
The Evicted-Address Filter: A Unified Mechanism
to Address Both Cache Pollution and Thrashing

Vivek Seshadri†
vseshadr@cs.cmu.edu

Onur Mutlu†

onur@cmu.edu
Michael A Kozuch⋆

michael.a.kozuch@intel.com
Todd C Mowry†

tcm@cs.cmu.edu

†Carnegie Mellon University ⋆Intel Labs Pittsburgh

ABSTRACT

Off-chip main memory has long been a bottleneck for system per-
formance. With increasing memory pressure due to multiple on-
chip cores, effective cache utilization is important. In a system with
limited cache space, we would ideally like to prevent 1) cache pol-
lution, i.e., blocks with low reuse evicting blocks with high reuse
from the cache, and 2) cache thrashing, i.e., blocks with high reuse
evicting each other from the cache.

In this paper, we propose a new, simple mechanism to predict the
reuse behavior of missed cache blocks in a manner that mitigates
both pollution and thrashing. Our mechanism tracks the addresses
of recently evicted blocks in a structure called the Evicted-Address
Filter (EAF). Missed blocks whose addresses are present in the EAF
are predicted to have high reuse and all other blocks are predicted to
have low reuse. The key observation behind this prediction scheme
is that if a block with high reuse is prematurely evicted from the
cache, it will be accessed soon after eviction. We show that an EAF-
implementation using a Bloom filter, which is cleared periodically,
naturally mitigates the thrashing problem by ensuring that only a
portion of a thrashing working set is retained in the cache, while
incurring low storage cost and implementation complexity.

We compare our EAF-based mechanism to five state-of-the-art
mechanisms that address cache pollution or thrashing, and show
that it provides significant performance improvements for a wide
variety of workloads and system configurations.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories

General Terms
Design, Experimentation, Measurement, Performance.

Keyword
Caching, Memory, Pollution, Thrashing, Insertion policy

1. INTRODUCTION & MOTIVATION
Off-chip main memory has long been a bottleneck for system per-

formance. Many modern applications demand increasingly more
bandwidth and reduced latency from main memory. In addition,
with the evolution of chip-multiprocessors, multiple applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

run simultaneously on the same chip, increasing the pressure on the
memory subsystem. In most modern processor designs, such con-
currently running applications share the on-chip last-level cache [1,
2, 3, 22]. As a result, effective use of the available cache space is
critical for high system performance.

Ideally, to ensure high performance, the cache should be filled
only with blocks that have high temporal reuse – blocks that are
likely to be accessed multiple times within a short time interval.
However, as identified by prior work (e.g., [17, 19, 34, 35]), two prob-
lems degrade cache performance significantly. First, cache blocks
with little or no reuse can evict blocks with high reuse from the
cache. This problem is referred to as cache pollution. Second, when
there are a large number of blocks with high reuse, they start evict-
ing each other from the cache due to lack of space. This problem
is referred to as cache thrashing. Both pollution and thrashing in-
crease the miss rate of the cache and consequently reduce system
performance. Prior work proposed to modify the cache insertion
policy to mitigate the negative effects of pollution and thrashing [16,
17, 19, 34, 35, 53, 55].

To prevent cache pollution, prior approaches [19, 34, 53, 55] pre-
dict the reuse behavior of missed cache blocks and insert blocks
predicted to have low reuse with a low priority – e.g., at the least-
recently-used (LRU) position for the LRU replacement policy. This
ensures that such low-reuse blocks get evicted from the cache quickly,
thereby preventing them from polluting the cache. To predict the
reuse behavior of missed cache blocks, these mechanisms group
blocks based on the program counter that accessed them [34, 55]
or the memory region to which the blocks belong [19, 55]. The
mechanisms subsequently learn the reuse behavior of each group
and use that to predict the reuse behavior of an individual cache
block. As such, they do not distinguish between the reuse behavior
of blocks within a group.

To prevent thrashing, recent prior work [35] proposed the use of
a thrash-resistant bimodal insertion policy (BIP). BIP inserts a ma-
jority of missed blocks with low priority (at the LRU position) and
a small fraction of blocks with high priority (at the most-recently-
used (MRU) position). By doing so, a fraction of the working set can
be retained in the cache, increasing the hit rate when the working
set is larger than the cache size. When multiple threads share the
cache, prior approaches [16, 17] learn the thrashing behavior of in-
dividual threads using a technique called set-dueling [35, 36], and
use BIP for those threads that are determined to suffer from thrash-
ing. As such, these approaches do not distinguish between the reuse
behavior of cache blocks within a thread.

The Problem: In this work, we observe that previous proposals
are not effective in preventing both pollution and thrashing at the
same time. On one hand, proposals that address cache pollution do
not distinguish between the reuse behavior of blocks that belong to

the same group. As a result, these mechanisms can lead to many
mispredictions when the reuse behavior of an individual block does
not correlate with the reuse behavior of the group to which it be-
longs. Moreover, these approaches do not have any inherent mech-
anism to detect and prevent thrashing. If a large number of blocks
are predicted to have high reuse, they will evict each other from
the cache. On the other hand, since proposals that address thrash-
ing use thread-level behavior to detect thrashing, they cannot dis-
tinguish between high-reuse blocks and low-reuse blocks within a
thread. As a result, they either insert low-reuse blocks of a non-
thrashing thread with high priority and hence, pollute the cache, or
they repeatedly insert high-reuse blocks of a thrashing thread with
the bimodal insertion policy, potentially leading to cache under-
utilization. Since approaches to prevent pollution and approaches
to prevent thrashing both modify the cache insertion policy using
different mechanisms, it is difficult to combine them to address both
problems concurrently. Our goal in this work is to design a mech-
anism that seamlessly reduces both pollution and thrashing to im-
prove system performance.

Our Approach: To prevent cache pollution, one would like to
predict the reuse behavior of a missed cache block and prevent
low-reuse blocks from polluting the cache by choosing an appro-
priate cache insertion policy. As such, we take an approach similar
to prior work, but unlike prior work which predicts the reuse be-
havior of a group of blocks, we predict the reuse behavior of each
missed block based on its own past behavior. Unfortunately, keep-
ing track of the behavior of all blocks in the system would incur
large storage overhead and lookup latency. We eliminate this high
cost by taking advantage of the following observation: If a block
with high reuse is prematurely evicted from the cache, it will likely
be accessed soon after eviction. On the other hand, a block with low
reuse will not be accessed for a long time after eviction. This ob-
servation indicates that it is sufficient to keep track of a small set
of recently evicted blocks to predict the reuse behavior of missed
blocks – blocks evicted a long time ago are unlikely to have high
reuse. To implement this prediction scheme, our mechanism keeps
track of addresses of recently evicted blocks in a hardware structure
called the Evicted-Address Filter (EAF). If a missed block’s address
is present in the EAF, the block is predicted to have high reuse. Oth-
erwise, the block is predicted to have low reuse.

Cache thrashing happens when the working set is larger than
the cache. In the context of EAF, there are two cases of thrashing.
First, the working set can be larger than the aggregate size of the
blocks tracked by the cache and the EAF together. We show that this
case can be handled by using the thrash-resistant bimodal insertion
policy [35] for low-reuse blocks, which ensures that a fraction of
the working set is retained in the cache. Second, the working set
can be larger than the cache but smaller than the aggregate size
of the blocks tracked by the cache and the EAF together. In this
case, thrashing can be mitigated by restricting the number of blocks
predicted to have high reuse to a value smaller than the number of
blocks in the cache. We find that implementing EAF using a Bloom
filter enables this effect by forcing the EAF to be periodically cleared
when it becomes full. Doing so results in the EAF predicting only
a portion of the working set to have high reuse, thereby mitigating
thrashing. We describe the required changes that enable the EAF
to mitigate thrashing in detail in Section 2.3, and evaluate them
quantitatively in Section 7.4.

Thus, our mechanism can reduce the negative impact of both
cache pollution and thrashing using a single structure, the Evicted-
Address Filter.

Summary of Operation: Our mechanism augments a conven-
tional cache with an Evicted-Address Filter (EAF) that keeps track

of addresses of recently evicted blocks. When a block is evicted from
the cache, the block’s address is inserted into the EAF. On a cache
miss, the cache tests whether the missed block address is present in
the EAF. If yes, the block is predicted to have high reuse and inserted
with a high priority into the cache. Otherwise, the block is predicted
to have low reuse and inserted with the bimodal insertion policy.
When the EAF becomes full, it is completely cleared. We show that
EAF naturally lends itself to a low-cost and low-complexity imple-
mentation using a Bloom filter (Section 3.2).

Using EAF to predict the reuse behavior of missed cache blocks
has three benefits. First, the hardware implementation of EAF using
a Bloom filter has low overhead and complexity. Second, the EAF is
completely outside the cache. As a result, our mechanism does not
require any modifications to the existing cache structure, and con-
sequently, integrating EAF in existing processors incurs low design
and verification cost. Third, EAF operates only on a cache miss and
does not modify the cache hit operation. Therefore, it can be fa-
vorably combined with other techniques that improve performance
by monitoring blocks while they are in the cache (e.g., better cache
replacement policies).

We compare our EAF-augmented cache (or just EAF-cache) with
five state-of-the-art cache management approaches that aim to pre-
vent pollution or thrashing: 1) Thread-aware dynamic insertion pol-
icy [16] (TA-DIP), 2) Thread-aware dynamic re-reference interval
prediction policy [17] (TA-DRRIP), 3) Signature-based Hit Predic-
tion using Instruction pointers (SHIP) [55], 4) Run-time cache by-
passing [19] (RTB), and 5) Miss classification table [9] (MCT). Our
evaluations show that EAF-cache significantly outperforms all prior
approaches for a wide variety of workloads and on a number of sys-
tem configurations.
We make the following contributions:

• We show that keeping track of a small set of recently evicted
blocks can enable a new and low-cost per-block reuse predic-
tion mechanism.

• We provide a low-overhead, practical implementation of a
new cache insertion policy based on Evicted-Address Filters
(EAF), which mitigates the negative impact of both cache pol-
lution and thrashing.

• We compare the EAF-cache with five state-of-the-art cache
management mechanisms using a wide variety of workloads
and show that EAF-cache provides better overall system per-
formance than all of them (21% compared to the baseline LRU
replacement policy and 8% compared to the best previous
mechanism, SHIP [55], for a 4-core system). We also show
that EAF-cache is orthogonal to improvements in cache re-
placement policy, by evaluating it in conjunction with two
different replacement policies.

2. THE EVICTED-ADDRESS FILTER
As mentioned before, our goal in this work is to devise a mech-

anism to prevent both cache pollution and thrashing. Unlike prior
approaches, instead of predicting the reuse behavior of a missed
cache block indirectly using program counter, memory region or
application behavior, our approach predicts the reuse behavior of a
missed block based on its own past behavior. This can be achieved
by remembering the history of reuse behavior of every block based
on its past accesses. However, keeping track of the reuse behavior of
every cache block in the system is impractical due to the associated
high storage overhead.

In this work, we make an observation that leads to a simple per-
block reuse prediction mechanism to address cache pollution. We

2

first describe this observation and our basic mechanism. We show
that a naïve implementation of our basic mechanism 1) has high
storage and power overhead, and 2) does not address thrashing. We
then describe an implementation of our mechanism using a Bloom
filter [6], which addresses both of the above issues.

2.1 Addressing Cache Pollution

Observation: If a cache block with high reuse is prema-
turely evicted from the cache, then it will likely be accessed
soon after eviction. On the other hand, a cache block with
little or no reuse will likely not be accessed for a long time
after eviction.

The above observation indicates that to distinguish blocks with
high reuse from those with low reuse, it is sufficient to keep track
of a set of recently evicted blocks. Based on this, our mechanism
augments a cache with a structure that tracks the addresses of re-
cently evicted blocks in a FIFO manner. We call this structure the
Evicted-Address Filter (EAF). On a cache miss, if the missed block
address is present in the EAF, it is likely that the block was pre-
maturely evicted from the cache. Therefore, the cache predicts the
block to have high reuse. On the other hand, if the missed block
address is not present in the EAF, then either the block is accessed
for the first time or it was evicted from the cache a long time ago.
In both cases, the cache predicts the block to have low reuse.

Depending on the replacement policy used by the cache, when a
missed block’s address is present in the EAF, the block (predicted to
have high reuse) is inserted with a high priority, which keeps it in
the cache for a long period – e.g., at the most-recently-used (MRU)
position for the conventional LRU replacement policy. In this case,
the corresponding address is also removed from the EAF, as it is no
longer a recently evicted block address. This also allows the EAF
to track more blocks, and thus make potentially better reuse predic-
tions. When a missed block address is not present in the EAF, the
block (predicted to have low reuse) is inserted with a low priority
such that it is less likely to disturb other blocks in the cache – e.g.,
at the LRU position.

The size of the EAF – i.e., the number of recently evicted block
addresses it can track – determines the boundary between blocks
that are predicted to have high reuse and those that are predicted to
have low reuse. Intuitively, blocks that will be reused in the cache
should be predicted to have high reuse and all other blocks should
be predicted to have low reuse. For this purpose, we set the size of
the EAF to be the same as the number of blocks in the cache. Doing
so ensures that if any block that can be reused gets prematurely
evicted, it will be present in the EAF. This also ensures any block
with a large reuse distance will likely not be present in the EAF.
Section 7.4 analyzes the effect of varying the size of the EAF.

In summary, the EAF keeps track of as many recently evicted
block addresses as the number of blocks in the cache. When a block
gets evicted from the cache, the cache inserts its address into the
EAF. On a cache miss, the cache tests if the missed block address is
present in the EAF. If yes, it removes the address from the EAF and
inserts the block into the cache set with a high priority. Otherwise,
it inserts the block with a low priority. When the EAF becomes full,
the cache removes the least-recently-evicted block address from the
EAF (in a FIFO manner).

Although the EAF-based mechanism described above, which we
refer to as the plain-EAF, can distinguish high-reuse blocks from
low-reuse blocks, it suffers from two problems: 1) a naïve imple-
mentation of the plain-EAF (a set-associative tag store similar to
the main tag store) has high storage and power overhead, and 2) the
plain-EAF does not address thrashing.

Observation: Implementing EAF using a Bloom filter ad-
dresses the first problem, as a Bloom filter has low storage
and power overhead. In addition, we observe that a Bloom-
filter-based EAF implementation also mitigates thrashing.

We defer a detailed description of the Bloom filter and how it
enables a low-overhead implementation of EAF to Section 3. We
first provide a deeper understanding of why the plain-EAF suffers
from the thrashing problem (Section 2.2) and how a Bloom-filter-
based EAF implementation mitigates thrashing (Section 2.3).

2.2 The Problem with Large Working Sets
Consider an application that accesses a working set larger than

the cache size in a cyclic manner. In the context of EAF, there are
two possible cases.

Case 1: The working set is larger than the aggregate size of blocks
tracked by the cache and EAF together. In this case, no missed
block’s address will be present in the EAF. Therefore, all missed
blocks will be predicted to have low reuse and inserted into the
cache with a low priority. This leads to cache under-utilization as
no block is inserted with a high priority, even though there is reuse
in the working set.1 In this case, we would like to always retain
a fraction of the working set in the cache as doing so will lead to
cache hits at least for that fraction.

Case 2: The working set is smaller than the aggregate number
of blocks tracked by both the cache and EAF together. In this case,
every missed block’s address will be present in the EAF. As a result,
every missed block will be predicted to have high reuse and inserted
into the cache with a high priority. This will lead to blocks of the
application evicting each other from the cache. However, similar to
the previous case, we would like to always retain a fraction of the
working set in the cache to prevent this problem.

The above discussion indicates that simply using the plain-EAF
for predicting the reuse behavior of missed blocks would degrade
cache performance when the working set is larger than the cache
because using the plain-EAF causes cache under-utilization (Case
1) and does not address thrashing (Case 2).

To address the cache under-utilization problem (Case 1), we in-
sert blocks predicted to have low reuse with the bimodal insertion
policy (BIP) [35], as opposed to always inserting them with a low
priority. BIP inserts a small fraction of blocks with a high priority
and the remaining blocks with a low priority, retaining a fraction
of the large working set in the cache. As a result, using BIP for
low-reuse blocks allows EAF to adapt to working sets larger than
the cache size and the EAF size combined. In the following section,
we describe our solution to address cache thrashing (Case 2).

2.3 Addressing Cache Thrashing
The reason why the plain-EAF suffers from thrashing is that it

does not have any mechanism to prevent a large number of high-
reuse blocks from getting into the cache with a high priority. To mit-
igate thrashing, the plain-EAF should be augmented with a mecha-
nism that can restrict the number of blocks predicted to have high
reuse. Such a mechanism would ensure that not all blocks of a large
working set are inserted into the cache with a high priority, and
thereby prevent them from evicting each other from the cache. We
show that implementing EAF using a Bloom filter achieves this goal.

EAF using a Bloom Filter: Note that the EAF can be viewed as a
set of recently evicted block addresses. Therefore, to reduce its stor-
age cost, we implement it using a Bloom filter, which is a compact
representation of a set, in this case, a set of addresses. However, a

1We assume that the cache is already filled with some other data.

3

Bloom filter does not perfectly match the requirements of the plain-
EAF. As summarized in Section 2.1, the plain-EAF requires three op-
erations: insertion, testing and removal of an address. Although the
Bloom filter supports the insertion and testing operations, it does
not support removal of an individual address (Section 3.1). There-
fore, to make the plain-EAF implementable using a Bloom filter,
we slightly modify the plain-EAF design to eliminate the need to
remove an individual address from the EAF. As described in Sec-
tion 2.1, there are two cases when an address is removed from the
EAF. First, when a missed block address is present in the EAF, the
cache removes it from the EAF. In this case, we propose to simply
not remove the address from the EAF. Second, when the EAF be-
comes full, the least-recently-evicted address is removed from the
EAF, in a FIFO manner. In this case, we propose to clear the EAF
completely, i.e. remove all addresses in the EAF, as the Bloom fil-
ter supports such a clear operation (Section 3.1). With these two
changes, the EAF design becomes amenable for low-cost implemen-
tation using a Bloom filter.

Serendipitously, we also found that the changes we make to the
plain-EAF design to enable its implementation with a Bloom filter
has the benefit of mitigating thrashing. To see why this happens, let
us examine the effect of the two changes we make to the plain-EAF.
First, not removing a cache block address from the EAF ensures that
the EAF becomes full even when a thrashing working set fits into
the cache and the EAF together. Second, once the EAF becomes
full, its gets cleared. These two changes together enable the peri-
odic clearing of the EAF. Such periodic clearing results in only a
fraction of the blocks of a thrashing working set to get predicted
as high-reuse blocks, retaining only that fraction in the cache. This
improves the cache hit-rate for such a working set, and thereby mit-
igates thrashing.

In summary, we propose three changes to the plain-EAF to han-
dle working sets larger than the cache size: 1) insert low-reuse
blocks with the bimodal insertion policy, 2) not remove a missed
block address from the EAF, when it is present in the EAF, and 3)
clear the EAF when it becomes full. We evaluate and analyze the
effect of each of these three changes in Section 7.4. Hereafter, we
use “EAF” to refer to an EAF with all the above proposed changes.
In Section 7.7, we evaluate other possible changes to the plain-EAF
design that also mitigate thrashing. We find that those designs per-
form similarly to the EAF design we proposed in this section.

2.4 Putting it All Together
Figure 1 summarizes our EAF-based cache management mecha-

nism. There are three operations involving the EAF. First, when a
block is evicted from the cache, the cache inserts the block’s address
into the EAF ➊. Second, on a cache miss, the cache tests whether
the missed block address is present in the EAF ➋. If so, the cache
inserts the missed block with a high priority, otherwise it inserts the
block with the bimodal policy. Third, when the EAF becomes full
– i.e., when the number of addresses in the EAF is the same as the
number of blocks in the cache – the cache clears the EAF ➌.

EAF

present?

Missed block address

Evicted block

address
EAF full?

➊ insert ➌ clear

➋ test
Insert with

high priority

(e.g., MRU

position)

Insert with

bimodal policy

(e.g., MRU with

probability 1

64
,

otherwise LRU)

Yes No

Figure 1: EAF: Final mechanism.

2.5 Handling LRU-friendly Applications
When a block with high reuse is accessed for the first time, it will

not be present in the EAF. In this case, the EAF will falsely pre-
dict that the block has low reuse. Hence, the block will likely get
inserted with a low priority (due to BIP) and get evicted from the
cache quickly. As a result, for an LRU-friendly application – i.e., one
whose most recently accessed blocks have high reuse – EAF-cache
incurs one additional miss for a majority of blocks by not insert-
ing them with high priority on their first access. In most multi-
core workloads with LRU-friendly applications, we find that this
does not impair performance as the cache is already filled with use-
ful blocks. However, we observe that, for some workloads with all
LRU-friendly applications, EAF-cache performs considerably worse
than prior approaches because of the additional mispredictions.

To address this problem, we use set-dueling [35, 36] to determine
if the system as a whole benefits from an always-high-priority in-
sertion policy. The cache chooses two groups of 32 random sets.
A missed block that belongs to a set of the first group is always
inserted with the priority chosen based on the EAF prediction. A
missed block that belongs to a set of the second group is always in-
serted with high priority. A saturating counter is used to keep track
of which group incurs fewer misses. Blocks that do not belong to
either of the groups are inserted with the policy that leads to fewer
misses. We call this enhancement Dueling-EAF (D-EAF) and eval-
uate its performance in Section 7. Our results indicate that D-EAF
mitigates the performance loss incurred by EAF-cache for work-
loads with all LRU-friendly applications and does not significantly
affect performance of other workloads.

3. PRACTICAL IMPLEMENTATION
As described in Section 2.3, the EAF is designed to be imple-

mentable using a Bloom filter [6]. In this section, we describe the
problems with a naïve implementation of the EAF that forced us to
consider alternate implementations. We follow this with a detailed
description of the hardware implementation of a Bloom filter, which
has much lower hardware overhead and complexity compared to
the naïve implementation. Finally, we describe the implementation
of EAF using a Bloom filter.

A naïve implementation of the EAF is to organize it as a set-
associative tag store similar to the main tag store. Each set of the
EAF can keep track of addresses of the most recently evicted blocks
of the corresponding cache set. However, such an implementation
is not desirable for two reasons. First, it incurs a large storage over-
head as it requires a separate tag store of the same size as the main
tag store. Second, testing whether an address is present in the EAF
requires an associative look-up. Although the test operation is not
on the critical path, associative look-ups consume additional power.

3.1 Bloom Filter
A Bloom filter is a probabilistic data structure used as a compact

representation of a set. It allows three simple operations: 1) insert
an element into the set, 2) test if an element is present in the set,
and 3) remove all the elements from the set. The test operation can
have false positives – i.e., the Bloom filter can falsely declare that an
element is present in the set even though that element might never
have been inserted. However, the false positive rate can be con-
trolled by appropriately choosing the Bloom filter parameters [6].

The hardware implementation of a Bloom filter consists of a bit-
array withm bits and a set of k hash functions. Each hash function
maps elements (e.g., addresses) to an integer between 0 andm− 1.
Figure 2 shows one such implementation with m = 16 and k = 2.
To insert an element into the set, the Bloom filter computes the

4

0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1

insert(x) insert(y)

test(w)
(True negative)

test(x)
(True positive)

test(z)
(False positive)

Hash Function 1 Hash Function 2

B
it
V
ec
to
r

(m
=

1
6
)

Figure 2: Hardware implementation of a Bloom filter using a bit
vector of size 16 and two hash functions. The insert operations
are performed before the test operations.

values of all the k hash functions on the element, and sets the cor-
responding bits in the bit-array – e.g., in the figure, inserting the
element x sets the bits at locations 1 and 8. To test if an element
is present in the set, the Bloom filter computes the values of all the
k hash functions on the element, and checks if all the correspond-
ing bits in the bit-array are set. If so, it declares that the element
is present in the set – e.g., test(x) in the figure. If any of the cor-
responding bits is not set, the filter declares that the element is not
present in the set – e.g., test(w) in the figure. Since the hash func-
tions can map different elements to the same bit(s), the bits corre-
sponding to one element could have been set as a result of inserting
other elements into the set – e.g., in the figure, the bits correspond-
ing to the element z are set as a result of inserting elements x and y.
This is what leads to a false positive for the test operation. Finally, to
remove all the elements from the set, the Bloom filter simply resets
the entire bit-array. Since multiple elements can map to the same
bit, resetting a bit in the Bloom filter can potentially remove multi-
ple elements from it. This is the reason why an individual element
cannot be removed from a Bloom filter.

Since a Bloom filter does not directly store elements, it generally
requires much smaller storage than a naïve implementation of a set.
In addition, all operations on a Bloom filter require only indexed
lookups into the bit-array, which are more energy efficient than as-
sociative lookups.

3.2 EAF Using a Bloom Filter and a Counter
As described in Section 2.3, the EAF is designed so that the three

operations associated with it, namely, insert, test, and clear, match
the operations supported by the Bloom filter. In addition to the
Bloom filter required to implement the EAF, our mechanism also
requires a counter to keep track of the number of addresses cur-
rently inserted into the Bloom filter. This is required to determine
when the EAF becomes full, so that the cache can clear it.

Figure 3 shows the operation of an EAF implemented using a
Bloom filter and a counter. Initially, both the Bloom filter and the
counter are reset. When a cache block gets evicted, the cache in-
serts the block’s address into the Bloom filter and increments the
counter. On a cache miss, the cache tests if the missed block ad-
dress is present in the Bloom filter and chooses the insertion policy
based on the result. When the counter reaches the number of blocks
in the cache, the cache resets both the counter and the Bloom filter.

For our Bloom filter implementation, we use theH3 class of hash
functions [41]. These functions require only XOR operations on the
input address and, hence, are simple to implement in hardware.

3.3 Hardware Implementation Cost
Implementing EAF on top of a conventional cache requires three

additional hardware structures: 1) a bit-array for the Bloom filter,

Cache
Bloom Filter

E
A
F

➊
Evicted block address: Insert into
filter. Increment Counter.

➋
Missed block address: Test filter.
Choose insertion priority.

=max?

Clear filter.
Reset counter.

➌Counter

Figure 3: EAF implementation using a Bloom filter and a
counter. The figure shows the three events that trigger oper-
ations on the EAF.

2) a counter that can count up to the number of blocks in the cache,
and 3) peripheral logic structure to determine the insertion priority
of each missed cache block. The primary source of storage overhead
is the bit-array required to implement the Bloom filter.

The number of bits required for the bit-array scales linearly with
the maximum number of addresses expected to be stored in the
Bloom filter, which in our case, is same as the number of blocks
in the cache (C) (as described in Section 2.1). We set the number
of bits in the bit-array to be αC , where α is the average number of
bits required per address stored in the Bloom filter. We will discuss
the trade-offs of this parameter shortly. For a system where cache
block size is B and the size of each cache tag entry is T , the storage
overhead of EAF compared to the cache size is given by:

Bloom filter size

Cache size
=

αC

(T +B)C
=

α

T +B
(1)

The false positive probability (p) of the Bloom filter is given by
(as shown in [12]):

p = 2−αln2 (2)

Since the false positive rate of the Bloom filter directly affects
the accuracy of EAF predictions, the parameter α presents a crucial
trade-off between the storage overhead of EAF and its performance
improvement. From Equations (1) and (2), it can be seen that as α
increases, the storage overhead also increases, but the false positive
rate decreases. We find that, for most systems we evaluate, setting
α to 8 provides the performance benefits of an EAF with no false
positives (Section 7.4). For a 2-MB last-level cache with 64-byte
block size, this amounts to a modest 1.47% storage overhead. Our
evaluations show that, for a 4-core system, EAF-cache provides 21%
performance improvement compared to the baseline.

4. ADVANTAGES & DISADVANTAGES
As we will show in Section 7, EAF-cache, which addresses both

pollution and thrashing, provides the best performance compared to
five prior approaches. In addition, EAF-cache has three advantages.

Ease of hardware implementation: As Figure 3 shows, EAF-cache
can be implemented using a Bloom filter and a counter. Bloom fil-
ters have low hardware overhead and complexity. Several previous
works [8, 29, 33, 40] have proposed the use of Bloom filters in hard-
ware for various applications. Therefore, our EAF implementation
using a Bloom filter incurs low design and implementation cost.

No modifications to cache design: Since both the Bloom filter and
the counter are outside the cache, our mechanism does not require
any modifications to the cache. This leads to low design and verifi-
cation effort for integrating EAF into existing processor designs.

5

Mechanism
Addresses Addresses

Storage Overhead Changes to Cache? Modifies Cache Hit Behavior?
Pollution? Thrashing?

TA-DIP [16] No Yes 2 bytes per application No changes to cache No changes to cache hits

TA-DRRIP [17] Partly Yes 2 bytes per application No changes to cache No changes to cache hits

SHIP [55] Yes No
4-16 KB prediction table*, Requires storing program

Updates to the prediction table
1.875 KB instruction tags counter in the tag store

RTB [19] Yes No 3 KB for a 1024 entry MAT* No changes to cache Updates to the memory access table

MCT [9] Yes No 1 KB miss classification table No changes to cache No changes to cache hits

EAF-Cache Yes Yes 16 KB for Bloom filter No changes to cache No changes to cache hits

Table 1: Storage overhead and implementation complexity of different mechanisms (for a 1MB 16-way set-associative cache with 64B
block size). *In our evaluations, we use an infinite size table for both SHIP and RTB to eliminate interference caused by aliasing.

No modifications to cache hit operation: Finally, EAF operates
only on a cache miss. The cache hit operation remains unchanged.
Therefore, EAF can be combined with mechanisms that improve
cache performance by monitoring only cache hits – e.g., the cache
replacement policy. As an example, we show that EAF-cache pro-
vides better performance with an improved cache replacement pol-
icy (Section 7.3).

One shortcoming of EAF-cache is its storage overhead compared to
certain other prior approaches [9, 16, 17] to address cache thrash-
ing or pollution individually (see Table 1). However, as we show
in Section 7, EAF-cache significantly outperforms these techniques,
thereby justifying its additional storage overhead.

5. QUALITATIVE COMPARISON TO

PRIOR WORK
We qualitatively compare our proposed mechanism, the EAF-

cache, with five state-of-the-art high-performance mechanisms to
address cache pollution or thrashing. The fundamental difference
between the EAF-cache and prior approaches is that unlike the EAF-
cache, previous mechanisms do not concurrently address the nega-
tive impact of both pollution and thrashing. As a result, they do not
obtain the best performance for all workloads. Table 1 lists the pre-
vious mechanisms that we compare with the EAF-cache. The table
indicates whether each mechanism addresses pollution and thrash-
ing, along with its implementation complexity. We now describe
each mechanism individually.

Thread-Aware Dynamic Insertion Policy (TA-DIP) [16] ad-
dresses the thrashing problem by determining thrashing at a thread
granularity. It does so by using set-dueling [35, 36] to determine if a
thread incurs fewer misses with the conventional LRU policy or the
bimodal insertion policy (BIP). All blocks of a thread are inserted
with the policy that has fewer misses. As a result, TA-DIP cannot
distinguish between high-reuse blocks and low-reuse blocks within
a thread. When following the LRU policy, this can lead to low-
reuse blocks polluting the cache. When following BIP, this can lead
to high-reuse blocks getting repeatedly inserted with the bimodal
insertion policy, causing a low cache hit rate. As a result, TA-DIP
does not provide the best performance when blocks within a thread
have different reuse behavior.

Thread-Aware Dynamic Re-Reference Interval Prediction (TA-
DRRIP) [17] improves upon TA-DIP by using a better replacement
policy than LRU, RRIP. Unlike the LRU policy, which inserts all in-
coming blocks with the highest priority (MRU position), RRIP in-
serts all incoming blocks with a lower priority. This allows RRIP
to reduce the performance degradation caused by low-reuse blocks,
when compared with LRU. However, as identified by later work [55],
TA-DRRIP does not completely address the pollution problem as it
monitors the reuse behavior of a block after inserting the block into
the cache. In addition, like TA-DIP, since TA-DRRIP operates at a

thread (rather than a block) granularity, it suffers from the short-
comings of TA-DIP described before.

Signature-based HIt Prediction (SHIP) [55] addresses the pollu-
tion problem by using program counter information to distinguish
blocks with low reuse from blocks with high reuse. The key idea
is to group blocks based on the program counter that loaded them
into the cache and learn the reuse behavior of each group using a
table of counters. On a cache miss, SHIP indexes the table with the
program counter that generated the miss and uses the counter value
to predict the reuse behavior of the missed cache block. SHIP suf-
fers from two shortcomings: 1) blocks loaded by the same program
counter often may not have the same reuse behavior. In such cases,
SHIP leads to many mispredictions, 2) when the number of blocks
predicted to have high reuse exceeds the size of the cache, SHIP
cannot address the resulting cache thrashing problem.2

Run-time Cache Bypassing (RTB) [19] addresses cache pollu-
tion by predicting reuse behavior of a missed block based on the
memory region to which it belongs. RTB learns the reuse behavior
of 1KB memory regions using a table of reuse counters. On a cache
miss, RTB compares the reuse behavior of the missed block with the
reuse behavior of the to-be-evicted block. If the missed block has
higher reuse, it is inserted into the cache. Otherwise, it bypasses the
cache. As RTB’s operation is similar to that of SHIP, it suffers from
similar shortcomings as SHIP.3

Miss Classification Table (MCT) [9] also addresses the cache
pollution problem. MCT keeps track of one most recently evicted
block address for each set in the cache. If a subsequent miss ad-
dress matches this evicted block address, the miss is classified as a
conflict miss. Otherwise, the miss is classified as a capacity miss.
MCT inserts only conflict-missed blocks into the cache, anticipat-
ing that they will be reused. All other blocks are inserted into a
separate buffer. MCT has two shortcomings. First, for a highly as-
sociative last-level cache, keeping track of only one most recently
evicted block per set leads to many conflict misses getting falsely
predicted as capacity misses, especially in multi-core systems with
shared caches. Second, naïvely extending MCT to keep track of
more evicted blocks can lead to the number of predicted-conflict-
miss blocks to exceed the number of blocks in the cache. In such a
scenario, MCT cannot address the resulting thrashing problem.

In contrast to previous approaches, our proposed mechanism, the
EAF-Cache, is designed to address both cache pollution and thrash-
ing with a single structure, the Evicted-Address Filter. Instead of
indirectly predicting the reuse behavior of a cache block using the

2We also implemented single-usage block prediction [34] (SU),
which also uses the program counter to identify reuse behavior of
missed blocks. Both SU and SHIP provide similar performance.
3The SHIP paper [55] also evaluates mechanisms that use memory
regions and other signatures to group blocks. The paper identifies
that program counter-based grouping provides the best results. We
reach a similar conclusion based on our experimental results.

6

Core 4 Ghz processor, in-order x86

L1-D Cache 32 KB, 2-way associative, LRU replacement policy, single cycle latency, 64B block size

Private L2 Cache 256 KB, 8-way associative, LRU replacement policy, latency = 8 cycles, 64B block size

L3 Cache
1-core 1 MB, 16-way associative, latency = 21 cycles, 64B block size

2-core Shared, 1 MB, 16-way associative, latency = 21 cycles, 64B block size

4-core Shared, 2 MB, 16-way associative, latency = 28 cycles, 64B block size

Main memory DDR2 parameters, Row hits = 168 cycles, Row conflicts = 408 cycles, 4 Banks, 8 KB row buffers

Table 2: Main configuration parameters used for our simulations

Name L2-MPKI Sens.

ammp 5.76 M 36% H
applu 1.92 L 2% L
art 40.56 H 52% H
astar 25.49 H 6% M

bwaves 15.03 H 0% L
bzip2 7.01 M 32% H

cactusADM 4.4 L 8% M
dealII 1.51 L 9% M
equake 9.22 M 6% M
facerec 4.61 L 18% H

Name L2-MPKI Sens.

fma3d 1.14 L 5% M
galgel 7.94 M 17% M
gcc 4.08 L 3% M

GemsFDTD 16.57 H 1% L
gobmk 1.92 L 2% L
h264ref 1.52 L 5% M
hmmer 2.63 L 2% L
lbm 24.64 H 1% L

leslie3d 14.02 H 7% M
libquantum 14.31 H 1% L

Name L2-MPKI Sens.

lucas 3.11 L 0% L
mcf 49.58 H 26% H
mgrid 3.14 L 5% M
milc 12.33 H 0% L

omnetpp 12.73 H 10% M
parser 2.0 L 18% H
soplex 25.31 H 18% H
sphinx3 14.86 H 9% M
swim 17.7 H 46% H
twolf 10.21 M 56% H

Name L2-MPKI Sens.

vpr 6.13 M 46% H
wupwise 1.33 L 1% L
xalancbmk 10.89 H 16% M
zeusmp 5.77 L 1% L

Server Benchmarks
apache20 5.8 L 9% M
tpcc64 11.48 H 31% H
tpch2 17.02 H 31% H
tpch6 3.93 L 23% H
tpch17 13.97 H 26% H

Table 3: Benchmark classification based on intensity (L2-MPKI) and sensitivity (Sens.). (L - low, M - Medium, H - High). Intensity:
L2-MPKI < 5 (Low); > 10 (High); Rest (Medium). Sensitivity: Perf. Degradation < 5% (Low); > 18% (High); Rest (Medium)

behavior of the application, program counter or memory region as
a proxy, the EAF-cache predicts the reuse behavior of each missed
cache block based on the block’s own past behavior. As described
in Section 2.3, the EAF-cache also mitigates thrashing by retaining
only a fraction of blocks of a thrashing working set in the cache. As
a result, EAF-cache adapts to workloads with varying working set
characteristics, and as we will show in our quantitative results, it
significantly outperforms prior approaches.

6. METHODOLOGY
We use an in-house event-driven x86 simulator for our evalua-

tions. Instruction traces were collected by running the benchmarks
on top of the Wind River Simics full system simulator [4], which
are then fed to our simulator’s core model. Our framework faith-
fully models all memory-related processor-stalls. All systems use
a 3-level cache hierarchy similar to some modern architectures [2,
22]. The L1 and L2 caches are private to individual cores and the
L3 cache is shared across all the cores. We do not enforce inclu-
sion in any level of the hierarchy. All caches use a 64B block size.
Writebacks do not update the replacement policy state.

Other major simulation parameters are provided in Table 2. The
cache sizes we use for our primary evaluations (1MB for 2-core and
2MB for 4-core) were chosen to account for the small working set
sizes of most of our benchmarks. Section 7.5 presents results with
larger cache sizes (up to 16MB). For all mechanisms, except baseline
LRU and DIP, the last-level cache uses the re-reference interval pre-
diction replacement policy [17]. For our EAF proposals, we assume
that the operations on the EAF can be overlapped with the long la-
tency of memory access (note that all EAF operations happen only
on a last-level cache miss).

For evaluations, we use benchmarks from the SPEC CPU2000
and CPU2006 suites, three TPC-H queries, one TPC-C server and
an Apache web server. All results are collected by running a
representative portion of each benchmark for 500 million instruc-
tions [49]. We classify benchmarks into nine categories based on
their cache sensitivity (low, medium, or high) and memory inten-
sity (low, medium, or high). For measuring cache sensitivity, we run
the benchmarks with a 1MB last-level cache and a 256KB last-level
cache and use the performance degradation as a metric. We define

a benchmark’s memory intensity as its misses per 1000 instructions
(MPKI) on a 256KB L2 cache. We do not consider benchmarks with
L2-MPKI less than one for our studies as they do not exert signif-
icant pressure on the last-level cache. Table 3 shows the memory
intensity and cache sensitivity of different benchmarks used in our
evaluations along with the criteria used for classifying them.

We evaluate multi-programmed workloads running on 2-core
and 4-core CMPs. We generate nine categories of multi-
programmed workloads with different levels of aggregate intensity
(low, medium, or high) and aggregate sensitivity (low, medium, or
high).4 We evaluate the server benchmarks separately with ten 2-
core and five 4-core workload combinations. In all, we present re-
sults for 208 2-core and 135 4-core workloads.5

We evaluate system performance using the weighted speedup
metric [50], which is shown to correlate with the system through-
put [11]. We also evaluate three other metrics, namely, instruction
throughput, harmonic speedup [28], and maximum slowdown [25,
26], in Section 7.6 for completeness.

Weighted Speedup =
∑

i

IPC shared

i

IPC alone

i

7. RESULTS

7.1 Single-core Results
Figure 4 compares the performance, instructions per cycle (IPC),

for different benchmarks with different mechanisms.6 The percent-
ages on top of the bars show the reduction in the last-level cache
misses per kilo instruction of D-EAF compared to LRU. We draw
two conclusions from the figure.

First, D-EAF, with its ability to address both pollution and thrash-
ing, provides performance comparable to the better of the previous
4We compute aggregate intensity/sensitivity of a workload as the
sum of individual benchmark intensities/sensitivities (low = 0,
medium = 1, high = 2).
5We provide details of individual workloads in our tech report [47].
6For clarity, results for DIP and RTB are excluded from Figures 4
and 5 (left) as their performance improvements are lower compared
to the other mechanisms. We also don’t present single-core results
for benchmarks where all mechanisms perform within 1% of the
baseline LRU. Our tech report provides the full results [47].

7

N
o
rm

al
iz
ed

IP
C

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-8% 1% 1% -1% 1% 2% 0% 2% 1% 10% 8% 21% 1% 22% 5% 13% 6% 8% 6%
15% 13% 15% 27%

20%
34%

38%

10%

Value on top of each group indicates % reduction in MPKI provided by D-EAF compared to LRU

sw
im

m
g
ri
d

tp
ch
6

fa
ce
re
c

fm
a3
d

le
sl
ie
3d

p
ar
se
r

tp
ch
2

tp
ch
17 v
p
r

am
m
p

h
26
4r
ef

ap
p
lu

tw
o
lf

ap
ac
h
e

b
zi
p
2

tp
cc
64

as
ta
r

eq
u
ak
e

ca
ct
u
s

so
p
le
x

sp
h
in
x
3

x
al
an
c

m
cf

g
al
ge
l

ar
t

g
m
ea
n

DRRIP

SHIP

MCT

EAF

D-EAF

Figure 4: System performance: Single-core system

best mechanisms to address pollution (SHIP) or thrashing (DRRIP)
for most benchmarks. On average, D-EAF provides the best per-
formance across all benchmarks (7% IPC improvement over LRU).
In fact, except for benchmarks swim, facerec and parser, D-EAF al-
ways reduces the miss rate compared to the LRU policy. As the
figure shows, MCT considerably degrades performance for several
benchmarks. This is because MCT keeps track of only one most re-
cently evicted block address per set to identify conflict misses. This
leads to many conflict-miss blocks to get falsely predicted as capac-
ity misses (as described in Section 5). As a result, such blocks are
inserted with low priority, leading to poor performance. This effect
becomes worse in a multi-core system, where there is interference
between concurrently running applications.

Second, as expected, for LRU-friendly benchmarks like swim and
mgrid, EAF degrades performance considerably. This is because,
when a block is accessed for the first time, EAF predicts it to have
low reuse. However, the most recently accessed blocks in these
benchmarks have high reuse. Therefore, EAF incurs one additional
miss for most blocks. D-EAF identifies this problem and inserts
all blocks of such applications with high priority, thereby mitigat-
ing the performance degradation of EAF. For example, in case of
swim, D-EAF reduces the MPKI by 18% compared to EAF. We con-
clude that D-EAF, with the ability to dynamically adapt to different
benchmark characteristics, provides the best average performance.

7.2 Multi-core Results
In multi-core systems, the shared last-level cache is subject to

varying access patterns from the concurrently-running applications.
In such a scenario, although pollution or thrashing caused by an ap-
plication may not affect its own performance, they can adversely
affect the performance of the concurrently-running applications.
Therefore, the cache management mechanism should efficiently
handle all the access patterns to provide high system performance.
The EAF-cache with its ability to concurrently handle both cache
pollution and thrashing provides better cache utilization than prior
approaches that were designed to handle only one of the two prob-
lems. As a result, we find that the EAF-cache significantly outper-
forms prior approaches for multi-programmed workloads (on both
2-core and 4-core systems).

Performance by workload categories: Figure 7 shows the abso-
lute weighted speedup for our 4-core system grouped based on dif-
ferent workload categories (as described in Section 6).7 The percent-
age on top of the bars show the improvement in weighted speedup
of D-EAF compared to the LRU policy. For SPEC workloads, as
expected, overall system performance decreases as the intensity of

7We do not include the results for 2-core workloads due to space
constraints. The observed trends for them are similar to those for
4-core workloads. We include these results in our tech report [47].

the workloads increases from low to high.8 Regardless, both EAF
and D-EAF outperform other prior approaches for all workload cat-
egories (21% over LRU and 8% over the best previous mechanism,
SHIP). The figure also shows that within each intensity category, the
performance improvement of our mechanisms increases with in-
creasing cache sensitivity of the workloads. This is because the neg-
ative impact of cache under-utilization increases as workloads be-
come more sensitive to cache space. Although not explicitly shown
in the figure, the performance improvement of D-EAF over the best
previous mechanism (SHIP) also increases as the cache sensitivity
of the workloads increases.

For server workloads, D-EAF improves weighted speedup by 17%
compared to the LRU policy. These workloads are known to have
scans [17] (accesses to a large number of blocks with no reuse)
which pollute the cache, making pollution the major problem. This
is the reason why SHIP and RTB, which were designed to address
only cache pollution, are able to perform comparably to D-EAF for
these workloads. In contrast, TA-DIP, which is designed to address
only cache thrashing, offers no improvement over LRU.

We conclude that our EAF-based approach is better than other
prior approaches for both SPEC and server workloads and its bene-
fits improve as workloads become more sensitive to cache space.

W
ei
g
h
te
d
S
p
ee
d
u
p

1.0

1.2

1.4

1.6

1.8 11%
19%

33% 11%
23%

35%

7% 18% 23%

17%

21%

low med high
sensitivity

SPEC low intensity

low med high
sensitivity

SPEC med intensity

low med high
sensitivity

SPEC high intensity

S
er
v
er

A
ll

Workload Groups

LRU DIP DRRIP SHIP RTB MCT EAF D-EAF

Figure 7: 4-core system performance for different workload cat-
egories. The value on top of each group indicates % improvement in
weighted speedup provided by D-EAF compared to LRU.

Overall performance analysis: Figures 5 and 6 plot the perfor-
mance improvements of the different approaches compared to the
baseline LRU policy for all 2-core and 4-core workloads, respec-
tively. The workloads are sorted based on the performance improve-
ment of EAF. The goal of these figures is not to indicate how differ-
ent mechanisms perform for all workloads. Rather, the figures show
that both EAF and D-EAF (thick lines) significantly outperform all
prior approaches for most workloads.

8Our server benchmarks have little scope for categorization. There-
fore, we present average results for all server workloads.

8

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 20 40 60 80 100 120 140 160 180 200

EAF

D-EAF

D-EAFEAFMCT

DRRIPSHIPLRU
N
o
rm

al
iz
ed

W
ei
g
h
te
d
S
p
ee
d
u
p

Workload Number

Figure 5: System performance: 2-core

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130

D-EAFEAFMCTRTB

SHIPDRRIPDIPLRU

N
o
rm

al
iz
ed

W
ei
g
h
te
d
S
p
ee
d
u
p

Workload Number

Figure 6: System performance: 4-core

Two other observations can be made from these figures. First,
there is no consistent trend in the performance improvement of the
prior approaches. Different approaches improve performance for
different workloads. This indicates that addressing only cache pol-
lution or only cache thrashing is not sufficient to provide high per-
formance for all workloads. Unlike these prior approaches, EAF and
D-EAF, with their ability to address both problems concurrently,
provide the best performance for almost all workloads. Second,
there is no visible performance gap between EAF and D-EAF for
the majority of the workloads except for a small set of LRU-friendly
2-core workloads (indicated in the far left of Figure 5), where D-
EAF performs better than EAF. This is because, for most workloads
(even with LRU-friendly applications), the cache (with only EAF)
is already filled with high-reuse blocks. As a result, the additional
misses caused by EAF for LRU-friendly applications do not signif-
icantly affect performance. But, as evidenced by our results for
single-core and the small fraction of LRU-friendly 2-core workloads,
D-EAF is more robust in terms of performance than EAF.

7.3 Interaction with the Replacement Policy
As EAF-cache modifies only the cache insertion policy, it can be

used with any cache replacement policy. Figure 8 shows the benefits
of augmenting our EAF mechanism to 1) a cache following the LRU
replacement policy, and 2) a cache following the RRIP [17] policy
for all 4-core workloads. As the figure shows, EAF-cache consis-
tently improves performance in both cases for almost all workloads
(11% on average for LRU and 12% for RRIP). We conclude that the
benefits of EAF-cache are orthogonal to the benefits of using an im-
proved cache replacement policy.

N
o
rm

al
iz
ed

W
ei
g
h
te
d

S
p
ee
d
u
p

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130

LRU

RRIP

EAF-LRU

EAF-RRIP

Workload Number

Figure 8: EAF-cache with different replacement policies

7.4 Effect of EAF Design Choices
EAF size – Number of evicted addresses: The size of the EAF

– i.e., the number of evicted addresses it keeps track of – deter-
mines the boundary between blocks that are considered to be re-
cently evicted and those that are not. On one hand, having a small
EAF increases the likelihood of a high-reuse block getting incor-
rectly predicted to have low reuse. On the other hand, a large EAF

increases the likelihood of a low-reuse block getting incorrectly pre-
dicted to have high reuse. As such, we expect performance to first
increase as the size of the EAF increases and then decrease beyond
some point. Figure 9 presents the results of our experiments study-
ing this trade-off. As indicated in the figure, the performance im-
provement of EAF peaks when the size of the EAF is approximately
the same as the number of blocks in the cache. This concurs with
our intuition (as mentioned in Section 2.1) – sizing the EAF to be
around the same size as the number of blocks in the cache ensures
that a block that can potentially be reused in the cache will likely
be predicted to have high reuse while a block with a larger reuse
distance will likely be predicted to have low reuse.

Size of EAF / Number of Blocks in Cache

%
W
ei
g
h
te
d
S
p
ee
d
u
p

Im
p
ro
v
em

en
t
o
v
er

L
R
U

3

6

9

12

15

18

21

24

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

EAF Size = Number of blocks in cache

4-Core2-Core1-Core

Figure 9: Sensitivity to EAF size

Storage overhead of the Bloom filter: As described in Sec-
tion 3.3, for a fixed EAF size, the parameter α associated with the
Bloom filter presents a trade-off between the false positive rate and
the storage overhead of the Bloom filter. A large value of α leads
to a low false positive rate but incurs high storage overhead. On
the other hand, a small value of α incurs small storage overhead
but leads to a high false positive rate. As a false positive can result
in an actually low-reuse block to be predicted to have high reuse,
the choice of α is critical for performance. Figure 10 shows the ef-
fect of varying α on performance, when the EAF size is the same
as the number of blocks in the cache. The figure also shows the
corresponding storage overhead of the Bloom filter with respect to
the cache size. As α increases, performance improves because false
positive rate decreases. However, almost all of the potential per-
formance improvement of having a perfect EAF (EAF with no false
positives) is achieved with α = 8 (1.47% storage overhead).

Effect of EAF policies for cache thrashing: In Section 2.3, we
proposed three changes to the plain-EAF, to address cache thrash-
ing: 1) using the bimodal insertion policy (BIP) for low-reuse blocks
(B), 2) not removing a block address when it is present in the
EAF (N), and 3) clearing the EAF when it becomes full (C). Figure 11
shows the performance improvement of adding all combinations of
these policies to the plain-EAF (described in Section 2.1). Two ob-
servations are in order.

First, the not remove (+N) and the clear (+C) policies individually
improve performance, especially significant in the 4-core system.

9

Percentage Overhead of Bloom Filter vs Cache Size

%
W
ei
g
h
te
d
S
p
ee
d
u
p

Im
p
ro
v
em

en
t
o
v
er

L
R
U

3

6

9

12

15

18

21

24

0.18%
α = 1

0.36%
α = 2

0.73%
α = 4

1.47%
α = 8

2.94%
α = 16

Perfect EAF

4-Core2-Core1-Core

Figure 10: Sensitivity to Bloom filter storage overhead

However, applying both policies together (+NC) provides signifi-
cant performance improvement for all systems. This is because,
when the working set is larger than the cache size but smaller than
the aggregate size of the blocks tracked by the cache and EAF to-
gether, the not remove (+N) policy is required to ensure that the
EAF gets full, and the clear (+C) policy is required to clear the EAF
when it becomes full. Second, the best performance improvement
is achieved for all systems when all the three policies are applied
to the EAF (+NCB), as doing so improves the hit-rate for both cate-
gories of large working sets (as discussed in Section 2.2).

%
W
ei
g
h
te
d
S
p
ee
d
u
p

Im
p
ro
v
em

en
t
o
v
er

L
R
U

3

6

9

12

15

18

21

24

1-core 2-core 4-core

P-EAF +B +N +C

+NB +CB +NC +NCB

Figure 11: Effect of changes to plain-EAF (P-EAF)

7.5 Sensitivity to System Parameters
Varying Cache Size: Figure 12 plots the performance improve-

ments of SHIP (best previous mechanism), EAF and D-EAF com-
pared to LRU for different cache sizes for multi-core systems. The
performance improvement of different mechanisms decreases with
increasing cache size. This is expected because with increasing
cache size, cache under-utilization becomes less of a problem. How-
ever, the EAF-cache provides significant performance improve-
ments even for 8MB/16MB caches, and better performance than
SHIP for all cache sizes.

%
W
ei
g
h
te
d
S
p
ee
d
u
p

Im
p
ro
v
em

en
t
o
v
er

L
R
U

0

3

6

9

12

15

18

21

1MB 2MB 4MB 8MB 2MB 4MB 8MB 16MB
2-core 4-core

D-EAFEAFSHIP

Figure 12: EAF-cache with different cache sizes

Varying Memory Latency: Figure 13 shows the effect of vary-
ing the memory latency. For ease of analysis, we use a fixed latency
for all memory requests in these experiments. As expected, sys-
tem throughput decreases as the memory latency increases. How-
ever, the performance improvement of EAF-cache increases with
increasing memory latency, making it a more attractive mechanism
for future systems, which are likely to have higher memory access
latencies due to contention.

W
ei
g
h
te
d
S
p
ee
d
u
p

Memory access latency (processor cycles)

1.0

1.2

1.4

1.6

1.8

2.0

11%
14%

16%

16%

18%
21%

200 300 400

2-core
200 300 400

4-core

D-EAFEAFLRU

Figure 13: EAF-cache with different memory latencies. The
value on top of each group indicates % weighted speedup im-
provement of D-EAF compared to LRU.

7.6 Multi-core Systems: Other Metrics
Table 4 shows the percentage improvement of the EAF-cache

over the baseline LRU policy and the best previous mechanism,
SHIP, on four metrics: weighted speedup [11, 50], instruction
throughput, harmonic speedup [28] and maximum slowdown [25,
26]. For both 2-core and 4-core systems, EAF-cache significantly
improves weighted speedup, instruction throughput and harmonic
speedup, and also considerably reduces the average maximum slow-
down. We conclude that EAF-cache improves both system perfor-
mance and fairness compared to prior approaches.

Metric
2-core 4-core

+ LRU + SHIP + LRU + SHIP

Weighted Speedup 15% 6% 21% 8%

Instruction Throughput 14% 6% 22% 7%

Harmonic Speedup 15% 6% 29% 6%

Max. Slowdown Reduction 16% 7% 31% 8%

Table 4: Improvement of EAF on different metrics

7.7 Alternate EAF Designs
In this section, we describe two different approaches to mitigate

cache pollution and thrashing by making slight modifications to the
proposed EAF design: 1) Segmented-EAF, and 2) Decoupled-Clear-
EAF. We describe these two designs below and compare their per-
formance to our original EAF-cache design.

Segmented-EAF: The plain-EAF (described in Section 2.1) and
the EAF (with the three changes described in Section 2.3) are two
ends of a spectrum. While the former removes just one block ad-
dress when the EAF becomes full, the latter clears the entire EAF
when it becomes full. One can think of an approach which clears a
fraction of the EAF (say 1

2
) when it becomes full. This can be ac-

complished by segmenting the EAF into multiple Bloom filters (or-
ganized in a FIFO manner) and clearing only the oldest one when
the EAF becomes full. We call this variant of the EAF Segmented-
EAF. A Segmented-EAF trades off the ability to mitigate thrashing
(number of addresses removed from the EAF) with the ability to
mitigate pollution (amount of information lost due to clearing).

Decoupled-Clear-EAF: In EAF-cache, the number of blocks that
enter the cache with high priority is reduced by clearing the EAF
when it becomes full. However, this approach requires the size
of the EAF to be around the same as the number of blocks in the
cache, so as to limit the number of blocks predicted to have high-
reuse between two EAF-clear events. This restricts the EAF’s visi-
bility of recently evicted blocks. However, having a larger visibility
can potentially allow EAF to better identify the reuse behavior of
more cache blocks. The Decoupled-Clear-EAF addresses this visi-

10

Design 1-core 2-core 4-core

EAF 7% 15% 21%

Segmented-EAF 6% 13% 21%

Decoupled-Clear-EAF 6% 14% 21%

Table 5: Comparison of EAF with other design alternatives

bility problem by decoupling the size of the EAF from determining
when the EAF is cleared. In this approach, the EAF keeps track of
more addresses than the number of blocks in the cache (say 2×).
An additional counter keeps track of the number of blocks inserted
with high priority into the cache. The EAF is cleared on two events:
1) when it becomes full, and 2) when the number of high-priority
blocks reaches the number of blocks in the cache.

Table 5 compares the performance improvement (over baseline
LRU) of the above designs with our proposed EAF design. Our re-
sults indicate that there is not much performance gap (less than 2%)
across all three designs. We conclude that all the three heuristics
perform similarly for our workloads. We leave an in-depth analysis
of these design points and other potential designs as future work.

8. RELATED WORK
The primary contribution of this paper is the EAF-cache, a low-

complexity cache insertion policy that mitigates the negative impact
of both cache pollution and thrashing, by determining the reuse be-
havior of a missed block based on the block’s own past behavior.
We have already provided qualitative and quantitative comparisons
to the most closely related work on addressing pollution or thrash-
ing [9, 16, 17, 19, 34, 55], showing that EAF-cache outperforms all
these approaches. In this section, we present other related work.

A number of cache insertion policies have been proposed to pre-
vent L1-cache pollution [43, 53]. Similar to some approaches we
have discussed in our paper [19, 34, 55], these mechanisms use the
instruction pointer or the memory region to predict the reuse be-
havior of missed blocks. As we showed, our EAF-based approach
provides better performance than these prior approaches as it can
address both pollution and thrashing simultaneously.

Prior work has proposed compiler-based techniques (e.g., [10, 42,
54]) to mitigate the negative impact of pollution and thrashing by
either modifying the data layout or by providing hints to the hard-
ware – e.g., non-temporal load/store in x86 [14]. However, the
scope of such techniques is limited to cases where reuse and/or
locality of accesses can be successfully modeled by the program-
mer/compiler, which often corresponds to array accesses within
loop nests. Our EAF-cache proposal can potentially improve per-
formance for a much broader set of memory accesses, and hence
complements these compiler-based techniques.

Much prior research (e.g., [13, 17, 23, 27, 39, 46]) has focused
on improving the cache replacement policy. Researchers have also
proposed mechanisms to improve cache utilization (e.g., [38, 45, 44,
48, 57]) by addressing the set imbalance problem (i.e., certain cache
sets suffer many conflict misses while others are under-utilized).
The EAF-cache can be combined with any of these mechanisms to
further improve performance.

A number of page replacement policies have been proposed to
improve virtual memory performance (e.g., [5, 18, 20, 30, 32]). As
these mechanisms were designed for software-based DRAM buffer
management, they usually employ complex algorithms and assume
large amounts of storage. As a result, applying them to hardware
caches incurs higher storage overhead and implementation com-
plexity than the EAF-cache.

Jouppi proposed victim caches [21] to improve the performance
of direct mapped caches by reducing the latency of conflict misses.

A victim cache stores recently evicted cache blocks (including data)
in a fully associative buffer. As a result, it has to be a small structure.
In contrast, our proposed EAFmechanism is a reuse predictor which
keeps track of only addresses of a larger number of recently evicted
blocks. As such, the two techniques can be employed together.

Cache partitioning is one technique that has been effectively used
to improve shared-cache performance [37, 51, 52, 56] or provide QoS
in multi-core systems with shared caches [7, 15, 24, 31]. The mech-
anisms to improve performance use partitioning to provide more
cache space to applications that benefit from the additional space.
For QoS, the proposed approaches ensure that applications are guar-
anteed some minimum amount of cache space. Since blocks with
low reuse contribute neither to system performance nor to fairness,
these mechanisms can be employed in conjunction with the EAF-
cache, which can filter out low-reuse blocks to further improve per-
formance or fairness. Evaluation of this is part of our future work.

9. CONCLUSION
Efficient cache utilization is critical for high system performance.

Cache pollution and thrashing reduce cache utilization and conse-
quently, degrade cache performance. We show that prior works do
not concurrently address cache pollution and thrashing.

We presented the EAF-cache, a mechanism that mitigates the
negative impact of both cache pollution and thrashing. EAF-cache
handles pollution by keeping track of addresses of recently evicted
blocks in a structure called the Evicted-Address Filter (EAF) to dis-
tinguish high-reuse blocks from low-reuse blocks. Implementing
the EAF using a Bloom filter naturally mitigates the thrashing prob-
lem, while incurring low storage and power overhead. Extensive
evaluations using a wide variety of workloads and system config-
urations show that the EAF-cache provides the best performance
compared to five different prior approaches.

We conclude that EAF-cache is an attractive mechanism that can
handle both cache pollution and thrashing, to provide high perfor-
mance at low complexity. The concept of EAF provides a substrate
that can enable other cache optimizations, which we are currently
exploring.

ACKNOWLEDGEMENTS

Many thanks to Chris Wilkerson, Phillip Gibbons, and Aamer Jaleel
for their feedback during various stages of this project. We thank
the anonymous reviewers for their valuable feedback and sugges-
tions. We acknowledge members of the SAFARI and LBA groups for
their feedback and for the stimulating research environment they
provide. We acknowledge the generous support of AMD, Intel, Or-
acle, and Samsung. This research was partially supported by grants
from NSF, GSRC, Intel University Research Office, and Intel Science
and Technology Center on Cloud Computing. We thank Lavanya
Subramanian, David Andersen, Kayvon Fatahalian and Michael Pa-
pamichael for their feedback on this paper’s writing.

REFERENCES
[1] AMD Phenom II key architectural features.

http://goo.gl/iQBfK.
[2] Intel next generation microarchitecture.

http://goo.gl/3eskx.
[3] Oracle SPARC T4. http://goo.gl/KZSnc.
[4] Wind River Simics.

www.windriver.com/producs/simics.
[5] S. Bansal and D. S. Modha. CAR: Clock with adaptive

replacement. In FAST, 2004.
[6] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. ACM Communications, 13, July 1970.

11

[7] J. Chang and G. S. Sohi. Cooperative cache partitioning for
chip multiprocessors. In ICS, 2007.

[8] Y. Chen, A. Kumar, and J. Xu. A new design of Bloom filter
for packet inspection speedup. In GLOBECOM, 2007.

[9] J. Collins and D. M. Tullsen. Hardware identification of cache
conflict misses. In MICRO, 1999.

[10] C. Ding and K. Kennedy. Improving effective bandwidth
through compiler enhancement of global cache reuse. JPDC,
2004.

[11] S. Eyerman and L. Eeckhout. System-level performance
metrics for multiprogram workloads. IEEE Micro, 2008.

[12] A. Goel and P. Gupta. Small subset queries and Bloom filters
using ternary associative memories, with applications. In
SIGMETRICS, 2010.

[13] E. G. Hallnor and S. K. Reinhardt. A fully associative software
managed cache design. In ISCA, 2000.

[14] Intel. Intel 64 and IA-32 architectures software developer’s
manuals, 2011.

[15] R. Iyer. CQoS: A framework for enabling QoS in shared
caches of CMP platforms. In ICS, 2004.

[16] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr.,
and J. Emer. Adaptive insertion policies for managing shared
caches. In PACT, 2008.

[17] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High
performance cache replacement using re-reference interval
prediction. In ISCA, 2010.

[18] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache
performance. In SIGMETRICS, 2002.

[19] T. Johnson, D. Connors, M. Merten, and W.-M. Hwu.
Run-time cache bypassing. IEEE TC, 1999.

[20] T. Johnson and D. Shasha. 2Q: A low overhead high
performance buffer management replacement algorithm. In
VLDB, 1994.

[21] N. P. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. In ISCA, 1990.

[22] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd. Power7: IBM’s
next-generation server processor. IEEE Micro, 2010.

[23] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
replacement based on reuse-distance prediction. In ICCD,
2007.

[24] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In PACT,
2004.

[25] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A
scalable and high-performance scheduling algorithm for
multiple memory controllers. In HPCA, 2010.

[26] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.
Thread cluster memory scheduling: Exploiting differences in
memory access behavior. In MICRO, 2010.

[27] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A
new approach for eliminating dead blocks and increasing
cache efficiency. In MICRO, 2008.

[28] K. Luo, J. Gummaraju, and M. Franklin. Balancing thoughput
and fairness in SMT processors. In ISPASS, 2001.

[29] M. J. Lyons and D. Brooks. The design of a Bloom filter
hardware accelerator for ultra low power systems. In ISLPED,
2009.

[30] N. Megiddo and D. S. Modha. ARC: A self-tuning, low
overhead replacement cache. In FAST, 2003.

[31] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches.
In ISCA, 2007.

[32] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In
SIGMOD, 1993.

[33] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai. Bloom

filtering cache misses for accurate data speculation and
prefetching. In ICS, 2002.

[34] T. Piquet, O. Rochecouste, and A. Seznec. Exploiting
single-usage for effective memory management. In ACSAC,
2007.

[35] M. K. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer.
Adaptive insertion policies for high performance caching. In
ISCA, 2007.

[36] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case
for MLP-aware cache replacement. In ISCA, 2006.

[37] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches. In MICRO, 2006.

[38] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-way
cache: Demand based associativity via global replacement. In
ISCA, 2005.

[39] K. Rajan and G. Ramaswamy. Emulating optimal replacement
with a shepherd cache. In MICRO, 2007.

[40] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In ISCA, 2005.

[41] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient
hardware hashing functions for high performance computers.
IEEE TC, 1997.

[42] G. Rivera and C.-W. Tseng. Compiler optimizations for
eliminating cache conflict misses. Technical Report
UMIACS-TR-97-59, University of Maryland, College Park,
1997.

[43] J. Rivers and E. S. Davidson. Reducing conflicts in
direct-mapped caches with a temporality-based design. In
ICPP, 1996.

[44] D. Rolan, B. B. Fraguela, and R. Doallo. Adaptive line
placement with the set balancing cache. In MICRO, 2009.

[45] D. Rolan, B. B. Fraguela, and R. Doallo. Reducing capacity
and conflict misses using set saturation levels. In HiPC, 2010.

[46] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling ways
and associativity. In MICRO, 2010.

[47] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The
Evicted-Address Filter: A unified mechanism to address both
cache pollution and thrashing. Technical Report SAFARI
2012-002, CMU, 2012.

[48] A. Seznec. A case for two-way skewed-associative caches. In
ISCA, 1993.

[49] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
ASPLOS, 2002.

[50] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. In ASPLOS, 2000.

[51] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of
cache memory. IEEE TC, Sep. 1992.

[52] G. E. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and
partitioning. In HPCA, 2002.

[53] G. S. Tyson, M. K. Farrens, J. Matthews, and A. R. Pleszkun. A
modified approach to data cache management. In MICRO,
1995.

[54] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C. Weems.
Using the compiler to improve cache replacement decisions.
In PACT, 2002.

[55] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi,
S. Steely Jr., and J. Emer. SHIP: Signature-based hit predictor
for high performance caching. In MICRO, 2011.

[56] Y. Xie and G. H. Loh. PIPP: Promotion/insertion
pseudo-partitioning of multi-core shared caches. In ISCA,
2009.

[57] D. Zhan, H. Jiang, and S. C. Seth. STEM: Spatiotemporal
management of capacity for intra-core last level caches. In
MICRO, 2010.

12

