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ABSTRACT: Prioritizing missense variants for further ex-

perimental investigation is a key challenge in current se-

quencing studies for exploring complex and Mendelian

diseases. A large number of in silico tools have been em-

ployed for the task of pathogenicity prediction, including

PolyPhen-2, SIFT, FatHMM, MutationTaster-2, Muta-

tionAssessor, Combined Annotation Dependent Deple-

tion, LRT, phyloP, and GERP++, as well as optimized

methods of combining tool scores, such as Condel and

Logit. Due to the wealth of these methods, an important

practical question to answer is which of these tools gener-

alize best, that is, correctly predict the pathogenic charac-

ter of new variants. We here demonstrate in a study of 10

tools on five datasets that such a comparative evaluation

of these tools is hindered by two types of circularity: they

arise due to (1) the same variants or (2) different variants

from the same protein occurring both in the datasets used

for training and for evaluation of these tools, which may

lead to overly optimistic results. We show that compar-

ative evaluations of predictors that do not address these

types of circularity may erroneously conclude that circu-

larity confounded tools are most accurate among all tools,

and may even outperform optimized combinations of tools.
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Introduction

Current high-throughput techniques to investigate the genetic

basis of inherited diseases yield large numbers of potentially

pathogenic sequence alterations [Tennessen et al., 2012; Purcell

et al., 2014]. Conducting further in-depth functional analyses on

these large numbers of candidates is generally impractical. Reliable

strategies that allow investigators to decide which of these variants

to prioritize are therefore imperative. Researchers will often focus

on nonsynonymous single-nucleotide variants (nsSNVs), which are

disproportionately deleterious compared with synonymous variants

[Hindorff et al., 2009; Kiezun et al., 2012; MacArthur et al., 2012],

and filter out common variants, which are presumed to be more

likely to be neutral. However, in many cases, tens of thousands of

candidates still remain after this step. Computational tools that can

be used to identify those missense variants most likely to have a

pathogenic effect, that is, most likely to contribute to a disease, are

therefore of high-practical value.

A number of such tools are already available, such as

MutationTaster-2 (MT2) [Schwarz et al., 2014], LRT [Chun and

Fay, 2009], PolyPhen-2 (PP2) [Adzhubei et al., 2010], SIFT [Ng

and Henikoff, 2003], MutationAssessor (MASS) [Reva et al., 2011],

FatHMM weighted (FatHMM-W) and unweighted (FatHMM-U)

[Shihab et al., 2013], Combined Annotation Dependent Deple-

tion (CADD) [Kircher et al., 2014], phyloP [Cooper and Shendure,

2011], and GERP++ [Davydov et al., 2010]. They are widely used for

separating pathogenic variants from neutral variants in sequenc-

ing studies [Leongamornlert et al., 2012; Rudin et al., 2012; Kim

et al., 2013; Thevenon et al., 2014; Weinreb et al., 2014; Zhao et al.,

2015]. While these tools are all commonly applied to the problem of

pathogenicity prediction, the original purposes they were designed

for varies (see Table 1). Some measure sequence conservation (phy-

loP [Cooper and Shendure, 2011], GERP++ [Davydov et al., 2010],

and SIFT [Ng and Henikoff, 2003]), others try to assess the impact of
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Table 1. Overview of the Prediction Tools Used in This Study

Tool (abbreviation) Version N AA Purpose, as stated by developers

PolyPhen-2 (PP2) 2.2.2 Yes Yes “Predicts possible impact of an amino acid substitution on the structure

and function of a human protein using straightforward physical and

comparative considerations”a

MutationTaster-2 (MT2) 2 Yes No “Evaluation of the disease-causing potential of DNA sequence

alterations”b

MutationAssessor (MASS) 2 Yes Yes “Predicts the functional impact of amino acid substitutions in proteins,

such as mutations discovered in cancer or missense polymorphisms”c

LRT – Yes No “Identify a subset of deleterious mutations that disrupt highly

conserved amino acids within protein-coding sequences, which are

likely to be unconditionally deleterious”d

SIFT 1.03 Yes Yes “Predicts whether an amino acid substitution affects protein function”e

GERP++ – Yes No “Identifies constrained elements in multiple alignments by quantifying

substitution deficits. These deficits represent substitutions that would

have occurred if the element were neutral DNA, but did not occur

because the element has been under functional constraint. We refer

to these deficits as “rejected substitutions.” Rejected substitutions are

a natural measure of constraint that reflects the strength of past

purifying selection on the element”f

phyloP – Yes No “Compute conservation or acceleration P values based on an alignment

and a model of neutral evolution”g

FatHMM unweighted

(FatHMM-U)

2.2–2.3 No Yes Predicts “functional consequences of both coding variants, that is,

nonsynonymous single-nucleotide variants, and noncoding

variants”h

FatHMM weighted

(FatHMM-W)

2.2–2.3 No Yes Predicts “functional consequences of both coding variants, that is,

nonsynonymous single-nucleotide variants, and noncoding variants”

and its weighting scheme attributes higher tolerance scores to SNVs

in proteins, related proteins, or domains that already include a high

fraction of pathogenic variantsh

Combined Annotation

Dependent Depletion

(CADD)

1.0 Yes No “CADD is a tool for scoring the deleteriousness of single-nucleotide

variants as well as insertion/deletions variants in the human

genome”i

For each tool, the first column shows the version of the tool, the second column (N) shows whether it accepts nucleotide changes as input, the third column (AA) shows whether
it accepts amino acid changes as input. The last column provides a description of the tool, as stated by the developers.
ahttp://genetics.bwh.harvard.edu/pph2/index.shtml
bhttp://www.mutationtaster.org
chttp://mutationassessor.org
dhttp://www.genetics.wustl.edu/jflab/lrt_query.html
ehttp://sift.jcvi.org
fhttp://mendel.stanford.edu/sidowlab/downloads/gerp/index.html
ghttp://compgen.bscb.cornell.edu/phast/
hhttp://fathmm.biocompute.org.uk
ihttp://cadd.gs.washington.edu/home

variants on protein structure or function (e.g., PP2 [Adzhubei et al.,

2010]) or to quantify the overall pathogenic potential of a variant

based on diverse types of genomic information (e.g., CADD [Kircher

et al. 2014]). Note that SIFT is both a measure of sequence conser-

vation and provides an analytically derived threshold for predicting

whether or not protein function will be affected [Ng and Henikoff,

2003]. Furthermore, popular benchmark datasets for pathogenicity

prediction differ in the way they define the pathogenic or neutral

character of a variant (see Table 2). For instance, neutral variants

are supposed to have a minor allele frequency larger than 1% in

HumVar [Adzhubei et al., 2010], of less than 1% in ExoVar [Li et al.,

2013], and of more than 40% in VariBench [Thusberg et al., 2011;

Nair and Vihinen, 2013].

Given this wealth of different methods and benchmarks that

can be used for pathogenicity prediction, an important practical

question to answer is whether one or several tools systematically

outperform all others in prediction accuracy. To address this ques-

tion, we comprehensively assess the performance of 10 tools that

are widely used for pathogenicity prediction: MT2 [Schwarz et al.,

2014], LRT [Chun and Fay, 2009], PP2 [Adzhubei et al., 2010], SIFT

[Ng and Henikoff, 2003], MASS [Reva et al., 2011], FatHMM-W and

FatHMM-U [Shihab et al., 2013], CADD [Kircher et al., 2014], phy-

loP [Cooper and Shendure, 2011], and GERP++ [Davydov et al.,

2010]. We evaluate performance across major public databases

previously used to test these tools [Adzhubei et al., 2010; Mottaz

et al., 2010; Thusberg et al., 2011; Li et al., 2013; Nair and Vihi-

nen, 2013; Bendl et al., 2014] and show that two types of circularity

severely affect the interpretation of the results. Here, we use the

term “circularity” to describe the phenomenon that predictors are

evaluated on variants or proteins that were used to train their pre-

diction models. While a number of authors have acknowledged the

existence of one particular form of circularity before (stemming

specifically from overlap between data used to develop the tools

and data upon which those tools are tested) [Adzhubei et al., 2010;

Thusberg et al., 2011; Nair and Vihinen, 2013; Vihinen, 2013], our

study is the first to provide a clear picture of the extent and impact

of this phenomenon in pathogenicity prediction.

The first type of circularity we encounter is due to overlaps be-

tween datasets that were used for training and evaluation of the

models. Tools such as MT2 [Schwarz et al., 2014], PP2 [Adzhubei

et al., 2010], MASS [Reva et al., 2011], and CADD [Kircher et al.,

2014], which require a training dataset to determine the parameters

of the model, run the risk of capturing idiosyncratic characteristics

of their training set, leading to poor generalization when applied

on new data. To prevent the phenomenon of overfitting [Hastie

et al., 2009], it is imperative that tools be evaluated on variants that

were not used for the training of these tools [Vihinen, 2013]. This

is particularly true when evaluating combinations of tool scores, as
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Table 2. Purpose of Each Dataset, as Described by Dataset Creators

Dataset Purpose Positive control: damaging/deleterious/disease

causing/pathogenic

Negative control: neutral/benign/nondamaging/tolerated

HumVar Mendelian disease variant

identification

“All disease-causing mutations from UniProtKB”a “Common human nsSNPs (MAF > 1%) without annotated

involvement in disease . . . treated as nondamaging”a

ExoVar “Dataset composed of pathogenic

nsSNVs and nearly

nonpathogenic rare nsSNVs”b

“5,340 alleles with known effects on the molecular

function causing human Mendelian diseases from the

UniProt database . . . positive control variants.”

“Pathogenic nsSNVs”b

“4,752 rare (alternative/derived allele frequency <1%)

nsSNVs with at least one homozygous genotype for the

alternative/derived allele in the 1000 Genomes

Project . . . negative control variants.” “Other rare

variants”b

VariBench “Variation datasets affecting

protein tolerance”c

“The pathogenic dataset of 19,335 missense mutations

obtained from the PhenCode database downloaded in

June 2009), IDbases and from 18 individual LSDBs.

For this dataset, the variations along with the variant

position mappings to RefSeq protein (> = 99% match),

RefSeq mRNA, and RefSeq genomic sequences are

available for download.”c

“This is the neutral dataset or nonsynonymous coding SNP

dataset comprising 21,170 human nonsynonymous

coding SNPs with allele frequency 40.01 and chromosome

sample count 449 from the dbSNP database build 131.

This dataset was filtered for the disease-associated SNPs.

The variant position mapping for this dataset was

extracted from dbSNP database.”c

predictSNP “Benchmark dataset used for the

evaluation of . . . prediction tools

and training of consensus

classifier PredictSNP”d

Disease-causing and deleterious variants from SwissProt,

HGMD, HumVar, Humsavar, dbSNP, PhenCode,

IDbases, and 16 individual locus-specific databases.

Neutral variants from SwissProt, HGMD, HumVar,

Humsavar, dbSNP, PhenCode, IDbases, and 16 individual

locus-specific databases.

SwissVar “Comprehensive collection of

single amino acid

polymorphisms (SAPs) and

diseases in the

UniProtKB/Swiss-Prot

knowledgebase”e

“A variant is classified as disease when it is found in

patients and disease association is reported in

literature. However, this classification is not a

definitive assessment of pathogenicity”f

“A variant is classified as polymorphism if no disease

association has been reported”f

For each dataset, the first column shows the general purpose. The last two columns describe the positive and negative control categories of variants.
ahttp://genetics.bwh.harvard.edu/pph2/dokuwiki/overview
bhttp://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003143
chttp://structure.bmc.lu.se/VariBench/tolerance_dataset1.php
dhttp://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003440
ehttp://bioinformatics.oxfordjournals.org/content/26/6/851.long
fhttp://swissvar.expasy.org/cgi-bin/swissvar/documentation

different tools have been trained on different datasets, increasing the

likelihood that variants in the evaluation set appear in at least one

of these datasets [González-Pérez and López-Bigas, 2011; Capriotti

et al., 2013; Li et al., 2013; Bendl et al., 2014]. Notably, this type

of circularity, which we refer to as type 1 circularity, could cause

spurious increases in prediction accuracy for both single tools and

combinations of tool scores.

The second type of circularity, which we refer to as type 2 cir-

cularity, is closely linked to a statistical property of current variant

databases: often, all variants from the same gene are jointly labeled

as being pathogenic or neutral. As a consequence, a classifier that

predicts pathogenicity based on known information about specific

variants in the same gene will achieve excellent results, while be-

ing unable to detect novel risk genes, for which no variants have

been annotated before. Further, it will not be able to perform an-

other critical function: discrimination of pathogenic variants from

neutral ones within a given protein.

Furthermore, we evaluate the performance of two tools that com-

bine scores across methods, Condel [González-Pérez and López-

Bigas, 2011] and Logit [Li et al., 2013], and examine whether

these tools are affected by circularity as well. These tools are based

on the expectation that individual predictors have complementary

strengths, because they rely on diverse types of information, such as

sequence conservation or modifications at the protein level. Com-

bining them hence has the potential to boost their discriminative

power, as reported in a number of studies [González-Pérez and

López-Bigas, 2011; Capriotti et al., 2013; Li et al., 2013; Bendl et al.,

2014]. The problem of circularity, however, could be exacerbated

when combining several tools. First, consider the case where the

data that are used to learn the weights assigned to each individual

predictor in the combination also overlaps with the training data of

one or more of the tools. Here, tools that have been fitted to the data

already will appear to perform better and may receive artificially

inflated weights. Second, consider the case where the data used to

assess the combination of tools overlaps with the data on which the

tools have been trained. Here, the tools themselves are biased to-

ward performing well on the evaluation data, which can make their

combination appear to perform better than it actually does.

Materials and Methods

Datasets and Data Preprocessing

In this study, we used five different datasets to assess the per-

formance of available prediction tools and their combinations. We

used publicly available and commonly used benchmark datasets:

HumVar [Adzhubei et al., 2010], ExoVar [Li et al., 2013], VariBench

[Thusberg et al., 2011; Nair and Vihinen, 2013], predictSNP [Bendl

et al., 2014], and the latest SwissVar (December 2014) database

[Mottaz et al. 2010] (Table 3). As these tools can require either nu-

cleotide or amino acid substitutions as input, we used Variant Effect

Predictor (VEP) [McLaren et al., 2010] to convert between both for-

mats. We excluded all variants for which we could not determine an

unambiguous nucleotide or amino acid change. Note that by con-

trast, analyses such as that of Thusberg et al. (2011) only assess tools

that require amino acid changes as input. As the intersection of the

training data from the tool CADD [Kircher et al., 2014] and that of all

other datasets is small (fewer than a hundred variants), we systemat-

ically excluded all variants overlapping with the CADD training data

from all other data sets. The VariBench dataset (benchmark database

for variations) was created [Thusberg et al., 2011; Nair and Vihi-

nenm 2013] to address the problem of type 1 circularity. However,

while the pathogenic variants of this dataset were new, its neutral

variants may have been present in the training data of other tools.
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Table 3. All Datasets Used in This Study

Datasets Deleterious variants

(D)

Neutral variants (N) Total Ratio (D:Total) Tools potentially

trained on data (fully

or partly)

Removed variants

overlapping with:

HumVar 21,090 19,299 40,389 0.52 MT2, MASS, PP2,

FatHMM-W

CADD training data

ExoVar 5,156 3,694 8,850 0.58 MT2, MASS, PP2,

FatHMM-W

CADD training data

VariBenchSelected 4,309 5,957 10,266 0.42 MT2 CADD training data,

HumVar, ExoVar

predictSNPSelected 10,000 6,098 16,098 0.62 MT2 CADD training data,

HumVar, ExoVar,

VariBench

SwissVarSelected 4,526 8,203 12,729 0.36 MT2 CADD training data,

HumVar, ExoVar,

VariBench, predictSNP

These preprocessed and filtered datasets are used to evaluate the performance of different prediction tools.

VariBench has an overlap of approximately 50% with both HumVar

and ExoVar (Supp. Fig. S1). We kept the nonoverlapping variants to

build an independent evaluation dataset, which we called VariBench-

Selected and make available along with this manuscript (Supp. Data

S1). From the predictSNP benchmark dataset, we systematically ex-

cluded all variants that overlap with HumVar, ExoVar, and VariBench

and called the resulting dataset predictSNPSelected. Eventually, we

created a fifth dataset, SwissVarSelected. Here, we excluded from

the latest SwissVar database (December 2014) all variants overlap-

ping with the other four datasets — HumVar, ExoVar, VariBench,

and predictSNP. Thus, SwissVarSelected should be the dataset con-

taining the newest variants across all datasets. With one possible

exception, none of the prediction tools or conservation scores we

investigated in this manuscript were trained on VariBenchSelected,

predictSNPSelected, or SwissVarSelected. The exception is that some

variants in the selected datasets may overlap partially with variants

used to train MT2 [Schwarz et al., 2014] because MT2 was trained

on private data (a large collection of disease variants from HGMD

Professional [Stenson et al., 2014]).

Pathogenicity Prediction Score Sources and Conservation

Scores

For any given variant, we obtained scores and prediction labels for

each tool directly from their respective Web servers or standalone

tools (Table 1). The pathogenicity score of a missense variant may

depend on which transcript of the corresponding gene is considered.

For this reason, we standardized our analyses by examining the

same transcript across all tools; if available, we chose the canonical

transcript [Hubbard et al., 2009]. In contrast, ANNOVAR [Wang

et al., 2010] and dbNSFP 2.0 [Liu et al., 2013] use the transcript

that yields the worst (e.g., most damaging) score, which means that

different tools may select different transcripts for the same variant.

Data Availability and Reproducibility of Results

For each dataset, we compiled comma-separated files contain-

ing all obtained tool scores and predicted labels as well as in-

formation about the variant (true label, nucleotide and amino

acid changes, minor allele frequencies, UniProt accession IDs

[Magrane and Consortium, 2011], Ensembl gene, transcript and

protein IDs [Flicek et al. 2014], and dbSNP IDs (rs#) if available

[Sherry et al., 2001]). All these datasets including the tool pre-

dictions can be found at the VariBench Website (http://structure.

bmc.lu.se/VariBench/GrimmDatasets.php) as well as a single Excel

file at the journals Website (Supp. Data S2).

Further, we provide all Python scripts used to generate all tables

and figures in this study along with all datasets, compressed as a

single ZIP file (Supp. Data S1). All data and Python scripts can

also be downloaded from: http://www.bsse.ethz.ch/mlcb/research/

bioinformatics-and-computational-biology/pathogenicity-predi-

ction.html.

Performance Evaluation

To evaluate the performance of all the tools in this study, we used

a collection of statistics derived from a confusion matrix. To this

end, we counted a correctly classified test point as a true positive

(TP) if and only if the test point corresponds to the positive class

(pathogenic or damaging) and as a true negative (TN) if and only

if the test point corresponded to the negative class (neutral or be-

nign). Accordingly, a false positive (FP) is a negative test point that

is classified to be positive and a false negative (FN) a positive test

point classified as a negative one. Since a few datasets are slightly

unbalanced, we assessed the performance of the single tools by com-

puting receiver operating characteristic curves (ROC-curves). Fur-

thermore, we computed Precision-Recall curves (ROC-PR-curves)

[Davis and Goadrich 2006]. The ROC-curve is the fraction of the

TP over all positives TP+FN (sensitivity or TP rate) against the frac-

tion of the FP over all negatives TN+FP (1-specificity or FP rate),

whereas the ROC-PR curve is the fraction of the TP over all positives

TP+FN (recall or sensitivity) against the fraction of the TP over all

TP+FP (precision). To measure the performance, we computed the

area under the ROC and ROC-PR curves (AUC and AUC-PR, re-

spectively). The area under the curve can take values between 0 and

1. A perfect classifier has an AUC and AUC-PR of 1. The AUC of a

random classifier is 0.5. Additionally, we assessed the performance

with seven commonly used parameters as described in the Human

Mutation guidelines [Vihinen, 2012 , 2013] and reported the results

in the Supp. Information:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall/Sensitivity =
T P

T P + F N
(3)

Specificity =
TN

FP + TN
(4)
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F –Score = 2
Precision × Recall

Precision + Recall
(5)

Negative Predictive Value (NPV) =
TN

TN + FN
(6)

Matthews Correlation Coefficient (MCC)

=
TP × TN – FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(7)

Evaluation of the Weighting Scheme of FatHMM-W

Given the superior performance of FatHMM-W on VariBenchS-

elected and predictSNPSelected (see Results and Fig. 1), we examined

this prediction tool in more detail. This section provides relevant

details about FatHMM’s weighted (FatHMM-W) and unweighted

(FatHMM-U) versions and our evaluation of the weighting of

FatHMM, which accounts for its superior performance. To evaluate

the role of the weighting scheme of FatHMM-W [Shihab et al., 2013]

(Supp. Text S1), we compared the original FatHMM-W method

with an L1-regularized logistic regression [Lee et al., 2006] over

the log-transformed features ln(Wn) and ln(Wd). These features are

used by FatHMM to reweight the FatHMM-U score and construct

FatHMM-W, the weighted version of FatHMM (Supp. Text S1). We

performed a 10-fold cross-validation on the five datasets HumVar

[Adzhubei et al., 2010], ExoVar [Li et al., 2013], VariBenchSelected

[Thusberg et al., 2011; Nair and Vihinen, 2013], predictSNPSelected

[Bendl et al., 2014], and SwissVarSelected [Mottaz et al., 2010] (see

Table 3 and the Methods section). For this purpose, we randomly

split the dataset of interest into 10 subsets of equal size (to the extent

possible). Simultaneously, we kept the ratio of neutral to pathogenic

variants the same across all subsets. This avoids generating a biased

subset containing only variants of the same kind. We then combined

nine subsets to train the model and used the remaining one to assess

the performance (testing). We repeated this cross-validation proce-

dure 10 times. Because we were using a regularization term, we had

to find a trade-off between the matching model on the training set

and the best generalization. For this purpose, we had to select a rea-

sonable value C. This we did by performing an internal line-search

for each fold to find the Cj that leads to the best AUC from a set of C

values, C = (1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2). The overall perfor-

mance of the model was the average across all 10 AUC values. We

then computed AUC, AUC-PR, and the seven commonly used pa-

rameters as described in the Human Mutation guidelines [Vihinen,

2012, 2013]. For our experiments, we used custom Python scripts

(see Supp. Data S1) and scikit-learn [Pedregosa et al., 2011], an

efficient machine learning library for Python that includes an L1-

regularized logistic regression using the LIBLINEAR library [Fan

et al., 2008].

Protein Majority Vote

To analyze how protein-related features can influence the perfor-

mance of the prediction tools, we performed a protein majority vote

(MV). For each of the five evaluation datasets, we split the bench-

mark into 10 subsets, and for each of the subsets, used the union

of the nine other subsets as training data. Within that framework,

we scored a variant by the pathogenic-to-neutral ratio, in the train-

ing data, of the protein that variant belongs to. If the protein did

not appear in the training data, we assigned a score of 0.5. This

strategy, while statistically effective on the currently existing

databases, is not appropriate, as it cannot discriminate between

neutral and pathogenic variants within the same protein.

Results

Evaluation of 10 Pathogenicity Prediction Tools on Five

Variant Datasets

We evaluated the performance of eight different prediction tools:

MT2 [Schwarz et al., 2014], LRT [Chun and Fay, 2009], PP2

[Adzhubei et al., 2010], SIFT [Ng and Henikoff, 2003], MASS [Reva

et al., 2011], FatHMM-W and FatHMM-U [Shihab et al., 2013],

and CADD [Kircher et al., 2014] as well as two conservation scores:

phyloP [Cooper and Shendure, 2011] and GERP++ [Davydov et al.,

2010]. An overview of these tools and conservation scores can be

found in Table 1. Details on how these scores were obtained can be

found in the Methods section.

We evaluated these tools using a range of preprocessed public

datasets and subsets of VariBench, predictSNP, and SwissVar (see

Methods), resulting in five evaluation datasets [Adzhubei et al., 2010;

Mottaz et al., 2010; Thusberg et al., 2011; Li et al., 2013; Nair and

Vihinen, 2013; Bendl et al., 2014] (see Methods; Table 3; Supp.

Fig. S1). Importantly, two of these datasets (HumVar [Adzhubei

et al., 2010] and ExoVar [Li et al., 2013]) overlap with at least one

of the training sets used to train the individual tools FatHMM-W,

MT2, MASS, and PP2 (Supp. Fig. S1; Table 3). The selected datasets

can be considered to be truly independent evaluation datasets, which

are free of type 1 circularity (see Methods).

We report AUC values per tool and per dataset in Figure 1 and

Supp. Table S1 (corresponding ROC, PR curves, AUC/AUC-PR

values as well as other evaluation metrics can be found in Supp.

Figs. S2–S6 and Supp. Table S1). Hatched bars in Figure 1 indi-

cate that the evaluation data were used in part or entirely to train

the corresponding tool; these results may suffer from overfitting.

Dotted bars indicate that the tools are biased, due to type 2 circular-

ity (see section “Type 2 Circularity as an Explanation of the Good

Performance of FatHMM Weighted”).

Five central observations can be made in Figure 1: first, on the two

benchmarks HumVar and ExoVar, the four best performing methods

were fully or partly trained on these datasets. Second, while MT2,

PP2, and MASS outperform CADD and SIFT on benchmarks that

include some of their training data (HumVar, ExoVar), this is not the

case on the independent VariBenchSelected and predictSNPSelected

datasets. A potential explanation is that type 1 circularity — that is

overlap between training and evaluation sets — might lead to overly

optimistic results on the first two datasets. Third, across the first four

datasets, FatHMM-W outperforms all other tools (Supp. Table S1;

Fig. 1). All measured evaluation criteria support these findings on

the VariBenchSelected and predictSNPSelected datasets (Supp. Table

S1), even though FatHMM-W has no type 1 bias on VariBenchS-

elected and predictSNPSelected. However, it is confounded by type

2 circularity. Fourth, FatHMM-W shows a severe drop in perfor-

mance on the SwissVarSelected dataset. Finally, we observed across

all datasets that trained predictors generally outperform untrained

conservation scores.

Type 2 Circularity as an Explanation of the Good

Performance of FatHMM Weighted

The superiority of FatHMM-W’s [Shihab et al., 2013] predictions

on VariBenchSelected and predictSNPSelected and the severe drop in
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Figure 1. Evaluation of the 10 different pathogenicity prediction tools (by AUC) over five datasets. The hatched bars indicate potentially biased
results, due to the overlap (or possible overlap) between the evaluation data and the data used (by tool developers) for training the prediction tool.
The dotted bars indicate that the tool is biased due to type 2 circularity. The protein MV predictor and the logistic regression (over the features
used in the weighting scheme of FatHMM-W) are discussed in the second part of the Results section.

performance on SwissVarSelected made us investigate its underlying

model to find the reason for its superior performance on all but one

dataset. FatHMM-W’s weighting scheme attributes higher scores to

amino acid substitutions in proteins, related proteins, or domains

that already include a high fraction of pathogenic variants (see Supp.

Text S1). A key element of this weighting scheme is the use of the

two parameters Wn and Wd, which represent the relative frequency

of neutral variants (Wn) and pathogenic variants (Wd) in the rele-

vant protein family, defined through SUPERFAMILY [Gough et al.,

2001] or Pfam [Sonnhammer et al., 1997]. To further evaluate the

role of this weighting in the performance of FatHMM-W, we com-

pared the original FatHMM-W with a logistic regression over the

features (ln(Wn) and ln(Wd)) in a 10-fold cross-validation on the

selected datasets (see Methods and Supp. Text S1). The use of these

features alone was sufficient to achieve approximately the same

predictive performance as FatHMM-W (see Supp. Table S2 and

Fig. 1).

Given that the ratio of neutral and pathogenic variants in the same

protein family is the key feature used by FatHMM-W, we further

analyzed how an even simpler statistic — the fraction of pathogenic

variants in the same protein — performs as a predictor. We refer

to this predictor as a protein MV (see Methods). MV systematically

outperforms FatHMM-W (Supp. Table S2; Fig. 1). The pathogenic-

ity of neighboring variants within the same protein is therefore the

best predictor of pathogenicity across these datasets. This strategy,

while statistically effective on the currently existing databases, is not

appropriate. Indeed, it assigns the same label to all variants in the

same protein, based on information likely obtained at the protein

level (i.e., that it is associated with a disease), and cannot distin-

guish between pathogenic and neutral variants within the same

protein.

To better understand the outstanding performance of FatHMM-

W and the protein-based MV, we examined the relative frequency

of pathogenic variants across proteins in all our datasets. In the

independent evaluation dataset VariBenchSelected, we found that

more than 98% of all proteins (4,425 out of 4,490; Table 4) contain

variants from a single class, that is, either “pathogenic” or “neu-

tral” (Fig. 2A). For the remainder of the manuscript, we shall refer

to proteins with only one class of variant as “pure” proteins (di-

vided in “pathogenic-only” proteins and “neutral-only” proteins).

The existence of such “pure” proteins — while theoretically pos-

sible — should not be interpreted as a biological phenomenon.

Rather, these designations are based on current knowledge, and

are at least partially an artifact of how these particular datasets are

populated.

Nearly all (94.8%) variants in VariBenchSelected are located in

pure proteins with 57.2% in neutral-only proteins and 37.6% in

pathogenic-only proteins (Fig. 2B). On such a dataset, excellent ac-

curacies can be achieved by predicting the status of a variant based

on the other variants in the same protein. We refer to this phe-

nomenon as type 2 circularity. The remaining 5.2% of VariBench-

Selected variants are located in “mixed” proteins (Fig. 2B and C),

which contain both pathogenic and neutral variants (pathogenic-

to-neutral ratio in the open interval ]0.0, 1.0[ (in Fig. 2C). While

the MV approach will necessarily misclassify some of these variants,

it will still perform well on proteins containing primarily neutral or

primarily pathogenic variants, and overall, only 0.7% of all variants

are in proteins containing an almost balanced ratio of pathogenic

and neutral variants (pathogenic-to-neutral ratio in the interval

[0.4, 0.6] in Fig. 2C). Similar dataset compositions can be observed

in the other three datasets HumVar, ExoVar, and predictSNPSelected

(Supp. Figs. S7–S9). A striking property of SwissVarSelected is its

much larger fraction of proteins with almost balanced pathogenic-

to-neutral ratio: 6.5% of all variants (832 out of 12,729) can be

found in the most balanced category of mixed proteins [0.4, 0.6]

(see Supp. Fig. S10), compared with an average of 1.5% in the other

four datasets.

To further understand FatHMM-W’s performance, we evaluated

it separately on mixed proteins. As shown in Figure 3, Supp. Figures

S11 and S12, FatHMM-W performs well on pure proteins but loses

much of its predictive power on the mixed proteins, as it is misled by

its weighting scheme. On almost-balanced proteins, FatHMM-W is

therefore outperformed by all other tools but phyloP (Fig. 3). This

may also be the first reason why FatHMM-W performs worse on

SwissVarSelected than on all other datasets: SwissVarSelected con-

tains many more variants in the most mixed categories (Fig. S10).

FatHMM-W even performs poorly on mixed proteins from its own

training dataset (Supp. Fig. S11). We observed that PolyPhen-2 out-

performs all other tools in the mixed categories for the datasets

predictSNPSelected and SwissVarSelected (Supp. Fig. S12). For the

VariBenchSelected dataset, no clear winner can be determined (Supp.

Fig. S12).
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Table 4. Protein Categories and Variants Per Category

Datasets “Pure”

pathogenic

proteins

Pathogenic

variants in

“pure”

proteins

“Pure”

neutral

proteins

Neutral

variants in

“pure”

proteins

Mixed

proteins

Variants in mixed

proteins

Total number of proteins

HumVar 1,277 10,484 8,400 17,140 911 12,765 10,588

ExoVar 891 4,336 2,794 3,478 165 1,036 3,850

VariBenchSelected 286 3,865 4,139 5,869 65 532 4,490

predictSNPSelected 855 7,090 3,738 5,649 228 3,359 4,821

SwissVarSelected 1,444 2,749 3,614 6,568 540 3,412 5,598

Overview about the total number of proteins per dataset and the composition of these datasets.

Figure 2. In the VariBenchSelected dataset, most SNPs are in genes with only neutral or only pathogenic variants. A: Protein perspective:
proportion of proteins containing only neutral variants (“neutral-only”), only pathogenic variants (“pathogenic-only”), and both types of variants
(“mixed”). Only 1.4% of the proteins are mixed. B: Variant perspective: proportions, of variants in each of the three categories of proteins. Only 5.2%
of variants are in mixed proteins. C: Fractions of variants, in the VariBenchSelected dataset, containing various ratios of pathogenic-to-neutral
variants, binned into increasingly narrow bins, approaching balanced proteins. The open interval ]0.0, 1.0[ contains all mixed proteins (as in B).
Only 0.7% of all variants belong to almost perfectly balanced proteins (closed interval [0.4, 0.6]).

The second reason for the drop in performance is the presence

of “new” proteins in SwissVarSelected that are unknown to the

FatHMM-W weighting database. To show this, we used the HumVar

and ExoVar datasets as a proxy for the training data among all our

tools (FatHMM’s training data is not fully publicly available). We

observed that approximately 91% of all pathogenic and approxi-

mately 68% of all neutral variants in VariBenchSelected are located

in proteins that also occur in HumVar/ExoVar (Supp. Fig. S13 and

Supp. Table S3). As FatHMM-W makes use of information from

protein families, we computed pairwise BLASTP [Camacho et al.,

2009] alignments between all proteins in our selected datasets and

proteins in HumVar/ExoVar. Approximately 99% of all pathogenic

variants in VariBenchSelected are located in proteins from Hum-

Var/Exovar or proteins with more than 70% sequence similarity to

a protein in HumVar/Exovar. Similar statistics can be observed for

predictSNPSelected (Supp. Fig. S13 and Supp. Table S4). However,

for SwissVarSelected, we observed that only approximately 61% of

all pathogenic and approximately 56% of all neutral variants be-

long to proteins from HumVar/ExoVar (Supp. Fig. S13 and Supp.

Table S5). Approximately 78% of all pathogenic and approximately

77% of all neutral variants in SwissVarSelected are located in pro-

teins from HumVar/ExoVar or in proteins with high-sequence simi-

larity (70% sequence similarity) to a protein from HumVar/ExoVar

(Supp. Fig. S13 and Supp. Table S5). Hence, a significant proportion

of SwissVarSelected variants cannot be found in proteins from the

proxy training dataset or proteins with high-sequence similarity. All

of these findings lead to the conclusion that FatHMM-W’s good

performance on VariBenchSelected and predictSNPSelected is largely

due to type 2 circularity.

Evaluation of Two Combined Predictors

After studying in silico tools for pathogenicity prediction, we com-

pared the performance of two methods that combine individual

tools into a joint prediction, the metapredictors Condel [González-

Pérez and López-Bigas, 2011] and Logit [Li et al., 2013]. Based on

our previous findings, we were interested in how their performance

compares when evaluated on datasets that avoid type 1 circularity.

Furthermore, we wanted to compare the performance of metapre-

dictors that include FatHMM-W and may suffer from type 2 circu-

larity, to metapredictors that do not include FatHMM-W.

Condel’s Web server provides two combinations of tool scores:

the older (original) version combines PP2 [Adzhubei et al., 2010],

SIFT [Ng and Henikoff, 2003], and MASS [Reva et al., 2011] and

the latest one adds FatHMM-W [Shihab et al., 2013]. We refer to

these two combinations as Condel and Condel+, respectively (Supp.

Table S6). To provide a fair comparison, we used the same sets of

tools for the Logit (and Logit+) model by Li et al. (2013) (Logit

and Logit+, see Supp. Table S6). Thus, in our manuscript, Logit

combines PP2, SIFT, and MASS; Logit+ combines these three tools

and FatHMM-W.
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Figure 3. Performance of 10 pathogenicity prediction tools according to protein pathogenic-to-neutral variant ratio. Evaluation of tool perfor-
mance on subsets of VariBenchSelected, predictSNPSelected, and SwissVarSelected, defined according to the relative proportions of pathogenic
and neutral variants in the proteins they contain. “Pure” indicates variants belonging to proteins containing only one class of variant. (x and y)
indicate variants belonging to mixed proteins, containing a ratio of pathogenic-to-neutral variants between x and y. ]0.0, 1.0[ therefore indicate
all mixed proteins (the ratios of 0.0 and 1.0 being excluded by the reversed brackets). While FatHMM-W performs well or excellently on variants
belonging to pure proteins (VariBenchSelected and predictSNPSelected), it performs poorly on those belonging to mixed proteins.

To avoid type 1 circularity, we chose the selected datasets as our

evaluation datasets, as they do not overlap with the training dataset

of any individual tool or metapredictor. Our results using Logit on

all selected datasets confirm those reported by Li et al. (2013): Logit

outperforms all individual tools and Condel in terms of AUC (Fig. 4;

Supp. Figs. S14–S18). Condel’s performance (AUC = 0.70) is on par

with SIFT (AUC = 0.70) for VariBenchSelected, the best performing

of the tools it combines. We then evaluated the combination of tools

on the pure and mixed proteins on VariBenchSelected, predictSNPS-

elected, and SwissVarSelected (Supp. Fig. S19). While Logit performs

well on the pure proteins, Condel performs at least as well as Logit

on variants in mixed proteins.

The evaluation of Condel+ and Logit+ may be optimistically bi-

ased by type 2 circularity, given the inclusion of FatHMM-W. Across

all datasets, we observed that adding FatHMM-W to either tool

score combination (Condel+ or Logit+) led to a performance boost

(Fig. 4; Supp. Figs. S14–S18). However, this did not hold for mixed

proteins, providing strong evidence for type 2 circularity. For mixed

proteins, we observed a significant drop in performance for both

Logit+ and Condel+ on all datasets but SwissVarSelected (see Supp.

Fig. S19).

Discussion

The wealth of pathogenicity prediction tools proposed in the lit-

erature raises the question whether there are systematic differences

in the quality of their predictions when evaluated on a large num-

ber of variant databases. In an attempt to answer this question,

we performed a comparative evaluation of pathogenicity prediction

tools and demonstrated the existence of two types of circularity

that meaningfully impair comparison of in silico pathogenicity pre-

diction tools. We showed how ignoring these effects could lead to

overly optimistic assessments of tool performance. One severe con-

sequence of this phenomenon is that it may hinder the discovery

of novel disease risk genes, as these tools are widely used to choose

variants for further functional investigation.

In this manuscript, we have described and demonstrated “type

1” and “type 2” circularity. Type 1 circularity occurs because of an

overlap between training and evaluation datasets, possibly resulting

in overfitting [Hastie et al., 2009], meaning that a tool is highly

tailored to a given dataset, but will perform worse on novel vari-

ants. Type 1 circularity is a well-known and studied phenomenon

in machine learning [Hastie et al., 2009] and there are guidelines

on how it can be avoided [Vihinen, 2013]. To avoid type 1 circu-

larity, we built the Selected datasets, in which none of the variants

have previously been seen by any of the tools (with the possible and

unavoidable exception of MT2). This makes them the most appro-

priate datasets on which to draw conclusions regarding the relative

performance of the tools. Figure 1 and Supp. Table S1 suggest that

MT2, PP2, and MASS overfit on their training data and have rather

weak generalization abilities.

Our efforts to understand the outstanding performance of

FatHMM-W on four out of five datasets led to additional in-

sights about type 2 circularity. Our findings about type 2 circu-

larity demonstrate that predicting the pathogenicity of a variant —

based on the pathogenicity of all other known variants in the same

protein — is a statistically successful, but ultimately inappropriate

strategy. It is inappropriate because it will often fail to correctly clas-

sify variants in proteins that contain both pathogenic and neutral

variants. Further, it will often fail to discover pathogenic variants in

unannotated proteins.
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Figure 4. Comparison of the performance of two metapredictors (Logit and Condel) and their component tools, across five datasets. Bar heights
reflect AUC for each tool and tool combination. Logit and Condel are metapredictors combining MASS, PP2, and SIFT. The “+” versions of Logit and
Condel also include FatHMM-W. While effective in prediction, FATHMM-W (alone and in the Logit+ and Condel+ metapredictors) is optimistically
biased due to type 2 circularity (see Results section). In the “Selected” datasets, Logit provides the best unbiased performance. SIFT has the
lowest performance in the HumVar and ExoVar datasets, but it is also the only predictor that is unbiased in these two datasets.

The apparent success of this strategy is due to the fact that, in

variant databases, it is frequently the case that all the variants of

the same protein are annotated with the same status. Furthermore,

pathogenic-only proteins contain many more labeled variants than

neutral-only proteins. In these databases, pathogenic amino acid

substitutions are heavily concentrated in a few key genes (Fig. 2;

Supp. Figs. S7–S9). These observations regarding the distribution

of variants in our datasets likely result — in part — from research

practices relevant to the way variant databases are populated. Often,

an initial discovery of a pathogenic variant in a gene (for a given

disease) leads to additional discoveries of pathogenic variants in

the same gene, in part because a given gene will be more heavily

investigated once it has been identified as harboring pathogenic

variants.

These properties of variant databases explain why we observe

that pathogenicity can be predicted from the annotation of variants

within the same protein by a MV with excellent accuracies (Fig. 1;

Supp. Table S2). They also explain why FatHMM-W, whose predic-

tive power is driven by the pathogenic-to-neutral ratio of variants in

the same protein, performs so well on VariBenchSelected and predict-

SNPSelected (Fig. 1; Supp. Table S2). This approach, however, will

often fail to correctly classify amino acid substitutions in proteins

that contain both pathogenic and neutral variants (Fig. 3; Supp. Figs.

S11 and S12). This partially explains why FatHMM-W performs

worse on SwissVarSelected than on all other datasets, as it contains

many more variants in the most mixed categories (Fig. 3; Fig. S10).

The same phenomenon also occurs when building metapredictors:

the performance of Logit+ and Condel+ are similarly optimistically

biased because they contain FathHMM-W.

The pervasiveness of circularity makes it difficult to draw defini-

tive conclusions regarding the relative performance of these predic-

tion tools. We do nevertheless observe a reassuring trend for tools

trained for the purpose of predicting pathogenicity to outperform

conservation scores. In addition, the Logit combination of SIFT,

PP2, and MASS is a slightly better predictor of pathogenicity than

any of these tools taken individually. Also, for the mixed proteins

in particular, Condel performs better than, or is on par with, Logit

across the datasets (Supp. Fig. S19).

It is important to note that the drop in performance that we ob-

serve when applying a method to a dataset (that it was not trained

on) could also be due to the different definitions of pathogenic-

ity and neutrality used in the different benchmark datasets (see

Table 2). It should be an important goal of future studies to quantify

this impact. However, as long as circularity exists in a comparative

study, it will mask the effect of these differences in the definition of

pathogenicity: in Figure 1, FatHMM-W seems to provide excellent

prediction results across four different benchmark datasets, irre-

spective of the different definitions of pathogenicity and neutrality.

However, our analysis shows that the true origin of this superior

performance is type 2 circularity and not robustness to different

definitions of pathogenicity and neutrality.

Therefore, a key step in future studies examining this problem

will be to avoid any type of circularity. The existence of these types

of circularity has immediate implications for the further devel-

opment and evaluation of pathogenicity prediction tools: at the

very least, and as recommended previously [Vihinen, 2013], pre-

diction tools should only be compared on benchmarks that do

not overlap with any of the datasets used to train the tool. We

provide such datasets, VariBenchSelected, predictSNPSelected, and

SwissVarSelected (see Supp. Data S1) for this kind of independent

evaluation. All prediction tools should make their training datasets

public, as type 1 circularity cannot be excluded if any portion of a

training dataset is kept private.

A more rigorous strategy would be to retrain all predictors on

the same dataset, in order to truly evaluate the predictors and not

the quality of their training datasets. However, this is only possible

if the raw variant descriptors (variant features) — from which the

tools derive their predictions — are made available. We investigated

all tools presented here and only for PP2 was it straightforward to

obtain these descriptors [Adzhubei et al., 2010].

To address the problem of type 2 circularity, it is imperative

that future studies report prediction accuracy as a function of the
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pathogenic-to-neutral ratio, as in Figure 3. An even better strategy

would be to stratify training and test datasets such that variants

from the same protein only occur in either the training or the

test dataset, completely removing the possibility of classification

within the same protein [Adzhubei et al., 2010]. Furthermore, one

could construct predictors for different classes of variants, defined

by the pathogenic-to-neutral ratio in the proteins, to address the

problem that none of the existing tools achieves constantly good

results across these classes on VariBenchSelected. Both these alter-

native approaches, however, rely critically on the availability of raw

descriptors used by the corresponding tools.

Finally, there is another potential source of circularity to beware of

in the future: The novel variants entered in databases may be anno-

tated using existing pathogenicity prediction tools. These tools will

therefore appear to perform well on “new” data (from later versions

of mutation databases), whereas in fact they will only be recovering

labels that they have themselves provided. We therefore advocate

documentation of the sources of evidence that were used to assign

labels to variants when they are entered into a variant database.

This is akin to standard practice for gene function databases, which

record whether the annotation of a gene with a particular function

was biologically validated and/or computationally predicted.
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