
Dl
1;j;k
�Dl

0;j;k

	S
;

@D

@S

ˇ̌̌
ˇ
SDSN1

D
Dl
N1;j;k

�Dl
N1�1;j;k

	S
;

@D
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ˇ̌̌
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vDv1

D
Dl
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�Dl
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	v
;

@D
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ˇ̌̌
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vDvN2

D
Dl
i;N2;k

�Dl
i;N2�1;k

	v
;

@D
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ˇ̌̌
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D
Dl
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l
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	r
;

@D

@S

ˇ̌̌
ˇ
rDrN3

D
Dl
i;j;N3

�Dl
i;j;N3�1

	r
:

Similar to Boyarchenko and Levendorski (2007), we use the boundary conditions
@2D=@v2 D 0 at the boundaries v D 0 and v D vmax and boundary conditions
@2D=@r2 D 0 at the boundaries r D 0 and r D rmax.5 The discretized analogs for all

5 The Fichera theory for degenerate parabolic equation suggests that the complete equation (2.4)
should hold on v D 0 and r D 0 instead of @2D=@2v D 0 and @2D=@2r D 0 (see the explanation
in Meyer (2013)). However the benchmark prices indicate that the influence of these boundary
conditions on the solution is small far enough away from the boundary.
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i D 1; : : : ; N1 C 1 are

Dl
i;1;k D 2 �D

l
i;2;k �D

l
i;3;k;D

l
i;N2C1;k

D 2 �Dl
i;N2;k

�Dl
i;N2�1;k

; 8k D 1; : : : ; N3 C 1;

Dl
i;j;1 D 2 �D

l
i;j;2 �D

l
i;j;3;D

l
i;j;N3C1

D 2 �Dl
i;j;N3

�Dl
i;j;N3�1

; 8j D 1; : : : ; N2 C 1;

which is essentially an extrapolation scheme.
All other derivative terms in the .v; r/-direction vanish at v D 0 or r D 0 due to the

factor .v; r/ occurring in (2.4); hence, these terms do not require further treatment.
We follow Ikonen and Toivanen (2007) to indicate which grid point values we use

to approximate the second-order mixed derivative in order to obtain nonpositive off-
diagonal weights in the finite difference stencil, which makes the matrix anM matrix
as much as possible.

In fact, to simplify the algorithm and take consideration of the correlations �ij , in
each two dimensional space, we use a seven-point stencil and the mixed derivatives
when �12 > 0 are approximated as
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�Dl
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and when �12 < 0 we have
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�
:

The other mixed derivatives @2=@S@r and @2=@v@r are handled in a similar way,
depending on the sign of the corresponding correlations.

Boundary conditions at the boundaries S D 0 and S D Smax for a put option are

Dl
1;j;k D KD � e

�.k�1/��r ��l ; Dl
N1C1;j;k

D 0;

8j D 1; : : : ; N2 C 1; k D 1; : : : ; N3 C 1I

while those for a call option would be set as

Dl
1;j;k D 0; Dl

N1C1;j;k
D Smax �KD � e

�.k�1/��r ��l ;

8j D 1; : : : ; N2 C 1; k D 1; : : : ; N3 C 1:
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The spatial discretization above leads to a semidiscrete equation which has the
matrix representation

@D

@�
CAD D 0 (3.4)

whereA is a block tridiagonal .N1C1/.N2C1/.N3C1/�.N1C1/.N2C1/.N3C1/
matrix andD is a vector of length .N1 C 1/.N2 C 1/.N3 C 1/.

Next, we implement a more general � scheme, which includes the implicit (� D 1),
the Crank–Nicolson (� D 1

2
) and the explicit (� D 0) approaches to discretize the

semidiscrete problem (3.4) as

.I C �	�A/D.lC1/ D .I � .1 � �/	�A/D.l/; l D 0; : : : ; N� � 1; (3.5)

where N� is the number of time steps and I is the identity matrix.
After the discretization of the underlying PDE with three spatial variables an

approximate price of an American option can be obtained by solving a sequence
of linear complementarity problems (LCPs)

BD.lC1/ > ED.l/; D.lC1/ > g;
.BD.lC1/ �ED.l//T.D.lC1/ � g/ D 0;

)
(3.6)

for l D 0; : : : ; N� � 1: The matrixes B and E in (3.6) are defined by the left-hand
side and right-hand side of (3.5), respectively. The initial value D.0/ is given by the
discrete form g of the payoff function g of the option, so that the i th element ofD.0/

is given by

D
.0/
i D max.K � Si ; 0/: (3.7)

In order to avoid the oscillations that often occur with the CN scheme, we use the
implicit Euler scheme (� D 1) for the first three time steps and then switch to the
CN scheme (� D 1

2
) in the rest of the time steps. We implemented a PSOR finite

difference scheme to solve the sequence (3.6) of LCPs efficiently.
In order to accelerate the convergence of the PSOR, we need to select the over-

relaxation parameter ! in the algorithm (see Kwok 2008, Section 6.2.3). We note that
we may not choose the same ! when we apply PSOR to different discretized grids
in Figure 1 on page 78. Table 2 on the next page demonstrates how the optimal !
should be chosen for different grids on a specific numerical example.

4 NUMERICAL EXAMPLES

To demonstrate the performance of the sparse grid algorithm outlined in Section 3 we
implement the method for a given set of parameter values. For comparison purposes,
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TABLE 1 Parameter values used for the American put daughter option.

Option SV SI
parameter Value parameter Value parameters Value

q 0.0 �v 0.02 �r 0.04
TD 1.0 �v 1.5 �r 0.3
KD 100 �v 0.15 �r 0.1
TM 0.50 �v 0.00 �r 0.00
KM 4 �12 �0.50 �13; �23 0.0

The stochastic volatility (SV) and stochastic interest rate (SI) parameters are those used in Medvedev and Scaillet
(2010) to facilitate comparisons.

TABLE 2 Values of ! for different sparse grids are used for the American put daughter
option when l D 6.

.l1; l2; l3/ ! .l1; l2; l3/ ! .l1; l2; l3/ ! .l1; l2; l3/ ! .l1; l2; l3/ !

(0, 0, 6) 1.6 (0, 1, 5) 1.3 (0, 2, 4) 1.1 (0, 3, 3) 1.1 (0, 4, 2) 1.3
(0, 5, 1) 1.6 (0, 6, 0) 1.8 (1, 0 ,5) 1.3 (1, 1, 4) 1.1 (1, 2, 3) 1.1
(1, 3, 2) 1.1 (1, 4, 1) 1.3 (1, 5, 0) 1.6 (2, 0, 4) 1.1 (2, 1, 3) 1.1
(2, 2, 2) 1.1 (2, 3, 1) 1.1 (2, 4, 0) 1.3 (3, 0, 3) 1.1 (3, 1, 2) 1.1
(3, 2, 1) 1.1 (3, 3, 0) 1.1 (4, 0, 2) 1.2 (4, 1, 1) 1.2 (4, 2, 0) 1.2
(5, 0, 1) 1.4 (5, 1, 0) 1.4 (6, 0 ,0) 1.7 — — — —

those parameters are the same as one set of parameters used in Medvedev and Scaillet
(2010).6 The parameter values used are listed in Table 1.

In Section 3.2, we mentioned that the over-relaxation parameter ! is important to
the convergence of the sparse grid approach and it usually depends on the shape of
the grids as well. Table 2 illustrates this dependence in the case when l D 6. It can be
seen from the table that the parameter ! is usually higher for relatively less balanced
grids, such as .0; 0; 6/, .0; 6; 0/, etc, in which the calculation will take more time as
well.

In order to compare the option prices with Medvedev and Scaillet (2010) as well
as demonstrate the efficiency and accuracy of our sparse grid approach, we first work
out European put option prices by implementing the sparse grid (SG) approach and
compare them with the solution from Grzelak and Oosterlee (2011) using the Fourier
cosine expansion (COS) approach. Table 3 on the facing page reports the numerical

6 The source code for all methods was implemented using NAG Fortran with the IMSL library
running on the UTS, Faculty of Business F&E HPC Linux Cluster, which consists of eight nodes
running Red Hat Enterprise Linux 4.0 (64bit) with 2� 3:33 GHz, 2� 6MB cache Quad Core Xeon
X5470 processors with 1333MHz FSB 8GB DDR2-667 RAM.
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TABLE 3 Daughter prices (European put) computed using the sparse grid with (c1 D
16; c2 D 8; c3 D 4), Fourier cosine expansion approach.

S
Level ‚ …„ ƒ Runtime
l 80 90 100 110 120 RMSRD (s)

1 17.0446 9.7664 4.9921 2.3992 1.1530 1.56 � 10�2 1.31
2 16.9834 9.6920 4.9852 2.4424 1.1738 5.11 � 10�3 4.30
3 16.9640 9.6821 5.0100 2.4612 1.1796 1.47 � 10�3 15.84
4 16.9550 9.6828 5.0210 2.4625 1.1779 3.22 � 10�4 72.97
5 16.9520 9.6849 5.0226 2.4616 1.1774 4.61 � 10�5 329.12
6 16.9514 9.6855 5.0225 2.4616 1.1773 4.05 � 10�5 1517.34

COS 16.9512 9.6856 5.0227 2.4618 1.1774 — —

Parameter values are given in Table 1 on the facing page, with v0 D 0.04 and r0 D 0.04.

FIGURE 5 Efficiency plot of the prices of the daughter European put option prices under
the SV and SI models.
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Daughter put option prices under Heston and stochastic interest rates when � D �0.5

results and Figure 5 demonstrates the rate of the convergence of our SG approach
with the increase of the level l . Table 3 has the following columns: l defines the level
of the sparse grid; the put prices when the spot price goes from 80 to 120; the error
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TABLE 4 Mother prices (European put on European put) computed using the sparse grid
with (c1 D 16, c2 D 8, c3 D 4), Monte Carlo with the Fourier cosine expansion approach.

S
Level ‚ …„ ƒ Runtime
l 80 90 100 110 120 RMSRD (s)

1 �0.0326 0.2837 1.2164 2.3713 3.0846 2.10 � 10�1 1.83
2 0.2190 0.8083 1.7392 2.5594 3.1422 1.55 � 10�1 3.48
3 0.1012 0.5743 1.4898 2.4287 3.0852 2.07 � 10�2 12.17
4 0.0724 0.5619 1.4910 2.4144 3.0777 2.96 � 10�2 51.06
5 0.1064 0.6105 1.5229 2.4341 3.0867 2.50 � 10�2 220.37
6 0.1030 0.6052 1.5196 2.4322 3.0861 1.88 � 10�3 820.16

MCCCOS 0.1032 0.6079 1.5228 2.4339 3.0889 — 2388.97
MC upper 0.1053 0.6129 1.5295 2.4405 3.0942 — —

bound
MC lower 0.1011 0.6030 1.5161 2.4273 3.0835 — —

bound

There are 1 000 000 sample paths and 200 time steps in the MC simulation. Parameter values are given in Table 1
on page 86, with v0 D 0.04 and r0 D 0.04.

column gives the root mean square relative differences (RMSRD7) compared with
the COS method; and the last column gives the runtime of our approach.

Using the level 6 prices in Table 3 on the preceding page as suitable terminal and
boundary conditions for the mother options, we are able to work out the prices of
the mother put option on the daughter option. Since we do not have a closed-form
solution for the mother option, we compare our mother prices against the prices from
Monte Carlo simulation using the daughter prices calculated from the COS method.
The comparisons are displayed in Table 4.8

We see from the values given in Table 4 that the compound option prices from
the sparse grid all lie between the lower and upper bounds of the MC simulation

7 RMSRD is calculated as vuut1

5

5X
iD1

�
OP .Si / � P.Si /

P.Si /

�2
;

where Si D 80C 10 � .i � 1/, OP .S/ is the estimate of the price, and P.S/ is the true price in the
last row of Table 3 on the preceding page.
8 Note that there is a negative price when S D 80, l D 1. This is partly because, according to (3.2),
the sequence of the weights are positive and negative interchangeably, for instance, if d D 3, we
have a0 D 1, a1 D �2, a2 D 1. Hence, it is possible to produce negative prices especially when
the grid is very coarse. However, the “combination” technique ensures convergence when the grid
becomes finer.
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TABLE 5 Daughter prices (American put) computed using the sparse grid with (c1 D

16; c2 D 8; c3 D 4), PSOR in a fine grid.

S
Level ‚ …„ ƒ Runtime
l 80 90 100 110 120 RMSRD (s)

1 19.3227 10.0150 4.9658 2.4678 1.2260 6.62 � 10�2 1.34
2 20.0596 10.6755 5.2288 2.4966 1.1889 3.80 � 10�2 4.15
3 20.0275 11.0899 5.5819 2.7110 1.2712 2.01 � 10�2 18.33
4 20.0025 11.1125 5.5018 2.6028 1.2264 8.36 � 10�3 79.08
5 20.0232 11.0393 5.4922 2.6377 1.2432 3.21 � 10�3 383.10
6 20.0067 10.9663 5.4969 2.6299 1.2385 8.85 � 10�4 1708.86

PSOR 19.9987 10.9820 5.4899 2.6295 1.2388 12 4875.00

Parameter values are given in Table 1 on page 86, with v0 D 0.04 and r0 D 0.04.

approach.9 However, it should be emphasized that the runtime of the sparse grid
approach involves the calculations of all compound option prices within the grid
whereas the runtime of the simulation approach is just that required to work out the
five prices at the five stock price values given in Table 4 on the facing page. It is clear
that the sparse grid approach attains the same accuracy in far less time compared with
the simulation approach.

Table 5 and Figure 6 on the next page demonstrate the convergence property of
the sparse grid approach calculating the American put option prices under Heston
with stochastic interest rate. A finite difference approach with PSOR with a fine grids
discretization (N1 D 1024, N2 D 512, N3 D 512, Nt D 128) are treated as the
benchmark prices. It is clear that the convergence of the sparse grid approach is quite
fast.

Since the mother option can be exercised any time prior to the maturity of the
compound option, at each time before maturity, in order to make the decisions on the
early exercise, we need to compare the continuation value and the immediate exercise
payoff, which is derived from the price of the daughter option at that particular time.
However, with the increase in the number of the time step of the mother option, the
computational burden to work out the American daughter option prices at different
time to maturity will increase dramatically as well. Hence, a repeated Richardson
extrapolation technique as described in Chang et al (2007) is used to find the prices
of the compound option when the mother option is allowed to be exercised early. In
this case, we are able to treat the mother option as a Bermudan option that can be
exercised at a number of fixed time points before the maturity and here we use the

9 The RMSRD in Table 4 on the facing page and Table 6 on the next page are only used to indicate
that the results from the sparse grid “converge” in a correct direction.
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FIGURE 6 Efficiency plot of the prices of the daughter American put option prices under
the SV and SI models.
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TABLE 6 Mother prices (American put on American put) computed using the sparse grid
with (c1 D 16, c2 D 8, c3 D 4).

S
Level ‚ …„ ƒ Runtime
l 80 90 100 110 120 RMSRD (s)

1 0.0487 0.4439 1.3844 2.4962 3.2094 2.78 � 10�1 2.32
2 0.1241 0.6260 1.6071 2.5854 3.2090 7.33 � 10�2 4.38
3 0.0773 0.5538 1.5204 2.4944 3.1782 1.33 � 10�1 14.07
4 0.0924 0.5902 1.5482 2.5080 3.1835 6.41 � 10�2 61.42
5 0.1021 0.6168 1.5721 2.5179 3.1865 2.16 � 10�2 311.16
6 0.1080 0.6108 1.5675 2.5179 3.1862 4.02 � 10�3 1064.55

MCCPSOR 0.1072 0.6119 1.5618 2.5233 3.1928 — 8388.97
MC upper 0.1097 0.6175 1.5688 2.5298 3.1988 — —

bound
MC lower 0.1047 0.6063 1.55548 2.5168 3.1868 — —

bound

MC refers to the Longstaff and Schwartz (2001) with 1 000 000 sample paths, 500 time steps and 50 exercise dates.
Parameter values are given in Table 1 on page 86, with v0 D 0.04 and r0 D 0.04.
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geometric-spaced exercise points employed in the modified Geske–Johnson formula
described in Chang et al (2007). Table 6 on the facing page shows the results of
the Richardson extrapolation technique compared with the least squares Monte Carlo
approach by Longstaff and Schwartz (2001) with the daughter option prices calculated
from the PSOR with a very fine grid (N1 D 1024;N2 D 512;N3 D 512;Nt D

128). Boyarchenko and Levendorski (2007) and Medvedev and Scaillet (2010) have
implemented the least squares Monte Carlo approach as a benchmark solution.

5 CONCLUSION

We have studied the pricing of American compound options by solving the corre-
sponding PDE using both a sparse grid approach and a benchmark based on Monte
Carlo simulation together with the PSOR approach.

It turns out that application of the standard SG approach is able to provide fairly
accurate and efficient results for the compound option prices under Heston with
stochastic interest rate. We apply this method twice to solve both PDEs followed
by the price of the daughter option and the price of the mother option. We develop a
benchmark solution by applying the finite difference with PSOR approach to solve the
PDE followed by the daughter option in a fine grid. Then using these results to specify
the appropriate boundary conditions, we employ least squares Monte Carlo simula-
tion to find the prices of the mother option. The numerical results clearly show the
computational advantage of the SG approach compared with the MC/PSOR approach.

In future research, the sparse grid approach can be speeded up by using better PDE
solvers, such as the operator splitting in Ikonen and Toivanen (2004) and Ikonen and
Toivanen (2007) with a modified adaptive sparse grid. The method may be applied
to tackle specific examples in real options applications such as multistage invest-
ment projects, where it is important to take account of both stochastic volatility and
stochastic interest rate due to the sensitivity of the compound options to volatility.
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