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Abstract. This analysis evaluates certain infinite integrals continuing products of
Bessel functions of integer order, an exponential and a power. The integrals considered
here have been previously evaluated in the literature in two different forms. In one
instance they have been written in terms of complete elliptic integrals of the first, second,
and third kind. Some of these integrals have also been evaluated in terms of a Legendre
function of the second kind and a complete elliptic integral of the third kind. A recent
result in elasticity obtained by the authors has led to a new form for the evaluations of
these integrals. The integrals are still evaluated in terms of complete elliptic integrals;
however, a new modulus (and parameter for the complete elliptic integral of the third
kind) is used. The new form used for the complete elliptic integral of the third kind
allows the integral evaluations to be written in a more convenient form than previously
given. The new form for the complete elliptic integral of the third kind is also utilized
in the evaluations using the Legendre function of the second kind. The new forms to the
integral evaluations derived presently are correlated with existing results in the literature.

1. Introduction. The development of integral transforms has led to great advances
in problem-solving capabilities within the field of mathematical physics. In particular,
the Hankel transform has found a wide usage for solving problems where the form of the
boundary conditions naturally leads to a cylindrical coordinate system (Sneddon, 1972).
Well-known examples of this in potential theory include determining the potential for
the circular ring or disc of unit charge. Present interest stems from the field of linear
elasticity where Hankel transforms have been extensively used to solve many types of
boundary-value problems (Sneddon, 1951). In some instances where Hankel transforms
are used, the unknown transform function turns out to be a Bessel function of integer
order. In this case the inverse transform is an infinite integral containing a product of
two Bessel functions of integer order, an exponential and a power. Generally there are
three parameters in these integrals, one in the argument of the exponential and one in
the argument of each Bessel function.
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For an isotropic half space subjected to a uniform pressure loading over a circular
area on the surface, Terazawa (1916) showed that a Hankel transform solution leads to
integrals of the type noted above. It was shown by Muki (1960) that a uniform shear
loading also leads to integrals of this type. Apparently the first systematic discussion
of these integrals was presented by Eason et al. (1955). Eight integrals of this type
were evaluated in terms of complete elliptic integrals of the first, second, and third
kind. Recurrence relations were also derived which could be used to evaluate additional
integrals. They used the forms of the complete elliptic integrals which were tabulated by
Heuman (1941). Hence Heuman's Lambda function was used in place of the complete
elliptic integral of the third kind. They also noted a result by Sura-Bura (1950) and
showed that their expression for this particular integral was equivalent.

These inverse Hankel transform integrals generally represent some physical entity. For
example, in the elasticity problem of uniform pressure loading over a circular area on a
half space, the integrals represent the elastic displacement and stress fields throughout the
body and contain three parameters. The parameter in the exponential is the z-coordinate
directed into the half space. There is also a different parameter in the argument of
each Bessel function; one represents the polar radius in cylindrical coordinates and the
other is the radius of loading. An interesting feature is noticed when examining the
results in Eason et al. (1955). It is apparent that when the integral evaluation does
not contain Heuman's Lambda function, only one expression is needed to evaluate the
integral for all values of the parameters. However, when the integral evaluation also
contains Heuman's Lambda function, two different expressions are given for the integral
evaluation depending on the relative magnitude of the polar radius with respect to the
radius of loading. Since the elastic field inside the half space is continuous and has
continuous derivatives, it is troublesome that the expressions are different depending on
being inside or outside the radius of loading. Intuition would lead one to expect a single
expression which is valid at every point in the half space.

In a recent paper (Hanson and Puja, 1996) the authors reconsidered the problem of
uniform normal and shear loading on the surface of a half space. This new solution
was derived for a transversely isotropic material. Rather than use Hankel transforms,
the method developed by Love (1929), who also considered the isotropic half space, was
utilized. The solution to this problem has provided a new relation between different
forms of the complete elliptic integral of the third kind. Using this result, the elastic
field was written as a single expression for all values of the coordinates. The new forms
for the complete elliptic integrals are used below to re-evaluate the results in Eason et
al. (1955) in more convenient expressions.

The present results are broken down into several small sections which are now outlined.
In Sec. 2, a particular integral of the class considered here is related to the linear elastic
potential function in Hanson and Puja (1996). This will allow certain integral evalua-
tions to be written down directly from the results in their paper. Section 3 presents the
definitions of the complete elliptic integrals along with the new modulus and parameter.
The forms used by Eason et al. (1955) are discussed in Sec. 4 and the relations between
their forms and those used presently are considered in Sec. 5. Section 6 presents differ-
entiation formulas necessary to obtain some of the results in the present paper. Section
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7 gives the new evaluations to certain integrals and they are compared to Eason et al.
(1955) in Sec. 8. The result derived by Sura-Bura (1950) is compared in Sec. 9. Sections
10 and 11 give new evaluations to additional integrals.

As a final point it is noted that a few integrals of the class considered here have
also been evaluated in terms of a Legendre function of the second kind (Erdelyi, 1954;
Byrd and Friedman, 1971). Some of the integrals considered here have been evaluated
in terms of this Legendre function and the complete elliptic integral of the third kind
by Hasegawa et al. (1992a,b) who investigated some axisymmetric problems in linear
elasticity. In these last two papers, the choice of the modulus and parameter in the
complete elliptic integral of the third kind is identical to Eason et al. (1955). Thus their
expressions are subject to the same comments as above. In Sec. 12 these integrals are
evaluated with the new modulus and parameter for the complete elliptic integral of the
third kind, along with the Legendre function of the second kind.

2. Alternative representation. The object of this paper is to evaluate some infinite
integrals involving products of Bessel functions, an exponential and a power. Using the
definition of Eason et al. (1955), these integrals are denoted as

/•OO

I{n,v-\)= eJM)MpOe~izdt (1)
Jo

where a, p, and z are nonnegative quantities. In the present paper we will only consider
integer values of /.i, v, and A. In this case the integral can be evaluated in terms of
complete elliptic integrals of the first, second, and third kinds.

As the starting point for the present method, an alternative expression for /(/x, v; A) is
sought for a particular set of values of p, v, and A. We start with the integral evaluation
(Gradshteyn and Ryzhik, 1980)

1
R

pOO

/ Jo(aOt
J o

e-«2 d£, (2)

where a and R are defined as

a2 = p2 + Pq — 2pp0 cos(8 - 60), R2 = a2 + z2. (3)

Now the Bessel function may be expanded using the addition theorem (Watson, 1980)

OO

JoK) (4)
—OO

Combining the above results leads to the following representation for the reciprocal of
the distance between the points (pQ, 9q) on the surface of a half space and the interior
point (p, 0, z) as

1 00 rOO

p = £ / JwM)J\n\{poOe-^ dZeinV>-e°\ (5)
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The last step is to multiply the above equation by p0 dpo <10{] and integrate both sides
from 0 < po < a, 0 < 80 < 27r. Using orthogonality of the Fourier series and the result

/'J 0
£p0Jo(£po) dpo = aJi(^o), (6)

the final expression takes the form

c2tt parzir ra -t rOO

J J RPodp°d0° = 27TaJ (7)

Introducing the logarithmic potential function %/;(p,z) as

/•2tt pa

ip(p,z) — / / \n[R +z]p0dpQdd0,
Jo Jo

it is easy to verify

(8)

&*P{p, z)
dz

/»27T pa ^ r oo

= j J —Po dpo dOo = 2-rra J {)Jo(p£)e-*z d£. (9)

The function ip(p, z) is the linear elastic potential function for a uniform normal pres-
sure applied to the surface of an isotropic (Love, 1929) or transversely isotropic (Hanson
and Puja, 1996) half space. The various derivatives of ip(p. z) have been recently eval-
uated in terms of complete elliptic integrals of the first, second, and third kinds by
Hanson and Puja (1996). Using these new results and Eq. (9) will allow to be
conveniently evaluated for integers p, v, and A.

3. Elliptic integrals and parameters. In this section the complete elliptic integrals
of the first, second, and third kinds are defined as well as the parameters that will be
used. These elliptic integrals are denoted as F(fc), E(fc), and H(n, k) respectively. They
are given in Legendre normal form as (Gradshteyn and Ryzhik, 1980)

dx r/2 dd
(1 — k2 sin 0)1/2F(fc) l (l-X2)1/2(l_ ^2)1/2 I

f1 dx r/2 d°
(n' ' ~ Jo (1 - nz2)(l - x2)l/2(l - k2x2)1/2 ~~ J0

(10)

(11)

(1 — nsin2 #)(1 — k2 sin2 6)1/2 '

(12)

where k is called the modulus, k' = (1 — fc2)1/2 is the complementary modulus and n is
referred to as the parameter (0 < k,k',n < 1).

The evaluation of I(p, v\ A) will be explicitly written in terms of a, p, z, and the two
parameters li(a),l2{a) given as

h(a) = h[(p + a)2 + z2]1/2 - [{p - a)2 + z2]1/2},
2 (13)

h(a) = -{[(/> + a)2 + z2]1/2 + [{p - a)2 + z2}1'2}.
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These parameters, first introduced by Fabrikant (1989), allow the three-dimensional dis-
tance between the point (a, 0,0) on the surface of a half space and the interior point
(p, <f>, z) to be written in two-dimensional form. That is,

p2 + a2 + z2 — 2apcos((f>) = l\{a) + l\(a) — 2l\(a)l2(a) cos0, (14)

where
I % (a) + l\{a) = p2 + a2 + z2, li(a)l2{a) — ap. (15)

Note that it is easy to see l\(a) < l2(a), while it can also be shown that /i(a) < p. In
the solution derived subsequently, the modulus k and the parameter n in Eqs. (10-12)
will be given as

k=iM n=M, (16)
h(a) P2

Under this definition of the modulus and parameter, it can be shown that 0 < k2 < n < 1.
This situation is a circular case, classified as case II by Byrd and Friedman (1971).

4. Forms used by Eason et al. The elliptic integrals used by Eason et al. (1955)
are denoted as Fo(fcs), Eo(A;s), and Ao(a,/3), where ks is the modulus in their paper
and p is the parameter. The function Ao {a, (3) is Heuman's Lambda function and it can
appear in the evaluation of the elliptic integral of the third kind for circular cases (Byrd
and Friedman, 1971). These elliptic integrals are defined in their paper as

1/2
n (p, ks).

(17)
The functions F0, Eo, and Ao were tabulated by Heuman, which apparently motivated
their use. The modulus ks, parameter p, and angle (3 are related by

,;2 _ 4<lP "in2 Fj — P~k° = ^
s (a + p)2 + z2' P p{l-fcs2) (a-p)2 + z2-

Solving this last equation for the parameter p leads to the result

p = M = AaP (19)
1 — (1 - k2) sin2 P (a + p)2'

and it is easily shown that 0 < k2 < p < 1.
In order to compare with the expressions derived in the present paper, the following

relations are needed:

2_ 4ap _ 4h(a)l2(a) _ Isfk /9nx
5 (a + p)2 + z2 [h(a) + h(a)]2' s 1 + k' s 1 + Jfe' [ >

where Eq. (15) has been used and k is defined in Eq. (16). Using the above results it is
easy to verify that

i- («-p)2 i_M = f! = i!  (an
P (a + p)2' p (a + p)2 + z2 [h(a)+l2(a)]2- [ '

From Eq. (17), Ao(a,/?) can now be written as

A0 (a,/?) = l\a~p[ z xin(p,fc8). (22)
it (a + p) [h(a) + l2(a)} ^ s' y '

F0(ks) = -F(fcs), E0(ks) = -E(ks), A0(a,/3) = —(1 — p)1/2
7T 7T 7T

k2
1-^

P
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5. Transformation formulas for complete elliptic integrals. Since the integral
evaluations by Eason et al. (1955) involve the quantities p and ks while the present
evaluations are in terms of n and k, some conversion formulas are necessary in order to
verify equivalence. These are provided by Landen's or Gauss' transformation (see Byrd
and Friedman, 1971). For the complete elliptic integrals of the first and second kind, the
transformations are

F„(M = ?F(i.) = If (Ml) = ?(1 + fc)F(fc),

EM = 2e(*.) = Wi-d-^FW]
7T 7T

(23)

I 1 + k J 7r(l + k)

A similar type of relation is needed to convert between II(p, ks) and II(n, k). This was
recently derived by Hanson and Puja (1996) for z > 0 as

, . „ ( 2x/fc \ 7r/2(a)(l + k)(a + p) f 2 i i i\ a4 — p4 1n(„, *,) = n p, _ = {V -1«2 - A + }

+ (H-t)(a + P)
{a- p)

(24)

An additional result that will be required is now obtained. It is shown in the next
section that

7(1,1; -i) = f + 5M2>EW - ^ + FW + t). (25)2p 7ra/5 Trapl2{a) irapl2[a)

Since both Bessel functions have the same order, the result should be identical with a and
p reversed. If in the above equation these variables are interchanged (where Zi(a),?2(a),
and k are unaltered by this transformation) and the new equation is set equal to the one
above, the result is

nh.^fi + FB-nia), P1 = M = ̂  = (26)

This formula can be written in general form as

n I —,k 1 = x
n

n
(1 — n)(n — k2)

1/2
+ F(fc) — II(n, k), (27)

which agrees with a result given in Byrd and Friedman (1971). In the present analysis,
Eq. (26) will be utilized since it is a simplification of the above equation to the present
definitions of k and n.

There are several other transformation formulas in Byrd and Friedman (1971) for the
elliptic integral of the third kind. Although these formulas might lead to Eq. (24) above,
the author was not able to demonstrate this in a simple fashion.
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6. Differential formulas for elliptic integrals. In this section some differential
formulas for complete elliptic integrals of all three kinds are presented or derived. Prom
Eqs. (10-12) these integrals depend on the parameters fc and n. These two parameters are
functions of p, a, and z through Eq. (16). To differentiate the complete elliptic integrals
with respect to p, a, or z, the chain rule may be used. The necessary derivatives needed
for the complete elliptic integrals of the first and second kinds are given by Gradshteyn
and Ryzhik (1980) as

dE(fc) = E(fc) — F(fc) OF (fc) = F(fc) E(fc)
dk k ' dk k fc(l-fc2)' 1 j

Additionally, one can verify the results

dk 2 zk dk a(a2 + z2 — p2) dk p(p2 + z2 — a2)
dz = ~l22{a)(l - k2Y dp = ^(a)(l-fc2) ' da = - k2) '

where we have used the following differential relations provided by Fabrikant (1989):

dli(a) zl\(a) dl2 (a) zl2{a)
dz l2(a)—l2(a)' dz l2(a) — lf(a)'

dl\(a) = p[a2 -l\{a)\ dl2(a) = p[ll(a) - a2}
dp h(a)[ll(a) - l\{a)Y dp /2(a)[Z|(a) - l\(a)]'

dl\(a) _ a[p2-l2(a)] dl2{a) _ a[l2(a) — p2]
da li(a)[l2(a) — I2(a)]' da 12(a)[1%(a) - I2(a)]'

It will also be necessary to differentiate the complete elliptic integral of the third kind
with respect to the variables p, a, or 2. The derivatives with respect to k and n are given
by Byrd and Friedman (1971) as

(29)

an(n, k) k
dk (n — k2)

n^fc) - (T3pyE(fc) (31)

-[nE(fc) — (n — fc2)F(fc) + (n2 — k2)H(n, fc)]
dn 2n(l - n)(n - fc2) ^

The last results needed for application of the chain rule are the derivatives of n. These

dn _ 2zk2 dn 2k2[p2 — l2(a)] dn 2fc[p2 — I2(a)]
dz p2( 1 — fc2)' dp p3(l — k2) ' da p3(l — fc2)

Putting these equations together, the derivatives of II(n, fc) become

dll(n, fc) <9II(ra, k) dn dYl(n,k)dk

zl22{a){\ - k2)2 zl22(a){\ - fc2) zl22{a){l-k2) '

9II(n, fc) 3II(n, k) dn dH(n,k)dk
dp dn dp dk dp

= ~q(a)(l ~ k2)2^ + l2{a)(l - k2)F^ + /4(o)(l - jfe2)n(n>(35)
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7. Evaluations for integers less than 2. Now the integral in Eq. (1) is evaluated
when fi, v, and A take on the values —1,0, and 1. Without loss of generality, fi and v are
taken as 0 or 1 since J-n(x) = ( —1 )nJn(x). Since /j and u can take on two different values
and A three, there are a total of twelve different combinations. However, the integral
7(0,0;— 1) is nonconvergent and not presently considered leaving eleven possibilities.
Many of these integrals will be expressed in terms of derivatives of the potential function
ip(p,z) defined in Eq. (8). These derivatives have been evaluated by Hanson and Puja
(1996) and the necessary results are taken from there. The remaining evaluations will
be found by using the relations above.

As a starting point, Eq. (9) provides

/(1,0; ~1} = = 1^(a)E(fc) ~ [p2 ~ " *2n(«,*)]. (36)

Applying a p derivative to this equation leads to

I(1,1;0) = - 1 =gMg)[F(fc)-E(fc)]. (37)v ' 2ira dpdz Trap 1 w WJ v '

Integrating the above equation with respect to z yields

/(l, 1;-1) = = « + 'JlWE(k)
2na dp 2 p nap

Z y+ll{a)}¥{k)-Z{a\ ,P\(n,k). (38)
irapl2{a) nap^a)

In performing this integration an arbitrary function of p and a may be added. It can be
shown that this function is zero by considering z —> oo.

Three more evaluations can be obtained by taking z derivatives as follows. Applying
a z derivative to Eq. (37) leads to

/(!,!;!) =
1 d ip(p,z) 2z

2n a dpdz2 napl2(a)(l — k2)

Applying a z derivative to Eq. (36) results in

,2
-F(fc) + r^E(/c) (39)

/(1-0;0) = "it)l' (40)

A 2 derivative to the above equation gives

(41)

Three more relations can be found by interchanging the variables a and p in some
of the above expressions and using the identity in Eq. (26). Switching these in the
expression for 7(1,0;—1) provides

7(0,1;-!) =
r ph(a)

znl^a) + _ [Z2(a) _ pZ]F(k) + z2n(n, k) (42)
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A similar procedure to 7(1,0; 0) and 7(1,0; 1) leads to

7(0,1; 0) = —
P

7(0,1; 1) = [iKa) - P2]F(k) - [-2(;;2fc2;2]E(fe)npl%(a){l - k2)

The remaining two results are obtained as follows. For 7(0,0; 0), one can write

(43)

(44)

1 /-)
7(0,0; 0) = - —[p7(0,1; —1)]. (45)

Substituting for 7(0,1; —1) from above and performing the derivative using the results
in Sec. 6 gives

7(0,0; 0) = —j^—jF(k). (46)

Differentiating this equation with respect to z yields
9 1

(47)7(0,0; 1) =
7rZf(a)(l - k2)

8. Comparison with Eason et al. A comparison is now made with the results
of Eason et al. (1955). For the integral evaluations containing only complete elliptic
integrals of the first and second kind, the comparisons are easily made. For example
consider 7(0,0;0). Eason's result can be transformed using Eqs. (15, 20, 23) as follows:

k 2\/k 1 2 2
,<0'0;°) = - ITJwwFi(1 + '|F(i) = sm

which agrees with the present result in Eq. (46). The other evaluations not involving the
complete elliptic integral of the third kind can be shown to be equivalent in a similar
fashion.

The integral evaluations by Eason et al. (1955), which require the elliptic integral of
the third kind, are in a slightly more complicated form. The complication is due to the
different expressions required in the regions p < a and p > a. To illustrate a comparison
7(1,0;0) will be used. Starting with Eq. (40) and substituting for II(n, k) in terms of
II(p, ks) through Eq. (24) leads to

= 35? {2"j +
z(a P) n(p, ks). (49)

7r al2{a)(a + p)(l + k)

Now using Eqs. (22, 23) and the result (1 + k)l2(a) = 2(ap)1/2/ks provides

= 3^? {2'2" l«2 ""2l +
(50)

This agrees with the evaluation in Eason et al. (1955) for p < a and p > a. The above
equation indicates that the results in Eason et al. (1955) can be written as a single
expression for all p, a. However, the present form as in Eq. (40) appears to be simpler.
The remaining expressions can be shown to be equivalent in a similar manner.
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9. A result derived by Sura-Bura. It was pointed out by Eason et al. (1955)
that the integral 7(1,0; 0) was also evaluated by Sura-Bura (1950). Although the present
authors have not seen this paper, it appears that sufficient details are provided by Eason
et al. (1955). From their paper (p. 541) the result is

7(l,0;0) = -[l-Ao(/c1,/31)], (51)
a

with

2 x2{xi ~ 2Z2) .2 X\ 2,2,2
ki = —7—r^r~2T> sm & = —;—> = w -a + p + z ,

xi(x2 + 2 z2) X1+X2 (52)

x2 — W + a2 - p2 - z2, W2 = (a2 + p2 + z2)2 - 4a2p2,

where what appears to be a misprint in the denominator of the equation defining k j has
been presently corrected. It is easy to verify directly that

W = ll{a)-ll{a), xi = 2[lHa) - a\ x2 = 2[a2 - Zjf(a)], (53)

leading to the results

12 _ [a2 ~ lj(a)][p2 ~ Ijja)] _ z2l\ia) 2 2 l22ja) - a2
fcl [l2ia)-a2][l2ia)-p2] z2l2(a) ' ^ l2{a) - /?(a)' 1 j

and the modulus used by Sura-Bura is identical to the one used presently. If a new
variable p\ is defined to be consistent with Eq. (19) as

= \ n %) ■ 2 ' 1_(1~fci)sin2^1 = 7^ = ~^'1 — (1 — kf) sin Pi l2{a)

then it is easy to show that p\ is as defined in Eq. (26).
To arrive at the final form of Eq. (51), the function A0(/ci,/?i) can be written as

2
Ao(fci,/?i) = -(1 -Pi)1/2

7T

k2'i_k
pi.

1/2 2 z
n(pi,*:1) = -rrin(p1,fc), (56)

7rt2(a)

where k\=k has been used along with the identity from Fabrikant (1989):

[Ilia)-p2][p2-l\ia)] = z2p2. (57)

In the present notation, Sura-Bura's formula in Eq. (51) becomes

7(1,0;0) = -
a 1- -ffrll iPuk)7r<2(a) (58)

Application of Eq. (26) leads finally to Eq. (40) above.
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10. Evaluations when p or v may be 2. In this section the integral in Eq. (1)
is evaluated when either p or u or both take on the value 2. The parameter A is still
— 1, 0, or 1. As in Sec. 7, some of these integrals can be written as derivatives of the
potential function ip(p,z) defined in Eq. (8). Also, the potential function x(Piz) which
is the integral of ip(p, z) with respect to z will be used. The function x(p, z) is the linear
elastic potential function for uniform shear loading over a circular area on a half space.
Various derivatives of both ip(p, z) and x(p, z) are tabulated in Hanson and Puja (1996).

The evaluation of two integrals can be written down directly in terms of ip(p,z) as

I(l,2;0) = -^e-2^A2VM

a 2zl2(a)„,, > ^zl2(a)„,,. 2za
= ? + ^ ~ ~^¥{k) ~ 7rp2i2(a) ( }

= 2[2^(a) -Zf(a) -p2] 2[p2(z2 + p2 - a2) - 2(^(a) - l\(a))2]
*a(?l2(a)(l - k*) [,+ 7rap2Z|(a)(l-fc2)2

where the differential operator A2 is defined in Hanson and Puja (1996). Integrating Eq.
(59) with respect to z (and noting that the arbitrary function vanishes) also provides

/(1'2;_1) = ^e~2^A2x(p,z)

= _££ + 2/2(a)[2a2-p2-2:2]E + 2l2(a)[l2(a) - 2a2 + p2 + z'lp,,..
p2 Snap2 3>irap2

2 az2
+ —2rr\n(n'k •7T p2l2(a)

Interchanging a and p in the above equations and using Eq. (26) leads to
(61)

«M;0, = PW + m
J(2,l;l)=2|2'i2(a)~';'a)~°'1F(t)

7razpl2(a)(l — kz)

2[a2(z2 + a2-p2)-2(l2(a)-l2(a)r]
+ ixa2 pl\(a)(\ — k2)2 E(fc)' (63)

2{l%(a)\l%(a) - I2(a)] - 3p2[p2 -
3Tra2pl2{a) [ '

2 pz2
{M)

Additional results can be obtained from the recurrence relation (Eason et al., 1955)

2v, A) = pl{iu,i/ + 1; A + 1) + pl{p,v - 1; A + 1). (65)
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Setting p = 0, v = 1, and A = 0 leads to

»= 7+- r^EW1 - ^Mnin'k)' (66)

while setting p = 0, v = 1, and A = — 1 provides

1(0,2; 0) - J-zirl2{a) + 2l$(a)E(k) + [p2 - 2l22(a)}F(k) + 2z2U(n, fc)]. (67)^Pzh(a)

Interchanging a and p in the last two expressions and using Eq. (26) also gives

K2 o-1) - Az E(k) + 2zla2 + 2li(a)-2ll(a)]FfM . 4z nfn fc)
( ' } 7T/3(a)(l-fc2)2 ( )+ 7ra2;3(a)(l-fc2) ( } 7ro2Z2(a) ( '^'g)

1(2,0; 0) = j2Z2(a)E(fc) + [a2 + 2z2 - 2/2(a)]F(fc) - 2z2II(n, fc)]- (69)
7ra^l2(a)

The last two integrals obtained from Eq. (65) are found with p = 2, v = 1, A = —1 and
p — 2, v = 1, and A = 0. The results are

1(2,2; 0) = - + 2WI|Wg^MF(t)_ (?0)

f (2,2; 1) = *+/'E<*> - -^'FW. (71)7ra":p'!(l — k2)2 ira2 p^^i — kz)

Of the three remaining integrals, two can be evaluated using recurrence relations from
Eason et al. (1955). They are

1(2, 2; -1) = |/( 1, 2; 0) + |/(2,1; 0) - |/(2, 2; 0)

a2 zl2(a)[5a2 + 5p2 + 2
4p2 6na2p2

_ z{l%(a)[4a2 + V + z2 + ^(a)] + 3p4} , .
6tt a2p2l2(a) 1 ;

+ ̂ Sr}n^- (72)
J(2,0;-l) - |/(1,0;0) - |/(2,1;0) — |/(2,0;0)

= _^EW + £BM±4_L3£!^!iF(t)
7ra2 na* 12(a)

Interchanging a and p in the last expression and using Eq. (26) gives the final result:

[p2 — a2 + 2z2] 3 zl2(a)
2 p2 -npr

^(0,2; —1) = ~ " 2 —^-^E(fc)
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11. Evaluations when A = —2,2. The remaining integrals to be evaluated are when
the parameter A takes on the values —2 or 2 while p or v are less than or equal to 2. There
are 18 integrals in this category. However, the three integrals 7(0,0;—2), 7(1,0;—2),
and 7(0,1;—2) are nonconvergent. The 15 convergent integrals can be evaluated by
differentiation of the above results or by the recurrence relations in Eason et al. (1955).
Further details are omitted and the results are now given as

/(1,1;_2) = -i2 + ''(")[2p° + 2°° - "3]E(fc)2 p 3tt ap
^2(a)[4'i(a) + z2 — 2p2 — 2a2] + 3z2p2+  F(t) (75)

  

{Z2 (a) \21\ (a) +3z2] -6If (a) [a2 +z2] +p2 [61\(a) +4a2 +9z2 -6p2)} . .
WZ2(a) ()

z2 [3/o2 — 3a2 — 2z2]
+ —ww—n(n'k)- (76)

,(0,2;-2) = Zl3"2 2zi| + 'MHz*+$,,*-4a',
opz 97t pz

{a2 [6a2 — 6Z2 (a) — 4 p2 + 6 z2] + 6 p2l\(a) — 2/2 (a) — 3z2 [/92 + 3Z| (a)]}
97rp2l2{a)

z2[3a2 — 3/02 — 2z2]

F (k)

37rp2/2(a)
n (n,k), (77)

zQf(a)[13a2 - 5l\{a) - 5p2 - 2z2] - 3/?4}
127rap2/2(a) [ '■«WW

z{3p4 + 13/92Z2(a) — lla2/?2 — 12z2/92 — 5a2/2(a) — 2z2Z2(a)}
+ 127raV2(a) ( }



518 MARK T. HANSON and IGUSTI W. PUJA

-.2

l2{a){[li(a) + l%(a)][8a2 + 8p2 - 2z2} - 3[8a2p2 + 5z2p2 + 5a2z2]}
+ 3toV E(fc)
^ J" 412(a)[a212(a) — 2a4 + 2a2z2 + 2p2l2(a) — p4]

\ 307ra2p2/2(a)

z2ll{a)[z2 + ll(a)\ + 3p4[z2 + 4lj(a) - 4p2] \
30 na2p2l2(a) J 1 '

m n 9") - 2fe2(a)(l-fc2)2-5z2-3z2fc2} 4022(a)(l-fc2)2-4z2(l + fc2)}
nu,u,2j- 7r;5(a)(1_fc2)3 7T/|(a)(l-fc2)4 W'

(81)

2z{/|(a) + 7/f (a) - 5a2 - 3a2fc2}
U' ' 7ra^(a)(l - /c2)3 1 j

, 2z{8a2(l + fc2) — k2l\{a) — l2(a) — 14Z2(a)}
+ 7raZ25(a)(l-fc2)4 E(fc)' (82)

T(n i. o\ _ 2z{/j(a) + 7/f (a) - 5p2 - 3p2fc2}
[ ' ' j~~ 7rp^(a)(l-fc2)3 1 j

2z{8p2(l + /c2)-fc2Z?(a)-^(a)-14Z?(a)}T;,^ /oo^
+ ^»(a)(l - **)« E(t)' (83)

( ' 7rap/3(a)(i_fc2)3

_ 2i|(a)(l + fc2)(l - fc2)2 - 2z2(l + 14fc2 + fc4)
7rap/3(a)(l-fc2)4 ( }' ( }

r/9 n _ 2{Z|(a)[2Z|(a) - 3a2](l - A:2)2 + z2a2(5 + 3fc2)}
( ' 7ra2Zf (a)(l - fc2)3 W

4{/|(a)[2a2-p2-z2](l-fc2)2-4a2z2(l + fc2)}

+ na2ll(a)(l-k2r ( }' ( }

T(n 9 9x 2{/|(a)[2l2(a) - 3p2](l - k2)2 + z2p2(5 + 3fc2)}
( ' ' j- 7rp2^(a)(l-fc2)3 fW

, 4{Z2(a)[2p2 - a2 - z2](l - k2)2 - 4pV(l + fc2)}
+ np2ll(a)(l-k2r ( }' (86)

t,i d o\ 2z{2^(a)(l-fc2)2+7p2fc2+p2-5/?(a)-3/?(a)fc2}
( ' 7rap2Z3(a)(l-fc2)3 1 j

2z{2(l + k2)[ll(a) — 6Zf (a) + l2(a)k2] + p2[l + fc4 + 14fc2]}E(fc),
7rap2ll(a)(l - k2)4 ^
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TO i o\ _ 2z{2f|(a)(l ~ fc2)2 + 7a2fc2 + a2 - 5lj(a) - 3l'i{a)k2}
l' ' j 7raVi(a)(l"fc2)3

2z{2(l + fc2)[Z|(a)-6Zf(a) + ;?(a)A;2]+a2[l + A;4 + 14/c2]}
+ 7ra2^(a)(i_fc2)4 E(fc)' (88)

_ 2{(1 - fc2)2[2z2 + 21%(a) - l2(a)} - z2fc2[5 + Sfc2]}^
l' ' ' 7raVZ2(a)(l-fc2)3 W

4{4z2fc2(l + fc2)-(l-£;2)2[Z2(a)-/f (a) + &2I2(a)+22 + 2:2/c2]} ,
+ 7raVMa)(l-fc2)4 ( j(8g)

12. Evaluations in terms of a Legendre function. Some integrals of the type
considered above have also been evaluated in terms of a Legendre function. Prom Erdelyi
(1954) or Byrd and Friedman (1971) one can find

r oo
7(7,7! 0)=/ J7(0-W)e-^= , u/2Q7-i/2(Z), (90)7o Tr(ap)1/^

where <37-i/2(Z) is a Legendre function of the second kind with Z defined as

Z = = = l±g, KZ<oc. (91)
2ap 2Zi(a)Z2(a) 2 k

Taking 7 = 0, 1, and 2 provides the results (Byrd and Friedman, 1971)

/(0'0;0) = ^M^Q-1/2^'

7(1'1;0) = 7r(ap)1/2<5l/2(Z)'

(92)

(93)

7(2'2;0) = ^)^Q3/2(Z)- (94)

Comparing the expressions for 7(0,0; 0) and 7(1,1; 0) to the results in Sec. 7 provides
the relations

1 1 \fk
F{k) = UkQ'l,^Z)' m = ^Q-i/2(Z)-^Ql/2(Z). (95)

Using the above equations, all the remaining integral evaluations in Sec. 7 can be
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written in terms of Q~\/2{Z),Q\/2{Z), and Il(n, k). The results are

/(0'0;" = + ' 2kQ(96)

7(1'0;0) = + <97)

if 2z
1(0,1;0) = — l-——n(n,k) , (98)

p . ^r<2(a)

7(0,1; -1) - -- + ^apy/2 \pQ-iMz) ~ aQ\/2{Z)} + k), (99)
2 1 r „ ^ . 2z2

P

/(1'0; ~1} = ^pj^[{a2 + - apQ"2(z)1 - d^)n(n'fc)'
(100)

J(1,0;1) n(aPy/2l42(a){l - k2)2^2 + Z* P^Q~1'

+ p{p2 +2:2 - a2)Qi/i{Z)\i (ioi)

7(°> !' X) = 7r(ap)i/2/|(a)(1-fc2)2^2 + ~ a2)Q-i/2(^)

+ a(a2 + z2 — p'1)Qi/2(Z)\, (102)

^ " ■"'>- 5? - 5S5S^W-.M2) + - tss?n<"' tj, ̂
/(1-1;" = "t(1+i104'

It was noted in the introduction that Hasegawa et al. (1992a,b) evaluated the inte-
grals considered presently in terms of a Legendre function. However, his choice of the
parameters in the complete elliptic integral of the third kind was consistent with that
used by Eason et al. (1955). The integral evaluations given by Hasegawa et al. (1992b)
were shown to agree with the above equations using the transformation formula in Eq.

(24).

13. Evaluations on the axis p = 0 and at the surface z = 0. In physical problems
where these integrals may appear as the solution for some field quantity, p would usually
represent the cylindrical coordinate radius measured from the z-axis where z > 0 for
convergence. It might therefore be required to evaluate the above integral evaluations at
p = 0 or z = 0.

Since p appears in the denominator of many of the above expressions, the individual
terms in a particular integral evaluation become infinite. However, these infinities cancel
when all terms in an expression are considered. To obtain the analytical expression for
these integrals when p = 0, one could use the power series expansions for the elliptic
integrals given in Sec. 8 of Hanson and Puja (1996). An easier approach is available how-
ever. To this end we return to the definition for I(p,, u\ A) given in Eq. (1). The function
Jv(p€) can be expanded in a power series in p and the resulting integrals evaluated very
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easily. This procedure leads to the p —» 0 expansions given in Appendix A for the various
integers /x, v, and A.

To evaluate these integrals when z —> 0, the following limits can be used:

LimZi(a) = min(a,/o), Lim^a) = max(a, p), (105)
z —►() z—*0

where min is the minimum of the two values and max is the maximum. Thus k and n
become i P i a

k = ~, p < a; k=-, p > a,
a p

a2
n = 1, p < a; n= p > a.

P

(106)

The only difficulty in evaluating the expressions at the surface results from the complete
elliptic integral of the third kind. From Eq. (12), it is seen that when z —> 0 with
p < a (n —» 1), this elliptic integral tends to infinity. However, in the integral evaluations
above, this elliptic integral is multiplied by z which tends to zero. To evaluate this limit,
Eq. (24) can be used providing the result

7TCL
LimzII(n, k) — —p < a; LimzII(n, k) — 0, p > a. (107)
z—* 0 2 z—>0

From the above three equations, the values of any of the integrals can be found for 2 —* 0.

14. Discussion and conclusions. In this paper certain infinite integrals involving
products of Bessel functions of integer order have been evaluated. These integrals have
been investigated and evaluated previously by Eason et al. (1955). They used an integral
representation for I(p, v, A) in terms of a hypergeometric function which allowed the
evaluation in terms of elliptic integrals for various integer values of the parameters. This
evaluation procedure led naturally to a certain definition of the modulus ks and parameter
p in their elliptic integrals. This choice of parameters and the use of Heuman's Lambda
function led to evaluations for some of the integrals that had different forms depending
on the relative magnitudes of p and a. Since these integral evaluations are generally some
physical quantity such as displacement or stress fields in linear elasticity, the requirement
of needing different expressions in different regions to represent continuously differentiable
functions is a bit disconcerting.

In a recent paper Hanson and Puja (1996) evaluated the elastic field for a uniform
normal or shear loading on a transversely isotropic half space. Following Love's (1929)
method of solution, they determined the elastic fields by directly evaluating the double
integral of the potential function. Since this problem could also be formulated using
Hankel transforms, the integral evaluations in their paper could be used to directly eval-
uate some of the integrals considered here (as done in Sec. 7). However, their alternative
method of evaluation led to new forms for the elliptic modulus k and parameter n. This
new form has allowed I(p, u\ A) to be evaluated in terms of a single expression, continu-
ous and differentiable everywhere, for all values of the parameters p, z, and a. In some
instances this new form has also allowed these integral evaluations to be put in a simpler
form.
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As a final point, we note that the present work has correlated the present integral
evaluations with those existing in the previous literature. The required transformation
formulas were presented in Sec. 5. It was found that all previously evaluated integrals
were consistent with the present results.

Acknowledgment. It is gratefully acknowledged that support during the course of
this research was received from the National Science Foundation under grant No. MSS-
9210531.

Appendix A. Many of the integral evaluations derived in this paper contain the
polar radius p in the denominator. This may lead to an indeterminacy in trying to
evaluate some of the expressions at the origin p = 0. Below the asymptotic expressions
are given for each integral as p tends to zero. These limits can be obtained from the
results in Hanson and Puja (1996). However, they are presently obtained by expanding
the Bessel function Jv{p£)
are

7(0,l;jl

7(1,0;-1

7(1,1;-1

7(0,0; 0

7(0,1;0

7(1,0;0

7(1,1;0

7(0,0; 1

7(0,1; 1

7(1,0; 1

7(1,1; 1

7(0, 2;-1

7(2,0; —1

7(1,2;-1

or p —> 0 and evaluating the resulting integral. The results

p+0(p3), (Al)
2 (a2 + z2)1/2

(a2 + z2)1/2 — z
+ 0(p2), (A2)

[(a2 + z2)1/2 ~z] 3

2a(a2 + z2)1/2 p + °(p)' {A3)
1 0(p2), (A4)

(a2 + z2)1/2
z

P + 0(pJ), (A5)2(a2 + z2)3/2

0(p2), (A6)
(a2 + z2)1/2 — z 2

a(a2 + z2)1/2

p + 0(p3), (A7)2(a2 + z2)3/2
z

(a2 + z2)3/2

[2z2 - a2]
2(a2 + z2)5/2

f 0(P2), (AS)

p + 0(p3), (A9)
a

+ 0(P2), (A10)
(a2 + z2)3/2

Q 7/1

wrwr^+0{"3)' (A11)
8 (a2 + z2)3/2^ + °(p4)' (A12)

a2+2z2-lf+^/2+0{p% (A13)

p2 + 0(p4), (A14)8 (a2 + z2)3/2
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7(2,1;-1

/(2,2; -1

7(0, 2; 0

7(2,0; 0

7(1,2;0

7(2,1;0

7(2,2;0

7(0,2; 1

7(2,0;1

7(1,2; 1

7(2,1; 1

7(2,2; 1

7(1,1;-2

7(2,0;-2

7(0,2; -2

7(1, 2;-2

7(2,1;-2

7(2, 2;-2

7(0,0; 2

7(1,0;2

a 2 + 2z2 - 2z(a2 + z2)1/2 p + 0(pd), (A15)
2a2(a2 + z2)1/2

_9r%2 + 0(p4), (A16)2(a2 + z2)3/2 — 3za2 — 2z3 2 4

8a2 (a2 + z2)3/2

^~°2] P2 + 0(P4), (A17)
8(a2 + z2)5/2

a2 + 2z2 - 2z(a2 + z2)1/2

a2(a2 + z2)1/2
+ 0(p2), (A18)

32" „! + 0(A (A19)
a2 + z2)5/2

_ _ 9r3
p + 0(p ), (A20)

2(a2 + z2)3/2 - 3za2 - 2z3 i r>t 3
2 a2(a2 + z2)3/2

3 a2
8(a2 + z2)5/2

z[6z2 - 9a2]

P +0{p ), (A21)

P2 + 0(A (A22)8(a2 + z2)7/2
— _

+ 0(p ), (A23)2(a2 + z2)3/2 - 3za2 - 2z3 | nil 2
a2(a2 + z2)3/2

3a[4z2 — a2] 2
(a2 + z2)7/2 P2 + 0(A (A24)

P + 0(P3), (A 25)2(a2 + z2)5/2

15za2 o
P1 + 0(A (A26)8(a2 + z2)7/2
~*p + 0(p3), (A27)

+ 0(p2), (A28)

(a2 + z2)1/2_z^^

2a
2(a2 + z2)3/2 — 3za2 — 2z3

6 a2

P2 + 0(P4), (A29)8(a2 + z2)1/2
~V + <V), (A30)(«2 + ^2)1/2-Z 2 , ^ 4,

8a(a2 + z2)1/2

a + 2z2 — 2z(a2 + z2)1/2

4a2 P + 0(p ), (A31)
a2 + 2z2 - 2z(a2 + z2)1/2 2 4

8 a2(a2 + z2)1/2

2z2 - a2

r + 0(p4), (A32)

(a2 + z2)5/2
+ 0(p2), (A33)

+ 0(p2), (A34)
(a2 + z2)5/2
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*.U*-0£fr+O*, (A35)
= + (A36)

So2
7(2'O;2)=(q2 + 02)5/2+°(A (A37)

/(°'2;2) = + (A38)

<*»>

1 ̂  Z(7 ̂
/(2'1;2)'2(a' + ^" + 0("3>' (A40)

'(V;2)-^^^ + o,/). (A41)
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