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Three Bayesian ideas are presented for supervised adaptive classifiers. 
First, it is argued that the output of a classifier should be obtained 
by marginalizing over the posterior distribution of the parameters; a 
simple approximation to this integral is proposed and demonstrated. 
This involves a "moderation" of the most probable classifier's outputs, 
and yields improved performance. Second, it is demonstrated that the 
Bayesian framework for model comparison described for regression 
models in MacKay (1992a,b) can also be applied to classification prob- 
lems. This framework successfully chooses the magnitude of weight 
decay terms, and ranks solutions found using different numbers of 
hidden units. Third, an information-based data selection criterion is 
derived and demonstrated within this framework. 

1 Introduction 

A quantitative Bayesian framework has been described for learning of 
mappings in feedforward networks (MacKay 1992a,b). It was demon- 
strated that this "evidence" framework could successfully choose the 
magnitude and type of weight decay terms, and could choose between 
solutions using different numbers of hidden units. The framework also 
gives quantified error bars expressing the uncertainty in the network's 
outputs and its parameters. In MacKay (1992~) information-based objec- 
tive functions for active learning were discussed within the same frame- 
work. 

These three papers concentrated on interpolation (regression) prob- 
lems. Neural networks can also be trained to perform classification 
tasks.' This paper will show that the Bayesian framework for model 
comparison can be applied to these problems too. 

*Current address: Darwin College, Cambridge CB3 9EU, U.K. 
'In regression the target variables are real numbers, assumed to include additive 

errors; in classification the target variables are discrete class labels. 

Neural Computation 4,720-736 (1992) @ 1992 Massachusetts Institute of Technology 
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Assume that a set of candidate classification models is fitted to a data 
set, using standard methods. Three aspects of the use of classifiers can 
then be distinguished: 

1. The individual classification models are used to make predictions 

2. The alternative models are ranked in the light of the data. 

3. The expected utility of alternative new data points is estimated for 
the purpose of "query learning" or "active data selection." 

about new targets. 

This paper will present Bayesian ideas for these three tasks. Other as- 
pects of classifiers use such as prediction of generalizatim ability are not 
addressed. 

First let us review the framework for supervised adaptive classifica- 
tion. 

1.1 Derivation of the Objective Function G = Ct In p .  The same 
notation and conventions will be used as in MacKay (1992a,b). Let the 
data set be D = {x(") ,  t,}, rn = 1 . . . N. In a classification problem, each 
target t ,  is a binary (0/1) variable [more than two classes can also be 
handled (Bridle 1989)], and the activity of the output of a classifier is 
viewed as an estimate of the probability that t = 1. It is assumed that 
the classification problem is noisy, that is, repeated sampling at the same 
x would produce different values of t with certain probabilities; those 
probabilities, as a function of x ,  are the quantities that a discriminative 
classifier is intended to model. It is well known that the natural objective 
function in this case is an information-based distance measure, rather 
than the sum of squared errors (Bridle 1989; Hinton and Sejnowski 1986; 
Hopfield 1987; Solla et al. 1988). 

A classification model '?i consists of a specification of its architecture 
A and the regularizer R for its parameters w. When a classification 
model's parameters are set to a particular value, the model produces an 
output y (x ;  w, A) between 0 and 1, which is viewed as the probability 
P(t = 1 1 x ,  w, A). The likelihood, i.e. the probability of the data' as a 
function of w, is then 

P ( D  I W, A) == Hy' ' ' ' (1  - Y)'-''~ 
in 

= expG(D I w,A) 

where 

G(D Iw,A)=Ct, , logy+(1-tm)log(l-y)  (1.1) 
m 

2Strictly this is the probability of {t ,n} given {x'")}, w, A; the density over {x} is not 
modeled by the "discriminative" classifiers discussed in this paper. 
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This is the probabilistic motivation for the cross-entropy objective func- 
tion Cplogq/p. Now if we assign a prior over alternative parameter 
vectors w, 

where Ek) is a cost function for a subset (c) o f  the weights and cy, is 
the associated regularization constant (see MacKay 1992b), we obtain a 
posterior: 

(1.3) 
exp( -C,a,E$ + G) 

ZM 
P(w 1 D ,  {ac}.  A, R) = 

where Zw and ZM are the appropriate normalizing constants. Thus the 
identical framework is obtained to that in MacKay (1992b) with -G re- 
placing the term PED.  Note that in contrast to the framework for regres- 
sion in MacKay (1992b) there is now no free parameter [j and no Z D ( a ) .  
If, however, a teacher were to supply probability estimates t instead of 
binary targets, then a constant equivalent to /3 would appear, expressing 
the precision of the teacher's estimates. This constant would correspond 
to the effective number of observations on which the teacher's opinion 
is based. 

The calculation of the gradient and Hessian of G is as easy as for 
a quadratic E D ,  if the output unit's activation function is the traditional 
logisticf(a) = l/(l+e-'), or the generalized "softmax" in the case of more 
than two classes (Bridle 1989). The appropriateness of a logistic output 
function for a classifier is well known; it is the function that converts a 
log probability ratio a into a probability f ( a ) .  

1.1.1 Gradient. If y[x(")'] =f[a(x("))] as defined above, the gradient of 
G with respect to the parameters w is 

1.1.2 Hessian. The Hessian can be analytically evaluated (Bishop 1992), 

VVG - Cf'g(m)gT,n, (1.5) 

where f '  = Bf/aa. This approximation is expected to be adequate for the 
evaluation of error bars, for use in data selection and for the evaluation 
of the number of well-determined parameters y. A more accurate eval- 
uation of the Hessian is probably needed for estimation of the evidence. 
In this paper's demonstrations, the Hessian is evaluated using second 
differences, i.e., numerical differentiation of VG with respect to w. 

but a useful approximation neglecting terms in $a/d2w is 

m 
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1.2 Validity of Approximations. On account of the central limit the- 
orem, we expect the posterior distribution to converge to a set of lo- 
cally gaussian peaks with increasing quantities of data. However, the 
quadratic approximation to G is expected to converge more slowly than 
the quadratic approximation to E D ,  the error function for regression mod- 
els, because (1) G is not a quadratic function even for a linear model [a 
model for which a = C W ~ $ ~ ( X ) ] :  each term in G has the large scale form 
of a ramp function; and (2) only inputs that fall in the “bend” of the 
ramp contribute curvature to G. If we have the opportunity for active 
data selection we could improve the convergence of this quadratic ap- 
proximation by selecting inputs that are expected to contribute maximal 
curvature. A related data selection criterion is derived in Section 4. 

2 Every Classifier Should Have Two Sets of Outputs 

Consider a classifier with output y(x;w) = f[a(x;w)]. Assume that we 
receive data D and infer the posterior probability of the parameters w 
(i.e., we perform ”learning”). Now if we are asked to make predictions 
with this classifier, it is common for the most probable parameter vector 
WMP to be used as the sole representative of the posterior distribution. 
This strategy seems unwise, however, since there may be regions in input 
space where the posterior ensemble is very uncertain about what the 
class is; in such regions the output of the network should be y N 0.5 
(assuming equiprobable classes a priori), whereas typically the network 
with parameters WMP will give a more extreme, unrepresentative, and 
overconfident output. The error bars on the parameters should be taken into 
account when predictions are made. 

In regression problems, it is also important to calculate error bars 
on outputs, but the problem is more acute in the case of classification 
because, on account of the nonlinear output, the mean output over the 
posterior distribution is not equal to the most probable network’s output. 
To obtain an output representative of the posterior ensemble of networks 
around WMP, we need to moderate the output of the most probable net- 
work in relation to the error bars on W M ~ .  

Of course this idea of averaging over the hidden parameters is not 
new: marginalization goes back to Laplace. More recently, and in a con- 
text closer to the present one, the same message can be found for example 
in Spiegelhalter and Lauritzen (1990). But it seems that most practitioners 
of adaptive classification do not currently use marginalization. 

I suggest that any classifier should have two sets of outputs. The 
first set would give the usual class probabilities corresponding to W M ~ ,  
y(x; WMP); these outputs would be used for learning, i.e., for calculating 
the error signals for optimization of WMP. The second set would be the 
moderated outputs y[x;P(w I D)] = J dkwy(x;w)P(w I D); these outputs 
would be used for all other applications, e.g., prediction, evaluation of 
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test error, and for evaluating the utility of candidate data points (Sec- 
tion 4). Let us now discuss how to calculate the moderated outputs. It 
will then be demonstrated that these outputs can indeed provide better 
estimates of class probabilities. 

2.1 Calculating the Moderated Outputs. If we assume a locally gaus- 
sian posterior probability distribution3 over w =: WMP + Aw, P(w I D )  N 

P ( w M ~ )  exp( -1/2 Aw~AAw),  and if we assume that the activation a(x;  w) 
is a locally linear function of w with aa/dw = g, then for any x, the acti- 
vation a is approximately gaussian distributed: 

1 (a - aMP)2 
P ( a ( x )  I D )  = Normal(aMP,s2) = - exp [- 2s2 ] (2.1) w 

where aMP = a(x; WMP) and s2 = gTAp'g. This means that the moderated 
output is 

P ( f  = 1 1 x , D )  = .41i(aMp,s2) E daf(a)Normal(aMP,s2) (2.2) J 
This is to be contrasted with the most probable network's output, y(x; WMP) 
= f ( a M p ) .  The integral of a sigmoid times a gaussian cannot be solved 
analytically; here I suggest a simple numerical approximation to it: 

(2.3) 

with IE. = l/J1+.rrS2/8. This approximation is not globally accurate over 
(aMp,s2), (for large s2 > a the function should tend to an error function, 
not a logistic) but it breaks down gracefully. The value of K was chosen 
so that the approximation has the correct gain at aMP = 0, as s2 -+ m. A 
representative of this approximation is given in Figure 1, which compares 
4 and 4' with numerical evaluations of $ and I$. A similar approximation 
in terms of the error function is suggested in Spiegelhalter and Lauritzen 
(1990). 

If the output is immediately used to make a (0/1) decision, then the 
use of moderated outputs will make no difference to the performance of 
the classifier (unless the costs associated with error are asymetrical), since 
both functions pass through 0.5 at aMp = 0. But moderated outputs will 
make a difference if a more sophisticated penalty function is involved. 
In the following demonstration the performance of a classifier's outputs 
is measured by the value of G achieved on a test set. 

A model classification problem with two input variables and two pos- 
sible classes is shown in Figure 2a. Figure 2b illustrates the output of 
a typical trained network, using its most probable parameter values. Fig- 
ure 2c shows the moderated outputs of the same network. Notice how the 
moderated output is similar to the most probable output in regions where 

$ ( a M P ,  s2) N 4(aMP,  S*) = f[.(s)n"P] 

3Conditioning variables such as A, R, {aC} will be omitted in this section, since the 
emphasis is not on model comparison, 
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Figure 1: Approximation to the moderated probability. (a) The function $(a, s2), 
evaluated numerically. In (b) the functions $(a, s2) and $(a, s2) defined in the 
text are shown as a function of a for s2 = 4. In (c), the difference 4 - $ is shown 
for the same parameter values. In (d), the breakdown of the approximation is 
emphasized by showing log$’ and log$’ (derivatives with respect to a). The 
errors become significant when a >> s. 

the data are dense. In contrast, where the data are sparse, the moderated 
output becomes significantly less certain than the most probable output; 
this can be seen by the widening of the contours. Figure 2d shows the 
correct posterior probability for this problem given the knowledge of the 
true class densities. 

Several hundred neural networks having two inputs, one hidden layer 
of sigmoid units and one sigmoid output unit were trained on this prob- 
lem. During optimization, the second weight decay scheme of MacKay 
(1992b) was used, using independent decay rates for each of three weight 
classes: hidden weights, hidden unit biases, and output weights and bi- 
ases. This corresponds to the prior that models the weights in each class 
as coming from a gaussian; the scales of the gaussians for different classes 
are independent and are specified by regularizing constants a,. Each reg- 
ularizing constant is optimized on line by intermittently updating it to 
its most probable value as estimated within the “evidence” framework. 

The prediction abilities of a hundred networks using their ”most prob- 
able’’ outputs and using the moderated outputs suggested above are 
compared in Figure 3. It can be seen that the predictions given by the 
moderated outputs are in nearly all cases superior. The improvement is 
most substantial for underdetermined networks with relatively poor per- 
formance. In a small fraction of the solutions however, especially among 
the best solutions, the moderated outputs are found to have slightly but 
significantly inferior performance. 
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Figure 2: Comparison of most probable outputs and moderated outputs. (a) The 
data set. The data were generated from six circular gaussian distributions, 
three gaussians for each class. The training sets for the demonstrations use 
between 100 and 1000 data points drawn from this distribution. (b) (upper 
right) ”Most probable” output of an eight hidden unit network trained on 100 
data points. The contours are equally spaced between 0.0 and 1.0. (c) (lower 
left) “Moderated” output of the network. Notice that the output becomes less 
certain compared with the most probable output as the input moves away from 
regions of high training data density. (d) The true posterior probability, given 
the class densities that generated the data. The viewpoint is from the upper 
right corner of (a). In (b,c,d) a common gray scale is used, linear from 0 (dark 
gray) to 1 (light gray). 

3 Evaluating the Evidence 

Having established how to use a particular model H = {d, R} with given 
regularizing constants {a,} to make predictions, we  now turn to the ques- 
tion of model comparison. As discussed in MacKay (1992a1, three levels 
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Figure 3: Moderation is a good thing! The training set for all the networks 
contained 300 data points. For each network, the test error of the ”most proba- 
ble” outputs and the “moderated” outputs were evaluated on a test set of 5000 
data points. The test error is the value of G. Note that for most solutions, the 
moderated outputs make better predictions. 

of inference can be distinguished: parameter estimation, regularization 
constant determination, and model c~mpar ison .~  The second two lev- 
els of inference both require “Occam’s razor”; that is, the solution that 
best fits the data is not the most plausible model, and we need a way to 
balance goodness of fit against complexity. Bayesian inference embodies 
such an Occam’s razor automatically. 

At the first level, a model ‘FI, with given regularizing constants {a,}, 
is fitted to the data D. This involves inferring what value the parameters 
w should probably have. Bayes‘ rule for this level of inference has the 
form: 

Throughout this paper this posterior is approximated locally by a gaus- 
sian: 

where Aw = w - w M ~ ,  M(w) = Cco,Ef - G, and A = VVM. 

4The use of a specified model to predict the class of a datum can be viewed as the 
zeroeth level of inference. 
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At the second level of inference, the regularizing constants are opti- 
mized: 

The data-dependent term P(D I {ac}, Y) is the “evidence,” the normaliz- 
ing constant from equation 3.1. The evaluation of this quantity and the 
optimization of the parameters {a,} is accomplished using a framework 
due to Gull and Skilling, discussed in detail in MacKay (1992a,b). 

Finally, at the third level of inference, the alternative models are com- 
pared: 

(3.4) 

Again, the data’s opinion about the alternatives is given by the evidence 
from the previous level, in this case P(D I 3-1). 

Omitting the details of the second level of inference, since they are 
identical to the methods in MacKay (1992b), this demonstration presents 
the final inferences, the evidence for alternative solutions. The evidence 
is evaluated within the gaussian approximation from the properties of the 
”most probable” fit WMP, and the error bars A-’, as described in MacKay 
(1 992a). 

Figure 4 shows the test error (calculated using the moderated outputs) 
of the solutions against the data error, and the ”Occam’s razor” problem 
can be seen: the solutions with smallest data error do not generalize best. 
Figure 5 shows the log evidence for the solutions against the test error, 
and it can be seen that a moderately good correlation is obtained. The 
correlation is not perfect. It is speculated that the discrepancy is mainly 
due to inaccurate evaluation of the evidence under the quadratic approx- 
imation, but further study is needed here. Finally, Figure 6 explores the 
dependence of the correlation between evidence and generalization on 
the amount of data. It can be seen that the correlation improves as the 
number of data points in the test set increases. 

pm I D) 0; w I 3-1)P(3-1) 

4 Active Learning 

Assume now that we have the opportunity to select the input x where a 
future datum will be gathered (“query learning”). Several papers have 
suggested strategies for this active learning problem, for example, Hwang 
etal. (1991) propose that samples should be made on and near the current 
decision boundaries. This strategy and that of Baum (1991) are both 
human-designed strategies and it is not clear what objective function if 
any they optimize, nor is it clear how the strategies could be improved. 
In this paper, as in MacKay (199213, the philosophy will be to derive a 
criterion from a defined sensible objective function that measures how 
useful a datum is expected to be. This criterion may then be used as 
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Figure 4: Test error versus data error. This figure illustrates that the task of rank- 
ing solutions to the classification problem requires Occam’s razor; the solutions 
with smallest data error do not generalize best. 
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Figure 5: Test error versus evidence. Each solution was found using the same 
training set of N = 300 data points. All solutions in which a symmetry was 
detected among the hidden units were omitted from this graph because the 
evidence evaluation for such solutions is unreliable. 
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Figure 6: Correlation between test error and evidence as the amount of data 
varies. (a) N = 150 data points. (b) N = 600 data points. (Compare Figure 5, 
for which N = 300.) For comparison, the number of parameters in a typical (10 
hidden unit) network is 41. Note that only about 25% of the data points fall in 
informative decision regions; so the effective number of data points is smaller 
in each case; bear in mind also that each data point consists only of one bit. 
All solutions in which a symmetry was detected among the hidden units were 
omitted because the evidence evaluation for such solutions is unreliable. 

a guide for query learning, or for the alternative scenario of pruning 
uninformative data points from a large data set. 

4.1 Desiderata. Let us criticize Hwang et al.'s strategy to try to estab- 
lish a reasonable objective function. The strategy of sampling on decision 
boundaries is motivated by the argument that we are unlikely to gain in- 
formation by sampling in a region where we are already confident of 
the correct classification. But similarly, if we have already sampled a 
great deal on one particular boundary then we do not gain useful in- 
formation by repeatedly sampling there either, because the location of 
the boundary has been established! Repeated sampling at such locations 
generates data with large entropy that are "informative" in the same way 
that white noise is informative. There must be more to the utility of a 
sample than its distance from a decision boundary. We would prefer to 
sample near boundaries whose location has not been well determined, 
because this would probably enable us to make more precise predictions 
there. Thus we are interested in measurements which convey mutual 
information about the unknowns that we are interested in. 

A second criticism is that a strategy that samples only near existing 
boundaries is not likely to make new discoveries; a strategy that also 
samples near potential boundaries is expected to be more informative. A 
final criticism is that to be efficient, a strategy should take into account 
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how influential a datum will be: some data may convey information 
about the discriminant over a larger region than others. So we want an 
objective function that measures the global expected informativeness of 
a datum. 

4.2 Objective Function. This paper will study the "mean marginal 
information." This objective function was suggested in MacKay (1992~1, 
and a discussion of why it is probably more desirable than the joint 
information is given there. To define this objective function, we first have 
to define a region of interest. (The objective of maximal information gain 
about the model's parameters without a region of interest would lead us 
to sample at unsampled extremes of the input space.) Here this region of 
interest will be defined by a set of representative points x('), u = 1 . . . V, 
with a normalized distribution P, on them. P, can be interpreted as 
the probability that we will be asked to make a prediction at x('). [The 
theory could be worked out for the case of a continuous region defined 
by a density p(x), but the discrete case is preferred since it relates directly 
to practical implementation.] The marginal entropy of a distribution over 
w, P(w), at one point x(,) is defined to be 

(4.1) 

where y, = y[x(");P(w)] is the average output of the classifier over the 
ensemble P(w). Under the gaussian approximation for P(w), y, is given 
by the moderated output (equation 2.2), and may be approximated by 
@(a:', s!) (equation 2.3). 

s i )  = yu logy, + (1 - y u )  log(1 - yu) 

The mean marginal entropy is 

The sampling strategy studied here is to maximize the expected change 
in mean marginal entropy. (Note that our information gain is minus the 
change in entropy.) 

4.3 Estimating Marginal Entropy Changes. Let a measurement be 
made at x. The result of this measurement is either t = 1 or t = 0. 
Assuming that our current model, complete with gaussian error bars, is 
correct, the probability of t = 1 is $[uMp(x), s2(x)] 11 @(aMP, s2). We wish to 
estimate the average change in marginal entropy of t ,  at x(") when this 
measurement is made. 

This problem can be solved by calculating the joint probability distri- 
bution Pjt, tu )  of t and f,, then finding the mutual information between 
the two variables. The four values of P ( t ,  t,) have the form 

P(t=l,t,=l)=//dada,f(a)f(a,)-exp Z 
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where AaT = (Aa, Aa,) and the activations a = aMP + Aa and a, = ayp + 
Aa, are assumed to have a gaussian distribution with covariance matrix 

(4.4) 

The normalizing constant is Z = 2nss,(l - p2)1/2.  The expected change in 
entropy of t, is 

E ( A S ~ )  I t )  = q q t ,  t,)] - S[P(~)I  - sp(t,)l (4.5) 

Notice that this mutual information is symmetric in t and t,. We can 
approximate E(  Ask) I t) by Taylor-expanding P( t ,  t,) about independence 
(p  = 0). The first order perturbation to P(t , t , )  introduced by p can be 
written in terms of a single variable c: 

P ( t  = 1, t, = 1) = P ( t  = l)P(t, = 1) + c 
P ( t  = 1, t, = 0) = P(t  = l)P(t, = 0) - c 
P ( t  = 0, t, = 1) = P(t  = O)P(t ,  = 1) - c 
P ( t  = 0, t, = 0) = P ( t  = O)P(t, = 0) + c 

Taylor-expanding equation 4.5, we find 

c2/2 
1 E ( A S ~ )  I t )  21 - P ( t  = l)P(t, = l)P(t = O)P(t, = 0) 

(4.6) 

(4.7) 

Finally, we Taylor-expand equation 4.3 so as to obtain the dependence 
of c on the correlation between the activations. The derivative of P(t  = 
1, t, = 1) with respect to p at p = 0 is 

d Aa aa, 
-P(t  = l , t ,  = 1) = 11 xdada,f(a)f(a,)--- 
&J ss, 

MI' 2 MP 2 
= s$'(a , s  ) s,?ll(au rsu) 

where $ is the moderated probability defined in equation 2.3 and $' 
denotes a$/&. This yields 

(4.8) c N p ,P(t a = 1, t, = 1) = gTA-'gcu, $'(aMp, S ~ ) $ ( U ,  MP , s,) 2 
dP 

Substituting this into equation 4.7, we find 

(gTA-'g(,,))' $'(aMP, s ' )~  $'(UYI', ~ 2 ) ~  
E ( A S ~ )  1 t )  = - 2P(t = l)P(tU = l)P(t = O)P(t, = 0) (4.9) 
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Assuming that the approximation $ 'v q!~ 5 f [ ~ ( s ) a ~ ' ]  is good, we 
can numerically approximate d$(uMP, s')/13u by K ( s ) ~ ' [ K ( s ) u ~ " ] . ~  Using 
f '  = f(1 - f )  we obtain 

E(AS&) I f) N - K ( s ) ~ ~ ; ( s , ) ' ~ ' [ K ( s ) u  MP I f  / [ K ( s , ) u ~ ~ " ]  (gTA-'g[,))'/2 (4.10) 

The two f '  terms in this expression correspond to the two intuitions that 
sampling near decision boundaries is informative, and that we are able 
to gain more information about points of interest if they are near bound- 
aries. The term (gTA-'g[,))' modifies this tendency in accordance with 
the desiderata. 

The expected mean marginal information gain is computed by adding 
up the Ask's over the representative points x(I0. The resulting function 
is plotted on a grey scale in Figure 7, for the network solving the toy 
problem described in Figure 2. For this demonstration the points of 
interest x(I1) were defined by drawing 100 input points at random from 
the test set. A striking correlation can be seen between the regions in 
which the moderated output is uncertain and regions of high expected 
information gain. In addition the expected information gain tends to 
increase in regions where the training data were sparse. 

Now to the negative aspect of these results. The regions of greatest 
expected information gain lie outside the region of interest to the right and 
left; these regions extend in long straight ridges hundreds of units away 
from the data. This estimation of utility, which reveals the "hyperplanes" 
underlying the model, seems unreasonable. The utility of points so far 
from the region of interest, if they occurred, could not really be so high. 
There are two plausible explanations of this. It may be that the Taylor 
approximations used to evaluate the mean marginal information are at 
fault, in particular equation 4.8. Or as discussed in MacKay (19923, the 
problem might arise because the mean marginal information estimates 
the utility of a point assuming that the model is true; if we assume that 
the classification surface really can be described in terms of hyperplanes 
in the input space, then it may be that the greatest torque on those planes 
can be obtained by sampling away from the core of the data. Comparison 
of the approximation 4.10 with numerical evaluations of AS&) indicates 
that the approximation is never more than a factor of two wrong. Thus 
the latter explanation is favored, and we must tentatively conclude that 
the mean marginal information gain is likely to be most useful only for 
models well matched to the real world. 

5This approximation becomes inaccurate where uMP >> s >> 1 (see Fig. lc). Because 
of this it might be wise to use numerical integration then implement AS:) in look-up 
tables. 
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Figure 7 Demonstration of expected mean marginal information gain. The 
mean marginal information gain was computed for the network demonstrated 
in Figure 2b,c. The region of interest was defined by 100 data points from the 
test set. The gray level represents the utility of a single observation as a function 
of where it is made. The darkest regions are expected to yield little information, 
and white corresponds to large expected information gain. The contours that 
are superposed represent the moderated output of the network, as shown in 
Figure 2c. The mean marginal information gain is quantified: the gray scale is 
linear from 0 to 0.0025 nats. 

5 Discussion 

5.1 Moderated Outputs. The idea of moderating the outputs of a 
classifier in accordance with the uncertainty of its parameters should have 
wide applicability, for example, to hidden Markov models for speech 
recognition. Moderation should be especially important where a classifier 
is expected to extrapolate to points outside the training region. There is 
presumably a relationship of this concept to the work of Seung et al. 
(1991) on generalization ”at nonzero temperature.” 
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If the suggested approximation to the moderated output and its deriva- 
tive is found unsatisfactory, a simple brute force solution would be to set 
up a look-up table of values of +(a,s2) and +'(u,s2). 

It is likely that an implementation of marginalization that will scale 
up well to large problems will involve Monte Carlo methods (Neal 1992). 

5.2 Evidence. The evidence has been found to be well correlated with 
generalization ability. This depends on having a sufficiently large amount 
of data. There remain open questions, including what the theoretical 
relationship between the evidence and generalization ability is, and how 
large the data set must be for the two to be well correlated, how well these 
calculations will scale up to larger problems, and when the quadratic 
approximation for the evidence breaks down. 

5.3 Mean Marginal Information Gain. This objective function was 
derived with active learning in mind. It could also be used for selection 
of a subset of a large quantity of data, as a filter to weed out fractions 
of the data that are unlikely to be informative. Unlike Plutowski and 
White's (1991) approach this filter depends only on the input variables in 
the candidate data. A strategy that selectively omits data on the basis of 
their output values would violate the likelihood principle and risk leading 
to inconsistent inferences. 

A comparison of the mean marginal information gain in Figure 7 with 
the contours of the most probable networks output in Figure 2b indicates 
that this proposed data selection criterion offers some improvements over 
the simple strategy of just sampling on and near decision boundaries: the 
mean marginal information gain shows a plausible preference for samples 
in regions where the decision boundary is uncertain. On the other hand, 
this criterion may give artifacts when applied to models that are poorly 
matched to the real world. How useful the mean marginal information 
gain will be for real applications remains an open question. 
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