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Abstract

We use extensive computer simulation to design (and test) a high pressure, fast

acting, pulsed, valve that can produce short pulses of gas. We use flow simulations

from shaped nozzles to optimize the beam density and finally use low density

simulation to decide on the best skimmer shape and placement. All these details are

crucial to operate a high intensity beam machine.

Introduction

The art of supersonic beams has advanced since its early years [1–6], when simple cw

sources were used. The main limitation on achieved beam intensity was set by the

pumping capacity of the source chamber- mainly large diffusion pumps and Roots

pumps (with capacities of 3.000-10.000 liter/second). It was realized that when the

background pressure was too high in the source chamber, beam propagation was di-

minished, and careful adjustment in the skimmer design was required to avoid the gen-

erated barrel shock wave and Mach disk structure [7–9] (Fig. 1).

These limitations were overcome when pulsed gas sources became available [10–16].

If the gas pulse is short enough (shorter than a typical molecular reflection time from

the walls of the vacuum chamber), and if the repetition rate is low enough to so that

the mean gas pressure is less than 10−5 mbars in the source chamber, then the gas ex-

pands without hindrance, and no structured shock waves interfere with the jet propa-

gation. Much smaller turbo-molecular pumps (300–500 l/sec) can now be used for low

repetition rate experiments (10-50Hz), while bigger pumps (3000 l/sec) are still re-

quired for higher repetition rates (1–5 KHz) pulsed valve systems. The following parts

will summarize our experience with one type of a pulsed valve that we developed, and

is still the only one that can be used over a very wide temperature scale (40-5500 K).

The valve is an electro- magnetic actuated device. Readily available computer simula-

tion programs can now be used to optimize the electro- magnetic structure, the mech-

anical movement dynamics, the nozzle shape and the interaction of the high density

resulting jet with skimmers. These processes will be explained and experimental results

will be shown. These valves, known as the “Even-Lavie” valves are now widely used in

more than 100 labs. Some details have been published before [17].
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High pressure, wide temperature range pulsed valve

General dimensions consideration and material selection

There are several possibilities in generating a pulse valve to create high intensity jets.

Some of them are obvious and some need careful choice of materials and geometries.

1. We want the gas pulse to be short enough to reduce the required pump load and to

allow the gas to expand into a good vacuum and neglect vacuum walls interaction

during the pulse. Considering the high velocity of a light expansion gas (and Helium

will be proven to be the best choice, with velocities of up to ~2300 m/sec at 500°K),

and typical dimension of 0.1 m for the vacuum wall diameter, we get a gas reflection

time of 40 microseconds. The gas pulse should be shorter than this typical time.

2. The short pulse time can be achieved by miniaturization of the moving parts (small

masses), creating a magnetic structure with small air gaps (to maximize the

generated field and force) and to minimize the amplitude of the mechanical

movement.

3. The coil generating the field should have small inductance to allow for a fast rise

time of the current pulse (microseconds).

4. The wide temperature range implies that there will be considerable thermal

expansion in the valve components. Not all the materials in the valve have the same

expansion coefficients, thus the method of sealing should be based on constant

force applied by internal springs to compensate for thermal expansion.

5. We should strive to make the metallic parts inert dictating the use of stainless

steel (304) for the valve body, high nickel alloy for the springs (Nimonic 90),

and strong strength alloy (Inconel 625) for the thin walled pressure tube. The

magnetic parts are made from a magnetic stainless steel (alloy 250) which is a

compromise between the required high magnetic saturation alloy and sensitivity

to corrosion (usually these two requirements are contradictory). Not all batches

of the magnetic circuit alloys are created equal, depending on their history of

thermal treatment. We have to test (and reject) each batch for its magnetic

Fig. 1 CW gas jet expanding from sonic nozzle into poor vacuum (from [60]) showing the shock wave

structure in jets. Barrel shock wave, Mach disk and the “Zone of silence [7]” between them are clearly visible

in this rare photograph. The gas was made to glow by electron beam excitation
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saturation by inserting it in a coil and measuring the resultant current flow,

selecting only the batch with high permeability in high magnetic fields. The

sealing material is Kapton that is flexible enough but also strong enough for

the sealing forces required and can also withstand elevated temperatures.

Magnetic circuit simulation

We tested several possible configurations to generate the required fields for the short

pulses required. The simulation results of the magnitude of the magnetic field is shown

in Fig. 2. We use the Lorenz magnetic simulation program, using the rotational sym-

metric two dimensional program [18].

To keep the moving plunger mass to a minimum (0.2gr) and minimize the

forces acting on the thin walled pressure tube (containing the high pressure gas)

we kept the inner diameter to ~ 3 mm. The 6 layers copper coil has an inductance

of only 4 micro-henry, which combined with its low resistance (<0.2 ohm) allows

for a rise time of the current pulse to be short (20 μsec.). The generated magnetic

force between the moving plunger and its static magnetic plug is high (~10 N) to

allow the rapid closure of the gap, and recoil with high velocity to its original sealing pos-

ition. The position of the plunger, or the exiting gas flow, does not follow the current

shape as will be explained. A soft (3 N) spring (not shown) keeps the plunger in its

sealing, normally closed position. To operate the valve one needs to switch a voltage of 24

volts, causing a current of 15–20 amps in the coil, for about 20 μsec. (see Fig. 3). The

valve opening requires low energy, of ~ 6 mili-joule per pulse, so operating at 500Hz

causes a heating of 3 Watts which has to be carried away.

Mechanical motion simulation

The mechanical motion of the plunger due to the current pulse in the coil is far from

trivial. There are several factors influencing the motion:

1. The masses of the plunger and the return spring.

2. The shape of the current pulse.

3. The local saturation of the magnetic properties of the plunger and plug.

4. The closure of the air gap in the magnetic circuit during the motion.

Fig. 2 The Magnitude of the magnetic field created by a 15 amps current in the coil is mapped. The magnetic

plunger and its counter plug insert are separated by 0.1 mm only. The magnetic field in the gap (~2 Tesla) is

enough to cause deep magnetic saturation in the plunger and plug. Displayed is the upper half of the rotationally

symmetric geometry
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5. The recoil velocity when the plunger hits the immobile plug.

6. The recoil from the nozzle surface at the end of the motion cycle.

Solving the equation of motion under all of these variables is complicated and several

simplifications are needed. We used the free simulation program Scilab to solve the dif-

ferential equation of motion [19]. We assumed that the force acting on the plunger is

triangular, that upon collision with the plug or front surface a velocity reversal occurs,

and that the flow through the nozzle is proportional to the plunger opening to the

power of two (the exposed area of the nozzle to the flow). One point is evident: If the

plunger is driven by too high current in the coil, multiple pulses of gas will result, be-

cause of the recoil in its movement. The simulation also predicts that the valve will be

fast enough and that typical gas pulses of 25 μsec. are possible. We were encouraged

that experimental tests [20] verified these simulations and are shown in Figs. 4 and 5.

The valve can be operated between a single pulse to 500Hz. The background pressure

shows a linear rise with frequency indicating that all the pulses are the same. When

Fig. 3 Current pulse shape in the valve coil

Fig. 4 Plunger movement and gas flow are simulated by solving the equation of motion under

simplifying assumption
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trying to raise the frequency above that limit a deviation occurs, and the gas consump-

tion shows several mechanical resonances (at 640, 830, and 940 Hz). That is why we

feel that reliable operation is limited at f < 550Hz. Operating at higher frequency is pos-

sible, with multiple pulses for each trigger pulse (Fig. 6).

Valve construction details

The moving parts are displayed in Fig. 7. The magnetic alloy plunger can move to close

a narrow gap (0.05 mm) in the magnetic circuit when a pulse of current flows in the

outside coil. The gas is contained inside a narrow walled non-magnetic tube (Inconel).

The movement of the plunger is guided by two Ruby cylindrical slide bearings. The

tolerances on the dimensions here are crucial (0.005 mm.) to ensure repeatable move-

ment over billions of pulses without lubrication.

The internal mechanism is sealed at both ends by Kapton discs by pressing with a

strong spring against the end and front flanges as can be seen in Fig. 8. The strong

spring force allows for both over pressure relief and thermal expansion dimensional

changes when the valve temperature is varied over a wide range.

Fig. 5 Measured valve response to varying excitation pulse amplitudes reprinted from [20]

Fig. 6 Source chamber pressure as a function of repetition pulse rate
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1. Stainless gas inlet tube (1/16”).

2. Tightening spring (100 N) and pressure relief valve.

3. Kapton foil gasket (rear, 0.125 mm. thickness).

4. Ruby rear guiding ferrule.

5. Return spring (Nimonic 19 alloy).

6. Thin walled pressure vessel (Inconel 625 alloy).

7. Reciprocating plunger (magnetic stainless steel alloy 750).

8. Kapton insulated copper coil (0.6 mm wire diameter 6x6 winding).

9. Magnetic shield (alloy 17/4PH) and field concentrator.

10.Ruby front guiding ferrule.

11.Kapton foil gasket (front, 0.125 mm. thickness).

Fig. 7 Internal mechanism details

Fig. 8 Room Temperature valve cross section
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12.Front flange (stainless or copper).

13.Conical (or trumpet) shape expansion nozzle (Zirconia ceramic or hardened

stainless steel).

The carrier gas is exposed to Inconel, Stainless steel of various grades and Kapton

only, and is thus inert to most molecules. It is susceptible to metallic corrosion if

Halides are used and the Kapton is sensitive to Ammonia or other Amines. Low con-

centration (1 %) of Halides (even Fluorine) can be compatible if water traces are re-

moved. Low concentration of Amines can also be tolerated, but may require more

frequent gaskets change. We recommend that the valve should be pumped down when

not in use (say overnight) so as to reduce the corrosion rate (even with water vapors).

The heated version of the valve (up to 2500c) is similar in its construction to the

room temperature valve but with the addition of mineral insulated heater wire and a

thermocouple welded to the valve body (Fig. 9). The upper temperature limit is set by

the Kapton seals polymer and coil wire insulation. The closely coupled heater and

thermocouple ensure short thermal response time (minutes) and a suitable temperature

controller should be used. Some means to dissipate the heat in the valve upon cooling

should be provided to shorten the cooling time. The high temperature operation

allowed us to cool large molecules to less than 1°K [21].

Fig. 9 High temperature valve construction

Fig. 10 Temperature controlled Cryogenic valve
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The cryogenic valve version is again similar in its construction, but the valve body is

made of copper, which is softer than stainless and should be carefully handled. To pre-

vent corrosion in air the copper is coated with TiN thin layer. The temperature sensor

is a Si diode. These valves can operate over the temperature range of 50-400°K continu-

ously without mechanical adjustments (that plague other designs). At low temperature

the coil electrical resistance drops down so a lower driver current is required, keeping

the self-heating to a minimum. A cryo cooler with 6 Watts cooling power is required if

working at 500Hz. These valves have produced Helium droplets of up to 109 atoms

[22–24]. Careful control of the temperature is required (better than 0.10 k) because

cluster size is very temperature sensitive (Fig. 10).

Nozzle design

Early days nozzles were mainly pinhole (or sonic) nozzle. They are simple to make and

produce diffuse (non-collimated) beams with limited cooling capabilities. The adiabatic

Fig. 11 Number density maps for three nozzle shapes: sonic, cone and trumpet. Expansion from 1 bar of

Helium of 0.1 mm nozzle opening

Fig. 12 Density drop with distance from the nozzle for the three geometries. At large distances of the

shaped nozzle beam density is ~10 times greater than the sonic nozzle
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expansion of the gas can be analytically solved and easily computed either by CFD [25, 26]

calculation (solving the Navier–Stokes equation) or simulated using a variety of Monte-

Carlo programs. It was soon realized that shaping the nozzle can shape the expanding gas

jet [3, 26–29] and change the number of collisions before the beam density drops to low

value and the expansion and cooling practically “Freezes” [8, 9, 30]. Most nozzles have

small length dimensions (several mm in size due to pumping limitations) and making a

complicated and smooth shape is difficult [31]. We chose to study a series of simple conical

shaped nozzles that are relatively easy to make [28]. We used a freely available DSMC pro-

gram [32] to simulate the nozzle flow for various shape (opening angle) nozzles. The pro-

gram runs on a PC and takes several hours to run. It is practically limited to a stagnation

density of roughly 0.1-1bars, but the mean free path is so much smaller than the nozzle di-

mension that we believe the results can be extrapolated to a much higher pressure with

simple density scaling. The results of the simulation were effective in designing an opti-

mally shaped conical nozzle in terms of high on axis beam density and cooling (Mach

Fig. 13 Mach number Maps for the same three nozzles

Fig. 14 Beam temperature drop with distance from the nozzle for the three shapes. The cooling continues

beyond 50 nozzle diameters, and the parabolic nozzle shape wins
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number). In the following figures we show the expanding jet from three different 0.1 mm

nozzles: pinhole nozzle, 40° full angle conic nozzle and a “trumpet” (parabolic) shaped noz-

zle. Both densities and Mach number are plotted (Fig. 11)

The beam created by the sonic nozzle is wide and its density drops sharply with the

distance. A more collimated beam is generated by the 40° full angle conical nozzle and

a similar density map is generated by the trumpet shaped nozzle. Figure 12 shows the

axial density drop with the distance (measured in nozzle diameters):

The slow drop with distance for the shaped nozzle will result in a larger number of

collisions before the expansion “Freezes”, translated in colder beam. This is seen in

Figs. 13 and 14.

We simulated the expansion from more elaborate, and difficult to machine, shaped

nozzle. While higher on axis beam density can be achieved (better beam collimation),

the beam temperatures are usually higher too (~10°K). One such example is shown in

Fig. 15 Number density and Mach number for a bell shaped nozzle

Fig. 16 Beam Density for various nozzle opening angles
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Fig. 15 where a bell shaped nozzle (common to many rocket engines) that approxi-

mates in its behavior the well-known Laval nozzle [33]:

If we concentrate on (the simple to manufacture) conical nozzles, than the next question

is what is the best opening angle for the cone? Both sonic nozzle (1800 angle) and channel

nozzle (00) will produce similar jets with rapid decline of the axial beam density and a small

number of collisions before the expansion “freezes”. Comparing the on axis beam number

density for various nozzle opening angles, we can see (Fig. 16) that an optimum exists for

angles of 40–60° (full cone angle). The optimum depends on the simulation model namely

on what one assumes for the boundary layer on the cone face. Technically one has to as-

sume an “accommodation coefficient” for the atom colliding with the cone surface [34] (a

parameter that indicates how much of the energy have been lost to the surface). We as-

sumed a full accommodation for the wall collisions. This is probably a severe assumption

for a highly polished surface with a light carrier gas (Helium). Varying the accommodation

coefficient in the simulation varies the optimum angle by about 10° from the optimum.

A comparison of the density and temperature drop with distances is presented in

Fig. 17 for the three nozzle shapes: 40 deg. Cone, Trumpet (parabolic) and Bell shape.

Fig. 17 Density and Temperature plots for the three nozzle shapes: Cone, Trumpet and Bell

Fig. 18 Emitted pulse durations for various expanding gases
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The reflected shock waves inside the nozzle are evident in the kink from the smooth

curve, most evident in the bell shaped nozzles. The smoothest curve is achieved for the

trumpet shaped nozzle.

Beam properties

Pulse profile in time at the valve exit

The gas flow is time limited by the mechanical movement as described above. The actual

pulse of gas leaving the valve was measured by a fast ion gauge and is shown in Fig. 18 for

various noble gas. The same plunger movement (constant pulse driving) causes different

pulse shape due to the finite flow time of the gas in the valve. The heavier gasses (with

their lower molecular velocities and higher viscosities) create slower and wider pulses.

These measurements also indicate that a pulse time width of ~10microsec. is a prac-

tical lower limit for pulsed valves of this type and dimensions.

Fig. 19 Time of flight for metastable atoms (1.4 m flight tube). Stagnation temperature is 300 K and pressure

is 50 bar

Fig. 20 Speed ratio and attained temperature for various gases
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Velocity spread and achieved Mach numbers and temperatures

The short puff of gas emitted by the valve is moving at high velocity in the axial direc-

tion (1750 m/s for helium from a room temperature valve). The achieved velocity uni-

formity is quite high (1 % or better) so the axial dimension expands slowly as the gas

moves in the vacuum, the faster atoms move to the front and the slower ones arrange

themselves at the back. The spread in the radial direction is much faster, even when

collimated by skimmers. The arrangement in the axial direction according to the vel-

ocity allows to select velocities according to their arrival time [35–38], achieving very

high kinetic energy resolution. The flight times of electrically excited (neutral) atoms

are shown in Fig. 19.

From the data in Fig. 19 we can construct the average velocity v and the velocity

spread sv (standard deviation of the velocity distribution) and from these two value

construct the velocity ratio S = v/sv (Mach number). We can estimate the beam

temperature from these numbers [6, 8] (Fig. 20)

Fig. 21 Scattered laser light, indicating extensive cluster growth below specific temperatures for each

expansion gas

Fig. 22 Rotational line profile of Aniline 0–0 origin in helium gas jet with estimated temperature from

spectral calculation [61]
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The heavier gases cannot produce very cold beams as they tend to form clusters [12].

While helium can be cooled down to 10 mK [12], krypton and argon are limited to

~1 K only.

The onset of clustering can be quite abrupt as can be seen in Fig. 21, where we mea-

sured the scattered laser light (266 nm) near the nozzle as we cooled the valve. Helium

droplets can easily be produced when the valve is cooled below 20 K [22].

If we seed the carrier gas with heavier (organic) molecules, they can be cooled down

in the beam to less than 1 K [39–41] as we measured the rotation line width of the

seeded molecule (see Figs. 22 and 23).

Skimmer design and position

Because high pressure shaped nozzles can produce high on-axis beam intensities, it is

not surprising that modifications of the accepted skimmer design are required. Since

the early days of low intensity continuous beams, skimmers have been recognized as

more than a simple bystander that extracts the central portion of the beam. The effects

of molecules scattering from the finite skimmer edges have long been recognized

[1, 5, 31, 42–44], and the reduced transmission of the beam through the skimmer

was termed “skimmer interference”. At times the term “skimmer clogging” was

used to describe the dramatic reduction in skimmer transmission. To study these

effects, we employed the same DSMC gas flow simulation program [32] which is

eminently suitable for the gas density encountered at the skimmer. Here we show

how the skimmer distance, skimmer opening, and skimmer edge sharpness influ-

ence the transmission of the beam through the skimmer.

We begin by examining a popular skimmer shape that was used extensively in low in-

tensity continuous beams [45]. The skimmer opening is 1 mm. and its length is

Fig. 23 Spectra of helium clusters on Anthracene indicating the low temperatures achieved (less than 0.8 K) [21]
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Fig. 24 Density and temperature maps near a trumpet shape skimmer when subjected to high number density of 1023 atoms/m3 cold neon beam. The skimmer is completely clogged
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22 mm. The included full angle at its tip is 250 and at its base 700. The tip sharpness is

determined by the simulation mesh size and is ~ 5 micometers. The simulation repre-

sents the flow of a collimated and cold stream of neon at 1 K moving at 750 m/s to the

right. We chose the neon beam number density (3*1023 atoms/m3) to represent the

density of the gas from a 0.2 mm. conical nozzle at a stagnation pressure of 30 bar and

at a distance of 10 mm from the nozzle (extrapolated from Fig. 3). Figure 24 represents

a clogged skimmer condition with a high density gas plug formed at the skimmer

throat, serving as a secondary expansion point from this higher temperature plug

(25 K). The transmitted beam intensity at the skimmer base is less than 2 % of the in-

coming beam number density.

It is obvious from the simulation that the skimmer shape is wrong and that the enter-

ing beam intensity is too high. A severe loss of beam intensity is caused by the shock

wave structure near the skimmer entrance.

Skimmer clogging, and therefore low beam transmission, can occur quite sud-

denly as the gas beam density rises. This effect is illustrated in Fig. 25, where

skimmer transmission as a function of beam gas density is plotted for the skimmer

Fig. 26 Skimmer transmission as a function of skimmer aperture (diameter) and beam density [62]. Simulations

are for argon, where full energy accommodation is assumed

Fig. 25 Skimmer transmission as a function of incoming beam gas density, for the skimmer depicted in Fig. 24
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described above and illustrated in Fig. 24. In Fig. 25, skimmer transmission is de-

fined as the ratio of the gas number density at the skimmer outlet to the density

at the skimmer inlet. The simulation results are sensitive to the interaction param-

eters of the gas with the skimmer surface (energy accommodation occurring in the

gas surface collision). The accommodation coefficient rises as the mass of the gas

atoms approaches that of the surface atoms (Nickel). We chose accommodation

coefficients of 0.4 for He, 0.8 for Ne and 1 (complete accommodation) for Ar [46].

A surprising result is that in order to allow for a reasonable beam transmission

one has to move the skimmer to a larger distance from the nozzle, as large as

150 mm. (or 750 nozzle diameters!) for Ne or 55 mm. for helium. Lower beam

transmission is found for Ar.

The next issue we address is the how does the skimmer entrance hole affects its

transmission. The simulations shows that smaller hole skimmer tend to clog up at

lower beam densities than a larger entrance hole skimmers (Fig. 26).

Fig. 27 Temperature rise in a blunt skimmer [62]. The flowing gas is neon (energy accommodation coefficient

0.8) at 1 K and a number density of 1022 atoms/m3. Skimmer entrance aperture is 1 mm. The Temperature of

the gas rises for only few ms at the skimmer entrance, but this can destroy fragile clusters

Fig. 28 Slim (200 full opening angle) conical skimmer transmission. Helium at 1 K is flowing to the right.

Helium number density is 1022 atoms/m3
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Fig. 29 a: Excitation waveform high voltage burst (1Kv at 0.5 microseconds. spacing). Notice the short duration of the light (current) pulses. b: Cross section of the DBD electrode. The high voltage pulses

are applied to the magnet disc outside the ceramic nozzle
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To achieve the best transmission results, it is necessary to employ a large diameter

entrance aperture (2–4 mm) and to move the skimmer by as much as 1000 nozzle di-

ameters downstream from the nozzle (100–200 mm) to avoid strong beam attenuation

in the skimmer. This is illustrated in Fig. 27, where the skimmer transmission is plotted

as a function of skimmer entrance diameter for conical skimmers (20° full opening

angle) subjected to gas densities ranging from 3 × 1021 to 1 × 1023 atoms/m3. The ne-

cessity of using narrow conical skimmers with large diameter entrance apertures, posi-

tioned far downstream is a very unorthodox result that will require the redesign of

source chambers for a large number of currently employed high intensity supersonic

sources.

The last question we wish to address is how sharp does the skimmer edge need to

be? We can simulate the temperature rise of the cold beam due to molecules scattering

from the room temperature skimmer edges. The results are shown in Fig. 28. A long

conical skimmer was used and the axial temperature along its axis is shown. Beam

number density is 1022 of helium. A wall thickness of 3 μm causes little beam heating

in the skimmer. A 10 μm tip thickness is already causing significant beam heating, and

a 100 μm wall is simply bad. Sharply honed or electro polished edges can be machined

on the skimmer tip to an edge that is smaller than 3 microns. Slit skimmer based on

honed razors can be even sharper.

Ionic clusters and radical sources

There are some experiments where we want to study ions, ionic clusters, meta-stable

atoms or molecular radicals. There were several attempts to combine a nozzle with

electrical or laser discharge scheme to produce these species. In most cases the excita-

tion process warms the supersonic jet, or contaminates it with sputtered electrode ma-

terial [47–52]. We have developed a new type of electrode less Dielectric Barrier

Discharge [53–56] source that does not heat the jet or contaminates it [57]. The source

is attached to the front flange of the Even-Lavie valve and uses a built in disk magnet

to confine the discharge electrons. It operates on a series of rapid high voltage pulses.

The basic idea is that the current in the discharge is limited by the dielectric barrier

charging to very short current spikes (nano-sec. duration), not allowing for an arc to

form during the avalanche breakdown (Figs. 29 and 30).

Fig. 30 Excited neon flame coming from the DBD discharge. The beam remains collimated and cold
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This type of excitation is highly reproducible and is stable for millions of pulses. No

sign of sputtering or electrode erosion was noticeable. Several species can be generated

in the discharge. The most obvious are excited meta- stable atoms (Fig. 31).

The high collected current represents very high flux (3*1014 atoms/second, at the

peak, for a time duration of ~10 microseconds). The narrow time width indicates high

Mach number of the beam (up to 50) so no appreciable heating of the beam occurs

[35, 58, 59]. The excitation occurs inside the expansion nozzle where there are still

many collisions in the gas. The meta-stable energy state is the lowest excited state of

the atoms. When using gas mixture we find only the lowest meta-stables. Thus a mix-

ture of helium and neon will produce only the neon excited atoms. Even trace impur-

ities (10 ppm) will steal the energy from the excited helium and transfer it to lower

molecular states with high efficiency. Water is a common impurity and needs to be re-

moved if meta-stable Helium is to be created efficiently.

When molecules, with lower ionization potential than that of the carrier gas meta-

stable energy (almost all molecules), than the dominant species that are created are

molecular ions or fragmented radicals. This is shown in Fig. 32.

Fig. 32 positive and negative ion mass spectra of large (and unresolved) ammonia clusters (positively and

negatively charged) produced by the DBD discharge of 3 % ammonia in helium carrier gas at 80 Bars

Fig. 31 Meta-stable caused current collected on a plate that is placed after the skimmer at 250 mm

distance from the valve. Mach number of ~50
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This DBD source can replace laser photo fragmentation in many cases, with the

added advantage of producing cold jets.

Conclusions

We have shown that intense and cold (<10mK) pulsed jets of short durations (25micro-

sec.) and high repetition rate can be produced. The high pressure used in the valve and

some nozzle shaping contribute to the beam intensity. Changes in skimmer shape and

positioning are required to take advantage of the higher beam intensities.
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