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THE EVEN CYCLE PROBLEM FOR DIRECTED GRAPHS 

CARSTEN THOMASSEN 

1. INTRODUCTION 

The problem of deciding if a given digraph (directed graph) has an even length 
dicycle (i.e., directed cycle of even length) has come up in various connection. 
It is a well-known hard problem to decide if a hypergraph is bipartite. Seymour 
[11] (see also [15]) showed that a minimally nonbipartite hypergraph has at least 
as many hyperedges as vertices. He characterized those with the same number 
of hyperedges and vertices in terms of digraphs with no even length dicycle. 

Problems in qualitative linear algebra have motivated the concept of a sign-
nonsingular matrix. This is a real matrix A such that each matrix A' with the 
same sign pattern as A (i.e., corresponding entries in A and A' either have 
the same sign or both equal 0) has linearly independent columns. Klee et al [4] 
showed that it is hard to decide if a given matrix is sign-nonsingular. However, 
they left an important special case open: They showed that the problem of 
deciding if a square matrix is sign-nonsingular is equivalent with the even length 
dicycle problem for digraphs. 

Although the concepts of the determinant det A and the permanant per A 
of a real square matrix A are analogous, they are not equally easy to compute. 
Computing. per A is hard even for the 0-1 case (see [17]). That special case 
amounts to finding the number of perfect matchings in bipartite graphs, a prob-
lem that plays a role in models in physics [3] and chemistry [10]. Polya [8] 
suggested that one might try to multiply some entries in a matrix A by -1 and 
thereby obtain a matrix A' such that per A = detA' . Vazirani and Yannakakis 
[17] showed that the problem of finding such a matrix A' is equivalent to the 
even length dicycle problem. 

In 1975 Lovasz [6] raised two fundamental questions on the even length 
dicycle problem. 

L( 1) Does there exist a natural number k such that any digraph in which 
there are at least k arcs leaving each vertex has an even length dicycle? 

L(2) Does there exist a natural number k such that any strongly k-connected 
digraph has an even length dicycle? ("Strongly k-connected" means 
that the removal of any vertex set of cardinality < k leaves a digraph 
in which each vertex can be reached by a directed path from each other 
vertex.) 
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218 CARSTEN THOMASSEN 

For undirected graphs there is a host of results on configurations that are guar-
anteed by large degrees or large connectivity. For a survey, see [15]. Moreover, 
questions involving large connectivity or large minimum degree are equivalent 
in the undirected case since large connectivity implies large minimum degree 
and large minimum degree implies, by a result of W. Mader, the presence of 
a subgraph of large connectivity (see [15]). This changes dramatically when 
we go to digraphs: L( 1) was answered in the negative by the present author 
[13], and the present paper provides an affirmative answer to L(2). The best 
constant in L(2) is 3. Interesting partial results on L( 1), L(2) were found by 
Friedland [2] who used (the validity of) the van der Waerden conjecture to 
prove the following: If m is a natural number, m 2: 7 , and D is a digraph 
in which there are precisely m arcs leaving and entering each vertex, then D 
has an even length dicycle. A related result with an equally interesting proof, 
based on the so-called Lovasz Local Lemma, was obtained by Alon and Lineal 
[1]. Friedland conjectured that his result also holds for m 2: 3. A stronger 
result was suggested by the author [13, Question 1]. Both conjectures follow 
from the result of the present paper. Vazirani and Yannakakis [17] suggested 
that one might obtain an affirmative answer to L(2) from [2] by proving that, 
for r sufficiently large, every strongly r-connected digraph contains a digraph 
satisfying the assumption of [2]. We show in this paper that no such r exists. 

2. TERMINOLOGY AND PRELIMINARIES 

A digraph D consists of a finite set V(D) of vertices and a set E(D) of 
ordered pairs xy of distinct vertices called arcs. If the arc e = xy is present, 
we say that x dominates y and that e leaves x and enters y . More generally, 
if A and B are disjoint vertex sets such that x E A, y E B , then e leaves 
A and enters B. The number of arcs leaving x is the outdegree of x and is 
denoted d+(x, D). The indegree d-(x, D) is defined analogously. 

A dipath is a digraph with distinct vertices XI' x 2 ' ••• ,xm and arcs XIXi+1 ' 
i = 1, 2, ... , m - 1. We call this an XI - xm dipath. More generally, if A 
and B are disjoint vertex sets in a digraph D, then an A - B dipath is an 
x - y dipath P such that x E A, y E Band V(P) n (A U B) = {x, y}. 
We say that y can be reached from x in D if such a P exists. If each 
vertex of D can be reached from each other vertex of D, then D is strong. 
If A ~ V(D) U E(D) , then D - A is obtained from D by deleting A and all 
arcs leaving or entering vertices in A. We write D - x instead of D - {x} if 
x E V(D) U E(D). If A ~ V(D) , then the subdigraph D(A) induced by A is 
defined as D - (V(D)\A). D is strongly k-connected if W(D)I 2: k + 1 and 
D - A is strong for each vertex set A of cardinality < k . A strong component of 
D is a maximal strong subdigraph. An initial component (respectively terminal 
component) of D is a component H of D such that no arcs of D enters 
(respectively leaves) H. It is easy to see that every digraph has at least one 
initial component and at least one terminal component. 

If D is a digraph, then splitting a vertex v of outdegree or in degree at least 
2 in D means that we replace v by two vertices x and y where x dominates 
y. All arcs v z (respectively uv) in D are replaced by y z (respectively ux) 
in the new digraph. Subdividing an arc xy means that we replace xy by an 
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x - y dipath that has no intermediate vertices in common with D. 
A dicycle (more precisely, an m-dicycle) is a digraph with vertex set XI' 

x 2 ' ••• ,xm and arc set XIX2 ' X2X3 ' ••• , xm_Ixm ' xmxI . If we add the arcs 
xlxm ' xmxm_ 1 ' ••• ,X2XI we obtain a double-cycle (more precisely an m-
double-cycle). A weak m-double-cycle is obtained from an m-double-cycle by 
splitting vertices and subdividing arcs. A weak odd double-cycle is a weak m-
double cycle for some odd m. A digraph D is even if every subdivision of D 
contains a dicycle of even length. Equivalently, if the arcs of D are assigned 
weights 0 or I, then there is a dicycle of even total weight. A weak odd double-
cycle has an odd number of dicycles and every arc is in an even number of 
dicycles. This implies that every weak odd double-cycle is even. Conversely, we 
have 

Theorem 2.1 [12]. A digraph is even if and only if it contains a weak odd double-
cycle. 

(For the main result in this paper we only use the trivial part of Theorem 
2.1. Only in the last section is Theorem 2.1 used in its full strength.) 

Contracting an arc xy of D means that we replace x, y by a single vertex 
z and all arcs leaving or entering X or y will leave or enter z in the new 
digraph. (No loops are introduced.) 

Lemma 2.2. Let xy be an arc of D such that either d+ (x, D) = 1 or d- (y , D) 
= 1. Let D' be obtained from D by contracting xy into a vertex z. Then D' 
contains a weak k-double-cycle if and only if D contains a weak k-double cycle. 

Proof. Assume that d+(x, D) = 1. Let M' be a weak k-double-cycle in D' . 
If M' contains no arc that in D enters x, then M' ~ D. So assume that M' 
contains an arc that enters x in D. Let M be the subdigraph in D containing 
x , y , xy, all arcs of M', and all vertices of M' (except z). Then M is a 
weak k-double-cycle in D. Conversely, the contraction of xy transforms any 
weak k-double-cycle in D into a weak k-double-cycle in D'. 0 

Consider a digraph D that is strong but not strongly 2-connected. Let v be a 
vertex such that D - v is not strong. Let H be an initial or terminal component 
of D. We define the H-reduction of D at v as follows: If H is a terminal 
component, then the H -reduction at v is obtained from D( V (H) U {v}) by 
adding all the arcs v z for all vertices z in H for which there is an arc in D 
of the form uz where u tf. V(H). If H is an initial component, then the 
definition is analogous. 

Lemma 2.3. Let D be a strong digraph such that D - v is not strong. Let H 
be a terminal component of D - v. Let D' be the H-reduction of D at v. If 
D' has a weak k-double-cycle, then D has a weak k-double-cycle. 
Proof. Let M' be a weak k-double-cycle in D' . If V z' is an arc in M' , then 
D has an arc z z' where z tf. V (H). Let P be a dipath to z from v. If there 
is another arc vy' in M', then we consider an arc yy' (where y tf. V(H)) 
and a dipath p' to y from v. We walk along P' backwards from y to v and 
we stop when we hit P. The subdipath of P' which we traverse in this way is 
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called p". Now we replace vz' in M' by P, and, if vy' is present in M', 
we replace vy' by p". This transforms M' into a weak k-double-cycle in D. 

Finally we shall use Menger's Theorem (for digraphs), which is presented in 
almost all books on graph theory. 

3. SUFFICIENT CONDITIONS FOR WEAK 3-DOUBLE-CYCLES 

Lemma 3.1. Let v be a vertex in a strongly 2-connected digraph D. If D - v 
has a dicycle whose vertices all are dominated by v (in D) or a dicycle whose 
vertices all dominate v , then D contains a weak 3-double-cycle. 
Proof. Suppose C is a dicycle whose vertices all dominate v. By Menger's 
Theorem, let P" P2 be two v - V (C) dipaths such that P, n P2 = {v}. Then 
P, U P2 U C union two arcs from C to v form a subdivision of a 3-double-
cycle. 0 

Lemma 3.2. Let v,, v2 ' v3' v4 be vertices in a strongly 2-connected digraph D 
such that D contains the arcs v,v3' v,v4 ' V2V3' V2V4 ' V3V4 • Then D contains 
a weak 3-double-cycle. 
Proof. Let P, ' P2 be two dipaths from v4 to v, and v2 ' respectively, such that 
P, nP2 = {v4 }. If V3 1. V(P,) U V(P2 ) , then D - v4 has a V3 - (V(P,) U V(P2 )) 
dipath P3 . Assume without loss of generality that P3 intersects P,. Now 
P, U P2 U P3 U {v, v3 ' v, V 4' v2 V3 ' v3 v 4} is a weak 3-double-cycle. So we can 
assume that V3 E V(P,). Then V3 partitions P, into two dipaths R, and R 2 , 
say. Let P3 be a (V(R,) U V(P2 )) - V(R 2 ) dipath in D - v3 . 

Then P, U P2 U P3 U {v,v3' v,v4 ' V3V4 } contains a weak 3-double-cycle. 0 

We are now ready for the main results of this paper. 
Theorem 3.3. Let D be a strong digraph such that each vertex has outdegree at 
least 2. Let v, ' v2 ' v3 be vertices such that all other vertices of D have outdegree 
at least 3. Assume further that, for each vertex x =1= VI ' every vertex =1= x can 
be reached from v, in D - x. Then D contains a weak 3-double-cycle. In 
particular, D is even. 
Proof. We assume that Theorem 3.3 is false and let D be a counterexample 
with as few vertices as possible and (subject to that condition) with as few arcs 
as possible. We shall establish a number of properties of D that will finally 
result in a contradiction. 

( 1 ) D is strongly 2-connected. 

Proof. Suppose u is a vertex such that D - u is not strong. Let D' be a 
terminal component of D - u. The assumption of Theorem 3.3 implies that 
v, 1. V(D'). Let D" be the D'-reduction at u. For each vertex x in D', 
d+(x, D") = d+(x, D) ~ 2. Hence W(D")I ~ 3. If d+(u, D") < 2, then D' 
has a vertex x (namely, the vertex dominated by u in D") such that D-x has 
no dipath from v, to D' - x. This contradiction shows that d+(u, D") ~ 2. 
Now it is easy to see that D" satisfies the assumption of Theorem 3.3 with u 
playing the role of v,. But D" cont~ins no weak 3-double-cycle by Lemma 
2.3. This contradiction proves (1). 

(2) d+(v,) = 2. 
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Proof. If all vertices of D have outdegree at least 3, then we let Z be any vertex 
dominating VI. Then D - zV I satisfies the assumption of Theorem 3.3 with 
v2 = Z contrary to the minimality of D. So some Vi has outdegree 2. As D 
is strongly 2-connected each Vi (i = 1, 2, 3) can play the role of VI • 

Let u l and u2 be the two vertices dominated by VI. We show that the 
notation can be chosen such that the following holds. 

(3) If we delete the arc V I U2 and contract VIU I ' then the resulting digraph 
DI has minimum outdegree at least 2. 

Proof. If (3) is false, then either 
(i) d+(u" D) = 2 and u l dominates VI or 

(ii) some vertex ZI of outdegree 2 (in D) dominates both VI and u l . 

As we may interchange between u l and u2 we can also assume that either 
(iii) d+(u2 , D) = 2 and u2 dominates VI or 
(iv) some vertex z2 of outdegree 2 (in D) dominates both VI and u2 . 

If zl exists (i.e., (ii) holds), then ZI =I u2 by Lemma 3.1. Similarly, z2 =I u l if 
(iv) holds. If both (ii) and (iv) hold, then Z I =I Z 2. If (ii) holds, then (3) holds 
with the ordered triple Z I' VI' u l or Z I ' u l ,VI playing the role of VI ' u l ' u2 • 
(To see this we note that the notation can be chosen such that v2 = Z I and 
v3 is either u 2 (if (iii) holds) or z2 (if (iv) holds). So if ZI' VI' u l cannot 
play the role of VI' u l ' u2 ' then (iii) must hold and u2 dominates zl. But 
then ZI' u l ,VI can play the role of VI' u l ' u2 .) So we can assume that (ii) 
does not hold. Hence (i) holds. Similarly, (iii) holds. SO VI dominates and is 
dominated by both of U I ' u2 • By Lemma 3.1, there is no arc between U I and 
u2 • Let y be the vertex =I VI dominated by u l . Then u l ' y, VI can play the 
role of VI' u l ,u2 in (3). 

We are going to investigate the digraph DI defined in (3). The new vertex 
obtained by identifying VI and u l is denoted U'I . If the deletion of vU I and 
contradiction of vu2 results in a digraph D2 of minimum outdegree at least 2, 
then all statements below related to DI have counterparts related to D2 • 

By Lemma 2.2, DI contains no weak 3-double-cycle. We claim that DI has 
at most three vertices of outdegree 2. For when we contract VI u l we "loose" 
a vertex of outdegree 2. We may create a new vertex of outdegree 2 if u l 

dominates VI and d+(u l , D) = 3, or if some vertex w of outdegree 3 in D 
dominates both V I and U I . But only one such vertex w can exist (by Lemma 
3.2) and w cannot exist if u l dominates VI (by Lemma 3.1). This proves 
the claim that DI has at most three vertices of outdegree 2. Therefore DI 
cannot be strongly 2-connected. (If D~ were strongly 2-connected it would be 
a counterexample to Theorem 3.3 cont1\adicting the minimality of D.) So DI 
contains a vertex zl such that DI - zlis not strong. We choose zl such that 
DI - ZI is not strong, and we choose a terminal component HI of DI - zl 
such that H, is relatively minimal. (That is, if z' is a vertex of D, and H' is 
a terminal component of DI - z' such that V(H') ~ V(HI ) , then H' = HI.) 
Put II = DI - (V(H,) u {z,}). 

(4) u; E {z,} U V(HI ) and u2 E V(I,). 
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Proof. If u; E V(II) , then D - ZI would not be strong, contrary to (1). So 
u; E {ZI} U V(HI)' If u2 ~ V(II)' then D - zl would fail to be strong (if 
Z I =I- U'I) and D - uI would fail to be strong (if Z I = u;) . 

Now let D~ be the HI-reduction of DI at zl' As all vertices of DI have 
outdegree 2: 2, D~ has at least three vertices. Now we prove 

(5) D~ is strongly 2-connected. 

Proof. We let t denote any vertex of D~ and show that D~ - t is strong. This 
is clear if t = Z I so assume t =I- Z I' The minimality of HI implies that each 
vertex of D~ - t can reach Z I . So it only remains to show that, for each vertex s 
in D~ - t, D~ - t has a Z I - s dipath. If u; =I- t and u; =I- Z I ' then we consider 
a dipath P in D - t from zl to s (or to VI if s = U'I)' If P contains some 
arc leaving II ' then we let WI w2 be the last such arc on P. The subdipath of 
P from w 2 to s contains no vertex of II' In particular, it does not contain 
the arc VI u2 • Moreover, zl dominates w2 in D~. This shows that D~ - t 
has a dipath from Z I to s. If u; = Z I we argue similarly except that now P 
denotes a uI - s dipath in D - t. If u; = t we also argue similarly except that 
now P denotes a zl - s dipath in D - uI . 

As D; has fewer vertices than D, D~ cannot be a counterexample to Theo-
rem 3.3. By Lemma 2.3, D~ contains no weak 3-double-cycles. Therefore, D; 
has at least four vertices of outdegree 2. We now investigate the possibilities of 
where those four vertices can be. One possible vertex of outdegree 2 in D; is 
zl' Other possibilities are v2 and v3 . (Possibly uI = v2 or v3 .) Also there 
may be a vertex in HI ' that in D has outdegree 3 and dominates both VI and 
u I • Lemma 3.2 shows that there cannot be two such vertices. Finally, uI may 
have outdegree 3 in D and dominate VI . But if this is the case, then D cannot 
have a vertex dominating both VI and uI by Lemma 3.1. As there are no other 
possibilities for vertices of outdegree 2 in D; we conclude 

(6) D; has precisely four vertices of outdegree 2. Three of them are 
ZI' v2' v3 (or zl' U'I ,Vi in case VS-i = uI where i = 2 or 3). The 
fourth vertex of outdegree 2 is either U'I (if d+(u l , D) = 3 and uI 
dominates VI) or a vertex that in D has outdegree 3 and dominates 
both VI and u l • 

(6) shows that both of v2' v3 are in HI (except that one of them may equal 
ul ). It is possible that uI = v2 say. It is also possible that ZI = u; . But both 
of these possibilities cannot occur since there are four vertices of outdegree 2 
in D;. By (4), u2 E V(II)' So d+(u2, D) 2: 3 and none of v2' V3 dominates 
u2 . Hence the deletion of VI uI and contraction of VI u2 results in a digraph 
D2 of minimum outdegree at least 2. We noted after (3) that the statements 
concerning DI have counterparts for D2 • The counterparts to statements (3), 
(4), (5), and (6) are denoted (3'), (4'), (5'), and (6'), respectively. As (6) implies 
that d+(u2, D) 2: 3, (6') implies that d+(u I ' D) 2: 3. In particular, {u I ' u2} n 
{VI' v2' v3} = 0 and {v2' v3} ~ V(HI)\{u'I}' After having proved (3) we 
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introduced D I , zl ' HI' II ' D~. We define similarly D 2 , z2' H 2 , 12 , D; (by 
interchanging u l and u2 ). Now (6') implies 

(7) 12 contains u l but not u;. H2 - u; contains v 2 ' V3 . 

(6') also implies that either u2 dominates VI in D or else some vertex of 
outdegree 3 in D dominates both u2 and VI' Such a vertex must be in II U 
{zl}' (Note that possibly ZI = u~. But a vertex dominating u2 and VI must 
be distinct from u l by Lemma 3.1.) Hence 

(8) Some vertex of II U {ZI} dominates VI in D. 
(9) Either Z I i= U'I or z2 i= u; . 

Proof. Suppose Z I = u~ and z2 = u;. The equality Z I = u~ implies that 
every v2 - u2 dipath in D - VI contains u l . Similarly, the equality z2 = u; 
implies that every v2 - u l dipath in D - VI contains u2 . But D - VI contains 
a v2 - {u l ' u2 } dipath. That dipath contradicts one of the two preceding 
statements. 

By (9), the notation can be chosen such that Z I i= u~. Possibly z2 = u; 
and we can no longer interchange between u l and u2 • Below, therefore, we 
investigate 12 and H 2 · 

First observe that, by (8), ZI dominates U'I in D~ . By (6) there is precisely 
one more vertex, say r, that in D~ is dominated by Z I . 

(10) If z2 = u; or z2 E V(II)\{u2}, then ZI E V(H2)' 

Proof. By (7), v2 E V(H2)' As D is strongly 2-connected, D-vl has a v2 - ZI 
dipath P. By the assumption of (10), P does not contain z2' Hence P is 
in H2 (because H2 is a terminal component of D2 - z2 and P starts in that 
terminal component). In particular, the end zl of P is in H2 . 

(11) If z2=u; or z2E(V(HI)\{u'I})U{zl},then II-u2~H2' 

Proof. Suppose first Z2 = u;. By (10), ZI E V(H2)' Every vertex in 11 - u2 
can be reached from ZI in D - u2 . Any such dipath P avoids u l ' VI and is 
in D2 - z2' As P starts in the terminal component H2 of D2 - z2 it also ends 
in H 2 · Hence II - u2 ~ H2 . 

Suppose next that z2 E (V(HI)\{u~}) U {ZI}' As z2 i= u; we can apply (6'), 
which implies that u; E V(H2)' As D is strongly 2-connected, D - ZI has 
dipaths from u2 to all other vertices of II' As these dipaths are in D2 - z2 
(because z2 i= u;) and they start in the terminal component H2 of D2 - Z2' 
we conclude that II - u2 E H2 . 

(12) If z2 E V(II)\{U2}, then (V(II)\{u2 , z2}) U {ZI' u;} ~ V(H2)' 

Proof. By (10), ZI E V(H2)' By (6'), u; E V(H2). As D - z2 has shortest 
dipaths from {ZI' u2} to all vertices of II - {u 2 , Z2} and these (shortest) 
dipaths are in D2 - z2' we conclude that II - {u2 , z2} ~ H 2 . 

By the definition of H2 and 12 , there is no arc in D2 from H2 to 12 , As 
u l E V(I2) and H2 contains almost all of II (by (11) and (12)), there are not 
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many arcs from II to UI • More precisely, (10), (11), and (12) imply 
(13) There is at most one vertex (namely, one of ZI' Z2' u2) in II U {zl} 

that in D dominates u l . 

Proof. If Z2 = u;, we apply (10), (11). If Z2 E V(II)\{u2} we apply (12). if 
z2 E (V(HI)\{u~})U{zl} we apply (11). Note that if z2 = ZI' then u; E V(H2) 
and hence u2 does not dominate u l in that case. 

Let G be the digraph obtained from the sub digraph of D induced by V (II) U 
{r, v I ' Z I} by adding the arcs rv I ' r Z I if they are not already present. As D 
is strongly 2-connected D contains, by Menger's Theorem, two r - {v I ' Z I} 
dipaths that have only r in common. These dipaths together with the subdi-
graph of D induced by V(II) U {r, VI' ZI} is a subdivision of G. Hence G 
contains no weak 3-double-cycle. Clearly, d+(v l , G) = 1 and, therefore, we 
contract VI u2 into u; and denote the resulting digraph by G' . By Lemma 2.2, 

( 14) G' contains no weak 3-double-cycle. 
We shall prove that G' satisfies the assumption of Theorem 3.3 with r playing 
the role of VI . 

(15) All vertices of G' have outdegree at least 2 in G'. 

Proof. Each vertex of G (except r and V I) has the same outdegree in G as in 
D (where it has outdegree at least 3) unless it dominates u l . So if a vertex has 
outdegree 1 in G', it would either have to dominate (in D) each of VI' u l ' u2 
(which is impossible by Lemma 3.2), or it would have to equal u; (and u2 
would dominate both VI and u I ' which is impossible by Lemma 3.1), or it 
would equal r (which clearly has outdegree 2 in G and G'). 

(16) For any two vertices z, z' in G' - r, G' - z' has an r - Z dipath. 

Proof. We can assume that Z 1= u;, zi. As D - z' has an r - Z dipath (if 
z' 1= u;) and D - u2 has an r - Z dipath, we easily get an r - Z dipath in 
G' -z'. 

As r can be reached from each vertex in D - u l ' we conclude that r can 
be reached (in G and hence also in G') from each vertex in G'. (Note that 
any dipath in D - u l from II U {ZI} to r is in G because d+ (vI' G) = 1 .) 
Combining this with (16) we conclude that 

( 1 7) G' is strong. 
We finally investigate the vertices of outdegree 2 in G' . In G', r has outde-

gree 2. In G all vertices (except r, V I ' and possibly one more) have outdegree 
::::: 3 by (13). When we form G' we may create a new vertex of outdegree 2, 
namely, u; or a vertex dominating both VI and u2 . By Lemmas 3.1,3.2 only 
one new vertex of outdegree 2 is created in this way. So 

(18) G' has at most three vertices of out degree 2. 
(14 )-(18) imply that G' is a counterexample to Theorem 3.3. This contradic-
tion to the minimality of D completes the proof. 0 
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4. EVEN DIGRAPHS 

Theorem 3.3 immediately implies 

225 

Theorem 4.1. If all vertices (except possibly three) in a strongly 2-connected di-
graph D have outdegree at least 3, then D is even. 

We shall show that Theorem 4.1 is best possible in a strong sense. 
The 4-double-cycle is strongly 2-connected and is not even. It has 4 vertices 

of outdegree 2. Another such example is the digraph DI consisting of a dicycle 
XIX2X3X4X5XI and the additional arcs X 2X 4 ' X 2X 5 ' X 5X 2 ' X 4X I ' X 3x I ' x I X 3 . 

DI is strongly 2-connected and has precisely four vertices of outdegree 2. It 
contains no weak odd double-cycle and therefore is not even. 

In Theorem 4.1 it is also important that D is strongly 2-connected. Indeed, 
there are infinitely many strong digraphs of minimum indegree 2 and minimum 
outdegree 3 that are not even. We give here just one example. Let D2 be 
obtained from DI above by adding a new vertex y such that y dominates XI 

and is dominated by XI ' x 3 ' x 4 ' x 5 . Then d+ (y , D2 ) = 1 and, if we contract 
YXI ' then we obtain D I . As DI is not even it follows by Theorem 2.1 and 
Lemma 2.2 that D2 is not even. Now take three disjoint copies of D2 and 
identify the three y-vertices into one vertex. Then the resulting digraph is 
strong, noneven, and has minimum in- and outdegree 2 and 3, respectively. 
However, if the minimum in- and outdegree are both at least 3, the situation 
changes. 
Theorem 4.2. If D is a strong digraph of minimum in- and outdegree at least 3, 
then D is even. 
Proof. If D is strongly 2-connected we apply Theorem 4.1. So assume D has 
a vertex v such that D - v is not strong. Let H be either an initial or terminal 
component of D - v. We chose v and H such that W(H)I is minimum. 
Suppose H is a terminal component. Let D' be the H -reduction of D at v. 
We claim that D' is strongly 2-connected. So we let v' denote any vertex of D' 
and we shall prove that D' - v' is strong. This is clear if v' = v . So assume that 
v' =I- v. If D' - v' is not strong we let H' be a terminal or initial component of 
D' - v' not containing v . But then H' is also a terminal or initial component 
of D - v' contradicting the minimality of H. So D' is strongly 2-connected. 
Also D' has at most one vertex of outdegree < 3 , namely, v. 

By Theorem 4.1, D' has a weak 3-double-cycle. By Lemma 2.3, D has a 
weak 3-double-cycle. Hence D is even. 0 

Corollary 4.3. Every strongly 3-connected digraph contains a dicycie of even 
length. 

In [14] it is pointed out that there exists a strongly 2-connected digraph D 7 

on 7 vertices that has no dicycle of even length (namely, the one that is the 
union of the two dicycles XI X2X3X4X5X6X7XI and XI X4X7X3X6X2X5X\). It was 
asked if there are infinitely many such digraphs. This is still open. However, 
we get the following weaker statement. 
Proposition 4.4. There are infinitely many strongly 2-connected digraphs that are 
not even. 
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Proof. Let G be a graph drawn in the Euclidean plane such that all edges are 
straight line segments and such that no two edges cross. (Graph and edge are 
defined in the next section.) Let p be a point not on G such that no half 
line starting at p contains an edge of G. Orient every edge in the clockwise 
direction around p. The resulting digraph D is not even. (Fix a half line L 
starting at p and assign weight 1 to an arc of D if and only if the arc intersects 
L.) It is easy to describe G and p such that D is strongly 2-connected. 0 

A digraph is k-diregular if all vertices have indegree and outdegree k . Fried-
land [2] proved that every k-diregular digraph is even for k 2: 7. He conjec-
tured that this also holds for k 2: 3. This conjecture follows from Theorem 4.2 
since every terminal component of a k-diregular digraph is k-diregular. Vazi-
rani and Yannakakis [17] pointed out that a proof of Lovasz's conjecture would 
follow from [2] if one could prove that, for k sufficiently large, every strongly 
k-connected digraph contains a 7-diregular subgraph. If so, it would also con-
tain a 3-diregular subgraph (since every m-diregular digraph is the union of 
m 1-diregular subgraphs). But this last statement is incorrect. By a result of 
Pyber and Szemeredi (see [9]) there exists, for each k, a graph G such that all 
vertices have degree 2: k and G has no 3-regular subgraph. (Graph and degree 
are defined in the next section. 3-regular means that all vertices have degree 
3.) It is no loss of generality to assume that G is bipartite (as every graph of 
minimum degree 2k - 1 contains a bipartite graph of minimum degree k, see 
[9, 15]. Let ~, Vz be the bipartition of V(G). Let G' be another copy of G 
where ~', V; correspond to ~ and V2 , respectively. Now form the disjoint 
union G U G'. Direct all edges from ~ U V; to Vz U ~'. Add all arcs from 
Vz U~' to VI U V; . The resulting digraph is strongly k-connected and has no 
3-diregular subgraph. 

5. ApPLICATIONS TO COLOURINGS OF HYPERGRAPHS, 
SIGN-NONSINGULAR MATRICES, AND PERMANENTS 

In this section we apply Theorem 4.2 to the problems mentioned in the in-
troduction. 

A hypergraph H is a pair V, E where V is a finite set of vertices and E 
is a collection of subsets called hyperedges of Veach of cardinality at least 2. 
The number of hyperedges containing the vertex v is the degree of v. If all 
hyperedges have cardinality 2 they are called edges and the hypergraph is called a 
graph. The hypergraph H is bipartite if there exists a partition V = ~ U Vz such 
that each hyperedge intersects both ~ and Vz. H is minimally nonbipartite if 
H is not bipartite but every proper subhypergraph is bipartite. Now let D be a 
digraph on n vertices. We now define a hypergraph HD as follows. The vertex 
set of HD is V(D). For every vertex v in D we let Ev consist of v and the 
vertices dominated by v. Now the hyperedge set of HD is the collection of the 
sets Ev ' v E V(D). Seymour [11] proved that HD is minimally nonbipartite if 
and only if D is strong and has no dicycle of even length. He also proved that 
every minimally nonbipartite hypergraph (V, E) with WI = lEI is of the form 
HD . From the results in [13] it follows that the cardinalities of all hyperedges 
in such a hypergraph may be greater than any (fixed) natural number. But 
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Theorem 4.2 implies 

Theorem 5.1. If H = (V, E) is a minimally non bipartite hyper graph with I VI = 
lEI, then either some hyperedge of H has cardinality ~ 3 or some vertex has 
degree ~ 3. 

An n by n real matrix A = [aij] is sign-nonsingular if A is nonsingular and 
all nonzero terms in the standard expression of the determinant det A have the 
same sign. By permuting rows and multiplying some rows by -1 , if necessary, 
we may assume that all entries au in the main diagonal are positive. Now we 
form a digraph D with vertex set {v 1 ' v2 ' .•• , V n} such that Vi dominates v j 
if aij =I- O. If aij > 0 (respectively aij < 0) we assign the weight 1 (respectively 
0) to the arc viv j • Now one can easily show (see [4]) that A is sign-nonsingular 
if and only if D A has no dicycle of even total weight. Let us say that an entry 
aij is redundant if aij =I- 0 but aij is not a factor of any nonzero term in the 
standard expression of detA (or, equivalently, the arc viv j is in no dicycle of 
DA ) • 

By the results of [13] there are sign-nonsingular matrices whose rows all have 
many nonzero entries. But Theorem 4.2 implies 

Theorem 5.2. If A is a sign-nonsingular square matrix with no redundant entries, 
then some row or some column of A has at most 3 nonzero entries. 

We now turn to Polya's problem [8]. For simplicity we consider an n by n 
0- 1 matrix A = [aij] with 1 - s in the main diagonal. A modification of A 
is a matrix A' obtained from A by replacing some 1 - s by -1. We say that 
A' is a good modification if per A = det A'. We let G A be the bipartite graph 
with vertex set ~ U JS when ~ = {rl' r2 , ••• , rn }, JS = {c1 ' c2 ' ••• , cn } 
and G A has the edge {ri' cj } if aij = 1 . Then per A is the number of perfect 
matchings (i.e., subgraphs in which all vertices have degree 1) in GA' A Pfaffian 
orientation of a graph G is an assignment of orientations to every edge such 
that the resulting digraph D has the following property: If M 1 , M2 are two 
perfect matchings in G, then each cycle in Ml UM2 has an odd number of edges 
oriented in both directions (of the cycle). Now the following three statements 
below are equivalent: 

(i) A has a good modification. 
(ii) G A has a Pfaffian orientation. 

(iii) The digraph D~ obtained from G by directing the edges {ri' cJ from 
~ to JS and all other edges from JS to ~ is not even. 

The equivalence of (i) and (ii) is due to Kasteleyn [3], and the equivalence of 
(ii) and (iii) is due to Vazirani and Yannakakis [17]. 

Note that, by Lemma 2.2, the digraph D~ is even iff the digraph D~ obtained 
by contracting all arcs rici (i = 1, 2, ... , n) is even. Thus Theorem 4.2 
implies 

Theorem 5.3. If A is a nonnegative real n by n matrix and A has no redundant 
entry and each row and column has at least 4 positive elements, then A has no 
good modification. 
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Theorem 5.4. If G is a bipartite graph of minimum degree at least 4 such that 
each edge is contained in a perfect matching, then G has no Pfaffian orientation. 

Little [5] showed that a graph has a Pfaffian orientation if it contains no K3 3-
subdivision. (K3 3 is the graph with six vertices VI' v2 ' v3' u l ' u2 ' u3 a~d 
nine edges {v j' u ~}, i, j = 1 , 2, 3. ) Using Theorem 2.1 and the equivalence 
of (ii) and (iii) above, one can prove the following: 

Theorem 5.5. Let G be a bipartite graph with bipartition V(G) = V; U Vz. Then 
G has no Pfaffian orientation if and only if G contains a subgraph H such that 
H is a K3,3-subdivision with {VI' v2 ' v3} ~ V; and {u I ' u2 ' u3} ~ Vz and 
G - V(H) has a perfect matching. 

It would be interesting to extend Theorem 5.5 to nonbipartite graphs. The 
Petersen Graph shows that this is not immediately possible. But the Petersen 
graph might somehow be the only obstacle as it is the matching theorem of 
Lovasz in [7]. 

Another interesting problem is to decide if there exists a polynomial time 
algorithm for deciding if a given digraph has an even length dicycle. For planar 
digraphs a polynomial time algorithm is described in [16]. 
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ABSTRACT. If each arc in a strongly connected directed graph of minimum in-
degree and outdegree at least 3 is assigned a weight 0 or 1, then the resulting 
weighted directed graph has a directed cycle of even total weight. This proves 
a conjecture made by L. Lovasz in 1975 and has applications to colour-critical 
hypergraphs, sign-nonsingular matrices, and permanents of matrices. 
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